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Periodic structures of solitons
and shock wave solutions in the
fractional nonlinear Shynaray-
lIA equation via a generalized
analytical method

Mujahid Igbal*?, Muhammad Ishfaq Khan?, Huda Daefallh Alrashdi*, Reem Algethamie®,
Faizah A. H. Alomari®, Abeer Aljohani®, Nazar Mohammad’* & Salma Aljawi®

In this research, we utilized the Jacobi elliptic function expansion method to study the truncated
M-fractional nonlinear Shynaray-IIA (S-11A) equation with computational simulations. With the use

of a truncated M-fractional derivative, the nonlinear (1 +1)-dimensional Shynaray-IlA equation can

be effectively solved using the Jacobi elliptic function expansion approach. This method yields new
exact optical soliton wave solutions that display a range of intriguing features. In particular, we derive
the solutions in terms of Jacobi elliptic functions, which are very useful for understanding complex
physical events. Additionally, solitary wave and shock wave solutions emerge in the limiting instances
form — 1 and m — O respactively, offering information on periodic oscillations and localized wave
behavior. To aid in understanding and enable a more thorough examination of their features, a number
of these solutions are graphically depicted in several dimensions 2D, 3D and contour plots. There

are numerous fields in which the Jacobi elliptic function expansion method is used, including fluid
dynamics, plasma physics and quantum mechanics. This approach enhances our understanding and
makes it possible to predict real-world phenomena more accurately.

Keywords Fractional nonlinear Shynaray-IIA equation, Jacobi elliptic function expansion method, Shock
wave solutions, Fractional impacts, Analytical solutions, Solitons

The complexity and importance of real-world phenomena in a range of scientific domains s resulted in an ongoing
search for dependable and effective analytical methods in nonlinear partial differential equations (NLPDEs). The
introduction of fractional calculus, in particular, has broadened the possibilities for mathematical modeling,
allowing for the representation of systems with complicated behaviors that are beyond the realm of classical
structures, such as anomalous diffusion and viscoelasticity. Nonlinear fractional partial differential equations
(NLFPDEs) are important in physics because they allow us to simulate a wide range of phenomena across
multiple disciplines. For examples the applications include fractional resonant nonlinear Schrédinger equations!
. Fractional order longitudinal wave equation in a magneto-elastic circular rod? Properties and applications of
fractional partial differential equations with gamma, beta and hypergeometric functions>~>. Soliton solutions of
fractional extended nonlinear Schrédinger equations which are arising in plasma physics and nonlinear optical
fiber®~12. Soliton solutions to the nonlinear fractional Kairat-1I and Kairat-X equations'3~1°. Fractional soliton
solutions of dynamical system arising in plasma physics!®. Optical solutions of conformable fractional perturbed
Gerdjikov-Ivanov equation in mathematical nonlinear optics'”. Soliton solutions and dynamical investigation for
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fractional planer Hamiltonian system of Fokas model'®. Optical solitons with conformable fractional evolution
for the (3 +1)-dimensional Sasa-Satsuma equation!®. Novel soliton solutions of the fractional Riemann wave
equation via a mathematical method®. The different kinds of nonlinear partial differential equations and its
soliton solutions having significant role in the area of science and engineering such as fiber optics, plasma physics,
nonlinear optics, communication system, fluid dynamics, mechanics, and many others?!~2>. Some examples are:
novel optical soliton solutions for the nonlinear complex Ginzburg-Landau equation?. The two-dimensional
nonlinear Kadomtsev-Petviashvii-modified equal width (KP-MEW) equation?’. Using the extended modified
rational expansion method and symbolic computation, multiple solitary wave solutions are constructed for
the nonlinear two-dimensional Jaulent-Miodek Hierarchy (JMH) equation?®. Various soliton solutions for the
complex nonlinear Kuralay-IIA equation were obtained using utilizing an enhanced F-expansion method?’. The
nonlinear longtudinal wave equation (LWE) is analuzed utilizing the auxilairy equation mapping method and
the extended direct algebriac method*® and other kinds of nonlinear partial differential equations®'-3%. Currently,
the significance of soliton theory has grown exponentially, as it has become a special topic within nonlinear
science. Solitons have garnered profound importance due to their extraordinary properties. One of their most
important features is their ability to maintain both shape and velocity after interaction and stability. Solitons
have various forms including, dark, periodic, singular, dark bright, kink, anti-kink, and many more. There are
different methods to derive these forms of soliton solutions, such as the auxiliary equation method*-%, sardar
sub equation method and riccati equation mapping method>’, extended simple equation method**~*2, Darbous
and Hirota technique®?, Improved F-expansion method*!¢, extended modified rational expansion method?’,
modified auxiliary equation method?, and other analytical techniques*~°. Some other useful techniques to
examine the nonlinear models®*->°. Consider the nonlinear (1 + 1)-dimensional Shynaray-IIA equation in®°!.

igt + gzt —i(hg), =0
ift — for —i(hf), =0
ha —2q(fg), =0 (1)
Gives the S-TIA Eq. (1). When f = €g(e = £1), the S-IIA equation takes on the following form, as shown in®":
igt + gut — i(hg), =0
he —2eq(|g[*), =0 )
The truncated M-fractional Shynaray-IIA (S-IIA) equation is presented as:
iD}i g+ Dii g —iDj Y, (hg) = 0
iD3 4 f = DAfif —iD5, (hf) =0
Dy oh—24D5;5 (191*) =0 (3)
Presents the S-ITA equation as Eq. (3). Under the condition f = €g(e = %1), the S-IIA equation is simplified to:
iD3i b9 + Dif g — Dy, (hg) =0
Diiuh —2¢qDg; (191*) =0 (4)

where

et
DT g (x) = lim (xET (7’1’ )) g(;r:)70 <a<1,Te(0,00) (5)
’ T—0 T
Here, E'Y (.) represents a truncated Mittag-Leffler (TML) function cited in®.

In general, the system consists of a set of interconnected nonlinear fractional partial differential equations
characterized by real constants p, g and €, where p? = 2¢°. The function g = g(x,t) is a complex-valued,
whereas h = h(x,t) is a real-valued function. The model under consideration, the Shnaray-IIA equation, is a
coupled system of NLFPDEs that is integrable and possesses soliton solutions. The above equation represents the
integrable motion of space curves and finds applications in nonlinear optics, water waves, plasma physics, and
various other modern scientific domains.

Previous studies have tackled this model using a limited array of techniques; some optical wave solutions
have been obtained through an improved modified Sardar sub-equation method®®. While exact optical wave
solutions have been achieved by employing the ¢®-model expansion method®". In this paper, we investigate new
exact optical soliton wave solutions for the truncated M-fractional nonlinear (1 + 1)-dimensional Shynaray-
ITA equation by applying the Jacobi elliptic function expansion method. Specifically, we obtain the solutions
expressed in terms of Jacobi elliptic functions, which are especially helpful in the comprehension of intricate
physical phenomena. Furthermore, in the limiting sense for m — 1 and m — 0, solitary wave and shock wave
solutions arise to provide information on localized wave behavior and insight into periodic oscillation. The flow
chart of our proposed work is illustrated in Fig. 1. This flow chart represented to our investigation step by step.
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The paper consists of various sections, in section 1, we discussed introduction and mathematical model
truncated M-fractional Shynaray-IIA equation, in section 2, we discussed the main descriptions of the Jacobi
elliptic function expansion methodology, in section 3, we utilized the Jacobi Elliptic Function Expansion Method
to find the new exact optical soliton wave solutions for truncated M-fractional nonlinear (1 + 1)-dimensional
Shynaray-IIA equation, in section 4, we explained the results and discussion of the obtained solutions and the
suggested approach with other traditional methods, in section 5, we plotted the graphs of the solutions in various
dimensions, in section 6, we addressed the conclusion of the study.

The details of the JEFEM
In this section, we simply discussed the main description of the Jacobi elliptic function expansion method.
Generally, the nonlinear partial differential equations have the following mathematical format.

2
F (u,u uxut,um,utt,uxt,...) =0 (6)

Transforming Eq. (6) into a nonlinear ordinary differential equation (NLODE).

S(u,ul, u",u”/,...) =0 (7)

Employing the given wave transformations.

u(z,t) = u(f), &= k(z - ct) (8)

The fractional coupled nonlinear Shynaray-I11A model

Periodic wave Behavior of the Solitary wave
solutions solutions solutions

2

[ Applying complex wave transformation ]

¥

[ Reduced to nonlinear ordinary differential equation ]

\ 4

[ Jacobi elliptic function expansion method ]

) 2

[ Exact optical soliton wave solutions ]

1

Shock wave
solutions

Fig. 1. Work flow chart.

Scientific Reports |

(2025) 15:38017 | https://doi.org/10.1038/s41598-025-21921-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

« »

Here, “k” represents wave number and “c” represents wave speed.

Moreover, the main goal of using this extended indirect method is to increase the probability of finding
solutions to an additional ordinary differential equation (the first kind in the parameter Jacobian equation).
Creating a large number of Jacobian elliptic function solutions for the given equation is the objective. This effort
aims to produce a significant number of Jacobian elliptic function solutions. Additionally, it is also possible to
visualize the auxiliary equation.

(FN? (&) = maF* (&) + ma F? (€) + mo 9)

In this context, where F'/ = ‘fi—’z, & = & (z,t), Table 1 contains the solutions of Eq. (9) With i2 = —1. The Jacobi

Elliptic Functions sn& = sn (§,r),cné = en(€,r) and dn& = dn(,r) are involved, where r represents the
modulus within the range 0 < r < 1. The Eq. (9) could yield numerous solutions for the function based on the
selected values for maz, m1, and my.

As r approaches 1 and 0, respectively, a limiting procedure reduces the Jacobi elliptic functions, as shown in
Table 2, to hyperbolic and trigonometric functions.

This leads to a variety of solutions for the given problem, including Jacobian elliptic function, hyperbolic, and
trigonometric solutions. It is possible to express () as a finite series of Jacobi elliptic functions by using the
Jacobi elliptic function expansion method.

n

w(®) =Y aF (¢ (10)

=0

Here, F'(&) represents the solution of the nonlinear ordinary differential Eq. (9) and n, a; (wherei = 0,1,2,3,...)
are constants that we determined later,

ma my mo 1¥
1|2 —(147%) |1 sn, cd
2 |2 2r? — 1 1—r2 cn
3 | -1 2—r2 r?—1 dn
4 |1 —(1+7%) |2 ns, de
5 [1—1r2 2r? — 1 -1 nd
6 |72 -1 2 — 7?2 -1 nd
7 [1-72 —r? 1
r 2—r sc
2 2
8 |—r(1—77) 272 —1 1 sd
9 |1 2 — 2 1— 72 cs
101 2r2 —1 | r2(1—1r?) | g
=1 241 —(-r?)?
11| = % % ren F dn
1 9,2
21 2r-t1 : ns F cs
_ 2 2 2
13 | L 4T TT‘H 1_4T nc F sc
1 2_ 4
14|37 % TT ns F ds
5 S - — sn
- _5 2 sn Ficn, —0
15| 2 2 2 e A enzen
1 1—2r2 1 id =
16 | 1 3 I ren F i, v
2 2 ]
—2
17 | o . i T dn
2 4 2 P2 dn
18 | ==L r ;1 T L 11:5n
1—r2 2 e} —cn
19 4T TTH % 1;2%
17242 2 S
20 | G=r)” g : TnFon
" 2, 1 __en
21 | & = 4 Vi—r2xdn

Table 1. The Eq. (9) could yield numerous solutions for the function F' based on the selected values for
ma, m1 and mo%>%.
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sdu | sinhu | sinu |11 | dsu | cschu | cscu

r—1 r—>1|r—=0
Ul snu | tanhu |sinu |7 |deuw |1 secu
2 | cnu | sechu |cosu |8 |ncu |coshu |secu
3 | dnu | sechu |1 9 |scu |sinhu |tanu
4| cdu |1 cosu |10 | nsu | cothu |cscu
5
6

ndu | coshu |1 12 | csu | eschu | cotu

Table 2. In terms of constraining aspects for both » — 1 and r — 0, the Jacobi elliptic functions simplify
t063'64.

dPu
O(d&") :n+paP:O,1,2,3, (11)

And the highest-order nonlinear term is,

/4
O(MZ;)—%q+Dn+pp—0LZ&HWQ—LZ&“” (12)

We obtain a set of algebraic equations for the coefficients, a; (¢ = 0,1,2,3,...) by substituting Eq. (10) into
Eq. (7) and setting the power of F' to zero. We can find the desired solution by solving this set using the given
value of m2, m1 and mg from Table 1. By utilizing the previously mentioned technique of merging data with the
auxiliary equation, Exact solutions for Eq. (6) can be obtained.

Utilizing mathematical methods to solve the governing equation
Considering the transformation below:

T(A+T)

i(ir(lir)(feza+7ta)+19)7h (0,6) = H (£, € = e (z% — M%) (13)

g(x,t) =G (&) xe

where G (€) ,0, 7,9 and X represents pulse shape, frequency of the soliton, wave number of the soliton, phase
constant and velocity of the soliton respectively.

D2 g = (irG — AGH) x ¢ (T (0T 40) (14)

D3 = (A + 0iAGH +i7G1 4 67G) x ¢ (o (07T 0) (15)
DS (hg) = (HGI + GHI — 9iGH) x ¢ (o (7027 #7t)+9) (16)
Dxf’?ih = H/ 17)

D3 (191) = —22GGr (18)

By substituting Eqs. (14), (15) and (16) into the first equation and Egs. (17) and (18) into the second equation
of system Eq. (4), we find:

MG +7(1—0)G+0HG +i(r—X(1—-0))Gr— HGr — HIG = 0,

2\ep?

Hr+ GGr=0 (19)

Integrating the second equation of the system in Eq. (19), we find:

_Aep?

G2
4 (€) (20)

H (&) =

By substituting Eq. (20) into the first equation of Eq. (19) , we get the real part given as:

_ Oep?

A +7(1-0)G G =0 (21)

The imaginary part is given as:
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2
(r—X\(1—0))Gr + ?’)‘%GQG/:O (22)

The constrain condition appears as follows:
T=A(1-10) (23)

By using the Homogeneous balancing procedure, balancing the terms G* and G’ in Eq. (21), we determine the
value of n = 1.

Now, we will solve Eq. (21) using the previously mentioned approach. For n = 1 the solution of Eq. (21) can
be expressed as:

G (&) = a0+ arF (§) (24)

Substituting Eq. (24) along with Eq. (9) into Eq. (21), we get:

2gmo
Oc ’/\:77(1_9) (25)
p mi

aop :0,(11 =

Jacobian elliptic function solutions
By utilizing the data presented in Tables 1 and 2, and combining the corresponding values as per Eq. (24), we can
obtain the Jacobi elliptic function solutions which are in periodic nature for Eq. (21) as outlined below.

2qr?

B 0c LA+ (o 7(1-6) 4 i(%(—ezawﬂlﬂ-v) (26)
g1 (z,t) ==+ » sn( 5 (az 7(1+r2)t X e
Nep? W= ra+) (1-0) 2
_ _Nep € a TU— a 27
hia (z,t) . + ) sn < 5 <ac 1) t >> (27)
25:2 Fra+7) [ o 7(01-0) 4 i(M(—Gm”‘+7t"‘)+19) (28)
gi1,2 (:C,t) =+ p cd ( o (m — mt >) X e
Aep® S (1+7) r(1-10) 2
_ € € a - a 29
hiz2 (z,t) 4 + - cd < " <x 7(1+r2),t )) (29)
729?2 ra+71)({ o, 6 71-0) i(M(—Gaca+Tt“)+19) (30)
q1,3(x,t) ==+ » cn( " (x +(2r2—1)t >) X e
rep? (4T r(1-0) 2
€ € —
. = _ S S L 31
hi,3 (z,t) 4 + » cn< " <x + (2r2—1)t )) (31)
—2q _ S(La+T) Y
g14 (z,t) = £ dn ra+1 z + Mta X eL( ER Hﬁ) (32)
’ D @ (2—-1r2)
2
2 —2q _
hia (2,8) = — 2P~ [ £ Ve gy LA+ (o 70 =0) 0 (33)
q P a (2-r2)
2q
vV 5 r(1+7) o TL=0) i(m(—exa+7t0)+ﬁ)
_ Oe _ a 34
915 (x,t) ==+ ) ns < 5 (1: (1+r2)t X e (34)
2
p? (VR (TA+T) (0 T7(1-0) .
- e _ri=9) 35
his (z,t) 4 (i » ns " x ) t (35)
2q
= ra+7) o« T(-0) 4 i(m(—ez"‘+-rz”)+ﬁ)
. — fe _ a 36
g1,6 (z,t) ==+ » de < 5 <:v ) t X e (36)
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A S S C 1))

2q(1—7‘2) .
— (DOAT) (_poa o
g1,7 (x,t) = £ %< ne (F(1+T) <x°‘+ 7(1-9) ta>> X el( o (0=t )+19)

o (2r2 —1)

2q(1—r2) 2

2q(1—7‘2)
—5— (TO+Y) [ . 1-6) . J(LOET) (_gra o
g8 (x,t) =+ g sc< 1+ )(x +Mt ))Xe( (=6 +t)+19)

p « (2 —r2)
2
2q(1—7“2)
— Aep? Be I'( (1—6)
] )
3 — r(1+r)
g1,9 (CE7 t) =+ e cs r (1 + T) ZE 1 0 tcx (—0z +7t™ )+19)
p a 2 —72)
/ 2
2 2q B
hio (z,t) = — Acp +¥ O ra+1 %+ Mt"
q p « (2 —12)

2 _ (T(+T) o o
g10 (1) _ Vi, (r(1+r) <$Q+T(19)ta>> o (B Corpriy 0)
p

a (2r2 —1)

e - 2 (1L (1 (020

g1 (z,t) = :ETZ%6 (rcn (F (1: LY (z" + 2(7'(1+_1(;) )> +dn (F(l(:' T) <z(x + 26£1+—16)7)td>>) o 61(1"(1:1“1(—9z°+¢f°)+\9)

>2

st S (2 e ) (B )

>2
a(i-r2) (o

st L (BT S0 )) (B 00 5

P o (r2+1) )

hiai (1) = —Aeqfl’Q(i W (M (xa L2ra —O)ta)> o <r(1:r) <za L2 (-6) .

Aep? 50e PA+Y) [ &, 21(1-0) PA+T) (0 20(1-0) .
}Llwlz(Lt)q(i ;9 " (a ) * +(—2(r2+1))t s (a ) x +(—2(rz+1))t

P q(1-r2)

Acp” g PA4Y) (o, 271(1-0) o (1+7)
hias (z,t) = 76710 (i ;9 ne < (l(j ) (x + (TrglJr 1))t >> s ( + < TZ . 1

oo =430 (o (FER) (o0 Tl ) ) (R (a2

’ 7 p a
hi,14 (w,t) - /\ ( 20‘ <F (1+ T < o 2;;217_2? ta>> < 1 +7)
]79

< a+7)

( 27(1—0

(o 2D ) ion (BT (4 2

_ 20 (o ra+m
g5 (2,t) = 71) ( (
hi1s (z,t) = — Aep” ( sn ra+7) < 2:}21_72? t"‘)) Ficn <

27’(1 79)
(r2—2

)

))) l‘(HT)( 02 +ﬂ'f“)+ﬂ)

>>)

2

>>)

2

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)
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gr? m(mw) ( oy 27(21 a>t“>) P
91,16 (z,t) = £ ;oc (2-2) X el(f(fﬁ” trt HU) (56)
\/1 —r2sn (LIIT) <1’“ + 72(7(21 29))?“)) Fen (LHT) (’z:“ + 72(:(21:2?15“))
2
2 L(1+7) 27(1-0) ;o
D on (02 (= + 253))
hiae (z,t) = — + , (57)

A w e ) G ]
5t a+1) [ a o) sign (LO+D) (0, 27(1=0) 0 (BT pgosrryeo
g7 (z,t) = =" » ( ( ( t )) ¥Zd’r7,( P (I + =27 ))) )(5( + +) (58)
2
(1+7) a T(1-0) .o . ra+7) o, 21(1-0)
hia7 (z,t) = . ( ( ( (1—2r2)t )) :den( - (x + (1—2r2)t ))) (59)

\/7
ra+rT) a 27(1-0) ;a
L V3 36¢ ( (m t o 2)t )) i(BEED (00 4rt)+0)

gi1s (z,t) = X e (60)
P I'(147) P 27(1-0) a
1””( £ (o + 5 50))
D(14+7Y) 27(1-6) 2
(e T — t&
o [ (50 ()
hs (2,1) = = e T(4Y) ( 2 (119) (61)
AR L el G =)
-2 ra+y) (o , 2r(1-6) ,a
gee Sn( o <£E’ + ( r2 2) t ) i(w(_gmu+7_t41)+19)
gi19 (z,t) = & o) P xe\ (62)
p liFdn( ! (:ra—!—(T2 Q)ta )
L(1+7) 27(1-0) 2
r2 @ T @
o o (M0 (v *(2z)t))
hi19 (z,1) = — + (63)
q P ixdn (m;wr) (xa n 2(7(21 26)>ta))
q(12;:2) o (F(HT) (317 + 2{(21“"))1504)) i(w<*01(’+‘rto‘)+0)
gr.20 (2,1) = + D (1+T) 27(1-0) e ’ (64)
1Fsn (z + (2 11) t‘*))
L(1+7Y) 27(1—6) 2
VIR en (M2 (= + )
hi,20 (2,1) (14+7Y) 27(1-6) 65)
1””( 2 (e )
q(1— T)Z 5n F(H'T) :DQ+ T(; 9) yor (T « I
g (a,t) = + Vs ) o (FEF 0 ami10) (66

X
r(a+m) T(1=6) 4 1“(1+T) o T(1-0)
P (M (o Y +1>”))¢‘”( (oo + 7))

2
q(1—72)2 L(1+7Y) o T7(1-0)
Aep LV 291 o (2 (o + 55800) ) (67)

hizu (@) = C(14+7) (1-0) r(147) (1-0)
dn (S (o + Fghen) ) 3 en (PR (o0 4 22500))
qr O(147) ( o« | 2r(1—0) a))
122 (:C t) S 20e en ( a "+ ( r2 2) ¢ y ei(F(liT) (_G;C(x+rt’1)+19) (68)
El 7 p T 9
[ (e e )
) o on (F(1+T) (:r I 27(1 9>ta>)
A 20¢ a —2
hige (z,8) = - 22| + G)) (69)

q P ~
V L= dn (R (o + R ) )
Solitary wave solutions

When m — 1, in this case some of the Jacobi elliptic function solutions degenerate to the solitary wave solutions
and g1,7, 91,8, 91,13, 91,21 become zero. The solitary wave solutions for Eq. (21) are outlined below
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ey _ (TOED)  poa a
g1,23 (x,t) = £ pee tanh (F(l(j LY <a:°‘ _zda g)t(")) X ez( o (Foatmt Hﬂ) (70)

2
2
2 /24 —
hi,23 (z,t) = A <:|: oc tanh (F (1+7) (:co‘ — Mta)>> (71)
q P o 2
29 _ ;(La+1) o e
g1,24 (z,t) =+ 9¢ cosh (F 1+7) (:ca _TI (1-9) tO‘)) X el( o (F0e%Tt Hﬂ) (72)
P o 2
2
2 /24 —
hi24 (z,t) = _Ap (i 9¢ cosh (F (1+7) (1:0‘ - Mt"))) (73)
q P « 2
—2q (T(147) P
g1,25 (z,t) = £ Y25 sech (F(l—i—T) (z*+7(1-9) t“)) X ez( o (Zoetmt )-W) (74)
p a
Aep? . L(1+7) ’
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Shock wave solutions

When m — 0, in this case some of the Jacobi elliptic functions solutions degenerate to the trigonometric
solutions and ¢1,1, 91,2, 91,3, 91,11, 91,15, 91,16, 91,19, 1,22 become zero. The Shock wave solutions for Eq. (21)
are outlined below.
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Results and discussion

In this section, we compare and discuss the solutions obtained from our investigation with those from previous
studies. By employing the Jacobi elliptic function expansion method, we derived a variety of interesting optical
soliton wave solutions for the truncated M-fractional nonlinear (1+1)-dimensional Shynaray-IIA equations.
It is important to note that, among these solutions are exact periodic solutions. This method also enabled us
to produce some shock wave and solitary wave solutions. To highlight the similarities and differences between
solutions obtained through different methods, we conducted a comparative analysis. Previous studies have
addressed similar nonlinear equations using various methods, such as the Kudryashov method, the exp-function
method and the modified simple equation method>*%. These approaches are instrument in understanding the
dynamics of phenomena like tsunamis and tidal waves.

Our finding exhibits notable novelties, diversity in physical structures, and general applicability. Comparing
our new, more general soliton wave solutions with those from earlier research underscores the robustness,
reliability, simplicity, and efficiency of the Jacobi elliptic function expansion method. This comparison
demonstrates the superiority of the Jacobi elliptic function expansion method over previously used techniques.
Our results not only enhance the understanding of the Shynaray-IIA equation but also illustrate the method
potential in solving a broader class of nonlinear problems.

Graphical representation

This section shows the graphical depiction of the soliton wave solutions for the truncated M-fractional nonlinear
(1+1)-dimensional Shynaray-IIA equation that were found using the previously mentioned Jacobi elliptic
function approach. Using the proper values for the free variables, we present these graphs in 3D, 2D, and contour
formats. Figures 2, 3,4, 5,6,7,8,9,10,11,12,13, 14, 15,16, 17, 18, 19 represented to the physical structure of some
examined solutions with different soliton and solitary wave profiles by using appropriate values for the arbitrary
parameters. These graphs shows the physical structure in periodic wave solitons, bright and dark solitons, mixed
bright and dark periodic wave solitons, peakon periodic wave solitons and solitary wave structure. Figures 2,
3,4, 5, 6, 7 represented to peakon periodic wave soliton structure for |g1,1 (x,t)| and |g1 4 (x, t)|. Figures 8, 9,
10, 11, 12, 13 represented to bell type periodic wave soliton structure for |g1,5 (z,t)| and |g1,7 (2, t)|. Figure 14
represented to bell type bright and dark soliton structure for |g1,9 (z, t)|. Figures 15, 16 represented to bell type
periodic wave soliton structure for |g1,9 (x,t)|, and Fig. 17 represented to peakon bright soliton structure for
|g1,11 (z,t)|. Figures 18, 19 represented to peakon periodic wave soliton structure for |g1,11 (z,t)|, by using
appropriate values for the arbitrary parameters.

These visual aids are crucial because they allow us to confirm the accuracy of the theoretical conclusions
we previously reached. Remember that Mathematica was used to create these figures and graphs. However, the
influence of waves is also examined, and it is observed that by regulating the soliton propagation with wave
number, physicists and researchers can obtain the necessary results. A thorough explanation of the figure,
together with the relevant variables or constants utilized in each one, is provided below:
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(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 2. 2-D plot for the wave propagation of |g1,1 (z,¢)| for varying t, contour and 3-D for the parameters
m=08,7v=05,e=05,a=1,p=2;g=3,0=0.2,9=0.2and 7 =0.1.
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(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 3. 2-D plot for the wave propagation of |g1,1 (z,¢)| for varying t, contour and 3-D for the parameters
m=0.8,vy=05,e=05,a=1,p=2;¢g=3,0=0.2,9=02and7 = 1.

(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 4. 2-D plot for the wave propagation of |g1,1 (x,t)| for varying t, contour and 3-D for the parameters
m=0.8,7vy=05,e=05,a=1,p=2;g=3,0=0.2,9 =0.2and 7 = 2.5.

Conclusion

This study demonstrates that the Jacobi elliptic function expansion method is an efficient approach for solving
the nonlinear (1 + 1)-dimensional Shynaray-IIA equation based on the truncated M-fractional derivative.
By Utilizing JEFEM, exact solutions are obtained that exhibit a variety of interesting behaviors, especially
when expressed in terms of Jacobi elliptic functions. These solutions provide valuable insights into complex
physical phenomena. Moreover, the appearance of both solitary wave and shock wave solutions offers important
information regarding localized wave behavior and periodic fluctuations. Graphical representations of these
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(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 5. 2-D plot for the wave propagation of |g1,4 (x,t)| for varying t, contour and 3-D for the parameters
m=08,vy=09,e=05,0a=09,p=-1,¢q=1,0=0.2,9 =2and 7 = 0.1.

(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 6. 2-D plot for the wave propagation of |g1,4 (z,¢)| for varying t, contour and 3-D for the parameters
m=0.8,vy=09,e=05,a=09,p=-1,¢q=1,0=0.2,9 =2and 7 = 1.

‘IIII |
24
2| 16
) 2 4 3 8 10

x

(a) 2D Plot (b) 3D Plot (C) Contour

— =]
- 1=

j —T

Fig. 7. 2-D plot for the wave propagation of |g1,4 (,¢)| for varying t, contour and 3-D for the parameters
m=0.8,vy=09,e=05a=09,p=-1,¢g=1,0=0.2,9 =2and 7 = 2.5.

solutions in various dimensions enhanced our comprehension and facilitate a more thorough exploration of
their properties. The application of the Jacobi elliptic function expansion method promises to improve our

understanding and prediction of real-world phenomena in a variety of fields, such as fluid dynamics and
quantum mechanics.
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Fig. 8. 2-D plot for the wave propagation of |g1,5 (x,t)| for varying t, contour and 3-D for the parameters
m=0.57v=09,e=05,a0a=09,p=1,¢=1,0=2,9=0.2,7=0.1.

(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 9. 2-D plot for the wave propagation of |g1,5 (z,¢)| for varying t, contour and 3-D for the parameters
m=0.57=09,e=05a0a=09,p=1,¢=1,0=2,9=02,7=1.

le1s!

(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 10. 2-D plot for the wave propagation of |g1,5 (z,¢)| for varying t, contour and 3-D for the parameters
m=0.5,7=09ec=05a=09p=1qg=1,0=2109=0271=25
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(a) 2D Plot

(b) 3D Plot (C) Contour

Fig. 11. 2-D plot for the wave propagation of |g1,7 (x, 1)

for varying t, contour and 3-D for the parameters
m=0.57v=09,e=15,a=09,p=1,¢g=1,0 =0.2,9 =4,and 7 = 0.1.
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Fig. 12. 2-D plot for the wave propagation of |g1,7 (z,t)| for varying t, contour and 3-D for the parameters
m=0.57=09e=15,a=09,p=1,¢=1,0=02,9 =4,and 7 = 1.

(a) 2D Plot

(b) 3D Plot (C) Contour

Fig. 13. 2-D plot for the wave propagation of |g1,7 (z,t)| for varying t, contour and 3-D for the parameters
m=0.5,7vy=09e=15a=09p=1,¢g=1,0=0.2,9 =4,and 7 = 2.5.
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(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 14. 2-D plot for the wave propagation of |g1,9 (z,¢)| for varying t, contour and 3-D for the parameters
m=0.9,7vy=0.9,e=05e=09,p=4,9g=4,0 = 2,9 = 2andr = 0.1.

(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 15. 2-D plot for the wave propagation of |g1,9 (z,¢)| for varying t, contour and 3-D for the parameters
m=0.9,7v=0.9,e=05c=09,p=4,¢g=4,0=2,9 =2andr = 1.

(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 16. 2-D plot for the wave propagation of |g1,9 (z,¢)| for varying t, contour and 3-D for the parameters
m=0.9,7y=0.9,e=05e6=0.9,p=4,9g=4,0 =2,9 = 2andr = 2.5.
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Fig. 17. 2-D plot for the wave propagation of |g1,11 (z,t)| for varying t, contour and 3-D for the parameters
m=0.57=09e¢=05a0a=09p=1¢=1,0=02,9 =4and 7 =0.1.
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Fig. 18. 2-D plot for the wave propagation of |g1,11 (z,t)| for varying t, contour and 3-D for the parameters
m=057=09e=05a=09p=1¢=1,0=02,9 =4and 7 = 1.
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(a) 2D Plot (b) 3D Plot (C) Contour

Fig. 19. 2-D plot for the wave propagation of |g1,11 (z,t)| for varying t, contour and 3-D for the parameters
m=057=09e=05a0a=09p=1,9=1,0 =0.2,9 =4and 7 = 2.5.
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