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Machine learning models using
dual-phase CT radiomics for early
detection of PRISm

Liang Fu¥*, Yu Cui®**, Xingyun Wang?, Huigiong Luo?, Yuejiao Wu?, Qijun Wei?,
Haiming Ding' & Liling Long3"**

Preserved Ratio Impaired Spirometry (PRISm) is considered an early stage of chronic obstructive
pulmonary disease (COPD), which may either revert to normal or progress to COPD. Therefore, early
identification is crucial for improving patient prognosis. In this study, we developed multiple machine
learning (ML) models based on inspiratory and/or expiratory breath-hold chest computed tomography
(CT) images to identify PRISm. A total of 270 subjects were prospectively enrolled, and clinical models,
radiomics models, and combined clinical-radiomics models were constructed using inspiratory,
expiratory, and dual-phase CT images, respectively. The results demonstrated that combined models
outperformed clinical models alone across all three phases. Among them, the logistic regression
(LR)-based combined models using expiratory or dual-phase CT achieved the best performance,

with comparable area under the receiver operating characteristic curve (AUC) values and superior
performance to the inspiratory-phase models. Specifically, the AUCs (95% confidence intervals [CI])

of the clinical model in the training, internal, and external validation sets were 0.825 (0.750-0.900),
0.771 (0.639-0.903), and 0.778 (0.653-0.904), respectively. For the expiratory-phase combined model,
the AUCs were 0.901 (0.845-0.956), 0.819 (0.680-0.957), and 0.817 (0.695-0.940), while for the dual-
phase combined model, they were 0.901 (0.846-0.955), 0.821 (0.684-0.957), and 0.813 (0.694-0.932),
indicating that adding inspiratory data did not significantly improve model performance. Based on
these findings, we recommend that single-phase expiratory CT scans, combined with clinical features
and analyzed using LR models, be prioritized in clinical practice for efficient PRISm identification,
providing support for early diagnosis and timely intervention.
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Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic condition that has become the fourth
leading cause of death worldwide, with mortality rates increasing year by year. This disease imposes a significant
economic burden on individuals, families, and society'. The Preserved Ratio Impaired Spirometry (PRISm)
phenotype is considered a transitional state between normal lung function and COPD. According to the 2024
update of the Global Initiative for Chronic Obstructive Lung Disease (GOLD), the definition of PRISm has been
further refined. It is defined as impaired ventilatory function after inhalation of a bronchodilator, specifically a
forced expiratory volume in one second (FEV:) of less than 80% of the predicted value (FEV,/predicted < 80%),
while the ratio of FEV, to forced vital capacity (FVC) remains normal (FEV,/FVC=0.7)*. Globally, the
prevalence of PRISm ranges from 7.1 to 25.9%* Due to the presence of nonspecific chronic respiratory
symptoms in some patients, the condition is often overlooked in clinical practice. According to a five-year
follow-up study from the COPDGene cohort, approximately one-quarter of PRISm patients progressed directly
to GOLD stages I-1V, while 22% reverted to GOLD 0 status®. This highlights the importance of early screening in
the PRISm population. Through comprehensive management strategies—such as smoking cessation, pulmonary
rehabilitation, and individualized pharmacological treatment—it is possible to achieve disease control and even
pathological reversal®.

Currently, the clinical identification of PRISm primarily relies on pulmonary function testing (PFT).
However, the results can be influenced by various factors, including patient cooperation, climatic changes,
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and physiological conditions. Furthermore, pulmonary function test (PFT) cannot directly reveal structural
abnormalities in the lungs’, highlighting the urgent need for more convenient and objective imaging-based
alternatives. Computed tomography (CT) scans are the most commonly used imaging modality for evaluating
lung diseases. However, compared with COPD patients, individuals with PRISm often lack obvious anatomical
changes, and subtle ventilation dysfunction can sometimes be difficult to accurately detect through visual
assessment in routine CT images®.

With the advancement of radiomics and artificial intelligence, extracting high-dimensional quantitative
features from CT images combined with machine learning algorithms has demonstrated great potential in
the diagnosis, prognosis evaluation, and treatment monitoring of pulmonary diseases. Previous studies have
demonstrated that the extraction of quantitative imaging features from CT scans can significantly improve the
diagnostic performance for solitary pulmonary nodules’. In addition, radiomics has shown high accuracy in
predicting the genetic phenotype of lung adenocarcinoma'®. Yang et al. developed an Auto-Metric Graph Neural
Network, which exhibited outstanding performance in the staging classification of COPD, achieving an area
under the curve (AUC) of 0.984!. In addition, radiomic technology has also been used to assess the risk of
COPD in patients with a background of lung cancer!?, as well as the risk of deterioration in pulmonary function
and disease progression in patients with COPD, providing important evidence for clinical decision-making'>.
Nevertheless, studies using radiomics features based on CT imaging to identify PRISm remain very limited.

Dual-phase breath-hold CT scanning can provide complementary information under different respiratory
states'®. However, due to the relatively high radiation dose and the need for strict patient compliance with
breathing instructions, it is not feasible for some critically ill patients and has not yet been widely adopted in
clinical practice. Currently, there is no established CT scanning protocol specifically aimed at identifying early
pulmonary function impairment. Therefore, this study aims to further explore this field and propose a machine
learning-based approach to automatically identify individuals with PRISm using single- and dual-phase CT
data. The implementation of this model may offer new insights into improving the efficiency and accuracy of
PRISm detection.

Materials and methods

Patients

This prospective study was approved by the Ethics Committee of our institution prior to manuscript submission,
as well as by the Ethics Committee of the collaborative institution, the First Affiliated Hospital of Guangxi
University of Chinese Medicine (Approval Nos. 2025-E002-01 and GXUCM IRB TM2023-02-56). Informed
consent was obtained from all participants. All procedures were performed in compliance with relevant laws
and institutional guidelines. Inclusion criteria were as follows: (1) diagnosed as normal or PRISm patients
through pulmonary function tests (PFT); (2) undergoing dual-phase CT scans within one week before or after
completing the PFT. Patients who met any of the following exclusion criteria were not included in the study:
(1) Presence of significant motion artifacts or metal artifacts in the CT images; (2) History of lung surgery
or the presence of thoracic deformities; (3) Concomitant significant lung diseases, such as pulmonary masses,
extensive fibrosis, lung infections, bronchiectasis, or pneumothorax; (4) Combined with primary or secondary
mediastinal abnormalities such as cardiomegaly, massive pericardial effusion, or mediastinal masses; (5)
Received intervention treatment in the past three months; (6) Incomplete clinical data. Ultimately, a total of 270
participants were consecutively enrolled based on the above inclusion and exclusion criteria.

Individuals who were potentially affected by other obstructive pulmonary diseases—such as bronchial
asthma, extensive bronchiectasis, or obliterative bronchiolitis—were first excluded based on medical history or
clinical records by two respiratory physicians (ZR.C and XL.H, with 8 and 10 years of experience, respectively).
Subsequently, participants were classified into two groups based on real-time PFT results: (1) Normal group,
defined as FEV1/FVC20.70 and FEV1% predicted >80%; (2) PRISm group, defined as FEV1/FVC20.70 and
FEV1% predicted < 80%. The dataset consisted of two sample cohorts: First, 163 participants were recruited from
our hospital and randomly divided into a training set and an internal validation set in a 7:3 ratio. The training
set included 116 participants (60 in the normal group and 56 in the PRISm group), while the internal validation
set included 47 participants (31 in the normal group and 16 in the PRISm group). Second, an additional
107 participants (14 in the normal group and 93 in the PRISm group) were recruited from the collaborating
institution (Fig. 1).

Pulmonary function assessment

PFT at both institutions were performed using the MASTERSCREEN (PFT +10S) system (Jaeger, Germany).
Environmental calibration was carried out daily to standard conditions, and volume calibration was performed
each time the device was powered on. Linear validation was conducted at least once a week, ensuring that the
errors in volume and linear calibration were within +3.0%. All patients underwent PFT within one week before
or after the dual-phase CT scans. Tests were conducted in a seated position and performed by experienced
respiratory physicians (ZR.C and XL.H, with 8 and 10 years of experience, respectively), both certified through
the national pulmonary function clinical application and standardization training program. Quality control was
strictly followed according to PFT guidelines to ensure that each patient had at least three acceptable spirometry
curves. Lung volume data were recorded 20 min after the administration of a bronchodilator (salbutamol aerosol,
0.4 mg). These procedures ensured the reproducibility of PFT results across centers.

Data collection

We collected clinical information from the medical record system, primarily including the following aspects:
gender, age, smoking status (classified as never smoked, former smoker, or current smoker), body mass index
(BMLI, categorized as underweight, normal, overweight, and obese), respiratory symptoms (classified as cough,
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Between March and October 2024, a total of 483 patients suspected of being
normal or PRISm were recruited from the outpatient departments of two

hospitals.

Inclusion criteria:
(1)Patients diagnosed as normal or PRISm through
PFT;

Exclusion criteria:

(1)The CT images show significant motion or metal
artifacts(n=79); (2)History of lung surgery or thoracic
deformity(n=35); (3)Concomitant other obvious

(2)The dual-phase CT scan was completed within one
week before and after the pulmonary function tests.

4

pulmonary masses(n=32); (4)Primary or secondary
abnormal mediastinal changes(n=11);(5)Received
intervention treatment within the last three months(n=21);
(6)Incomplete clinical data(n=41).

Final included patients (n=270)

v

v

v

Training cohort (n=116)
(60 normal and 56 PRISm cases )

Internal validation cohort (n=47)
(31 normal and 16 PRISm cases )

External validation cohort (n=107)
(14 normal and 93 PRISm cases )

Fig. 1. The patients’ recruitment flowchart. PRISm preserved ratio impaired spirometry.

Training cohort (n=116) Internal validation cohort (n=47) External validation cohort (n=107)
Variable Normal (n=60) | PRISm (n=56) | P-value | Normal (n=31) | PRISm (n=16) | P-value | Normal (n=14) | PRISm (n=93) | P-value
Age(years),mean + SD 55.0+12.3 56.6+11.7 0.338 50.9+12.8 57.5+10.5 0.051 63.3+11.7 63.4+11.8 0.137
Gender,n(%) <0.001 <0.001 <0.001
Female 43(71.7) 6(10.7) 20(64.5) 0(0.0) 1(7.1) 2(2.2)
Male 17(28.3) 50(89.3) 11(35.5) 16(100.0) 13(92.9) 91(97.8)
Smokeing Status,n(%) <0.001 <0.001 <0.001
Never 37(61.7) 8(14.3) 18(58.1) 0(0.0) 7(50.0) 5(5.4)
Current/former 23(38.3) 48(85.7) 13(41.9) 16(100.0) 7(50.0) 88(94.6)
BMI(kg/m?)category,n(%) 0.906 0.914 0.377
Underweight(< 18.5) 3(5.0) 5(8.9) 3(9.7) 1(6.3) 1(7.1) 0(0.0)
Normal(18.5-22.9) 24(40.0) 12(21.4) 9(29.0) 3(18.8) 8(57.1) 49(52.7)
Overweight(23.0-24.9) 15(25.0) 15(26.8) 10(32.3) 5(31.3) 3(21.4) 30(32.3)
Obese(>25) 18(30.0) 24(42.9) 9(29.0) 7(43.8) 2(14.3) 14(15.1)
Respiratory symptoms, n (%)
Cough 21(35.0) 22(39.3) 0.534 10(32.3) 7(43.8) 0.613 4(28.6) 35(37.6) 0.589
Phlegm 17(28.3) 15(26.8) 3(9.7) 2(12.5) 3(21.4) 23(24.7)
Wheezing 5(8.3) 4(7.1) 2(6.5) 1(6.3) 1(7.1) 8(8.6)
Dyspnea 8(13.3) 6(10.7) 4(12.9) 2(12.5) 2(14.3) 11(11.8)
Pulmonary function test,mean + SD
FVC (L) 117.5+17.5 74.7+£10.6 <0.001 | 115.1+18.4 63.6+6.4 <0.001 | 110.7+11.6 70.2+1.9 <0.001
FEV1 (L) 115.1+£18.5 73.5+4.7 <0.001 |112.3+19.2 74.1+4.5 <0.001 |109.3+12.7 71.4+3.4 <0.001
FEV1/FVC 80.9+5.6 80.5+6.6 0.632 81.3+55 89.2+8.0 0.232 81.4+4.4 83.7+4.4 0.945
FEV1% predicted 112.4x17.0 75.1+2.1 <0.001 | 109.3+20.0 753+3.1 <0.001 | 102.6+14.4 71.2+4.5 <0.001

Table 1. Clinical characteristics in the training and test cohorts. Continuous data are presented as
mean + standard deviation; categorical variables are presented as numbers and corresponding percentages (in

parentheses). BMI Body Mass Index.

phlegm, wheezing, dyspnea) and pulmonary function indicators (including FVC, FEV1, FEV1/FVC, and FEV1/
predicted) (Table 1).

At our institution, imaging was performed using a SOMATOM Force CT scanner (Siemens Healthineers,
Germany). The specific acquisition parameters for the single-source bulb tube routine scanning mode were
as follows: tube voltage of Sn100 kV, automatic tube current modulation (quality reference mAs: 150 mAs),
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collimator configuration of 96 x 0.6 mm, acquisition slice thickness and interval of 5.0 mm, rotation time of 0.5 s,
and pitch of 1.2. The image reconstruction parameters included a matrix size of 512 x 512, reconstruction slice
thickness of 0.6 mm, slice interval of 0.5 mm, a Br40 convolution kernel, and images were reconstructed using
Advanced Modeled Iterative Reconstruction (ADMIRE) with a strength level of 3. For external validation at the
collaborating institution, imaging was performed using a 256-slice CT scanner (Revolution CT, GE Healthcare,
USA) in helical scan mode. The acquisition parameters were: tube voltage of 120 kV, tube current of 70 mA,
detector coverage of 80 mm, acquisition slice thickness and interval of 5.0 mm, rotation time of 0.5 s, and pitch
of 0.992:1. The image reconstruction parameters were: matrix size of 512 x 512, reconstruction slice thickness
of 0.625 mm, slice interval of 0.5 mm, and application of Adaptive Statistical Iterative Reconstruction-Veo
(ASIR-V) with a strength level of 30%. Prior to CT scanning, all patients received respiratory coaching and
breath-hold training to ensure they could perform breath-hold scans in both full inspiration and full expiration
states. The scan range extended from the thoracic inlet to the base of the diaphragm. The inspiratory breath-hold
CT scan was performed first, followed by the expiratory breath-hold CT scan.

Radiation dose of dual-phase CT scanning

The dose parameters of dual-phase chest CT scans, including the CT dose index volume (CTDIvol), dose-
length product (DLP), and effective dose (ED), were recorded and calculated to provide transparency and to
clearly indicate the radiation exposure associated with our scanning protocols. According to the latest European
guidelines on CT quality standards!’, the calculation formulas are as follows: DLP (mGy-cm)=CTDIvol
(mGy) x scan length (L, cm); ED (mSv) =DLP (mGy-cm) xk, where k=0.014 mSv/(mGy-cm) for the chest. In
our institution, a low-dose scanning protocol was used. The dose parameters for individual patients were as
follows: CTDIvol ranged from 0.47 to 1.73 mGy; DLP ranged from 16.7 to 61.1 mGy-cm; ED ranged from
0.23 to 0.86 mSv. For the external validation cohort from the collaborating institution, the patient-specific dose
parameters were as follows: CTDIvol ranged from 2.68 to 4.78 mGy; DLP ranged from 90.42 to 192.28 mGy-cm;
ED ranged from 1.27 to 2.69 mSv.

Image preprocessing and segmentation

The workflow for radiomic analysis mainly includes: Region of Interest(ROI) delineation, feature extraction and
selection, and model construction (Fig. 2). All images in this study were stored in DICOM format with lung
window settings. All image processing and feature extraction steps followed the standardized guidelines in the
Imaging Biomarker Standardization Initiative (IBSI) to ensure the reproducibility and consistency of feature
extraction'®. First, open-source software ITK-SNAP 3.8.0 (available at www.itksnap.org) was used to perform
intensity normalization adjustments for window width and level on the CT images to ensure that lesions were
clearly visible. Next, through intensity standardization techniques, the window width and level of the CT images
were set to standard lung window parameters (window width 1400 HU, window level -400 HU). All results were
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Fig. 2. Workflow of radiomics. ROI region of interest.
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processed using Z-score normalization, which involves calculating the mean and standard deviation of the pixel
values to convert the intensity values into a standard normal distribution. This allows for better observation of
the target regions and minimizes the effects caused by different CT device parameters, ensuring accurate texture
analysis. Finally, the three-dimensional ROI were resampled to a uniform voxel size of 1 mmx 1 mmx 1 mm to
achieve standardization of spatial resolution. The specific steps for image segmentation were as follows: First,
the “One-key AI” platform based on PyTorch 1.8.0 (https://www.medai.icu) was used to perform an initial
segmentation of the entire lung field, removing most of the background structures (such as ribs and chest wall)
to quickly obtain the contours of both lungs. Next, manual slice-by-slice refinement of the lung parenchyma ROI
was performed using ITK-SNAP software. In both inspiratory and expiratory CT images, the boundaries of the
bilateral lungs were manually delineated slice by slice along the edges of the lung fields. During the entire image
segmentation process, we focused on removing non-pulmonary structures that could significantly interfere with
radiomic feature extraction, such as the trachea, main bronchi, and mediastinal tissues. Additionally, we made
efforts to eliminate large vessels and bronchi near the pulmonary hilum, retaining only the distal, progressively
branching bronchi, vessels, and lung parenchyma to enhance segmentation consistency and ensure the accuracy
of the analysis results.

Radiomic feature extraction and selection

Traditional radiomic features were extracted using Pyradiomics (version 2.2.0) from both inspiratory and
expiratory phase CT images, resulting in 108 features extracted from each phase. Due to the merging or removal
of some highly correlated or redundant features during feature extraction and preprocessing, as well as the
generation of composite features based on combined data from both phases, a total of 215 features were ultimately
extracted from the dual-phase fused CT images. These features mainly included shape features, neighborhood
gray tone difference matrix (NGTDM), gray level size zone matrix (GLSZM), gray level run length matrix
(GLRLM), gray level difference matrix (GLDM), gray level co-occurrence matrix (GLCM), and first-order
features. In the training cohort, the feature selection process was carried out as follows: First, the extracted
raw feature values were standardized using Z-score normalization. Next, the Mann-Whitney U test was used
to perform statistical analysis of all radiomic features between the normal and PRISm groups, and features
with statistically significant differences between the two groups (P <0.01) were selected. Subsequently, Pearson
correlation analysis was employed to eliminate features that were highly correlated with each other (Pearson
correlation coefficient>0.9). On this basis, the Least Absolute Shrinkage and Selection Operator (LASSO)
algorithm was further employed for feature selection. LASSO is a linear regression method that introduces an
L1 norm penalty term into the loss function, which drives some feature coeflicients to shrink to zero, thereby
achieving automatic feature selection and model simplification. Finally, tenfold cross-validation was used to
determine the optimal regularization parameter \, allowing us to identify the most representative subset of
features for predicting the PRISm phenotype. In total, 17 radiomic features were selected for model construction
(Table 2). The feature selection process, using expiratory-phase CT as an example, is illustrated in Fig. 3. All
feature selection steps were conducted within the training cohort.
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Table 2. Radiomics Feature Selection Results of Inspiratory and Expiratory Models. CT computed
tomography.
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Fig. 3. Feature selection process. Distribution and corresponding p-values of the extracted features. Each

data point represents the measured value of a specific radiomics feature extracted from expiratory-phase CT
images. The black line in the middle indicates the median, and the width of the violin plot reflects the data
point density (a). Radiomics feature selection based on the LASSO algorithm and Rad score establishment.
Each curve represents the change in the coeflicient of a feature with varying values of lambda. The dotted
vertical line indicates the optimal lambda value, at which the model achieves the best predictive performance
(b). Mean squared error (MSE) curve under ten-fold cross-validation to determine the optimal lambda value.
The blue vertical lines indicate the range of coeflicient variation for each feature across the 10 cross-validations,
and the red dots represent the average coeflicient values (c). Figures were automatically generated using the
Onekey Al platform, and font sizes and label styles follow system defaults.

Dataset Models AUC(95%CI) ACC | Sensitivity | Specificity | PPV | NPV
LR 0.901(0.845-0.956) | 0.836 | 0.750 0.917 0.894 | 0.797
Random Forest | 0.942(0.903-0.981) | 0.871 | 0.929 0.817 0.825 | 0.925
Training cohort XGBoost 0.985(0.969-0.999) | 0.931 | 0.929 0.933 0.929 | 0.933
SVM 0.901(0.845-0.957) | 0.836 | 0.804 0.867 0.849 | 0.825
MLP 0.845(0.777-0.913) | 0.750 | 0.714 0.783 0.755 | 0.746
LR 0.819(0.680-0.957) | 0.830 | 0.750 0.871 0.750 | 0.871
Random Forest | 0.825(0.692-0.957) | 0.809 | 0.687 0.871 0.733 | 0.844
Internal validation cohort | XGBoost 0.756(0.611-0.901) | 0.745 | 0.750 0.742 0.6 0.852
SVM 0.806(0.649-0.964) | 0.83 | 0.812 0.613 0.520 | 0.864
MLP 0.833(0.743-0.924) | 0.738 | 0.710 0.929 0.985 | 0.325
LR 0.817(0.695-0.940) | 0.916 | 0.968 0.571 0.937 | 0.727
Random Forest | 0.666(0.514-0.818) | 0.486 | 0.430 0.857 0.952 | 0.185
External validation cohort | XGBoost 0.638(0.474-0.801) | 0.654 | 0.654 0.714 0.937 |0.233
SVM 0.815(0.696-0.934) | 0.626 | 0.581 0.929 0.982 | 0.250
MLP 0.778(0.652-0.903) | 0.794 | 0.774 0.929 0.986 | 0.382

Table 3. Comparison of predictive performance of the five most commonly used machine learning models.
AUC area under the ROC curve, CI confidential interval, ACC accuracy, PPV positive predictive value, NPV
negative predictive value, LR logistic regression, XGBoost extreme gradient boosting, SVM support vector
machine, MLP multilayer perceptron.

Model construction and evaluation

Using recursive feature elimination (RFE) and a logistic regression (LR) classifier, inspiratory-phase, expiratory-
phase, and dual-phase clinical models, radiomics models, and combined clinical-radiomics nomogram models
were constructed based on selected radiomic features and relevant clinical factors, including age, sex, smoking
status, BMI, and respiratory symptoms. All models were developed using the same machine learning algorithms
and procedures. This study employed ten candidate machine learning algorithms, including LR, NaiveBayes,
support vector machine (SVM), RandomForest, ExtraTrees, extreme gradient boosting (XGBoost), lightweight
gradient boosting machine (LightGBM), gradient boosting, adaptive boosting (AdaBoost), GradientBoosting and
multilayer perceptron (MLP). As shown in Table 3, using expiratory-phase CT as an example, the performance
of the most commonly used machine learning models was compared. Among them, the LR model demonstrated
the best overall predictive performance across the training, internal validation, and external validation cohorts.
It achieved stable and superior results in several key metrics, including AUC, accuracy, sensitivity, and negative
predictive value. Notably, in the external validation cohort, the LR model achieved the highest AUC of 0.817
and an accuracy of 0.916, indicating its strong generalizability and discriminative capability. Therefore, LR was
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ultimately selected as the modeling method for this study. All models were developed based on the training
cohort and validated in both the internal and external validation cohorts. The model’s prediction results were
output in the form of probabilities, with a default classification threshold of 0.5 used to convert the predicted
probabilities into binary outcomes. During model training, the platform automatically enabled the "class weight
adjustment” function, which effectively mitigated potential bias caused by class imbalance and improved the
model’s ability to recognize minority classes. To comprehensively evaluate the performance of the constructed
models, we conducted assessments from three aspects: discrimination ability, calibration performance, and
clinical utility. The model’s discrimination ability was assessed through Receiver Operating Characteristic (ROC)
analysis, which included calculating the AUG, sensitivity, and specificity. The goodness of fit is evaluated using
the Hosmer-Lemeshow (H-L) test calibration curve, which assesses the relationship between the predicted
probabilities and the actual observed events. In addition, we also used decision curve analysis (DCA) to evaluate
the clinical utility of the model. It provides a visual representation of the model’s net benefit at different threshold
probabilities, where the threshold probability represents the minimum predicted risk at which the patient or
clinician is willing to accept an intervention. Net benefit takes into account both the gain from true positives and
the potential harm from false positives'®.

Statistical analysis

Statistical analyses were performed using SPSS (version 24.0; IBM Corp.) and the "One-key AI" platform.
Categorical variables were processed using the chi-square test or Fisher’s exact test. For continuous variables
with a normal distribution, independent sample t-tests were employed, while non-normally distributed data
were analyzed using the Mann-Whitney U test. To evaluate the diagnostic performance of each model, we
plotted ROC curves and calculated the AUC. Comparisons of model AUCs were conducted using the DeLong
test, with a P-value of less than 0.05 considered statistically significant.

Results

Clinical baseline characteristics of patients

In this study, there was no significant age difference between the normal controls and PRISm patients in both
the training and testing groups (P >0.05, Mann-Whitney U test). However, there were significant differences
in gender distribution across the three groups, with a notably higher proportion of male patients in the PRISm
group (training set: P <0.001, chi-square test; validation set: P <0.001, Fisher’s exact test). Significant differences
were also observed in smoking status among the three groups, with most PRISm patients having a history
of smoking (training set: P <0.001, chi-square test; validation set: P <0.001, Fisher’s exact test). There were
no significant differences in BMI distribution between the two groups (P>0.05, Fisher’s exact test), and the
proportions of overweight and obesity were similar; however, the proportion of normal-weight patients in the
training set was nearly twice as high in the normal group as in the PRISm group. Differences in respiratory
symptoms among the groups were not statistically significant (P >0.05, Fisher’s exact test). Regarding pulmonary
function, the PRISm group had significantly lower FVC, FEV1, and FEV1% predicted values compared to the
normal group (P <0.001, Mann-Whitney U test), while the FEV1/FVC ratio showed no significant difference
(P>0.05, Mann-Whitney U test) (Table 1).

Reproducibility assessment of radiomic features

This study evaluated the consistency of radiomic feature extraction using the built-in OnekeyComp-Modules-
ICC module on the platform, based on intraclass correlation coefficients (ICCs), including both inter-observer
and intra-observer analyses, to verify its reliability. Initially, image quality assessment and preliminary
segmentation were performed by a radiologist (L.F, with 9 years of experience) blinded to the patients’ clinical
information and pulmonary function results. Another senior radiologic technologist (Y.C, with 15 years of
experience) independently re-segmented a randomly selected subset of cases (20%) to assess inter-observer
variability. The automatically calculated average inter-observer intraclass correlation coefficient (ICC) was 0.82.
Two weeks later, the same technologist re-segmented the same set of cases to evaluate intra-observer consistency,
yielding an average intra-observer ICC of 0.89. The results showed that most key features had ICC values greater
than 0.80, indicating high reproducibility. Features with ICC values below 0.75 were excluded from further
analysis.

Evaluation of clinical and radiomic models

This study adopted a standardized and objective approach to evaluate the diagnostic performance of different
models. The results demonstrated that while both clinical variables and radiomic features held independent
predictive value, the combined model integrating clinical variables and radiomic features consistently exhibited
superior predictive performance across all cohorts in terms of AUC, accuracy, sensitivity, and specificity. The
ROC curves of the training, internal validation, and external validation cohorts for the three-phase CT scans are
shown in Fig. 4. As shown in Table 4, for inspiratory-phase CT in the training, internal validation, and external
test sets, the AUCs and 95% confidence intervals (CI) of the combined model were 0.890 (0.834-0.947), 0.810
(0.677-0.944), and 0.845 (0.732-0.958), respectively, the corresponding ACC values were 0.828, 0.809, and 0.888;
sensitivity: 0.679, 0.812, and 0.925; specificity: 0.957, 0.806, and 0.643; PPV: 0.950, 0.684, and 0.945; and NPV:
0.763, 0.893, and 0.562 (Fig. 4a-c). For expiratory-phase CT in the training, internal validation, and external
test sets, the AUCs and 95% CI of the combined model were 0.901 (0.845-0.956), 0.819 (0.680-0.957), and
0.817 (0.695-0.940), respectively. ACC: 0.836, 0.830, and 0.916; Sensitivity: 0.750, 0.750, and 0.968; Specificity:
0.917, 0.871, and 0.571; PPV: 0.894, 0.750, and 0.937; NPV: 0.797, 0.871, and 0.727 (Fig. 4d-f). For dual-phase
CT, the AUCs and 95% CI in the training, internal validation, and external test sets of the combined model
were 0.901 (0.846-0.955), 0.821 (0.684-0.957), and 0.813 (0.694-0.932), respectively. ACC: 0.836, 0.787, and
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Fig. 4. Performance of clinical, radiomic, and clinical-radiomic models in predicting PRISm using inspiratory-
phase, expiratory-phase, and dual-phase CT. (a-c) ROC curves for the clinical model, radiomic model, and
clinical-radiomic model based on inspiratory-phase in the training cohort (a), internal test cohort (b), and
external test cohort (c), respectively. (d-f) ROC curves for the clinical model, radiomic model, and clinical-
radiomic model based on expiratory-phase in the training cohort (d), internal test cohort (e), and external

test cohort (f), respectively. (g-i) ROC curves for the clinical model, radiomic model, and clinical-radiomic
model based on dual-phase in the training cohort (g), internal test cohort (h), and external test cohort

(i), respectively. The red solid line, dark blue dashed line, and light blue solid line represent the predictive
performance of the clinical model, radiomics model, and combined model, respectively. Figures were
automatically generated using the Onekey Al platform, and font sizes and label styles follow system defaults.

0.626; Sensitivity: 0.786, 0.812, and 0.581; specificity: 0.883, 0.774, and 0.929; PPV: 0.863, 0.650, and 0.982; NPV:
0.815, 0.889, and 0.250 (Fig. 4g-1). Overall, the results suggest that both dual-phase CT and expiratory-phase CT
exhibit high predictive performance for identifying PRISm and demonstrate comparable diagnostic efficiency.
To compare the robustness of the model across different scanners, we applied the DeLong test to evaluate the
difference in AUCs obtained from the expiratory-phase CT scans of the internal validation cohort (Siemens CT
scanner) and the external validation cohort (GE CT scanner). The results indicated that the model demonstrated
relatively consistent predictive performance across different scanning devices (P=0.841). We evaluated the
clinical applicability of the model constructed from expiratory-phase CT using DCA. The combined model
demonstrated significant net benefits in the training (Fig. 5a), internal testing (Fig. 5b), and external testing
(Fig. 5¢), indicating its advantages in clinical decision-making and showing high consistency with the actual
event proportions. The calibration curves showed that the combined model constructed using expiratory-phase
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Cohorts Models AUC(95%CI) ACC | Sensitivity | Specificity | PPV | NPV
Clinical model 0.825(0.750-0.900) | 0.741 | 0.607 0.857 0.810 | 0.703
Inspiratory-radiomic model 0.826(0.753-0.900) | 0.767 | 0.768 0.757 0.754 | 0.780
Clinical-Inspiratory-radiomic model | 0.890(0.834-0.947) | 0.828 | 0.679 0.957 0.950 | 0.763
Training cohort Expiratory-radiomic model 0.838(0.768-0.908) | 0.776 | 0.589 0.950 0917 | 0.712
Clinical-Expiratory-radiomic model | 0.901(0.845-0.956) | 0.836 | 0.750 0.917 0.894 | 0.797
Dual-phase radiomic model 0.851(0.783-0.918) | 0.767 | 0.607 0.917 0.872 | 0.714
Clinical-Dual-phase-radiomic model | 0.901(0.846-0.955) | 0.836 | 0.786 0.883 0.863 | 0.815
Clinical model 0.771(0.639-0.903) | 0.681 | 0.812 0.613 0.520 | 0.864
Inspiratory-radiomic model 0.800(0.642-0.959) | 0.830 | 0.625 0.935 0.833 | 0.829
Clinical-Inspiratory-radiomic model | 0.810(0.677-0.944) | 0.809 | 0.812 0.806 0.684 | 0.893
Internal validation cohort | Expiratory-radiomic model 0.798(0.642-0.955) | 0.809 | 0.625 0.903 0.769 | 0.824
Clinical-Expiratory-radiomic model | 0.819(0.680-0.957) | 0.830 | 0.750 0.871 0.750 | 0.871
Dual-phase radiomic model 0.796(0.638-0.955) | 0.809 | 0.687 0.871 0.733 | 0.844
Clinical-Dual-phase-radiomic model | 0.821(0.684-0.957) | 0.787 | 0.812 0.774 0.650 | 0.889
Clinical model 0.778(0.653-0.904) | 0.626 | 0.581 0.929 0.982 | 0.250
Inspiratory-radiomic model 0.757(0.645-0.870) | 0.551 | 0.484 1.000 1.000 | 0.226
Clinical-Inspiratory-radiomic model | 0.845(0.732-0.958) | 0.888 | 0.925 0.643 0.945 | 0.562
External validation cohort | Expiratory-radiomic model 0.800(0.702-0.899) | 0.682 | 0.645 0.929 0.984 | 0.283
Clinical-Expiratory-radiomic model | 0.817(0.695-0.940) | 0.916 | 0.968 0.571 0.937 | 0.727
Dual-phase radiomic model 0.810(0.719-0.900) | 0.738 | 0.710 0.929 0.985 | 0.325
Clinical-Dual-phase-radiomic model | 0.813(0.694-0.932) | 0.626 | 0.581 0.929 0.982 | 0.250

Table 4. Performance comparison of clinical, radiomics, and fusion models in training and testing cohorts of

dual-phase CT.
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Fig. 5. Decision curve analysis (DCA) results of the three models based on expiratory-phase CT images across
the three cohorts. Panels (a), (b), and (c) show the DCA curves for the training cohort, internal test cohort,
and external test cohort, respectively. The blue, orange, and green lines represent the net benefits of the clinical
model, radiomics model, and combined model (integrating clinical and radiomics features), respectively. The
black dashed line indicates the strategy of treating no patients, while the black solid line indicates the strategy
of treating all patients. The combined model demonstrated higher net benefit across a range of decision
thresholds, suggesting its superior clinical utility in identifying PRISm. Figures were automatically generated
using the Onekey Al platform, and font sizes and label styles follow system defaults.

CT exhibited good agreement between the predicted probabilities and the actual outcomes in the training cohort
(Fig. 6a), internal validation cohort (Fig. 6b), and external validation cohort (Fig. 6¢).

Discussion

This study evaluated the performance of various diagnostic models based on single-phase inspiratory breath-
hold CT, single-phase expiratory breath-hold CT, and dual-phase breath-hold CT in identifying the PRISm
phenotype, including clinical models, radiomics models, and combined models integrating both. The results
showed that although inspiratory CT alone demonstrated some efficacy in identifying PRISm, the combined
models based on expiratory CT or dual-phase CT achieved the best performance. Moreover, adding inspiratory
CT to the expiratory CT-based models did not lead to a significant improvement in performance. Therefore, to
reduce radiation exposure and simplify the examination process, the results of this study suggest that single-phase
expiratory CT scans be prioritized in clinical practice. When combined with clinical features and analyzed using
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Fig. 6. Calibration curves in the three cohorts using expiratory-phase CT: training cohort (a), internal test
cohort (b), and external test cohort (c). The calibration curves were plotted based on three models to evaluate
the accuracy of predicted probabilities for PRISm. The x-axis represents the predicted probability of PRISm
from the clinical model, radiomics model, and combined model, while the y-axis indicates the actual observed
probability. Each data point reflects the agreement between predicted and observed event rates within a specific
probability interval. The 45° diagonal line represents the ideal prediction, and the blue, yellow, and green
curves represent the predictive performance of the clinical model, radiomics model, and combined model,
respectively. Figures were automatically generated using the Onekey AT platform, and font sizes and label styles
follow system defaults.

a LR-based machine learning model, this approach allows for effective identification of pre-COPD patients. This
strategy is simple, efficient, and offers good reproducibility and generalizability, providing a feasible solution for
computer-aided individualized management of patients with the PRISm phenotype.

Previous studies have shown that conventional inspiratory phase CT holds significant value in identifying
early structural damage in COPD. This is primarily achieved by examining morphological changes in the
airway tree and lung fields, accurately quantifying emphysematous changes, observing low-density areas, and
conducting detailed assessments of changes in the airway and pulmonary vascular system, thus enabling precise
diagnosis'®-?!. However, some studies have shown that by analyzing the quantitative parameters of inspiratory
phase and expiratory phase CT, expiratory-phase CT is more accurate than inspiratory-phase CT in reflecting
structural changes in the lungs of COPD patients, particularly in the assessment of small airway lesions?2~24.
Cao et al. also noted that expiratory CT scans reflect the severity of disease in COPD patients more accurately
than inspiratory CT scans when assessing pulmonary vascular parameters®. A six-year prospective study on
COPD in the context of lung cancer found that, compared to inspiratory-phase CT, texture analysis based on
expiratory-phase CT demonstrated superior diagnostic performance, allowing for more effective detection of
early declines in lung function?. This study also found that expiratory CT outperformed inspiratory CT in
identifying the PRISm phenotype. Furthermore, the model constructed by combining expiratory CT images
with clinical features achieved a maximum AUC of 0.901. During the expiratory phase, the damaged airways are
more prone to collapse, and the structural damage to the lungs leads to increased air trapping. Expiratory-phase
CT can more clearly display this phenomenon compared to inspiratory-phase CT, thereby identifying small
airway obstruction and dysfunction?”%.

Dual-phase CT can simultaneously obtain images of the inspiratory and expiratory phases, recording the
dynamic changes during the breathing process. This technique assesses the distribution of ventilation and its
heterogeneity under different respiratory states, providing quantitative data that assist doctors in more accurately
quantifying the pathological changes in COPD and predicting the progression of the disease?. Another study
utilized a convolutional neural network (CNN) architecture that combines inspiratory and expiratory CT images
with clinical information, demonstrating high accuracy and sensitivity in detecting COPD?. In line with our
research, both studies focus on the assessment of COPD patients, with the main distinction being the differences
in research methods and subjects. We utilized the LR machine learning method to detect PRISm patients, while
the other study employed deep learning methods to identify COPD patients, both achieving high detection
efficacy.

We referenced recent studies that confirm machine learning methods can effectively identify quantitative CT
imaging features associated with stable PRISm patients®!. Additionally, the LR model we employed is a widely
used model, primarily aimed at extracting key features from medical imaging for classification and prediction.
Currently, it has been extensively applied in the diagnosis and risk assessment of breast cancer, rectal cancer,
and brain tumors 3734, In addition, it has also demonstrated good performance in the early diagnosis of acute
exacerbations of COPD?’, the classification of severity in COPD patients®, and risk prediction ¥’. This study
affirms the high efficacy of the LR machine learning model constructed using dual-phase CT in diagnosing
PRISm. It also emphasizes that single expiratory-phase CT is more suitable for clinical application than dual-
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phase CT and possesses strong diagnostic potential. As noted by Zhang et al. in their review of 373 COPD
patients, single expiratory-phase CT combined with deep learning algorithms can effectively reflect small airway
obstruction, thereby enabling the detection of early COPD patients®. Previous studies on the prediction of
PRISm using nomogram models based on dual-phase quantitative CT have emphasized the advantages of dual-
phase CT scanning while also highlighting the clear benefits of single expiratory-phase CT®. This is consistent
with our study, both highlighting the importance of expiratory-phase CT.

This study has several limitations. First, spirometry was not used as a trigger for CT scanning, making
it difficult to confirm whether the images were acquired at maximum inspiration and expiration. Second,
differences in scanners across institutions may affect image quality and model generalizability. Notably, in the
external validation cohort, the clinical-inspiratory model achieved the highest AUC, suggesting that inspiratory-
phase images may offer greater stability under heterogeneous scanning conditions. Third, the external validation
set exhibited class imbalance, which may introduce bias in the prediction results. Although the platform’s built-
in class weight adjustment feature was enabled and we supplemented the evaluation with multiple performance
metrics, further validation in a more balanced dataset is still needed. Fourth, although a combination of manual
and automated lung segmentation was employed, inconsistencies may still exist, and some pulmonary vessels
and airways may not have been fully excluded. Future studies will aim to incorporate more advanced deep
learning-based segmentation methods and expand the sample size across multiple centers and scanner types to
improve model accuracy and generalizability.

In summary, our study proposed and validated an LR combined model based on breath-phase CT, which
integrates clinical and radiomic features and shows significant diagnostic performance in distinguishing normal
individuals from those with PRISm. Especially in primary or community hospitals where PFT equipment is
lacking, this repeatable approach utilizes chest CT images acquired under standardized respiratory training
and imaging conditions to extract features, which are then input into the LR combined model to automatically
generate a predicted probability of PRISm. This enables the identification of patients with potential pulmonary
function impairment without the need for additional radiation exposure or examination procedures. According
to our study, PRISm patients show no significant symptomatic differences compared to normal individuals.
Therefore, the application of this model not only addresses diagnostic gaps in the absence of noticeable clinical
symptoms but also offers a novel approach for the early screening and diagnosis of PRISm. This, in turn,
promotes the development of personalized medicine and facilitates timely intervention and treatment. Future
research should further explore the potential applications of this model in monitoring disease progression and
evaluating treatment efficacy.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.
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