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Data sparseness is a major limiting factor for deep machine learning. In the natural sciences, data 
distributions are heterogeneous. For instance, in chemistry and early-phase drug discovery, compound 
and molecular property data are typically sparse compared to data in other fields such as particle 
physics or genome biology. For machine learning in low-data regimes, approaches such as transfer 
learning or meta-learning have been introduced. These learning strategies are conceptually related but 
algorithmically distinct and typically applied independently. They share the common goal of facilitating 
knowledge transfer between domains with related prediction tasks and varying data availability. We 
were interested in combining meta- and transfer learning into a coherent framework, primarily for 
deep learning in cheminformatics. Therefore, we introduce a new meta-learning algorithm designed 
to complement transfer learning. It identifies an optimal subset of training instances and determines 
weight initializations for deriving base models that can then be fine-tuned under conditions of data 
scarcity. Given its ability to identify preferred training samples, the meta-learning algorithm balances 
negative transfer between source and target domains, which represents a major caveat for transfer 
learning. In an extensive proof-of-concept application, inhibitors of protein kinases were predicted 
following data reduction using combined meta- and transfer learning, revealing statistically significant 
increases in model performance and effective control of negative transfer.
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 In early-phase drug discovery and design, compound and molecular property data are typically sparse, which 
often limits meaningful deep machine learning applications. For related prediction tasks, data constraints can 
be circumvented through the application of methods such as transfer learning, which aims to learn features that 
are transferable between tasks to compensate for sparse data1. Transfer learning formally distinguishes between 
the source domain consisting of one or more tasks that are related to the target domain representing the primary 
task(s) of interest. For instance, an exemplary transfer learning strategy involves pre-training of a model for a 
data-restricted task (target domain) on data for a related task (source domain), followed by fine-tuning on the 
data-restricted tasks1.

Sequential single-task learning can be further extended using multi-task transfer learning models. While 
multi-task learning is also applicable without transfer components, it represents a suitable framework for transfer 
learning. For example, Ye et al.2 used a bioactivity data set comprising ligands of 157 target proteins to pre-train 
a multi-task neural network composed of a feature extractor and a task layer. Weights from pre-training were 
then transferred to another multi-task neural network derived to predict pharmacokinetic parameters for a set of 
approved drugs. This transfer learning strategy reached higher prediction accuracy than conventional machine 
learning models and had better generalization ability2. While transfer learning is a method of choice for predictions 
in low-data regimes, it is generally difficult to confidently select tasks where transfer learning will be superior to 
other machine learning approaches. For example, although compound activity prediction for members of the 
same protein family basically represents a suitable task for transfer learning, optimal learning conditions for such 
predictions might substantially differ3. Therefore, methods are desirable to quantify task similarity and guide the 

1Department of Life Science Informatics and Data Science, LIMES Program Unit Chemical Biology and Medicinal 
Chemistry, B-IT, Friedrich-Hirzebruch-Allee 5/6, Bonn, Germany. 2Lamarr Institute for Machine Learning and 
Artificial Intelligence, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, D-53115 Bonn, Germany. email: 
bajorath@bit.uni-bonn.de

OPEN

Scientific Reports |        (2025) 15:35236 1| https://doi.org/10.1038/s41598-025-22058-3

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-22058-3&domain=pdf&date_stamp=2025-10-8


selection of the source domain. For instance, similarity between target and potential source tasks can be assessed 
based on latent data representations learned by graph neural networks individually pre-trained for each task4. 
This approach is primarily applicable to uniform data such as compounds having a specific activity. In addition, 
similarity (or distance) scoring is also applicable by combining similarity assessment for data representations 
such as protein sequence and chemical space embeddings5. However, deriving a task similarity measure for 
multiple tasks or combinations of tasks typically is computationally demanding, emphasizing the need for an 
adaptive weighting algorithm. Meta-learning is another approach for addressing prediction tasks in low-data 
regimes6. Different from the standard pre-training and fine-tuning scheme of transfer learning encompassing 
different domains, meta-learning aims to derive models that can effectively adapt to new low-data tasks, without 
the need for extensive additional training. In a typical meta-learning framework, a base model is trained in an 
inner loop to address an individual task, while an outer loop optimizes a given “meta-objective” such as learning 
a weight initialization to improve generalization across tasks6. The ability of meta-learning to meet this objective 
for limited training instances also depends on task similarity7.

For neural network architectures, weight distributions for modeling of related tasks can be derived in 
different ways. For example, the Meta-Weight-Net algorithm was designed to learn sample weights based on 
their classification loss8. Therefore, a shallow neural network uses the loss from a base model prediction of a 
test instance as input and derives a weight for this instance. Utilizing the loss in a weighting scheme can guide 
learning based on the hardness of each instance to be classified by the model, as implemented in the AdaBoost 
algorithms9. However, a larger feature space, as can be covered by the new algorithm introduced herein, is 
likely to contain increasing amounts of important information, especially when addressing multiple tasks, which 
substantially aids in deriving a weighting scheme. Furthermore, the Model-Agnostic Meta‐Learning (MAML) 
algorithm searches for weight initializations that only require a few gradient steps to train a base model10. While 
Meta-Weight-Net and related algorithms derive weights for individual samples, MAML operates on tasks that 
are expected to support a given target task. For example, MAML has been applied to increase the learning 
effectiveness and performance of transformer-based chemical language models in predicting potent compounds 
based on weakly active templates11. However, the MAML approach cannot be applied if source and target tasks 
lack significant similarity12,13, leading to so-called negative transfer14, which is known to compromise transfer 
learning. Negative transfer of task information decreases the performance of a transfer learning model relative 
to the base model14. In contrast to MAML, our meta-learning method uses both sample and task information for 
its unique meta-objective to mitigate negative transfer, which offers opportunities in complementing methods 
designed to use information from multiple related tasks. Importantly, negative transfer can also take place at the 
instance level, for example, due to the presence of activity or selectivity cliffs in compound data sets, which the 
currently available meta-learning frameworks including MAML do not take into account. Moreover, although 
techniques to mitigate negative transfer have been introduced15,16, there currently is no method available that 
regulates negative transfer with meta-learning. This provides an opportunity for combining meta- and transfer 
learning. However, although transfer learning and meta-learning are conceptually related, potential synergies 
between these approaches for machine learning in low-data regimes have thus far not been explored.

To combine the strengths of transfer and meta-learning,   our new meta-learning algorithm specifically 
complements standard transfer learning. The algorithm combines task and sample information and its unique 
meta-objective is the optimization of the generalization potential of a pre-trained transfer learning model in 
the target domain. Therefore, a model is pre-trained in a source domain using weights determined by the meta-
learning algorithm. This provides a basis for effective fine-tuning of the transfer learning model in a target 
domain. The unique feature of the meta-learning algorithm enabling this combined approach is the identification 
of an optimal subset of source samples for pre-training of the transfer learning model. The ability to optimize 
training sample selection makes it possible to algorithmically balance negative transfer between the source and 
target domains. This major limitation of transfer learning is directly addressed for the first time by combining 
meta- and transfer learning with our new algorithm.

Methods
Compounds, activity data, and molecular representations
For our analysis, a protein kinase inhibitor (PKI) data set was generated. Therefore, protein kinases (PKs) 
comprising the human kinome17 and activity data for PKIs were systematically collected from ChEMBL18 
(version 34) and BindingDB19 and combined according to Vossen et al.20, yielding more than 450,000 PKIs with 
activity against 461 PKs. The PKI data set was filtered to only contain (assay-independent) Ki values as activity 
annotations and compounds with a molecular mass of less than 1000 Da. Structures of qualifying compounds 
were standardized and canonical nonisomeric SMILES stings21 were generated using RDKit22. For multiple 
available Ki values per compound c for a given PK, the geometric mean was calculated if these values met the 
condition Kic

max
Kic

min
≤ 10 (if not, the measurements were discarded). The final curated data set contained 7098 

unique PKIs with activity against 162 PKs and a total of 55,141 PK annotations.
For activity-based classification, Ki values were transformed into a binary (active/inactive) format by applying 

a potency threshold of 1000 nM. Accordingly, compounds with a Ki value below or above this threshold were 
labeled as active and inactive, respectively. Of note, the choice of this threshold was motivated by practical 
medicinal chemistry where PKIs with 1000 nM activity are typically considered inactive, given the need for at 
least low-nanomolar PKIs for drug development.

For transfer and meta-learning, 19 PKs with at least qualifying 400 PKIs and 25–50% of these PKIs classified 
as active were selected. Table 1 summarizes these data sets. The total number of PKIs and the number of classified 
actives per set ranged from 474 to 1028 and 151–363, respectively.
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As a molecular representation for machine learning, the extended connectivity fingerprint23 with bond 
diameter of 4 (ECFP4) and a constant size of 4096 bits was generated from SMILES strings of compounds using 
RDKit.

Method formulation
Standard transfer learning leverages knowledge from a source domain with abundant data to improve learning 
in a low-data target domain. As discussed above, performance in the target domain can be compromised if the 
two data domains are not sufficiently similar, causing negative transfer14.

The meta-learning algorithm introduced herein aims to mitigate negative transfer. Therefore, a meta-model 
must derive weights for the source data points adjusting the relative contributions of samples during pre-training 
of a base model (Fig. 1). We apply the method to PKI data sets since compound information for multiple PKs can 
be readily transferred to a PK with reduced compound data, as detailed below.

First, two data sets are specified including a target data set (inhibitors of a data-reduced PK): 
T (t) =

{(
xt

i, yt
i , st

)}
and a source data set (containing PKIs of multiple PKs excluding the target PK):

	 S(−t) =
{(

xk
j , yk

j , sk
)}

k ̸= t

Here, x represents the molecule, y is the label, and s is a protein sequence representation.
Next, we define the two models for the meta-learning framework as follows:
The base model f  with parameters θ  for classifying active vs. inactive compounds is trained on the source 

data S(−t) with a weighted loss function, in which the weights correspond to the weight predictions of a meta-
model g for each data point. For the target data set T , the base model predicts the binary activity states of the 
compounds in the target training data set. From the predicted activity states, the validation loss is calculated, 
adding a second layer of optimization using the validation loss to update the meta-model.

The meta-model g with parameter φ  predicts weights for training data of the base model. For a source data 
set S(−t) composed of K  PKs together with their ligands 

{(
xk

j , yk
j , sk

)}
k ̸= t

, the meta-model assesses how 
informative the jth compound of the kth PK is for the target PK t by predicting a weight wk

j . Weight predictions 
are limited to the interval (0,1) by the sigmoid function to avoid extreme predictions during training.

The weights predicted by the meta-model are then used to train the base model with the following weighted 
binary cross entropy

Abbreviation Protein kinase # PKIs # Actives

AGC Ser/Thr protein kinase family

PKN2 Serine/threonine-protein kinase N2 699 183

PRKX cAMP-dependent protein kinase catalytic subunit PRKX 733 197

Tyr protein kinase family

BLK Tyrosine-protein kinase Blk 635 216

CAMK Ser/Thr protein kinase family

DAPK3 Death-associated protein kinase 3 892 239

MELK Maternal embryonic leucine zipper kinase 564 171

MKNK2 MAP kinase-interacting serine/threonine-protein kinase 2 665 195

STK17A Serine/threonine-protein kinase 17 A 576 186

CMGC Ser/Thr protein kinase family

CDK8 Cyclin-dependent kinase 8 474 195

CLK2 Dual specificity protein kinase CLK2 855 231

DYRK1A Dual specificity tyrosine-phosphorylation-regulated kinase 1 A 1028 336

HIPK2 Homeodomain-interacting protein kinase 2 669 204

HIPK4 Homeodomain-interacting protein kinase 4 599 151

STE Ser/Thr protein kinase family

MAP4K2 Mitogen-activated protein kinase kinase kinase kinase 2 858 245

MAP4K4 Mitogen-activated protein kinase kinase kinase kinase 4 971 363

MAP4K5 Mitogen-activated protein kinase kinase kinase kinase 5 666 238

MINK1 Misshapen-like kinase 1 644 165

SLK STE20-like serine/threonine-protein kinase 677 221

STK3 Serine/threonine-protein kinase 3 796 204

TKL Ser/Thr protein kinase family

LIMK1 LIM domain kinase 1 850 227

Table 1.  Protein kinase inhibitor sets.
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Ltrain =

∑ K

k=1,k ̸= t

∑ Nk

j=1g
(
xk

j , sk; φ
)
BCE

(
yk

j , f
(
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j ; θ
))

∑ K

k=1,k ̸= t
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(
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j , sk; φ
) � (1)

where BCE
(

u,
′
u
)

= ulog
(

′
u
)

+ (1 − u) log
(

1−
′
u
)

.
The central idea of the method is optimizing wk

j  values and training the base model on the source data S(−t) 
according to Eq. 1. Accordingly, the base model should improve performance on the target data T  compared to 
its counterpart model that is trained with the unweighted loss. For weight optimization, the validation loss of the 
base model is estimated based on the target training data T  and used to train the meta-model. The loss function 
for the validation loss is the standard binary cross-entropy (BCE) loss and computed as:

	
Lval =

∑ Nt

i=1BCE
(
yt

i , f
(
xt

i; θ
))

N
� (2)

Training of the meta-model is based on these two losses. First, the validation loss with respect to parameter φ  
needs to be computed. Since Lval is only a function of θ , the indirect dependence of φ  on θ  is added and the 
chain rule is applied. The meta-gradients are of the general form:

	
∂ Lval

∂ φ
= ∂ Lval

∂ θ
· ∂ θ

∂ φ
� (3)

where ∂ θ  can be derived by differentiating the backpropagation of the base model with respect to the meta-
model’s φ  parameters.

	
∂ θ = −η θ · ∂ Ltrain

∂ θ
⇒ ∂ θ

∂ φ
= −η θ · ∂ 2Ltrain

∂ θ ∂ φ
� (4)

Combining Eqs. 3 and 4 yields:

	

∂ Lval

∂ φ
= ∂ Lval

∂ θ
·

(
−η θ · ∂ 2Ltrain

∂ θ ∂ φ

)
� (5)

The backpropagation on the meta-model is then formulated as:

	
∂ φ = −η φ

(
−η θ

∂ Lval

∂ θ

∂ 2Ltrain

∂ θ ∂ φ

)
= + ′

η φ

∂ Lval

∂ θ

∂ 2Ltrain

∂ θ ∂ φ
� (6)

Fig. 1.  Meta-learning principles. The meta-training procedure uses a base model f  and meta- model g to 
optimize source S(−t) sample weights w . Parameters of the base model f  are re-initialized and adjusted 
using the weighting scheme learned by the meta-model. Fine-tuning is then applied to the target domain T .
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with learning rates η φ  and η θ  that are combined to 
′
η φ = η φ · η θ . For practical purposes, 

′
η φ  is treated 

as an independent parameter. Algorithm 1 summarizes the meta-training procedure and Fig. 2 illustrates the 
meta-learning framework.

Required: Source data Bt, target data Bv

1: Initialize meta-model, base model, number of epochs N
2: for i = 1 to N do

3:        , ← shuf�le( , )

4:        for bt in Bt do

5:               ← meta_model( , )

6: ^ ← base_model( )

7: train ←
∑ ⋅BCELoss( ,^ ,reduction=none)

∑

8: Compute gradient

9: ^ ← base_model( )

10: val ←
∑BCE( ,^ ,reduction=none)

11:             Compute gradient

12:              Compute meta-gradient val
2
train

13:              Update meta-model

14:              ′ ← meta_model( , )

15: train
′ ←

∑ ′ ⋅BCE( ,^ ,reduction=none)

∑ ′

16: Compute and accumulate gradients
′

17:       Update base model

Algorithm 1. Meta-training.

Noisy meta-gradients
Numerical second-order gradients have high variance, which can destabilize meta-training and hinder its 
convergence. For preventing limited convergence, first-order approximations of the meta-gradients are often 
generated, which tends to reduce the accuracy of model updates10. We address unstable meta-training by 
adjusting the size of mini-batches, representing a factor known to influence the variance of gradients24. For 
small target data sets, training can take place in a single batch. For large source data sets, memory capacity 
is a serious constraint. Therefore, a different approach is applied by accumulating gradients through batches 
and updating the model only at the end of an epoch (Algorithm 1), thus effectively eliminating batch size as a 
significant hyperparameter. This algorithmic modification reduces the overall noise of the first-order gradients 
used to update the base model. Given the dependency of the meta-gradients on the backpropagation of the base 
model (Eq. 5), meta-training fluctuations are then stabilized.

Monte Carlo dropout for preventing overfitting
In addition to noisy meta-gradients, overfitting is a common problem in heavily parameterized deep neural 
networks trained on scarce data. A widely used method for controlling overfitting is so-called dropout, that is, 
neurons are randomly deactivated during training with a pre-defined probability25. Monte Carlo dropout refers 
to neuron deactivation enabled during testing and is used to produce stochastic predictions for uncertainty 
estimates. It was shown to approximate Bayesian inference at low computational cost26 and further increase the 
predictive performance of a deep neural network compared to standard dropout27.
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Monte Carlo dropout is incorporated into the meta-model neural network to mitigate overfitting. Therefore, 
during the pre-training phase of a base model, weights are sampled from the meta-model and used as a part of 
the weighted loss function (Eq. 1). The number of samples drawn for each compound in the source data set is 
equal to the number of pre-training epochs. The process of sampling creates a distribution of weights throughout 
the training phase. The standard deviation of this distribution is directly influenced by the dropout value28. High 
values can lead to weighted predictions that vary significantly between different epochs, hence complicating the 
learning process. The dropout rate was selected through grid search optimization and set to 0.2. Higher dropout 
rates led to a reduction in model performance (Supplementary Fig. 1). The process of training with the weighted 
loss is summarized in Algorithm 2.

1: for bt in Bt do

 2:        , ← shuf�le

 3:        meta_model.enable_dropout() 

 4:        meta_model.sample_weights

 5:        ^ ← base_model

 6:        train ←
BCE ,^ ,reduction=none

 7:        Compute gradient 

 8:        Update base model 

Algorithm 2. Pre-training with Monte Carlo dropout.

Analysis set-up
To evaluate the efficiency of our meta-learning algorithm in preventing negative transfer, we compare the 
method with standard transfer learning. In both cases, a base model with the same architecture is pre-trained on 
the source data set S(−t) and fine-tuned on the target data set T  using the same fine-tuning protocol. However, 
the loss functions applied during pre-training with the source data differ. For meta-learning, the base model is 
trained using weighted BCE loss (with weights predicted by the meta-model) whereas standard transfer learning 
utilizes unweighted BCE loss for training.

The performance of the models is evaluated using two calculation settings. In the first setting, the compound 
spaces of the source and target domains overlap, that is, they contain compounds that have Ki measurements for 

Fig. 2.  Meta-learning framework. The base model f is trained using the source data S with the weighted loss 
Ltrain and validated using the training target data set T  with the loss function Lval. The validation loss is 
used for updating the meta-model g and optimizing the predicted weights.
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target PK T  as well as for PKs in the source data set S(−t). In the second setting, compounds shared by the two 
domains are removed from the source data set S(−t) resulting in non-overlapping compound sets:

	 S(−t,−∩ ) =
{(

xk, yk, sk
)

∈ S|k ̸= t and xk /∈ XT
}

� (7)

Removal of the shared compounds increases the chemical distance between the source and target domain, 
resulting in increasing challenges for standard transfer learning, which are addressed by varying hyperparameter 
settings, as described in the next section.

To study differences in the information transfer from the source to the target domain, random forest (RF) 
models are derived as an additional control using scikit-learn29 with default parameter settings. In contrast 
to standard transfer and meta-learning, RF models are exclusively trained on the target domain. Notably, 
feedforward neural networks were also evaluated as a control, but had lower performance compared to RF. The 
performance of standard transfer and meta-learning relative to the neural network control model is reported in 
Supplementary Fig. 2.

Model architectures and hyperparameters
The base model is a feedforward neural network taking ECFP4 representations of compounds as input and 
producing binary class label predictions (active vs. inactive) as output (Fig. 3). The architecture of the meta-model 
is slightly more complex, modular, and depends on two types of input data including (i) ECFP4 of a compound 
(PKI) and (ii) a one-hot encoded representation of the sequence of the associated protein (PK). The modular 
meta-model network processes these two inputs independently in parallel before the latent representations are 
concatenated and further processed in additional layers. The sigmoid activation function is applied to the output 
of the last layer resulting in a predicted weight for the PKI-PK input pair (Fig. 3).

The first two layers of the base model form a so-called bottleneck where the input is projected to a 
lower-dimensional space and then back to the original dimensionality. This architectural feature enables the 
construction of a representation containing features characteristic of PKs for learning of PK-dependent data 
patterns. To retain the learned patterns after pre-training, the bottleneck feedforward layers and subsequent 
normalization layers30 are frozen, while the following layers are subjected to fine-tuning. This strategy was found 
to be beneficial for transfer learning using small data sets31.

For base model and meta-model training, a learning rate of 10−5 is applied in combination with the Adam 
optimizer32. The batch size of the source data set ranges from 512 to 4096, depending on the data set size (and 
GPU memory constraints). The number of meta- and pre-training epochs is set to 200 and 150, respectively, for 
the first calculation setting (see above) and to 100 and 100, respectively, for the second setting. In both cases, 
fine-tuning is carried out over 100 epochs. The base model and meta-model are implemented with PyTorch33. 
Notably, data samples with initially assigned weights close to zero are best excluded from pre-training since they 

Fig. 3.  Model architectures. Shown is a schematic representation of the base model and meta-model. The base 
model is a feedforward neural network that takes a compound fingerprint as input and predicts the class label 
of this compound. The meta-model is a modular neural network that takes a compound fingerprint and a one-
hot encoded representation of the target protein as input and predicts a weight for this compound-protein pair.
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do not significantly contribute to the loss. Frequent occurrence of such data points decreases the effective batch 
size, which often introduces noise. As training proceeds, weight distributions tend to narrowly center around 
values of 0 and 1, with decreasing number of values close to 0.5 (Supplementary Fig. 3). A suitable threshold for 
excluding insignificant samples is chosen depending on the weight distribution observed after training. Here, 
a weight threshold of 0.05 is applied in the first calculation setting and a threshold of 0.20 in the second setting 
(given the reduced number of pre- and meta-training epochs).

Pre-training and fine-tuning
For each PK target t, two models are pre-trained on the source domains S(−t) containing a total number 
of 54,113 − 54,667 PK-PKI interactions (depending on the target). These models include the standard transfer 
learning model with uniform weights and the transfer learning model with weights obtained from meta-learning. 
The models are then fine-tuned on the data-reduced PK target using only 50 training PKIs obtained by stratified 
sampling from T (t) such that the overall class imbalance (active vs. inactive) is accounted for during training. Of 
note, test calculations were also carried out for 25 and 100 training PKIs. Sets of 100 training PKIs were already 
sufficiently large such that standard transfer learning had only marginal effects (Supplementary Fig. 4). On the 
other hand, using only 25 training PKIs resulted in a significant decrease in performance compared to the use of 
50 PKIs, while similar trends were observed (Supplementary Fig. 5). The fine-tuned models are evaluated using 
the remaining PKIs for PK t.

Given the confined number of fine-tuning training compounds, statistically relevant differences in model 
performance might be observed in individual trials, depending on the composition of the fine-tuning sets. 
Therefore, a total of 50 independent fine-tuning trials were carried out for each target to ensure statistical 
robustness of the results. In each trial, fine-tuning test compounds were ranked according to the probability of 
activity produced by a model.

Model evaluation
The compound rankings are evaluated using the receiver operating characteristic (ROC) curve34. The ROC 
curve compares the true positive and false positive rates across the ranking. The area under the ROC curve 
(AUC), ranging from 0 to 1, is calculated to quantify model performance. An AUC value of 0.5 indicates random 
classification and ranking whereas a value of 1 indicates a perfect classification (that is, all true positives are 
ranked higher than the first false positive). AUC value distributions are represented and compared using box 
plots. In addition, differences in AUC values between the meta- and control models are compared on a trial-by-
trial basis using the non-parametric Wilcoxon signed-rank test to assess statistical significance.

To evaluate the effectiveness of the meta-learning approach in controlling negative transfer (see above), the 
mathematical definition of the negative transfer gap (NTG) by Wang et al.15 is applied. For a model f  trained 
only on the target domain and another model h trained on the source domain and fine-tuned on the target 
domain, we define the negative transfer index (NTI) as follows:

	
NT I = 1

n

∑ N

i=1
auc (y, f (x; T )) − 1

n

∑ N

i=1
auc (y, h (x; T, S))� (8)

where N  is the number of trials and auc a function to estimate the AUC value. Accordingly, positive NTI values 
indicate the presence of negative transfer.

Results
Methodological concept
The major aim of our meta-learning approach is supporting transfer learning in low-data regimes. The basic idea 
is combining compound and target protein information to further refine weighting schemes for deep learning. By 
design, this approach is generally applicable to molecular property predictions such as activity-based compound 
classification. Therefore, models can be pre-trained in a source domain using weights for compound-target pairs 
determined by meta-learning. This provides an extended basis for fine-tuning using ligands of a new target 
protein. So-derived models are compared to standard models pre-trained and fine-tuned in the absence of meta-
learning.

Specifically, the meta-learning method introduced herein identifies an optimal subset of source samples for 
pre-training of a base model. Fine-tuning is then performed on target data sets as in standard transfer learning. 
The meta-objective optimized during meta-training is the generalization performance of the pre-trained 
model on the target domain. Importantly, by operating at the instance level, negative transfer can be adaptively 
minimized for each target while increasing the generalization ability of the model. Compared to other meta-
learning frameworks, the new algorithm has a number of unique features, is integrated with transfer learning, 
and strongly emphasis balancing of negative transfer. Therefore, direct comparisons with other available 
meta-learning approaches are not possible. For example, the major limitation of the MAML framework is its 
vulnerability to negative transfer. Therefore, we focus on providing proof-of-principle for the combined meta- 
and transfer learning approach and quantitative comparisons with standard transfer learning.

For proof-of-concept, we have chosen PKs and their inhibitors as a test system, for several reasons: PKs are 
closely related and for many PKs, large numbers of PKIs are available. Most currently available PKIs are directed 
against the ATP cofactor binding site in PKs that is largely conserved across the human kinome35,36. Accordingly, 
these ATP site-directed PKIs tend to be similar, represent a structural continuum, and are frequently active 
against more than one PK (multi-PK inhibitors)36. A subset of ~ 20–30% of currently available PKIs is known to 
be active against multiple PKs, giving rise to shared compounds in the source and target domains. Furthermore, 
for PKIs, practically relevant thresholds of activity can be applied to differentiate between related active (potent) 
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and inactive (weakly potent) compounds. This presents challenges for PKI activity predictions compared to 
compound data sets where the negative (inactive) class is composed of randomly assembled (and thus irrelevant) 
compounds. Moreover, given the wealth of available PKs and PKIs, sufficient numbers of PKs can be converted 
into low-data targets for modeling by selecting small subsets of actives. Notably, PKI data have been used before 
to evaluate meta-learning with a framework closely related to MAML to predict inhibitors for low-data PKs37. 
For predicting PKIs, meta-learning was also combined with a graph-attention neural network learning a shared 
weight initialization for models covering a diverse set of PKs38.

Models for data sets with shared source and target compounds
We first investigated the effects of meta-learning when the source and target domains shared compounds. This 
was due to the presence of multi-PK inhibitors and generally favored standard transfer learning. For each of the 
19 target PKs in Table 1, models were pre-trained in the presence and absence of weights from meta-learning, 

Fig. 4.  Model performance for the first calculation setting. (A) Shown are AUC boxplots (box: 1 st quartile, 
median, 3rd quartile; whiskers: +/− 1.0 x interquartile range; dots: outliers) for 50 independent trials of meta- 
and standard transfer learning models for the 19 target PKs. Statistical significance is indicated by asterisks; 
0.05 < p-value ≤ 1: ns (no statistical significance), 0.01 < p-value ≤ 0.05: *, 0.001 < p-value ≤ 0.01: 

**, and p-value ≤ 0.001: ***. (B) Boxplots representing the distribution of differences in AUC (dAUC) on 
a per-trial basis are shown. Positive values indicate improved performance of meta-learning compared to 
standard transfer learning models.
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fine-tuned, and compared. In activity-based classification, median AUC values of the models ranged from ~ 0.75 
to ~ 0.90, depending on the PK target, and independent trials often produced broad AUC value distributions 
(Fig. 4A). Hence, model performance was overall promising, but heterogeneous, leaving room for improvements. 
This was anticipated because designated active and inactive compounds represented a continuum of PKIs instead 
of discrete compound classes. However, in the presence of shared source and target compounds, meta-learning 
resulted in a statistically significant improvement for 13 of 19 PKs ( p-value < 0.001). By contrast, only one 
target (MELK) had a significant decrease in performance. The consistent improvements suggested that meta-
learning had a further improved generalization capability compared to standard transfer learning. The absolute 
median increase in AUC as a consequence of meta-learning was generally small, ranging from 0.01 to 0.04 
(Fig. 4A). However, this was partly a consequence of the broad AUC value distributions of independent trials. 
These distributions mirrored high variance when small PKI sets of different composition were used for fine-
tuning. The consistency in improvements through meta-learning was much more evident when the difference in 
AUC (dAUC) was determined on a per-trial basis, as shown in Fig. 4B. For most of the PKs having a statistically 
significant difference, the boxes accounting for the interquartile range fell exclusively into the positive range, 
with only very few negative outliers.

Models for non-overlapping data sets of source and target compounds
Next, the models were re-generated after removal of shared source and target compounds (multi-PK inhibitors). 
Removal of shared compounds resulted in a significant reduction of the pre-training data S(−t,−∩ ), ranging 
from 11,296 to 42,859 PK-PKI interactions, depending on the PK target. For non-overlapping compound sets, 
layer freezing strongly reduced the prediction accuracy of both deep learning models. Therefore, instead of 
retaining the learned patterns in a fixed bottleneck feature representation, fine-tuning was applied to all layers 
of the base model. Removal of shared compounds together with the ensuing reduction of training data further 
increased the difficulty of the prediction task. Therefore, we also included RF models in the analysis as a further 
reference. As anticipated, the performance of the re-generated models was reduced compared to the original 
models (Fig. 5). Median AUC values of the models ranged from ~ 0.65 to ~ 0.80, depending on the method and 
PK target. Compared to standard transfer learning, meta-learning yielded statistically significant improvements 
in performance for 12 of 19 PKs (Fig.  5A). Standard transfer learning produced a statistically significant 
improvement for only 1 PK (HIPK2). Similarly, compared to RF, meta-learning resulted in statistically significant 
improvements in performance for 14 PKs (Fig. 5B). RF models produced significantly improved performance 
in only two cases (CDK8, BLK). Thus, models built for non-overlapping source and target compound sets also 
yielded a preferential gain in performance as a consequence of meta-learning. As observed before for models 
built in the presence of shared source and target compounds, statistically significant gains in performance were 
generally of small magnitude, but consistent. This was further revealed by dAUC comparison of meta- and 
standard transfer learning on a pair-trial basis (Fig. 6A) as well as meta-learning and RF models (Fig. 6B).

Negative transfer
We then investigated the potential of the meta-learning method to control negative transfer. Therefore, NTI 
values were computed according to Eq. 8. Here, f (x; T, ζ ) represents the RF and h (x; S, T, ψ ) the standard 
transfer learning model. In Fig. 7, target PKs were arranged in the order of ascending NTI values comparing 
RF and standard transfer learning models. Mean AUC values are reported for different models based on non-
overlapping sets of source and target compounds. Thus, the tendency of negative transfer increased from the left 
to the right.

For the first PKs on the left, standard transfer learning resulted in a large AUC increase compared to the 
RF model, which indicated the presence of positive transfer. In this case, the performance of the meta-learning 
and standard transfer learning models was very similar. With beginning negative transfer, the performance of 
the standard transfer learning model became increasingly similar to the RF model while meta-learning yielded 
substantial performance increases. For PKs with largest negative transfer, the RF model met and then exceeded 
the performance of the meta-learning and standard transfer learning models. However, in these cases, meta-
learning reduced negative transfer by ~ 50% compared to standard transfer learning. Thus, in the presence of 
increasing negative transfer, meta-learning achieved highest performance or at least balanced negative transfer 
compared to standard transfer learning. These findings indicated that the meta-learning algorithm effectively 
increased the relative weight of source samples that were relevant for the target tasks and reduced the weight of 
others that caused negative transfer.

Conclusion
Machine learning in data-sparse domains generally benefits from the application of specialized learning concepts 
such as transfer or meta-learning, which rely on knowledge exchange between different domains. A pre-requisite 
for their application is the presence of related prediction tasks with varying amounts of available data to facilitate 
knowledge transfer to low-data tasks. Standard transfer learning typically relies on model pre-training in a source 
domain where sufficient data are available, followed by fine-tuning in the target domain with limited amounts of 
available data. On the other hand, meta-learning primarily aims at adapting models to new tasks without major 
training requirements, for instance, by learning of weight initializations. To this end, a distinguishing feature of 
meta-learning is the optimization of a meta-objective to ensure that models are readily adaptable.

We have reasoned that transfer and meta-learning are complementary in nature and might be integrated to 
further improve learning and prediction accuracy. Therefore, we have developed a new meta-learning algorithm 
that combines target protein (task) and compound (instance) information and acts as a front end of model 
pre-training for transfer learning. Accordingly, a model is pre-trained in a source domain using weights for 
compound-target interactions determined by the meta-learning model. This provides an advanced basis of fine-
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tuning in a target domain. The meta-objective of the model is optimization of the generalization potential of 
the pre-trained model in the target domain. Therefore, the meta-learning algorithm identifies the most suitable 
subset of compounds for pre-training.

In our proof-of concept application, meta-learning led to statistically significant improvements in prediction 
accuracy for the majority of tasks. For low-data applications, these improvements are relevant, given their 
consistency. Moreover, since the meta-learning algorithm also works at the instance level (leading to the 
identification of optimized training compound subsets), it is applicable to explicitly address the problem of 
negative transfer, a key limitation of standard transfer learning. We demonstrated that the use of the meta-model 
as a transfer learning front end effectively controlled negative transfer effects during the predictions. Therefore, 
the consistent improvements in prediction accuracy should also be considered in the context of balanced 
negative transfer, rendering the new approach more robust than standard transfer learning for any applications 
affected by negative transfer. Taken together, our findings indicate that the meta-learning algorithm introduced 
herein provides new opportunities for machine learning in low-data regimes. Although the methodology was 
primarily conceived for cheminformatics, it is generally applicable and can be adopted in other fields.

Fig. 5.  Model performance for the second calculation setting. (A) and (B) show AUC boxplots for 50 
independent trials of meta-learning compared to standard transfer learning and RF models, respectively. 
Statistical significance of observed differences is reported according to Fig. 4.
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Fig. 6.  Performance differences on a per-trial basis for the second calculation setting. Boxplots show the 
distributions of dAUC values determined for each individual trial of meta-learning compared to (A) standard 
transfer learning and (B) RF models. Positive values indicate improved performance of meta-learning 
compared to other models. Statistical significance is reported according to Fig. 4.
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