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Preserved Ratio Impaired Spirometry (PRISm) is considered an early stage of chronic obstructive 
pulmonary disease (COPD), which may either revert to normal or progress to COPD. Therefore, early 
identification is crucial for improving patient prognosis. In this study, we developed multiple machine 
learning (ML) models based on inspiratory and/or expiratory breath-hold chest computed tomography 
(CT) images to identify PRISm. A total of 270 subjects were prospectively enrolled, and clinical models, 
radiomics models, and combined clinical-radiomics models were constructed using inspiratory, 
expiratory, and dual-phase CT images, respectively. The results demonstrated that combined models 
outperformed clinical models alone across all three phases. Among them, the logistic regression 
(LR)-based combined models using expiratory or dual-phase CT achieved the best performance, 
with comparable area under the receiver operating characteristic curve (AUC) values and superior 
performance to the inspiratory-phase models. Specifically, the AUCs (95% confidence intervals [CI]) 
of the clinical model in the training, internal, and external validation sets were 0.825 (0.750–0.900), 
0.771 (0.639–0.903), and 0.778 (0.653–0.904), respectively. For the expiratory-phase combined model, 
the AUCs were 0.901 (0.845–0.956), 0.819 (0.680–0.957), and 0.817 (0.695–0.940), while for the dual-
phase combined model, they were 0.901 (0.846–0.955), 0.821 (0.684–0.957), and 0.813 (0.694–0.932), 
indicating that adding inspiratory data did not significantly improve model performance. Based on 
these findings, we recommend that single-phase expiratory CT scans, combined with clinical features 
and analyzed using LR models, be prioritized in clinical practice for efficient PRISm identification, 
providing support for early diagnosis and timely intervention.
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Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic condition that has become the fourth 
leading cause of death worldwide, with mortality rates increasing year by year. This disease imposes a significant 
economic burden on individuals, families, and society1. The Preserved Ratio Impaired Spirometry (PRISm) 
phenotype is considered a transitional state between normal lung function and COPD. According to the 2024 
update of the Global Initiative for Chronic Obstructive Lung Disease (GOLD), the definition of PRISm has been 
further refined. It is defined as impaired ventilatory function after inhalation of a bronchodilator, specifically a 
forced expiratory volume in one second (FEV₁) of less than 80% of the predicted value (FEV₁/predicted < 80%), 
while the ratio of FEV₁ to forced vital capacity (FVC) remains normal (FEV₁/FVC ≥ 0.7)2,3. Globally, the 
prevalence of PRISm ranges from 7.1 to 25.9%4. Due to the presence of nonspecific chronic respiratory 
symptoms in some patients, the condition is often overlooked in clinical practice. According to a five-year 
follow-up study from the COPDGene cohort, approximately one-quarter of PRISm patients progressed directly 
to GOLD stages I–IV, while 22% reverted to GOLD 0 status5. This highlights the importance of early screening in 
the PRISm population. Through comprehensive management strategies—such as smoking cessation, pulmonary 
rehabilitation, and individualized pharmacological treatment—it is possible to achieve disease control and even 
pathological reversal6.

Currently, the clinical identification of PRISm primarily relies on pulmonary function testing (PFT). 
However, the results can be influenced by various factors, including patient cooperation, climatic changes, 
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and physiological conditions. Furthermore, pulmonary function test (PFT) cannot directly reveal structural 
abnormalities in the lungs7, highlighting the urgent need for more convenient and objective imaging-based 
alternatives. Computed tomography (CT) scans are the most commonly used imaging modality for evaluating 
lung diseases. However, compared with COPD patients, individuals with PRISm often lack obvious anatomical 
changes, and subtle ventilation dysfunction can sometimes be difficult to accurately detect through visual 
assessment in routine CT images8.

With the advancement of radiomics and artificial intelligence, extracting high-dimensional quantitative 
features from CT images combined with machine learning algorithms has demonstrated great potential in 
the diagnosis, prognosis evaluation, and treatment monitoring of pulmonary diseases. Previous studies have 
demonstrated that the extraction of quantitative imaging features from CT scans can significantly improve the 
diagnostic performance for solitary pulmonary nodules9. In addition, radiomics has shown high accuracy in 
predicting the genetic phenotype of lung adenocarcinoma10. Yang et al. developed an Auto-Metric Graph Neural 
Network, which exhibited outstanding performance in the staging classification of COPD, achieving an area 
under the curve (AUC) of 0.98411. In addition, radiomic technology has also been used to assess the risk of 
COPD in patients with a background of lung cancer12, as well as the risk of deterioration in pulmonary function 
and disease progression in patients with COPD, providing important evidence for clinical decision-making13. 
Nevertheless, studies using radiomics features based on CT imaging to identify PRISm remain very limited.

Dual-phase breath-hold CT scanning can provide complementary information under different respiratory 
states14. However, due to the relatively high radiation dose and the need for strict patient compliance with 
breathing instructions, it is not feasible for some critically ill patients and has not yet been widely adopted in 
clinical practice. Currently, there is no established CT scanning protocol specifically aimed at identifying early 
pulmonary function impairment. Therefore, this study aims to further explore this field and propose a machine 
learning–based approach to automatically identify individuals with PRISm using single- and dual-phase CT 
data. The implementation of this model may offer new insights into improving the efficiency and accuracy of 
PRISm detection.

Materials and methods
Patients
This prospective study was approved by the Ethics Committee of our institution prior to manuscript submission, 
as well as by the Ethics Committee of the collaborative institution, the First Affiliated Hospital of Guangxi 
University of Chinese Medicine (Approval Nos. 2025-E002-01 and GXUCM IRB TM2023-02–56). Informed 
consent was obtained from all participants. All procedures were performed in compliance with relevant laws 
and institutional guidelines. Inclusion criteria were as follows: (1) diagnosed as normal or PRISm patients 
through pulmonary function tests (PFT); (2) undergoing dual-phase CT scans within one week before or after 
completing the PFT. Patients who met any of the following exclusion criteria were not included in the study: 
(1) Presence of significant motion artifacts or metal artifacts in the CT images; (2) History of lung surgery 
or the presence of thoracic deformities; (3) Concomitant significant lung diseases, such as pulmonary masses, 
extensive fibrosis, lung infections, bronchiectasis, or pneumothorax; (4) Combined with primary or secondary 
mediastinal abnormalities such as cardiomegaly, massive pericardial effusion, or mediastinal masses; (5) 
Received intervention treatment in the past three months; (6) Incomplete clinical data. Ultimately, a total of 270 
participants were consecutively enrolled based on the above inclusion and exclusion criteria.

Individuals who were potentially affected by other obstructive pulmonary diseases—such as bronchial 
asthma, extensive bronchiectasis, or obliterative bronchiolitis—were first excluded based on medical history or 
clinical records by two respiratory physicians (ZR.C and XL.H, with 8 and 10 years of experience, respectively). 
Subsequently, participants were classified into two groups based on real-time PFT results: (1) Normal group, 
defined as FEV1/FVC ≥ 0.70 and FEV1% predicted > 80%; (2) PRISm group, defined as FEV1/FVC ≥ 0.70 and 
FEV1% predicted < 80%. The dataset consisted of two sample cohorts: First, 163 participants were recruited from 
our hospital and randomly divided into a training set and an internal validation set in a 7:3 ratio. The training 
set included 116 participants (60 in the normal group and 56 in the PRISm group), while the internal validation 
set included 47 participants (31 in the normal group and 16 in the PRISm group). Second, an additional 
107 participants (14 in the normal group and 93 in the PRISm group) were recruited from the collaborating 
institution (Fig. 1).

Pulmonary function assessment
PFT at both institutions were performed using the MASTERSCREEN (PFT + IOS) system (Jaeger, Germany). 
Environmental calibration was carried out daily to standard conditions, and volume calibration was performed 
each time the device was powered on. Linear validation was conducted at least once a week, ensuring that the 
errors in volume and linear calibration were within ± 3.0%. All patients underwent PFT within one week before 
or after the dual-phase CT scans. Tests were conducted in a seated position and performed by experienced 
respiratory physicians (ZR.C and XL.H, with 8 and 10 years of experience, respectively), both certified through 
the national pulmonary function clinical application and standardization training program. Quality control was 
strictly followed according to PFT guidelines to ensure that each patient had at least three acceptable spirometry 
curves. Lung volume data were recorded 20 min after the administration of a bronchodilator (salbutamol aerosol, 
0.4 mg). These procedures ensured the reproducibility of PFT results across centers.

Data collection
We collected clinical information from the medical record system, primarily including the following aspects: 
gender, age, smoking status (classified as never smoked, former smoker, or current smoker), body mass index 
(BMI, categorized as underweight, normal, overweight, and obese), respiratory symptoms (classified as cough, 
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phlegm, wheezing, dyspnea) and pulmonary function indicators (including FVC, FEV1, FEV1/FVC, and FEV1/
predicted) (Table 1).

At our institution, imaging was performed using a SOMATOM Force CT scanner (Siemens Healthineers, 
Germany). The specific acquisition parameters for the single-source bulb tube routine scanning mode were 
as follows: tube voltage of Sn100 kV, automatic tube current modulation (quality reference mAs: 150 mAs), 

Variable

Training cohort (n = 116) Internal validation cohort (n = 47) External validation cohort (n = 107)

Normal (n = 60) PRISm (n = 56) P-value Normal (n = 31) PRISm (n = 16) P-value Normal (n = 14) PRISm (n = 93) P-value

Age(years),mean ± SD 55.0 ± 12.3 56.6 ± 11.7 0.338 50.9 ± 12.8 57.5 ± 10.5 0.051 63.3 ± 11.7 63.4 ± 11.8 0.137

Gender,n(%)  < 0.001  < 0.001  < 0.001

Female 43(71.7) 6(10.7) 20(64.5) 0(0.0) 1(7.1) 2(2.2)

Male 17(28.3) 50(89.3) 11(35.5) 16(100.0) 13(92.9) 91(97.8)

Smokeing Status,n(%)  < 0.001  < 0.001  < 0.001

Never 37(61.7) 8(14.3) 18(58.1) 0(0.0) 7(50.0) 5(5.4)

Current/former 23(38.3) 48(85.7) 13(41.9) 16(100.0) 7(50.0) 88(94.6)

BMI(kg/m2)category,n(%) 0.906 0.914 0.377

Underweight(< 18.5) 3(5.0) 5(8.9) 3(9.7) 1(6.3) 1(7.1) 0(0.0)

Normal(18.5–22.9) 24(40.0) 12(21.4) 9(29.0) 3(18.8) 8(57.1) 49(52.7)

Overweight(23.0–24.9) 15(25.0) 15(26.8) 10(32.3) 5(31.3) 3(21.4) 30(32.3)

Obese(≥ 25) 18(30.0) 24(42.9) 9(29.0) 7(43.8) 2(14.3) 14(15.1)

Respiratory symptoms, n (%)

Cough 21(35.0) 22(39.3) 0.534 10(32.3) 7(43.8) 0.613 4(28.6) 35(37.6) 0.589

Phlegm 17(28.3) 15(26.8) 3(9.7) 2(12.5) 3(21.4) 23(24.7)

Wheezing 5(8.3) 4(7.1) 2(6.5) 1(6.3) 1(7.1) 8(8.6)

Dyspnea 8(13.3) 6(10.7) 4(12.9) 2(12.5) 2(14.3) 11(11.8)

Pulmonary function test,mean ± SD

FVC (L) 117.5 ± 17.5 74.7 ± 10.6  < 0.001 115.1 ± 18.4 63.6 ± 6.4  < 0.001 110.7 ± 11.6 70.2 ± 1.9  < 0.001

FEV1 (L) 115.1 ± 18.5 73.5 ± 4.7  < 0.001 112.3 ± 19.2 74.1 ± 4.5  < 0.001 109.3 ± 12.7 71.4 ± 3.4  < 0.001

FEV1 /FVC 80.9 ± 5.6 80.5 ± 6.6 0.632 81.3 ± 5.5 89.2 ± 8.0 0.232 81.4 ± 4.4 83.7 ± 4.4 0.945

FEV1% predicted 112.4 ± 17.0 75.1 ± 2.1  < 0.001 109.3 ± 20.0 75.3 ± 3.1  < 0.001 102.6 ± 14.4 71.2 ± 4.5  < 0.001

Table 1.  Clinical characteristics in the training and test cohorts. Continuous data are presented as 
mean ± standard deviation; categorical variables are presented as numbers and corresponding percentages (in 
parentheses). BMI Body Mass Index.

 

Between March and October 2024, a total of 483 patients suspected of being 

normal or PRISm were recruited from the outpatient departments of two 

hospitals.

External validation cohort (n=107)

(14 normal and 93 PRISm cases )

Internal validation cohort (n=47)

(31 normal and 16 PRISm cases )

Training cohort (n=116)

(60 normal and 56 PRISm cases )
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Inclusion criteria:
(1)Patients diagnosed as normal or PRISm through 

PFT;

(2)The dual-phase CT scan was completed within one 

week before and after the pulmonary function tests.

Exclusion criteria:
(1)The CT images show significant motion or metal

artifacts(n=79); (2)History of lung surgery or thoracic

deformity(n=35); (3)Concomitant other obvious 

pulmonary masses(n=32); (4)Primary or secondary

abnormal mediastinal changes(n=11);(5)Received 

intervention treatment within the last three months(n=21);

(6)Incomplete clinical data(n=41).

Fig. 1.  The patients’ recruitment flowchart. PRISm preserved ratio impaired spirometry.
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collimator configuration of 96 × 0.6 mm, acquisition slice thickness and interval of 5.0 mm, rotation time of 0.5 s, 
and pitch of 1.2. The image reconstruction parameters included a matrix size of 512 × 512, reconstruction slice 
thickness of 0.6 mm, slice interval of 0.5 mm, a Br40 convolution kernel, and images were reconstructed using 
Advanced Modeled Iterative Reconstruction (ADMIRE) with a strength level of 3. For external validation at the 
collaborating institution, imaging was performed using a 256-slice CT scanner (Revolution CT, GE Healthcare, 
USA) in helical scan mode. The acquisition parameters were: tube voltage of 120 kV, tube current of 70 mA, 
detector coverage of 80 mm, acquisition slice thickness and interval of 5.0 mm, rotation time of 0.5 s, and pitch 
of 0.992:1. The image reconstruction parameters were: matrix size of 512 × 512, reconstruction slice thickness 
of 0.625  mm, slice interval of 0.5  mm, and application of Adaptive Statistical Iterative Reconstruction-Veo 
(ASIR-V) with a strength level of 30%. Prior to CT scanning, all patients received respiratory coaching and 
breath-hold training to ensure they could perform breath-hold scans in both full inspiration and full expiration 
states. The scan range extended from the thoracic inlet to the base of the diaphragm. The inspiratory breath-hold 
CT scan was performed first, followed by the expiratory breath-hold CT scan.

Radiation dose of dual-phase CT scanning
The dose parameters of dual-phase chest CT scans, including the CT dose index volume (CTDIvol), dose-
length product (DLP), and effective dose (ED), were recorded and calculated to provide transparency and to 
clearly indicate the radiation exposure associated with our scanning protocols. According to the latest European 
guidelines on CT quality standards17, the calculation formulas are as follows: DLP (mGy·cm) = CTDIvol 
(mGy) × scan length (L, cm); ED (mSv) = DLP (mGy·cm) × k, where k = 0.014 mSv/(mGy·cm) for the chest. In 
our institution, a low-dose scanning protocol was used. The dose parameters for individual patients were as 
follows: CTDIvol ranged from 0.47 to 1.73  mGy; DLP ranged from 16.7 to 61.1  mGy·cm; ED ranged from 
0.23 to 0.86 mSv. For the external validation cohort from the collaborating institution, the patient-specific dose 
parameters were as follows: CTDIvol ranged from 2.68 to 4.78 mGy; DLP ranged from 90.42 to 192.28 mGy·cm; 
ED ranged from 1.27 to 2.69 mSv.

Image preprocessing and segmentation
The workflow for radiomic analysis mainly includes: Region of Interest(ROI) delineation, feature extraction and 
selection, and model construction (Fig. 2). All images in this study were stored in DICOM format with lung 
window settings. All image processing and feature extraction steps followed the standardized guidelines in the 
Imaging Biomarker Standardization Initiative (IBSI) to ensure the reproducibility and consistency of feature 
extraction15. First, open-source software ITK-SNAP 3.8.0 (available at www.itksnap.org) was used to perform 
intensity normalization adjustments for window width and level on the CT images to ensure that lesions were 
clearly visible. Next, through intensity standardization techniques, the window width and level of the CT images 
were set to standard lung window parameters (window width 1400 HU, window level -400 HU). All results were 
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Fig. 2.  Workflow of radiomics. ROI region of interest.
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processed using Z-score normalization, which involves calculating the mean and standard deviation of the pixel 
values to convert the intensity values into a standard normal distribution. This allows for better observation of 
the target regions and minimizes the effects caused by different CT device parameters, ensuring accurate texture 
analysis. Finally, the three-dimensional ROI were resampled to a uniform voxel size of 1 mm × 1 mm × 1 mm to 
achieve standardization of spatial resolution. The specific steps for image segmentation were as follows: First, 
the “One-key AI” platform based on PyTorch 1.8.0 (https://www.medai.icu) was used to perform an initial 
segmentation of the entire lung field, removing most of the background structures (such as ribs and chest wall) 
to quickly obtain the contours of both lungs. Next, manual slice-by-slice refinement of the lung parenchyma ROI 
was performed using ITK-SNAP software. In both inspiratory and expiratory CT images, the boundaries of the 
bilateral lungs were manually delineated slice by slice along the edges of the lung fields. During the entire image 
segmentation process, we focused on removing non-pulmonary structures that could significantly interfere with 
radiomic feature extraction, such as the trachea, main bronchi, and mediastinal tissues. Additionally, we made 
efforts to eliminate large vessels and bronchi near the pulmonary hilum, retaining only the distal, progressively 
branching bronchi, vessels, and lung parenchyma to enhance segmentation consistency and ensure the accuracy 
of the analysis results.

Radiomic feature extraction and selection
Traditional radiomic features were extracted using Pyradiomics (version 2.2.0) from both inspiratory and 
expiratory phase CT images, resulting in 108 features extracted from each phase. Due to the merging or removal 
of some highly correlated or redundant features during feature extraction and preprocessing, as well as the 
generation of composite features based on combined data from both phases, a total of 215 features were ultimately 
extracted from the dual-phase fused CT images. These features mainly included shape features, neighborhood 
gray tone difference matrix (NGTDM), gray level size zone matrix (GLSZM), gray level run length matrix 
(GLRLM), gray level difference matrix (GLDM), gray level co-occurrence matrix (GLCM), and first-order 
features. In the training cohort, the feature selection process was carried out as follows: First, the extracted 
raw feature values were standardized using Z-score normalization. Next, the Mann–Whitney U test was used 
to perform statistical analysis of all radiomic features between the normal and PRISm groups, and features 
with statistically significant differences between the two groups (P < 0.01) were selected. Subsequently, Pearson 
correlation analysis was employed to eliminate features that were highly correlated with each other (Pearson 
correlation coefficient > 0.9). On this basis, the Least Absolute Shrinkage and Selection Operator (LASSO) 
algorithm was further employed for feature selection. LASSO is a linear regression method that introduces an 
L1 norm penalty term into the loss function, which drives some feature coefficients to shrink to zero, thereby 
achieving automatic feature selection and model simplification. Finally, tenfold cross-validation was used to 
determine the optimal regularization parameter λ, allowing us to identify the most representative subset of 
features for predicting the PRISm phenotype. In total, 17 radiomic features were selected for model construction 
(Table 2). The feature selection process, using expiratory-phase CT as an example, is illustrated in Fig. 3. All 
feature selection steps were conducted within the training cohort.

Different CT Air Phase Images ID Radiomics features’ name

Inspiratory-Phase

1 original_glszm_SmallAreaHighGrayLevelEmphasis

2 original_shape_SurfaceArea

3 original_shape_MinorAxisLength

4 original_firstorder_Range

5 original_glszm_SmallAreaLowGrayLevelEmphasis

6 original_shape_ Elongation

Expiratory-Phase

1 original_shape_Maximum2DDiameterSlice

2 original_glszm_SmallAreaLowGrayLevelEmphasis

3 original_shape_SurfaceArea

4 original_shape_ Elongation

5 original_shape_MinorAxisLength

6 original_firstorder_Range

Dual-Phase

1 xiqioriginal_shape_SurfaceArea

2 original_glszm_SmallAreaLowGrayLevelEmphasis

3 original_shape_SurfaceArea

4 original_shape_ Elongation

5 original_shape_MinorAxisLength

6 xiqioriginal_shape_MinorAxisLength

7 xiqioriginal_firstorder_Range

Table 2.  Radiomics Feature Selection Results of Inspiratory and Expiratory Models. CT computed 
tomography.
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Model construction and evaluation
Using recursive feature elimination (RFE) and a logistic regression (LR) classifier, inspiratory-phase, expiratory-
phase, and dual-phase clinical models, radiomics models, and combined clinical-radiomics nomogram models 
were constructed based on selected radiomic features and relevant clinical factors, including age, sex, smoking 
status, BMI, and respiratory symptoms. All models were developed using the same machine learning algorithms 
and procedures. This study employed ten candidate machine learning algorithms, including LR, NaiveBayes, 
support vector machine (SVM), RandomForest, ExtraTrees, extreme gradient boosting (XGBoost), lightweight 
gradient boosting machine (LightGBM), gradient boosting, adaptive boosting (AdaBoost), GradientBoosting and 
multilayer perceptron (MLP). As shown in Table 3, using expiratory-phase CT as an example, the performance 
of the most commonly used machine learning models was compared. Among them, the LR model demonstrated 
the best overall predictive performance across the training, internal validation, and external validation cohorts. 
It achieved stable and superior results in several key metrics, including AUC, accuracy, sensitivity, and negative 
predictive value. Notably, in the external validation cohort, the LR model achieved the highest AUC of 0.817 
and an accuracy of 0.916, indicating its strong generalizability and discriminative capability. Therefore, LR was 

Dataset Models AUC(95%CI) ACC Sensitivity Specificity PPV NPV

Training cohort

LR 0.901(0.845–0.956) 0.836 0.750 0.917 0.894 0.797

Random Forest 0.942(0.903–0.981) 0.871 0.929 0.817 0.825 0.925

XGBoost 0.985(0.969–0.999) 0.931 0.929 0.933 0.929 0.933

SVM 0.901(0.845–0.957) 0.836 0.804 0.867 0.849 0.825

MLP 0.845(0.777–0.913) 0.750 0.714 0.783 0.755 0.746

Internal validation cohort

LR 0.819(0.680–0.957) 0.830 0.750 0.871 0.750 0.871

Random Forest 0.825(0.692–0.957) 0.809 0.687 0.871 0.733 0.844

XGBoost 0.756(0.611–0.901) 0.745 0.750 0.742 0.6 0.852

SVM 0.806(0.649–0.964) 0.83 0.812 0.613 0.520 0.864

MLP 0.833(0.743–0.924) 0.738 0.710 0.929 0.985 0.325

External validation cohort

LR 0.817(0.695–0.940) 0.916 0.968 0.571 0.937 0.727

Random Forest 0.666(0.514–0.818) 0.486 0.430 0.857 0.952 0.185

XGBoost 0.638(0.474–0.801) 0.654 0.654 0.714 0.937 0.233

SVM 0.815(0.696–0.934) 0.626 0.581 0.929 0.982 0.250

MLP 0.778(0.652–0.903) 0.794 0.774 0.929 0.986 0.382

Table 3.  Comparison of predictive performance of the five most commonly used machine learning models. 
AUC area under the ROC curve,  CI confidential interval, ACC accuracy, PPV positive predictive value, NPV 
negative predictive value, LR logistic regression,  XGBoost extreme gradient boosting, SVM support vector 
machine, MLP multilayer perceptron.

 

Fig. 3.  Feature selection process. Distribution and corresponding p-values of the extracted features. Each 
data point represents the measured value of a specific radiomics feature extracted from expiratory-phase CT 
images. The black line in the middle indicates the median, and the width of the violin plot reflects the data 
point density (a). Radiomics feature selection based on the LASSO algorithm and Rad score establishment. 
Each curve represents the change in the coefficient of a feature with varying values of lambda. The dotted 
vertical line indicates the optimal lambda value, at which the model achieves the best predictive performance 
(b). Mean squared error (MSE) curve under ten-fold cross-validation to determine the optimal lambda value. 
The blue vertical lines indicate the range of coefficient variation for each feature across the 10 cross-validations, 
and the red dots represent the average coefficient values (c). Figures were automatically generated using the 
Onekey AI platform, and font sizes and label styles follow system defaults.
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ultimately selected as the modeling method for this study. All models were developed based on the training 
cohort and validated in both the internal and external validation cohorts. The model’s prediction results were 
output in the form of probabilities, with a default classification threshold of 0.5 used to convert the predicted 
probabilities into binary outcomes. During model training, the platform automatically enabled the "class weight 
adjustment" function, which effectively mitigated potential bias caused by class imbalance and improved the 
model’s ability to recognize minority classes. To comprehensively evaluate the performance of the constructed 
models, we conducted assessments from three aspects: discrimination ability, calibration performance, and 
clinical utility. The model’s discrimination ability was assessed through Receiver Operating Characteristic (ROC) 
analysis, which included calculating the AUC, sensitivity, and specificity. The goodness of fit is evaluated using 
the Hosmer–Lemeshow (H–L) test calibration curve, which assesses the relationship between the predicted 
probabilities and the actual observed events. In addition, we also used decision curve analysis (DCA) to evaluate 
the clinical utility of the model. It provides a visual representation of the model’s net benefit at different threshold 
probabilities, where the threshold probability represents the minimum predicted risk at which the patient or 
clinician is willing to accept an intervention. Net benefit takes into account both the gain from true positives and 
the potential harm from false positives16.

Statistical analysis
Statistical analyses were performed using SPSS (version 24.0; IBM Corp.) and the "One-key AI" platform. 
Categorical variables were processed using the chi-square test or Fisher’s exact test. For continuous variables 
with a normal distribution, independent sample t-tests were employed, while non-normally distributed data 
were analyzed using the Mann–Whitney U test. To evaluate the diagnostic performance of each model, we 
plotted ROC curves and calculated the AUC. Comparisons of model AUCs were conducted using the DeLong 
test, with a P-value of less than 0.05 considered statistically significant.

Results
Clinical baseline characteristics of patients
In this study, there was no significant age difference between the normal controls and PRISm patients in both 
the training and testing groups (P > 0.05, Mann–Whitney U test). However, there were significant differences 
in gender distribution across the three groups, with a notably higher proportion of male patients in the PRISm 
group (training set: P < 0.001, chi-square test; validation set: P < 0.001, Fisher’s exact test). Significant differences 
were also observed in smoking status among the three groups, with most PRISm patients having a history 
of smoking (training set: P < 0.001, chi-square test; validation set: P < 0.001, Fisher’s exact test). There were 
no significant differences in BMI distribution between the two groups (P > 0.05, Fisher’s exact test), and the 
proportions of overweight and obesity were similar; however, the proportion of normal-weight patients in the 
training set was nearly twice as high in the normal group as in the PRISm group. Differences in respiratory 
symptoms among the groups were not statistically significant (P > 0.05, Fisher’s exact test). Regarding pulmonary 
function, the PRISm group had significantly lower FVC, FEV1, and FEV1% predicted values compared to the 
normal group (P < 0.001, Mann–Whitney U test), while the FEV1/FVC ratio showed no significant difference 
(P > 0.05, Mann–Whitney U test) (Table 1).

Reproducibility assessment of radiomic features
This study evaluated the consistency of radiomic feature extraction using the built-in OnekeyComp-Modules-
ICC module on the platform, based on intraclass correlation coefficients (ICCs), including both inter-observer 
and intra-observer analyses, to verify its reliability. Initially, image quality assessment and preliminary 
segmentation were performed by a radiologist (L.F, with 9 years of experience) blinded to the patients’ clinical 
information and pulmonary function results. Another senior radiologic technologist (Y.C, with 15  years of 
experience) independently re-segmented a randomly selected subset of cases (20%) to assess inter-observer 
variability. The automatically calculated average inter-observer intraclass correlation coefficient (ICC) was 0.82. 
Two weeks later, the same technologist re-segmented the same set of cases to evaluate intra-observer consistency, 
yielding an average intra-observer ICC of 0.89. The results showed that most key features had ICC values greater 
than 0.80, indicating high reproducibility. Features with ICC values below 0.75 were excluded from further 
analysis.

Evaluation of clinical and radiomic models
This study adopted a standardized and objective approach to evaluate the diagnostic performance of different 
models. The results demonstrated that while both clinical variables and radiomic features held independent 
predictive value, the combined model integrating clinical variables and radiomic features consistently exhibited 
superior predictive performance across all cohorts in terms of AUC, accuracy, sensitivity, and specificity. The 
ROC curves of the training, internal validation, and external validation cohorts for the three-phase CT scans are 
shown in Fig. 4. As shown in Table 4, for inspiratory-phase CT in the training, internal validation, and external 
test sets, the AUCs and 95% confidence intervals (CI) of the combined model were 0.890 (0.834–0.947), 0.810 
(0.677–0.944), and 0.845 (0.732–0.958), respectively, the corresponding ACC values were 0.828, 0.809, and 0.888; 
sensitivity: 0.679, 0.812, and 0.925; specificity: 0.957, 0.806, and 0.643; PPV: 0.950, 0.684, and 0.945; and NPV: 
0.763, 0.893, and 0.562 (Fig. 4a-c). For expiratory-phase CT in the training, internal validation, and external 
test sets, the AUCs and 95% CI of the combined model were 0.901 (0.845–0.956), 0.819 (0.680–0.957), and 
0.817 (0.695–0.940), respectively. ACC: 0.836, 0.830, and 0.916; Sensitivity: 0.750, 0.750, and 0.968; Specificity: 
0.917, 0.871, and 0.571; PPV: 0.894, 0.750, and 0.937; NPV: 0.797, 0.871, and 0.727 (Fig. 4d-f). For dual-phase 
CT, the AUCs and 95% CI in the training, internal validation, and external test sets of the combined model 
were 0.901 (0.846–0.955), 0.821 (0.684–0.957), and 0.813 (0.694–0.932), respectively. ACC: 0.836, 0.787, and 
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0.626; Sensitivity: 0.786, 0.812, and 0.581; specificity: 0.883, 0.774, and 0.929; PPV: 0.863, 0.650, and 0.982; NPV: 
0.815, 0.889, and 0.250 (Fig. 4g-i). Overall, the results suggest that both dual-phase CT and expiratory-phase CT 
exhibit high predictive performance for identifying PRISm and demonstrate comparable diagnostic efficiency.

To compare the robustness of the model across different scanners, we applied the DeLong test to evaluate the 
difference in AUCs obtained from the expiratory-phase CT scans of the internal validation cohort (Siemens CT 
scanner) and the external validation cohort (GE CT scanner). The results indicated that the model demonstrated 
relatively consistent predictive performance across different scanning devices (P = 0.841). We evaluated the 
clinical applicability of the model constructed from expiratory-phase CT using DCA. The combined model 
demonstrated significant net benefits in the training (Fig. 5a), internal testing (Fig. 5b), and external testing 
(Fig. 5c), indicating its advantages in clinical decision-making and showing high consistency with the actual 
event proportions. The calibration curves showed that the combined model constructed using expiratory-phase 

Fig. 4.  Performance of clinical, radiomic, and clinical-radiomic models in predicting PRISm using inspiratory-
phase, expiratory-phase, and dual-phase CT. (a-c) ROC curves for the clinical model, radiomic model, and 
clinical-radiomic model based on inspiratory-phase in the training cohort (a), internal test cohort (b), and 
external test cohort (c), respectively. (d-f) ROC curves for the clinical model, radiomic model, and clinical-
radiomic model based on expiratory-phase in the training cohort (d), internal test cohort (e), and external 
test cohort (f), respectively. (g-i) ROC curves for the clinical model, radiomic model, and clinical-radiomic 
model based on dual-phase in the training cohort (g), internal test cohort (h), and external test cohort 
(i), respectively. The red solid line, dark blue dashed line, and light blue solid line represent the predictive 
performance of the clinical model, radiomics model, and combined model, respectively. Figures were 
automatically generated using the Onekey AI platform, and font sizes and label styles follow system defaults.
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CT exhibited good agreement between the predicted probabilities and the actual outcomes in the training cohort 
(Fig. 6a), internal validation cohort (Fig. 6b), and external validation cohort (Fig. 6c).

Discussion
This study evaluated the performance of various diagnostic models based on single-phase inspiratory breath-
hold CT, single-phase expiratory breath-hold CT, and dual-phase breath-hold CT in identifying the PRISm 
phenotype, including clinical models, radiomics models, and combined models integrating both. The results 
showed that although inspiratory CT alone demonstrated some efficacy in identifying PRISm, the combined 
models based on expiratory CT or dual-phase CT achieved the best performance. Moreover, adding inspiratory 
CT to the expiratory CT-based models did not lead to a significant improvement in performance. Therefore, to 
reduce radiation exposure and simplify the examination process, the results of this study suggest that single-phase 
expiratory CT scans be prioritized in clinical practice. When combined with clinical features and analyzed using 

Fig. 5.  Decision curve analysis (DCA) results of the three models based on expiratory-phase CT images across 
the three cohorts. Panels (a), (b), and (c) show the DCA curves for the training cohort, internal test cohort, 
and external test cohort, respectively. The blue, orange, and green lines represent the net benefits of the clinical 
model, radiomics model, and combined model (integrating clinical and radiomics features), respectively. The 
black dashed line indicates the strategy of treating no patients, while the black solid line indicates the strategy 
of treating all patients. The combined model demonstrated higher net benefit across a range of decision 
thresholds, suggesting its superior clinical utility in identifying PRISm. Figures were automatically generated 
using the Onekey AI platform, and font sizes and label styles follow system defaults.

 

Cohorts Models AUC(95%CI) ACC Sensitivity Specificity PPV NPV

Training cohort

Clinical model 0.825(0.750–0.900) 0.741 0.607 0.857 0.810 0.703

Inspiratory-radiomic model 0.826(0.753–0.900) 0.767 0.768 0.757 0.754 0.780

Clinical-Inspiratory-radiomic model 0.890(0.834–0.947) 0.828 0.679 0.957 0.950 0.763

Expiratory-radiomic model 0.838(0.768–0.908) 0.776 0.589 0.950 0.917 0.712

Clinical-Expiratory-radiomic model 0.901(0.845–0.956) 0.836 0.750 0.917 0.894 0.797

Dual-phase radiomic model 0.851(0.783–0.918) 0.767 0.607 0.917 0.872 0.714

Clinical-Dual-phase-radiomic model 0.901(0.846–0.955) 0.836 0.786 0.883 0.863 0.815

Internal validation cohort

Clinical model 0.771(0.639–0.903) 0.681 0.812 0.613 0.520 0.864

Inspiratory-radiomic model 0.800(0.642–0.959) 0.830 0.625 0.935 0.833 0.829

Clinical-Inspiratory-radiomic model 0.810(0.677–0.944) 0.809 0.812 0.806 0.684 0.893

Expiratory-radiomic model 0.798(0.642–0.955) 0.809 0.625 0.903 0.769 0.824

Clinical-Expiratory-radiomic model 0.819(0.680–0.957) 0.830 0.750 0.871 0.750 0.871

Dual-phase radiomic model 0.796(0.638–0.955) 0.809 0.687 0.871 0.733 0.844

Clinical-Dual-phase-radiomic model 0.821(0.684–0.957) 0.787 0.812 0.774 0.650 0.889

External validation cohort

Clinical model 0.778(0.653–0.904) 0.626 0.581 0.929 0.982 0.250

Inspiratory-radiomic model 0.757(0.645–0.870) 0.551 0.484 1.000 1.000 0.226

Clinical-Inspiratory-radiomic model 0.845(0.732–0.958) 0.888 0.925 0.643 0.945 0.562

Expiratory-radiomic model 0.800(0.702–0.899) 0.682 0.645 0.929 0.984 0.283

Clinical-Expiratory-radiomic model 0.817(0.695–0.940) 0.916 0.968 0.571 0.937 0.727

Dual-phase radiomic model 0.810(0.719–0.900) 0.738 0.710 0.929 0.985 0.325

Clinical-Dual-phase-radiomic model 0.813(0.694–0.932) 0.626 0.581 0.929 0.982 0.250

Table 4.  Performance comparison of clinical, radiomics, and fusion models in training and testing cohorts of 
dual-phase CT.
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a LR-based machine learning model, this approach allows for effective identification of pre-COPD patients. This 
strategy is simple, efficient, and offers good reproducibility and generalizability, providing a feasible solution for 
computer-aided individualized management of patients with the PRISm phenotype.

Previous studies have shown that conventional inspiratory phase CT holds significant value in identifying 
early structural damage in COPD. This is primarily achieved by examining morphological changes in the 
airway tree and lung fields, accurately quantifying emphysematous changes, observing low-density areas, and 
conducting detailed assessments of changes in the airway and pulmonary vascular system, thus enabling precise 
diagnosis18–21. However, some studies have shown that by analyzing the quantitative parameters of inspiratory 
phase and expiratory phase CT, expiratory-phase CT is more accurate than inspiratory-phase CT in reflecting 
structural changes in the lungs of COPD patients, particularly in the assessment of small airway lesions22–24. 
Cao et al. also noted that expiratory CT scans reflect the severity of disease in COPD patients more accurately 
than inspiratory CT scans when assessing pulmonary vascular parameters25. A six-year prospective study on 
COPD in the context of lung cancer found that, compared to inspiratory-phase CT, texture analysis based on 
expiratory-phase CT demonstrated superior diagnostic performance, allowing for more effective detection of 
early declines in lung function26. This study also found that expiratory CT outperformed inspiratory CT in 
identifying the PRISm phenotype. Furthermore, the model constructed by combining expiratory CT images 
with clinical features achieved a maximum AUC of 0.901. During the expiratory phase, the damaged airways are 
more prone to collapse, and the structural damage to the lungs leads to increased air trapping. Expiratory-phase 
CT can more clearly display this phenomenon compared to inspiratory-phase CT, thereby identifying small 
airway obstruction and dysfunction27,28.

Dual-phase CT can simultaneously obtain images of the inspiratory and expiratory phases, recording the 
dynamic changes during the breathing process. This technique assesses the distribution of ventilation and its 
heterogeneity under different respiratory states, providing quantitative data that assist doctors in more accurately 
quantifying the pathological changes in COPD and predicting the progression of the disease29. Another study 
utilized a convolutional neural network (CNN) architecture that combines inspiratory and expiratory CT images 
with clinical information, demonstrating high accuracy and sensitivity in detecting COPD30. In line with our 
research, both studies focus on the assessment of COPD patients, with the main distinction being the differences 
in research methods and subjects. We utilized the LR machine learning method to detect PRISm patients, while 
the other study employed deep learning methods to identify COPD patients, both achieving high detection 
efficacy.

We referenced recent studies that confirm machine learning methods can effectively identify quantitative CT 
imaging features associated with stable PRISm patients31. Additionally, the LR model we employed is a widely 
used model, primarily aimed at extracting key features from medical imaging for classification and prediction. 
Currently, it has been extensively applied in the diagnosis and risk assessment of breast cancer, rectal cancer, 
and brain tumors 32–34. In addition, it has also demonstrated good performance in the early diagnosis of acute 
exacerbations of COPD35, the classification of severity in COPD patients36, and risk prediction 37. This study 
affirms the high efficacy of the LR machine learning model constructed using dual-phase CT in diagnosing 
PRISm. It also emphasizes that single expiratory-phase CT is more suitable for clinical application than dual-

Fig. 6.  Calibration curves in the three cohorts using expiratory-phase CT: training cohort (a), internal test 
cohort (b), and external test cohort (c). The calibration curves were plotted based on three models to evaluate 
the accuracy of predicted probabilities for PRISm. The x-axis represents the predicted probability of PRISm 
from the clinical model, radiomics model, and combined model, while the y-axis indicates the actual observed 
probability. Each data point reflects the agreement between predicted and observed event rates within a specific 
probability interval. The 45° diagonal line represents the ideal prediction, and the blue, yellow, and green 
curves represent the predictive performance of the clinical model, radiomics model, and combined model, 
respectively. Figures were automatically generated using the Onekey AI platform, and font sizes and label styles 
follow system defaults.
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phase CT and possesses strong diagnostic potential. As noted by Zhang et al. in their review of 373 COPD 
patients, single expiratory-phase CT combined with deep learning algorithms can effectively reflect small airway 
obstruction, thereby enabling the detection of early COPD patients38. Previous studies on the prediction of 
PRISm using nomogram models based on dual-phase quantitative CT have emphasized the advantages of dual-
phase CT scanning while also highlighting the clear benefits of single expiratory-phase CT8. This is consistent 
with our study, both highlighting the importance of expiratory-phase CT.

This study has several limitations. First, spirometry was not used as a trigger for CT scanning, making 
it difficult to confirm whether the images were acquired at maximum inspiration and expiration. Second, 
differences in scanners across institutions may affect image quality and model generalizability. Notably, in the 
external validation cohort, the clinical-inspiratory model achieved the highest AUC, suggesting that inspiratory-
phase images may offer greater stability under heterogeneous scanning conditions. Third, the external validation 
set exhibited class imbalance, which may introduce bias in the prediction results. Although the platform’s built-
in class weight adjustment feature was enabled and we supplemented the evaluation with multiple performance 
metrics, further validation in a more balanced dataset is still needed. Fourth, although a combination of manual 
and automated lung segmentation was employed, inconsistencies may still exist, and some pulmonary vessels 
and airways may not have been fully excluded. Future studies will aim to incorporate more advanced deep 
learning-based segmentation methods and expand the sample size across multiple centers and scanner types to 
improve model accuracy and generalizability.

In summary, our study proposed and validated an LR combined model based on breath-phase CT, which 
integrates clinical and radiomic features and shows significant diagnostic performance in distinguishing normal 
individuals from those with PRISm. Especially in primary or community hospitals where PFT equipment is 
lacking, this repeatable approach utilizes chest CT images acquired under standardized respiratory training 
and imaging conditions to extract features, which are then input into the LR combined model to automatically 
generate a predicted probability of PRISm. This enables the identification of patients with potential pulmonary 
function impairment without the need for additional radiation exposure or examination procedures. According 
to our study, PRISm patients show no significant symptomatic differences compared to normal individuals. 
Therefore, the application of this model not only addresses diagnostic gaps in the absence of noticeable clinical 
symptoms but also offers a novel approach for the early screening and diagnosis of PRISm. This, in turn, 
promotes the development of personalized medicine and facilitates timely intervention and treatment. Future 
research should further explore the potential applications of this model in monitoring disease progression and 
evaluating treatment efficacy.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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