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In this research, we utilized the Jacobi elliptic function expansion method to study the truncated 
M-fractional nonlinear Shynaray-IIA (S-IIA) equation with computational simulations. With the use 
of a truncated M-fractional derivative, the nonlinear (1 + 1)-dimensional Shynaray-IIA equation can 
be effectively solved using the Jacobi elliptic function expansion approach. This method yields new 
exact optical soliton wave solutions that display a range of intriguing features. In particular, we derive 
the solutions in terms of Jacobi elliptic functions, which are very useful for understanding complex 
physical events. Additionally, solitary wave and shock wave solutions emerge in the limiting instances 
for m → 1 and m → 0 respactively, offering information on periodic oscillations and localized wave 
behavior. To aid in understanding and enable a more thorough examination of their features, a number 
of these solutions are graphically depicted in several dimensions 2D, 3D and contour plots. There 
are numerous fields in which the Jacobi elliptic function expansion method is used, including fluid 
dynamics, plasma physics and quantum mechanics. This approach enhances our understanding and 
makes it possible to predict real-world phenomena more accurately.
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The complexity and importance of real-world phenomena in a range of scientific domains s resulted in an ongoing 
search for dependable and effective analytical methods in nonlinear partial differential equations (NLPDEs). The 
introduction of fractional calculus, in particular, has broadened the possibilities for mathematical modeling, 
allowing for the representation of systems with complicated behaviors that are beyond the realm of classical 
structures, such as anomalous diffusion and viscoelasticity. Nonlinear fractional partial differential equations 
(NLFPDEs) are important in physics because they allow us to simulate a wide range of phenomena across 
multiple disciplines. For examples the applications include fractional resonant nonlinear Schrödinger equations1 
. Fractional order longitudinal wave equation in a magneto-elastic circular rod2. Properties and applications of 
fractional partial differential equations with gamma, beta and hypergeometric functions3–5. Soliton solutions of 
fractional extended nonlinear Schrödinger equations which are arising in plasma physics and nonlinear optical 
fiber6–12. Soliton solutions to the nonlinear fractional Kairat-II and Kairat-X equations13–15. Fractional soliton 
solutions of dynamical system arising in plasma physics16. Optical solutions of conformable fractional perturbed 
Gerdjikov-Ivanov equation in mathematical nonlinear optics17. Soliton solutions and dynamical investigation for 
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fractional planer Hamiltonian system of Fokas model18. Optical solitons with conformable fractional evolution 
for the (3 + 1)-dimensional Sasa–Satsuma equation19. Novel soliton solutions of the fractional Riemann wave 
equation via a mathematical method20. The different kinds of nonlinear partial differential equations and its 
soliton solutions having significant role in the area of science and engineering such as fiber optics, plasma physics, 
nonlinear optics, communication system, fluid dynamics, mechanics, and many others21–25. Some examples are: 
novel optical soliton solutions for the nonlinear complex Ginzburg–Landau equation26. The two-dimensional 
nonlinear Kadomtsev-Petviashvii-modified equal width (KP-MEW) equation27. Using the extended modified 
rational expansion method and symbolic computation, multiple solitary wave solutions are constructed for 
the nonlinear two-dimensional Jaulent–Miodek Hierarchy (JMH) equation28. Various soliton solutions for the 
complex nonlinear Kuralay-IIA equation were obtained using utilizing an enhanced F-expansion method29. The 
nonlinear longtudinal wave equation (LWE) is analuzed utilizing the auxilairy equation mapping method and 
the extended direct algebriac method30 and other kinds of nonlinear partial differential equations31–34. Currently, 
the significance of soliton theory has grown exponentially, as it has become a special topic within nonlinear 
science. Solitons have garnered profound importance due to their extraordinary properties. One of their most 
important features is their ability to maintain both shape and velocity after interaction and stability. Solitons 
have various forms including, dark, periodic, singular, dark bright, kink, anti-kink, and many more. There are 
different methods to derive these forms of soliton solutions, such as the auxiliary equation method35–38, sardar 
sub equation method and riccati equation mapping method39, extended simple equation method40–42, Darbous 
and Hirota technique43, Improved F-expansion method44–46, extended modified rational expansion method47, 
modified auxiliary equation method48, and other analytical techniques49–55. Some other useful techniques to 
examine the nonlinear models56–59. Consider the nonlinear (1 + 1)-dimensional Shynaray-IIA equation in60,61.

	 igt + gx,t − i(hg)x = 0

	 ift − fxt − i(hf)x = 0

	 hx − 2q(fg)t = 0� (1)

Gives the S-IIA Eq. (1). When f = ϵg(ϵ = ±1), the S-IIA equation takes on the following form, as shown in61:

	 igt + gxt − i(hg)x = 0

	 hx − 2ϵq
(
|g|2

)
t

= 0� (2)

The truncated M-fractional Shynaray-IIA (S-IIA) equation is presented as:

	 iDα,Υ
M,t g + D2α,Υ

M,xtg − iDα,Υ
M,x (hg) = 0

	 iDα,Υ
M,t f − D2α,Υ

M,xtf − iDα,Υ
M,x (hf) = 0

	 Dα,Υ
M,xh − 2qDα,Υ

M,t

(
|g|2

)
= 0� (3)

Presents the S-IIA equation as Eq. (3). Under the condition f = ϵg(ϵ = ±1), the S-IIA equation is simplified to:

	 iDα,Υ
M,t g + D2α,Υ

M,xtg − iDα,Υ
M,x (hg) = 0

	 Dα,Υ
M,xh − 2ϵqDα,Υ

M,t

(
|g|2

)
= 0� (4)

where

	
Dα,Υ

M,xg (x) = lim
τ→0

g
(
xEΥ

(
τx1−α

))
− g(x)

τ
, 0 < α ≤ 1, Υ ∈ (0, ∞)� (5)

Here, EΥ (.) represents a truncated Mittag–Leffler (TML) function cited in63.
In general, the system consists of a set of interconnected nonlinear fractional partial differential equations 

characterized by real constants p, q and ϵ, where p2 = 2q2. The function g = g(x, t) is a complex-valued, 
whereas h = h(x, t) is a real-valued function. The model under consideration, the Shnaray-IIA equation, is a 
coupled system of NLFPDEs that is integrable and possesses soliton solutions. The above equation represents the 
integrable motion of space curves and finds applications in nonlinear optics, water waves, plasma physics, and 
various other modern scientific domains.

Previous studies have tackled this model using a limited array of techniques; some optical wave solutions 
have been obtained through an improved modified Sardar sub-equation method60. While exact optical wave 
solutions have been achieved by employing the ϕ6-model expansion method61. In this paper, we investigate new 
exact optical soliton wave solutions for the truncated M-fractional nonlinear (1 + 1)-dimensional Shynaray-
IIA equation by applying the Jacobi elliptic function expansion method. Specifically, we obtain the solutions 
expressed in terms of Jacobi elliptic functions, which are especially helpful in the comprehension of intricate 
physical phenomena. Furthermore, in the limiting sense for m → 1 and m → 0, solitary wave and shock wave 
solutions arise to provide information on localized wave behavior and insight into periodic oscillation. The flow 
chart of our proposed work is illustrated in Fig. 1. This flow chart represented to our investigation step by step.
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The paper consists of various sections, in section 1, we discussed introduction and mathematical model 
truncated M-fractional Shynaray-IIA equation, in section 2, we discussed the main descriptions of the Jacobi 
elliptic function expansion methodology, in section 3, we utilized the Jacobi Elliptic Function Expansion Method 
to find the new exact optical soliton wave solutions for truncated M-fractional nonlinear (1 + 1)-dimensional 
Shynaray-IIA equation, in section 4, we explained the results and discussion of the obtained solutions and the 
suggested approach with other traditional methods, in section 5, we plotted the graphs of the solutions in various 
dimensions, in section 6, we addressed the conclusion of the study.

The details of the JEFEM
In this section, we simply discussed the main description of the Jacobi elliptic function expansion method.

Generally, the nonlinear partial differential equations have the following mathematical format.

	 F
(
u, u2uxut, uxx, utt, uxt, . . .

)
= 0� (6)

Transforming Eq. (6) into a nonlinear ordinary differential equation (NLODE).

	 S
(
u, u′, u′′, u′′′, . . .

)
= 0� (7)

Employing the given wave transformations.

	 u (x, t) = u (ξ) , ξ = k(x − ct)� (8)

Fig. 1.  Work flow chart.
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Here, “k” represents wave number and “c” represents wave speed.
Moreover, the main goal of using this extended indirect method is to increase the probability of finding 

solutions to an additional ordinary differential equation (the first kind in the parameter Jacobian equation). 
Creating a large number of Jacobian elliptic function solutions for the given equation is the objective. This effort 
aims to produce a significant number of Jacobian elliptic function solutions. Additionally, it is also possible to 
visualize the auxiliary equation.

	 (F ′)2 (ξ) = m2F 4 (ξ) + m1F 2 (ξ) + m0� (9)

In this context, where F ′ = dF
dξ

, ξ = ξ (x, t), Table 1 contains the solutions of Eq. (9) With i2 = −1. The Jacobi 
Elliptic Functions snξ = sn (ξ, r) , cnξ = cn(ξ, r) and dnξ = dn(ξ, r) are involved, where r represents the 
modulus within the range 0 < r < 1. The Eq. (9) could yield numerous solutions for the function based on the 
selected values for m2, m1, and m0.

As r approaches 1 and 0, respectively, a limiting procedure reduces the Jacobi elliptic functions, as shown in 
Table 2, to hyperbolic and trigonometric functions.

This leads to a variety of solutions for the given problem, including Jacobian elliptic function, hyperbolic, and 
trigonometric solutions. It is possible to express u(ξ) as a finite series of Jacobi elliptic functions by using the 
Jacobi elliptic function expansion method.

	
u (ξ) =

n∑
i=0

aiF
i (ξ)� (10)

Here, F (ξ) represents the solution of the nonlinear ordinary differential Eq. (9) and n, ai ( where i = 0,1, 2,3, . . . ) 
are constants that we determined later,

m2 m1 m0 F

1 r2 −(1 + r2) 1 sn, cd

2 r2 2r2 − 1 1 − r2
cn

3  − 1 2 − r2
r2 − 1 dn

4 1 −(1 + r2) r2 ns, dc

5 1 − r2 2r2 − 1 −1 nd

6 r2 − 1 2 − r2 −1 nd

7 1 − r2 2 − r2 1 sc

8 −r2(1 − r2) 2r2 − 1 1 sd

9 1 2 − r2 1 − r2
cs

10 1 2r2 − 1 r2(1 − r2) ds

11
−1
4

r2+1
2

−(1−r2)2

4 rcn ∓ dn

12
1
4 −2r2+1

2
1
4 ns ∓ cs

13 1−r2
4

r2+1
2

1−r2
4 nc ∓ sc

14
1
4 r2−2

2
r4
4 ns ∓ ds

15 r2
4

r2−2
2

r2
4

sn ∓ icn, sn√
1−r2sn∓cn

16
1
4 1−2r2

2
1
4 rcn ∓ idn, sn

1∓cn

17 r2
4

r2−2
2

1
4

sn
1∓dn

18 r2−1
4

r2+1
2

r2−1
4

dn
1∓rsn

19 1−r2
4

r2+1
2

−r2+1
4

cn
1∓sn

20 (1−r2)2

4
r2+1

2
1
4

sn
dn∓cn

21 r4
4

r2−2
2

1
4

cn√
1−r2∓dn

Table 1.  The Eq. (9) could yield numerous solutions for the function F  based on the selected values for 
m2, m1 and m062,63. 
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O

(
dpu

dξp

)
= n + p, p = 0,1, 2,3, . . . .� (11)

And the highest-order nonlinear term is,

	
O

(
uq dpu

dξp

)
= (q + 1) n + p, p = 0,1, 2,3, . . . , q = 1,2, 3, . . . .� (12)

We obtain a set of algebraic equations for the coefficients, ai  (i = 0,1, 2,3, . . . ) by substituting Eq. (10) into 
Eq. (7) and setting the power of F  to zero. We can find the desired solution by solving this set using the given 
value of m2, m1 and m0 from Table 1. By utilizing the previously mentioned technique of merging data with the 
auxiliary equation, Exact solutions for Eq. (6) can be obtained.

Utilizing mathematical methods to solve the governing equation
Considering the transformation below:

	
g (x, t) = G (ξ) × e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

, h (x, t) = H (ξ) , ξ = Γ (1 + Υ)
α

(xα − λtα)� (13)

where G (ξ) , θ, τ, ϑ and λ represents pulse shape, frequency of the soliton, wave number of the soliton, phase 
constant and velocity of the soliton respectively.

	 Dα,Υ
M,t g = (iτG − λG′) × e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (14)

	 D2α,Υ
M,xtg =

(
−λG′′ + θiλG′ + iτG′ + θτG

)
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (15)

	 Dα,Υ
M,x (hg) = (HG′ + GH′ − θiGH) × e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (16)

	 Dα,Υ
M,xh = H′� (17)

	 Dα,Υ
M,t

(
|g|2

)
= −2λGG′� (18)

By substituting Eqs. (14), (15) and (16) into the first equation and Eqs. (17) and (18) into the second equation 
of system Eq. (4), we find:

	 λG′′ + τ (1 − θ) G + θHG + i (τ − λ (1 − θ)) G′ − HG′ − H′G = 0,

	
H′ + 2λϵp2

q
GG′ = 0� (19)

Integrating the second equation of the system in Eq. (19), we find:

	
H (ξ) = −λϵp2

q
G2 (ξ)� (20)

By substituting Eq. (20) into the first equation of Eq. (19) , we get the real part given as:

	
λG′′ + τ (1 − θ) G − θλϵp2

q
G3 = 0� (21)

The imaginary part is given as:

r → 1 r → 1 r → 0
1 snu tanhu sinu 7 dcu 1 secu

2 cnu sechu cosu 8 ncu coshu secu

3 dnu sechu 1 9 scu sinhu tanu

4 cdu 1 cosu 10 nsu cothu cscu

5 sdu sinhu sinu 11 dsu cschu cscu

6 ndu coshu 1 12 csu cschu cotu

Table 2.  In terms of constraining aspects for both r → 1 and r → 0, the Jacobi elliptic functions simplify 
to63,64.
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(τ − λ (1 − θ)) G′ + 3λϵp2

q
G2G′ = 0� (22)

The constrain condition appears as follows:

	 τ = λ (1 − θ)� (23)

By using the Homogeneous balancing procedure, balancing the terms G3 and G′′ in Eq. (21), we determine the 
value of n = 1.

Now, we will solve Eq. (21) using the previously mentioned approach. For n = 1 the solution of Eq. (21) can 
be expressed as:

	 G (ξ) = a0 + a1F (ξ)� (24)

Substituting Eq. (24) along with Eq. (9) into Eq. (21), we get:

	
a0 = 0, a1 =

√
2qm2

θϵ

p
, λ = −τ (1 − θ)

m1
� (25)

Jacobian elliptic function solutions
By utilizing the data presented in Tables 1 and 2, and combining the corresponding values as per Eq. (24), we can 
obtain the Jacobi elliptic function solutions which are in periodic nature for Eq. (21) as outlined below.

	
g1,1 (x, t) = ±

√
2qr2

θϵ

p
sn

(
Γ (1 + Υ)

α

(
xα − τ (1 − θ)

(1 + r2) tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (26)

	

h1,1 (x, t) = −λϵp2

q


±

√
2qr2

θϵ

p
sn

(
Γ (1 + Υ)

α

(
xα − τ (1 − θ)

(1 + r2) tα

))


2

� (27)

	
g1,2 (x, t) = ±

√
2qr2

θϵ

p
cd

(
Γ (1 + Υ)

α

(
xα − τ (1 − θ)

(1 + r2) ,
tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (28)

	

h1,2 (x, t) = −λϵp2

q


±

√
2qr2

θϵ

p
cd

(
Γ (1 + Υ)

α

(
xα − τ (1 − θ)

(1 + r2) ,
tα

))


2

� (29)

	
g1,3 (x, t) = ±

√
−2qr2

θϵ

p
cn

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2r2 − 1) tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (30)

	

h1,3 (x, t) = −λϵp2

q


±

√
−2qr2

θϵ

p
cn

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2r2 − 1) tα

))


2

� (31)

	
g1,4 (x, t) = ±

√
−2q
θϵ

p
dn

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2 − r2) tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (32)

	
h1,4 (x, t) = −λϵp2

q

(
±

√
−2q
θϵ

p
dn

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2 − r2) tα

)))2

� (33)

	
g1,5 (x, t) = ±

√
2q
θϵ

p
ns

(
Γ (1 + Υ)

α

(
xα − τ (1 − θ)

(1 + r2) tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (34)

	
h1,5 (x, t) = −λϵp2

q

(
±

√
2q
θϵ

p
ns

(
Γ (1 + Υ)

α

(
xα − τ (1 − θ)

(1 + r2) tα

)))2

� (35)

	
g1,6 (x, t) = ±

√
2q
θϵ

p
dc

(
Γ (1 + Υ)

α

(
xα − τ (1 − θ)

(1 + r2) tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (36)
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h1,6 (x, t) = −λϵp2

q

(
±

√
2q
θϵ

p
dc

(
Γ (1 + Υ)

α

(
xα − τ (1 − θ)

(1 + r2) tα

)))2

� (37)

	
g1,7 (x, t) = ±

√
2q(1−r2)

θϵ

p
nc

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2r2 − 1) tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (38)

	

h1,7 (x, t) = −λϵp2

q


±

√
2q(1−r2)

θϵ

p
nc

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2r2 − 1) tα

))


2

� (39)

	
g1,8 (x, t) = ±

√
2q(1−r2)

θϵ

p
sc

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2 − r2) tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (40)

	

h1,8 (x, t) = −λϵp2

q


±

√
2q(1−r2)

θϵ

p
sc

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2 − r2) tα

))


2

� (41)

	
g1,9 (x, t) = ±

√
2q
θϵ

p
cs

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2 − r2) tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (42)

	
h1,9 (x, t) = −λϵp2

q

(
±

√
2q
θϵ

p
cs

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2 − r2) tα

)))2

� (43)

	
g1,10 (x, t) = ±

√
2q
θϵ

p
ds

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2r2 − 1) tα

))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)

� (44)

	
h1,10 (x, t) = −λϵp2

q

(
±

√
2q
θϵ

p
ds

(
Γ (1 + Υ)

α

(
xα + τ (1 − θ)

(2r2 − 1) tα

)))2

� (45)

	
g1,11 (x, t) = ±

√
q

2θϵ

p

(
rcn

(
Γ (1 + Υ)

α

(
xα + 2τ (1 − θ)

(r2 + 1) tα

))
± dn

(
Γ (1 + Υ)

α

(
xα + 2τ (1 − θ)

(r2 + 1) tα

)))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)
� (46)

	
h1,11 (x, t) = −λϵp2

q

(
±

√
q

2θϵ

p
rcn

(
Γ (1 + Υ)

α

(
xα + 2τ (1 − θ)

(r2 + 1) tα

))
± dn

(
Γ (1 + Υ)

α

(
xα + 2τ (1 − θ)

(r2 + 1) tα

)))2

� (47)

	
g1,12 (x, t) = ±

√
q

2θϵ

p

(
ns

(
Γ (1 + Υ)

α

(
xα + 2τ (1 − θ)

(−2r2 + 1) tα

))
± cs

(
Γ (1 + Υ)

α

(
xα + 2τ (1 − θ)

(−2r2 + 1) tα

)))
× e

i
(

Γ(1+Υ)
α

(−θxα+τtα)+ϑ
)
� (48)

	
h1,12 (x, t) = −λϵp2

q

(
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Solitary wave solutions
When m → 1, in this case some of the Jacobi elliptic function solutions degenerate to the solitary wave solutions 
and g1,7, g1,8, g1,13, g1,21 become zero. The solitary wave solutions for Eq. (21) are outlined below
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Shock wave solutions
When m → 0, in this case some of the Jacobi elliptic functions solutions degenerate to the trigonometric 
solutions and g1,1, g1,2, g1,3, g1,11, g1,15, g1,16, g1,19, g1,22 become zero. The Shock wave solutions for Eq. (21) 
are outlined below.
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Results and discussion
In this section, we compare and discuss the solutions obtained from our investigation with those from previous 
studies. By employing the Jacobi elliptic function expansion method, we derived a variety of interesting optical 
soliton wave solutions for the truncated M-fractional nonlinear (1 + 1)-dimensional Shynaray-IIA equations. 
It is important to note that, among these solutions are exact periodic solutions. This method also enabled us 
to produce some shock wave and solitary wave solutions. To highlight the similarities and differences between 
solutions obtained through different methods, we conducted a comparative analysis. Previous studies have 
addressed similar nonlinear equations using various methods, such as the Kudryashov method, the exp-function 
method and the modified simple equation method59,60. These approaches are instrument in understanding the 
dynamics of phenomena like tsunamis and tidal waves.

Our finding exhibits notable novelties, diversity in physical structures, and general applicability. Comparing 
our new, more general soliton wave solutions with those from earlier research underscores the robustness, 
reliability, simplicity, and efficiency of the Jacobi elliptic function expansion method. This comparison 
demonstrates the superiority of the Jacobi elliptic function expansion method over previously used techniques. 
Our results not only enhance the understanding of the Shynaray-IIA equation but also illustrate the method 
potential in solving a broader class of nonlinear problems.

Graphical representation
This section shows the graphical depiction of the soliton wave solutions for the truncated M-fractional nonlinear 
(1 + 1)-dimensional Shynaray-IIA equation that were found using the previously mentioned Jacobi elliptic 
function approach. Using the proper values for the free variables, we present these graphs in 3D, 2D, and contour 
formats. Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 represented to the physical structure of some 
examined solutions with different soliton and solitary wave profiles by using appropriate values for the arbitrary 
parameters. These graphs shows the physical structure in periodic wave solitons, bright and dark solitons, mixed 
bright and dark periodic wave solitons, peakon periodic wave solitons and solitary wave structure. Figures 2, 
3, 4, 5, 6, 7 represented to peakon periodic wave soliton structure for |g1,1 (x, t)| and |g1,4 (x, t)|. Figures 8, 9, 
10, 11, 12, 13 represented to bell type periodic wave soliton structure for |g1,5 (x, t)| and |g1,7 (x, t)|. Figure 14 
represented to bell type bright and dark soliton structure for |g1,9 (x, t)|. Figures 15, 16 represented to bell type 
periodic wave soliton structure for |g1,9 (x, t)|, and Fig. 17 represented to peakon bright soliton structure for 
|g1,11 (x, t)|. Figures 18, 19 represented to peakon periodic wave soliton structure for |g1,11 (x, t)|, by using 
appropriate values for the arbitrary parameters.

These visual aids are crucial because they allow us to confirm the accuracy of the theoretical conclusions 
we previously reached. Remember that Mathematica was used to create these figures and graphs. However, the 
influence of waves is also examined, and it is observed that by regulating the soliton propagation with wave 
number, physicists and researchers can obtain the necessary results. A thorough explanation of the figure, 
together with the relevant variables or constants utilized in each one, is provided below:
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Conclusion
This study demonstrates that the Jacobi elliptic function expansion method is an efficient approach for solving 
the nonlinear (1 + 1)-dimensional Shynaray-IIA equation based on the truncated M-fractional derivative. 
By Utilizing JEFEM, exact solutions are obtained that exhibit a variety of interesting behaviors, especially 
when expressed in terms of Jacobi elliptic functions. These solutions provide valuable insights into complex 
physical phenomena. Moreover, the appearance of both solitary wave and shock wave solutions offers important 
information regarding localized wave behavior and periodic fluctuations. Graphical representations of these 

Fig. 4.  2-D plot for the wave propagation of  |g1,1 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.8, γ = 0.5, ϵ = 0.5, α = 1, p = 2; q = 3, θ = 0.2, ϑ = 0.2 and τ = 2.5.

 

Fig. 3.  2-D plot for the wave propagation of  |g1,1 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.8, γ = 0.5, ϵ = 0.5, α = 1, p = 2; q = 3, θ = 0.2, ϑ = 0.2 and τ = 1.

 

Fig. 2.  2-D plot for the wave propagation of  |g1,1 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.8, γ = 0.5, ϵ = 0.5, α = 1, p = 2; q = 3, θ = 0.2, ϑ = 0.2 and τ = 0.1.
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solutions in various dimensions enhanced our comprehension and facilitate a more thorough exploration of 
their properties. The application of the Jacobi elliptic function expansion method promises to improve our 
understanding and prediction of real-world phenomena in a variety of fields, such as fluid dynamics and 
quantum mechanics.

Fig. 7.  2-D plot for the wave propagation of  |g1,4 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.8, γ = 0.9, ϵ = 0.5, α = 0.9, p = −1, q = 1, θ = 0.2, ϑ = 2 and τ = 2.5.

 

Fig. 6.  2-D plot for the wave propagation of  |g1,4 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.8, γ = 0.9, ϵ = 0.5, α = 0.9, p = −1, q = 1, θ = 0.2, ϑ = 2 and τ = 1.

 

Fig. 5.  2-D plot for the wave propagation of  |g1,4 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.8, γ = 0.9, ϵ = 0.5, α = 0.9, p = −1, q = 1, θ = 0.2, ϑ = 2 and τ = 0.1.
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Fig. 10.  2-D plot for the wave propagation of  |g1,5 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.5, γ = 0.9, ϵ = 0.5, α = 0.9, p = 1, q = 1, θ = 2, ϑ = 0.2, τ = 2.5.

 

Fig. 9.  2-D plot for the wave propagation of  |g1,5 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.5, γ = 0.9, ϵ = 0.5, α = 0.9, p = 1, q = 1, θ = 2, ϑ = 0.2, τ = 1.

 

Fig. 8.  2-D plot for the wave propagation of  |g1,5 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.5, γ = 0.9, ϵ = 0.5, α = 0.9, p = 1, q = 1, θ = 2, ϑ = 0.2, τ = 0.1.
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Fig. 13.  2-D plot for the wave propagation of  |g1,7 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.5, γ = 0.9, ϵ = 1.5, α = 0.9, p = 1, q = 1, θ = 0.2, ϑ = 4, and τ = 2.5.

 

Fig. 12.  2-D plot for the wave propagation of  |g1,7 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.5, γ = 0.9, ϵ = 1.5, α = 0.9, p = 1, q = 1, θ = 0.2, ϑ = 4, and τ = 1.

 

Fig. 11.  2-D plot for the wave propagation of  |g1,7 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.5, γ = 0.9, ϵ = 1.5, α = 0.9, p = 1, q = 1, θ = 0.2, ϑ = 4, and τ = 0.1.
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Fig. 16.  2-D plot for the wave propagation of  |g1,9 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.9, γ = 0.9, ϵ = 0.5ϵ = 0.9, p = 4, q = 4, θ = 2, ϑ = 2andτ = 2.5.

 

Fig. 15.  2-D plot for the wave propagation of  |g1,9 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.9, γ = 0.9, ϵ = 0.5ϵ = 0.9, p = 4, q = 4, θ = 2, ϑ = 2andτ = 1.

 

Fig. 14.  2-D plot for the wave propagation of  |g1,9 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.9, γ = 0.9, ϵ = 0.5ϵ = 0.9, p = 4, q = 4, θ = 2, ϑ = 2andτ = 0.1.
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Data availability
All data that support the findings of this study are included in the article.

Received: 30 July 2025; Accepted: 24 September 2025

Fig. 19.  2-D plot for the wave propagation of  |g1,11 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.5, γ = 0.9; ϵ = 0.5; α = 0.9; p = 1; q = 1, θ = 0.2, ϑ = 4 and τ = 2.5.

 

Fig. 18.  2-D plot for the wave propagation of  |g1,11 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.5, γ = 0.9; ϵ = 0.5; α = 0.9; p = 1; q = 1, θ = 0.2, ϑ = 4 and τ = 1.

 

Fig. 17.  2-D plot for the wave propagation of  |g1,11 (x, t)|  for varying t, contour and 3-D for the parameters 
m = 0.5, γ = 0.9; ϵ = 0.5; α = 0.9; p = 1; q = 1, θ = 0.2, ϑ = 4 and τ = 0.1.
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