

OPEN

First report and diversity analysis of endophytic fungi associated with *Ulva* sp. from Iran

Maryam Besharati-Fard¹, S. Ali Moosawi-Jorf¹✉, Masoomeh Shams-Ghahfarokhi² & Mehdi Razzaghi-Abyaneh³

Endophytic fungi are diverse microorganisms that colonize plants symbiotically without causing overt infections. While numerous studies have focused on endophytes in terrestrial plants, there are no prior reports of endophytes associated with algae in Iran. Samples of *Ulva* sp. were collected during the fall of 2022 from the Bandar Abbas Fishery Coast, Iran, and transported to the laboratory. Following surface sterilization, the samples were cultured on potato dextrose agar (PDA) medium and incubated at 25 °C for 3 weeks. The resulting isolates were purified using the hyphal tip method. This study identified 33 fungal isolates from *Ulva* sp. collected at the Bandar Abbas Fishery Coast, Iran. Morphological and molecular analyses classified these isolates into 7 species across 6 genera: *Alternaria*, *Aspergillus*, *Chaetomium*, *Cladosporium*, *Penicillium*, and *Synccephalastrum*. *Aspergillus* was the most abundant genus (34% of isolates), while *Alternaria* and *Synccephalastrum* were the least frequent (9% each). Phylogenetic analyses of ITS, β -tubulin, GAPDH, TEF, and LSU gene sequences supported the morphological identification of the isolates. Species identified included *Alternaria alternate*, *Aspergillus caespitosus*, *Aspergillus terreus*, *Chaetomium globosum*, *Cladosporium cladosporioides*, *Penicillium digitatum*, and *Synccephalastrum racemosum*. All species are reported here for the first time as endophytes of *Ulva* sp. in Iran. Furthermore, this study represents the first documentation of endophytic fungi associated with the marine alga *Ulva* sp. in Iranian waters. This research enhances understanding of the ecological interactions between fungal endophytes and marine algae in Iranian ecosystems, emphasizing the diversity of symbiotic relationships in aquatic environments.

Keywords Algal endophytes, Bandar abbas, Bioactive metabolites, Marine fungi

The southern coasts of Iran, bordering the Persian Gulf and the Sea of Oman, are recognized for their rich biological resources, particularly marine macroalgae (seaweeds). Seaweed communities rank among the most productive and biodiverse marine ecosystems, serving as primary producers and a significant contribution to global oxygen production. Investigating endophytic fungi associated with these macroalgae is essential to understanding the ecological dynamics and biodiversity of Iran's coastal regions. Globally, over 6,000 seaweed species have been identified, with approximately 300 species documented in the Persian Gulf and the Sea of Oman¹. The southern coasts of Iran, bordering the Persian Gulf and the Sea of Oman, exhibit remarkable biodiversity, particularly in marine macroalgae (seaweeds). Seaweed communities rank among the most productive marine ecosystems globally, with primary production rates even those from tropical regions' rainforests². The high productivity of multicellular seaweeds and eukaryotic organisms³ is critical to marine ecosystems. *Ulva* species are key elements in the stability of coastal ecosystems by playing important roles in primary production, biogeochemical cycles, and bioremediation. In addition, many *Ulva* species serve as food for invertebrates and fish, thereby supporting biodiversity⁴. Endophytic fungi, a diverse group of microorganisms, colonize plants symbiotically without causing overt harm^{5–6}. Over recent decades, these fungi have attracted considerable research interest due to their functional traits, including enhancing plant growth and tolerance to biotic and abiotic stresses^{7–9}. They offer promising strategies for mitigating yield losses caused by abiotic stress¹⁰ and can protect host plants from pathogens⁶. Additionally, endophytes produce bioactive metabolites with applications in medicine, agriculture, and industry^{11–12}.

¹Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-331, Iran.

²Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran.

³Department of Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran. ✉email: MoosawiJorf@modares.ac.ir

Endophytic colonization has been documented across diverse plant ecosystems, from tropical rainforests to temperate herbaceous communities. However, studies on endophytic fungi associated with marine macroalgae, such as *Ulva* sp. (family: Ulvaceae), remain limited. The coastal regions of Bandar Abbas, Iran, host abundant *Ulva* populations, yet their fungal endophytes remain understudied. This study addresses this gap by investigating endophytic fungi in *Ulva* sp. from the Shilat-Bandar Abbas coastline. Insights from this research could advance understanding of fungal-algal symbioses and their potential applications in agriculture and ecology.

Materials and methods

Collection of plant material and isolation of endophytes

In autumn 2022, during one sampling session, thirty-eight fresh, healthy, and disease-free *Ulva* sp. specimens were collected from the Fishery Coast in Bandar Abbas, Iran. Samples were rinsed with seawater to remove sand and epiphytes, stored in sterile plastic bags, and transported to the mycology laboratory of the Faculty of Agriculture at Tarbiat Modares University. Samples were washed with sterile distilled water and refrigerated at 4 °C. A multi-step surface sterilization protocol was applied:

1. Immersion in 70% ethanol for 1 min.
2. Rinsing with sterile distilled water.
3. Immersion in 70% ethanol for 15 s.
4. Triple rinsing with sterile distilled water.

To validate sterilization efficacy, aliquots from the final rinse water were cultured on potato dextrose agar (PDA). The absence of fungal growth in these controls confirmed successful surface disinfection. Samples were air-dried, cut into 1 cm² fragments, and placed on three culture media:

- PDA (Potato Dextrose Agar),
- PDA-SW (PDA supplemented with 200 mL L⁻¹ sterilized seawater),
- PDA-SLE (PDA supplemented with 200 mL L⁻¹ sterilized *Ulva* extract).

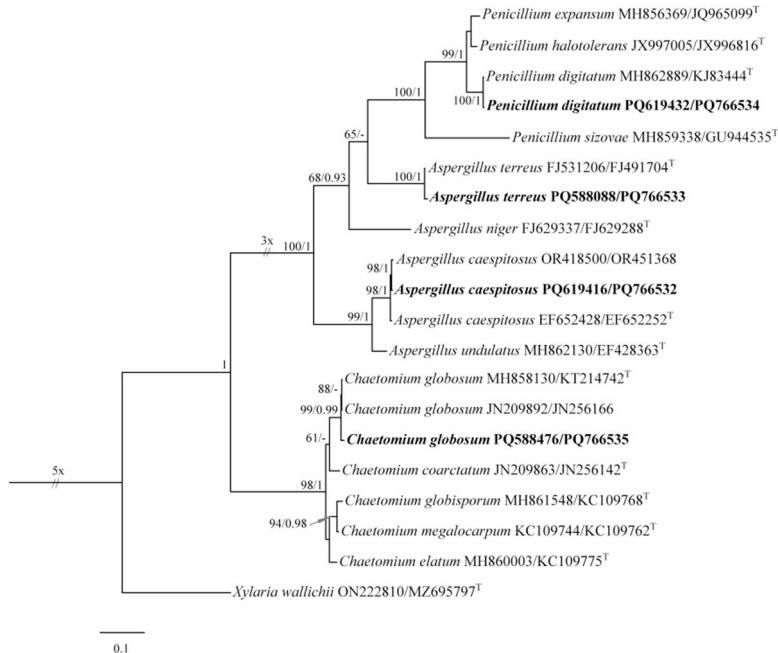
Petri dishes were incubated at 25 °C for 3 weeks. Emerging fungal colonies were isolated using the hyphal tip method and identified morphologically with standard taxonomic keys. Initial genus-level identification relied on macroscopic traits (colony morphology, pigmentation) and microscopic traits (spore structure, hyphal characteristics). Isolates were further cultured on Czapek's Yeast Extract Agar (CYA), Malt Extract Agar (MEA), and Potato Carrot Agar (PCA) for detailed species-level identification. An Olympus BX51 light microscope was used to observe the morphological features of the fungal isolates.

The identification of fungal species was conducted using established taxonomic keys from authoritative sources: *Alternaria alternata* was identified following Simmons (2007)¹³, *Aspergillus* species identification was based on Klich (2002)¹⁴. For *Chaetomium globosum*, identification relied on the key by Watanabe (2002)¹⁵. *Cladosporium cladosporioides* was identified using the key by Bensch et al. (2012)¹⁶. The identification of *Penicillium digitatum* was based on the works of Carmichael (1955)¹⁷ and Pitt and Hocking (2009)¹⁸. Finally, *Syncephalastrum racemosum* was identified using keys from Benjamin (1966)¹⁹, Domsch and Gams (1980)²⁰, and Zycha et al. (1969)²¹.

Molecular identification

Morphological analysis classified the isolates into six genera: *Aspergillus*, *Penicillium*, *Chaetomium*, *Cladosporium*, *Alternaria*, and *Syncephalastrum*. For molecular identification, genomic DNA was extracted from eight isolates. Fungi were cultured on PDA at 28 °C for 7 days, after which mycelia were harvested, frozen in liquid nitrogen, and disrupted using a mortar and pestle. Genomic DNA from fungi was extracted using the cetyltrimethylammonium bromide (CTAB) method, with slight modifications, following the protocol of Gardes and Bruns (1993)²².

PCR amplification


Gene targets for amplification included the ITS rDNA region, β -tubulin, TEF, LSU, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and were selected based on taxonomic requirements. To amplify the genetic regions ITS, TUB2, TEF-1 α , GAPDH, and D1/D2, the following primers were utilized respectively: ITS1 5'-CTTGGTCATTAGAGGAAGTAA-3', ITS4 5'-TCCTCCGCTTATTGATATGC-3'²³, T1 5'-AACATGCGT GAGATTGTAAGT-3', T22 5'-TCTGGATGTTGGGAATCC-3'²⁴, EF1-728 F 5'-CATCGAGAAGTTCGA GAAGG-3', EF1-986R 5'-TACTTGAAGGAACCCTTACC-3'²⁵, gpd1 5'-CAACGGCTTCGGTCGCATTG-3', gpd2 5'-GCCAAGCAGTTGGTTGTGC-3'²⁶, D1 5'-AACTTAAGCATATCAATAAGCGGAGGA-3', and D2 5'-GGTCCGTGTTCAAGACGG-3'²⁷.

PCR reactions (25 μ L total volume) were prepared with the following components:

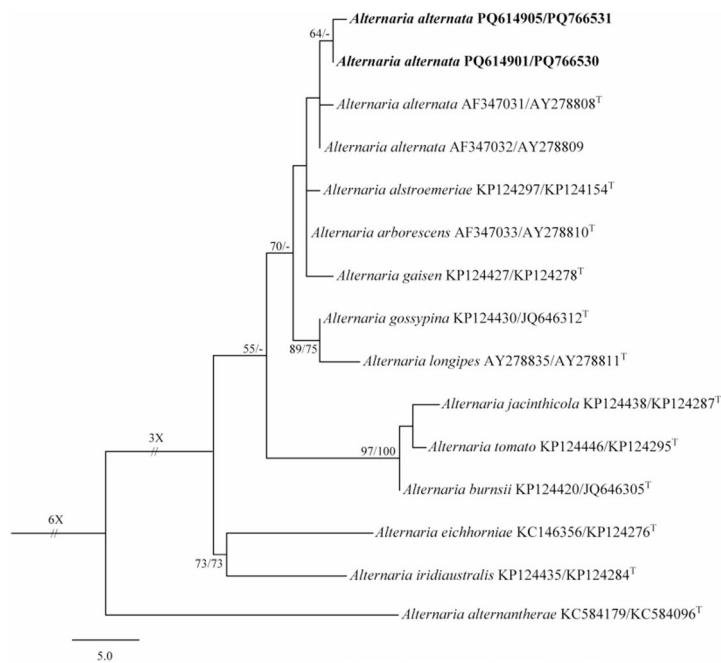
- 2.5 μ L 10× PCR buffer,
- 1.5 mM MgCl₂,
- 200 μ M dNTPs,
- 0.1 μ M forward and reverse primers,
- 0.04 U/ μ L Taq DNA polymerase (Cinagene, Iran),
- 10 ng template DNA.

Genomic region	Initial denaturation (Temperature// time)	36 thermal cycles (Temperature//time)			Final extension (Temperature// time)
		Denaturation	Annealing	Extension	
ITS-rDNA	95 °C// 1 min	95 °C//1 min	56 °C// 30 S	72 °C// 1 min	72 °C// 5 min
β -tubulin	94 °C// 1 min	94 °C//30 S	47 °C//30 S	72 °C//150 S	72 °C// 10 min
LSU	94 °C// 5 min	94 °C// 60 S	52 °C// 60 S	72 °C// 120 S	72 °C// 10 min
EF- 1 α	94 °C// 5 min	94 °C// 15 S	61 °C// 30 S	72 °C// 30 S	72 °C// 8 min
GAPDH	95 °C// 5 min	95 °C//30 S	57 °C// 30 S	72 °C// 1 min	72 °C// 7 min

Table 1. Thermal cycling protocol for amplification using different primers.

Fig. 1. The MrBayes phylogenetic tree was constructed for various species within the *Aspergillus*, *Penicillium*, and *Chaetomium* genera by integrating the ITS-rDNA region and the β -tubulin gene, utilizing the CIPRES Science Gateway. ML/PP bootstrap support values and posterior probabilities (PP) are shown at the nodes. The phylogenetic tree was rooted with *Xylaria wallichii* (Accession: ON222810/MZ695797) (Specimen No.: FCATAS911 (HT)). Bold font denotes the species investigated in this study.

The thermal cycling protocol for DNA amplification employing different primers is detailed in Table 1. The gene region was amplified using a SimpliAmp thermal cycler (Thermo Fisher Scientific, Waltham, Massachusetts, USA).


Sequencing and phylogenetic analysis

PCR products were visualized via agarose gel electrophoresis under UV light. Amplicons were sequenced bidirectionally (Codon Genetics, Iran) and edited using BioEdit v7.2.5. Sequences were aligned with reference data from GenBank using MAFFT v7.4 and curated in Mesquite v3.6.

Phylogenetic trees in Fig. 1 (*Aspergillus*, *Penicillium*, and *Chaetomium* genera), Fig. 3 (*Cladosporium*), and Fig. 4 (*Syncephalastrum*) were constructed using the Bayesian method, while the tree in Fig. 2 (*Alternaria*) was constructed using maximum parsimony. All analyses were performed through the CIPRES Science Gateway, and final visualizations were prepared in Adobe Illustrator 2019.

Results

This study aimed to isolate and identify endophytic fungi associated with the genus *Ulva* in Iran. Morphological characterization identified the seaweed as *Ulva* sp., characterized by vivid grass-green, tubular fronds with unbranched thalli^{28–29}. A total of 33 fungal isolates were obtained from *Ulva* sp. collected at the Bandar Abbas Fishery Coast, Iran. Three different culture media were employed to isolate fungi. According to the findings and observations, the highest number of isolates was obtained from the PDA-SLE medium, which was therefore chosen as the optimal culture medium for this study. Based on cultural and morphological characteristics, all isolates were classified into 7 species across 6 genera: *Alternaria*, *Aspergillus*, *Chaetomium*, *Cladosporium*, *Penicillium* (Ascomycota), and *Syncephalastrum* (Mucoromycota) (Table 2).

Fig. 2. The Maximum Parsimony (MP) phylogenetic tree for *Alternaria* spp. was constructed by integrating the ITS-rDNA region and the *GAPDH* gene, using the CIPRES Science Gateway. ML/MP bootstrap support values and posterior probabilities are shown at the nodes. The phylogenetic tree was rooted with *Alternaria alternantherae* strain CBS 124,392 (Accession: KC584179/KC584096). Bold font denotes the species investigated in this study.

Taxa	Phylum	GenBank Accession Numbers	Gene regions
<i>Alternaria alternata</i>	Ascomycota	PQ614901.1	ITS
<i>Alternaria alternata</i>		PQ766530.1	<i>GAPDH</i>
<i>Alternaria alternata</i>	Ascomycota	PQ614905.1	ITS
<i>Alternaria alternata</i>		PQ766531.1	<i>GAPDH</i>
<i>Aspergillus caespitosus</i>	Ascomycota	PQ619416.1	ITS
<i>Aspergillus caespitosus</i>		PQ766532.1	β -tubulin
<i>Aspergillus terreus</i>	Ascomycota	PQ588088.1	ITS
<i>Aspergillus terreus</i>		PQ766533.1	β -tubulin
<i>Chaetomium globosum</i>	Ascomycota	PQ588476.1	ITS
<i>Chaetomium globosum</i>		PQ766535.1	β -tubulin
<i>Cladosporium cladosporioides</i>	Ascomycota	PQ614852.1	ITS
<i>Cladosporium cladosporioides</i>		PQ766529.1	TEF
<i>Penicillium digitatum</i>	Ascomycota	PQ619432.1	ITS
<i>Penicillium digitatum</i>		PQ766534.1	β -tubulin
<i>Syncephalastrum racemosum</i>	Mucoromycota	PP176476.1	ITS
<i>Syncephalastrum racemosum</i>		PQ665121.1	LSU

Table 2. Taxa and phyla of endophytic fungi isolated from *Ulva* sp. with GenBank accession numbers and gene regions used in the phylogenetic analyses.

Taxonomic distribution

- *Aspergillus* (11 isolates, 34% of total),
- *Penicillium* (7 isolates, 21%),
- *Chaetomium* (5 isolates, 15%),
- *Cladosporium* (4 isolates, 12%),
- *Alternaria* (3 isolates, 9%),
- *Syncephalastrum* (3 isolates, 9%).

Aspergillus was the most abundant genus, while *Alternaria* and *Syncephalastrum* were the least frequent.

Molecular validation

Eight isolates were selected for molecular analysis. Sequences of the ITS rDNA region, β -tubulin, TEF, LSU, and GAPDH genes were compared to GenBank databases using BLAST. Morphological identifications were confirmed for all isolates.

Species descriptions

Alternaria alternata

- Morphology: Grayish-green colonies (50 mm) on PCA. Conidiophores were vertical (40–70 \times 3–4 μm), with ellipsoidal conidia (24.5–35 \times 5.5–9 μm).
- Molecular: ITS and GAPDH sequences matched *A. alternata* (3 isolates).

Aspergillus caespitosus

- Morphology: Colonies grew 50 mm in 7 days; green/olive conidia with light yellow reverse. Conidiophores were smooth (150–250 \times 5–6 μm), with hemispherical vesicles (9–15 μm). Conidia were globose, rough-walled (3.5–4.5 μm).
- Molecular: ITS and β -tubulin sequences matched *A. caespitosus* (1 isolate).

Aspergillus terreus

- Morphology: Colonies on MEA reached 55 mm in 7 days at 25 °C, with pale orange-buff surfaces and yellow reverse. Conidial heads were dense, and double-columned; conidiophores were smooth to slightly rough (148–247 μm), with globose vesicles (14.5–20 μm). Conidia were globose (2–2.5 μm).
- Molecular: ITS and β -tubulin sequences matched *A. terreus* (10 isolates).

Chaetomium globosum

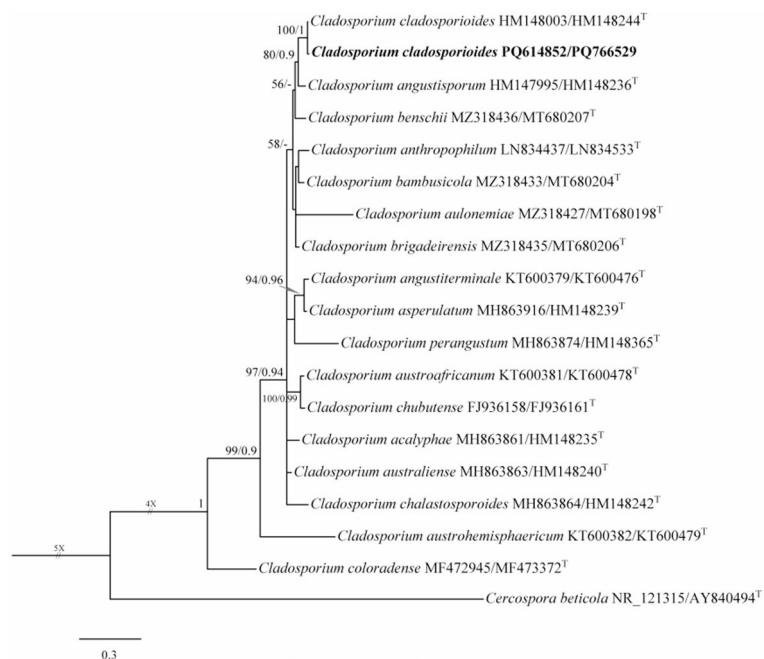
- Morphology: Olive-green colonies (8 cm) on PDA. Perithecia were spherical with club-shaped asci (45–57 \times 10–12 μm) and lemon-shaped ascospores.
- Molecular: ITS and β -tubulin sequences matched *C. globosum* (5 isolates).

Cladosporium cladosporioides

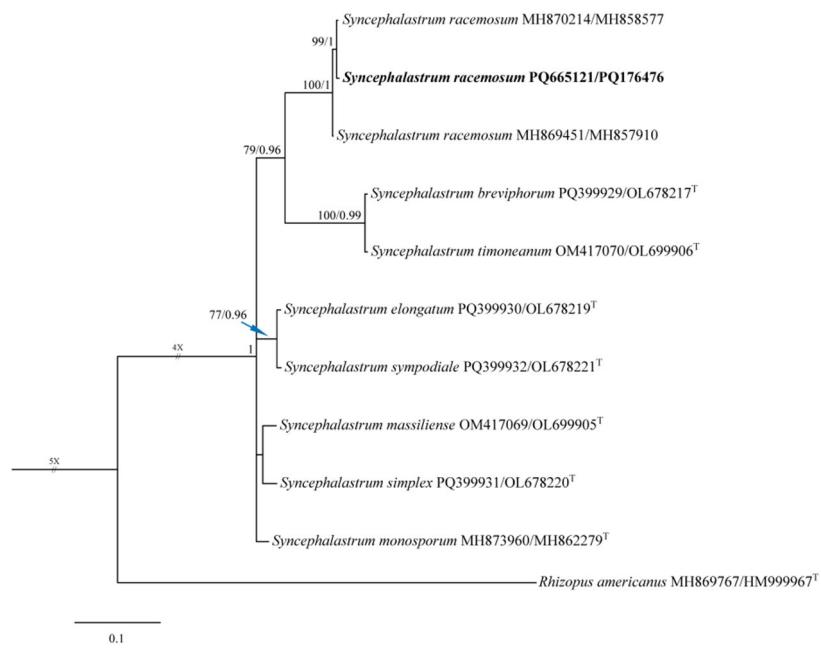
- Morphology: Olive colonies (41 mm) on SNA. Conidiophores were cylindrical (27–160.5 \times 2.9–4 μm), with ovoid conidia (3.5–5 \times 2–3 μm).
- Molecular: ITS and TEF sequences matched *C. cladosporioides* (4 isolates).

Penicillium digitatum

- Morphology: Green colonies (41 mm) on MEA. Conidiophores were thin (62–154 \times 5–6.5 μm), with cylindrical phialides and oval conidia (6.3–9.5 \times 3–6 μm).
- Molecular: ITS and β -tubulin sequences matched *P. digitatum* (7 isolates).


Syncephalastrum racemosum

- Morphology: Rapid growth on PDA (white to black colonies). Sporangiophores were branched (3–4 μm), with spherical vesicles (11–16 μm) and ovoid sporangiospores (2–6 μm).
- Molecular: ITS and LSU sequences matched *S. racemosum* (3 isolates).


In this study, phylogenetic analyses were performed using gene regions selected for their taxonomic utility in fungal classification. Phylogenetic trees for *Aspergillus*, *Penicillium*, and *Chaetomium* were constructed using sequences from the ITS rDNA region and β -tubulin gene (Fig. 1). For *Cladosporium*, the ITS region and translation elongation factor (TEF) gene were analyzed (Fig. 3). *Alternaria* phylogenies were resolved using the ITS region and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene (Fig. 2). Finally, *Syncephalastrum* was analyzed using the ITS region and large subunit (LSU) rDNA (Fig. 4).

For the phylogenetic analysis of *Aspergillus*, *Penicillium*, and *Chaetomium*, a dataset containing 19 ingroup taxa and the outgroup *Xylaria wallichii* (Accession: ON222810/MZ695797) (Specimen No.: FCATAS911 (HT)) was analyzed. The results supported the morphological identification of the isolates from the genera *Aspergillus*, *Penicillium*, and *Chaetomium*. Specifically, the *A. terreus* isolate grouped with the reference strain CBS 117.37 (Accession: FJ531206/FJ491704), and the *A. caespitosus* isolate clustered with strains V313-04 (Accession: OR418500/OR451368) and NRRL 1929 (Accession: EF652428/EF652252) in the phylogenetic tree based on ITS and β -tubulin gene sequences. Additionally, the isolates of *P. digitatum* and *C. globosum* formed clusters with their respective reference strains CBS 112,082 (Accession: MH862889/KJ83444) and strain CBS 160.62 (Accession: MH858130/KT214742), showing strong genetic similarity and confirming the accuracy of their identification (Fig. 1).

Phylogenetic analysis of *Alternaria* involved selecting three isolates identified as *A. alternata* based on morphological features, which were analyzed using ITS and GAPDH gene sequences. A dataset comprising 14

Fig. 3. The MrBayes phylogenetic tree was constructed for various species within the *Cladosporium* genus by integrating the ITS-rDNA region and the *TEF* gene, utilizing the CIPRES Science Gateway. ML/PP bootstrap support values and posterior probabilities (PP) are shown at the nodes. The phylogenetic tree was rooted with *Cercospora beticola* strain CBS 116,456(Accession: NR_121315/AY840494). Bold font denotes the species investigated in this study.

Fig. 4. The MrBayes phylogenetic tree was constructed for various species within the genus of *Syncphalastrum* by integrating the ITS-rDNA region and the D1/D2 gene, utilizing the CIPRES Science Gateway. ML/PP bootstrap support values and posterior probabilities are shown at the nodes. The phylogenetic tree was rooted with *Rhizopus americanus* strain CBS 340.62(Accession: MH869767/HM999967). Bold font denotes the species investigated in this study.

ingroup taxa and the outgroup *Alternaria alternantherae* strain CBS 124,392 (Accession: KC584179/KC584096) was used. The resulting phylogenetic tree (Fig. 2) showed that two isolates of *A. alternata* clustered within the subclade of section *Alternata* and grouped with reference strains EGS 34–016 1 (accession: AF347031/AY278808) and strain EGS 34–015 (accession: AF347032/AY278809). Furthermore, the genetic variation within the *Alternata* section led to the formation of distinct subclades, indicating considerable genetic heterogeneity within this section.

The morphological analysis identified the four isolates as *C. cladosporioides*. To confirm this, a phylogenetic analysis was performed using ITS-rDNA and translation elongation factor (TEF) gene sequences. The dataset included 18 ingroup taxa and the outgroup *Cercospora beticola* strain CBS 116,456 (Accession: NR_121315/AY840494). BLAST comparisons revealed high sequence similarity between the isolate under study and reference strains of *C. cladosporioides*. Phylogenetic analysis (Fig. 3) placed *C. cladosporioides*, the species obtained in this study, within the *C. cladosporioides* clade, clustering it with the reference strain CBS 112,388 (Accession: HM148003/HM148244), thereby confirming the morphological observations.

BLAST analysis revealed that the ITS-rDNA and LSU sequences of the isolate identified as *S. racemosum* based on morphological characteristics closely matched *S. racemosum* reference sequences in the NCBI GenBank. To resolve species boundaries, a multigene phylogenetic analysis was performed using MrBayes, incorporating 10 ingroup taxa and the outgroup *Rhizopus americanus* strain CBS 340.62 (Accession: MH869767/HM999967). Phylogenetic results placed the isolate from this study within the *S. racemosum* clade, clustering with strains CBS 302.65 (Accession: MH870214/MH858577) and CBS 441.59 (Accession: MH869451/MH857910) (Fig. 4). Morphological traits characterized by fast spore production, round vesicle structures, and oval-shaped sporangiospores further supported this identification.

Discussion

Fungi represent one of Earth's most diverse organisms, with approximately 156,000 documented species globally (Species Fungorum, 2024). Marine fungi, despite their ecological significance in nutrient cycling and symbiotic interactions, remain understudied. This study offers the first report of endophytic fungi associated with *Ulva* sp. in Iran, identifying seven species across six genera (*Aspergillus*, *Penicillium*, *Cladosporium*, *Alternaria*, *Chaetomium*, and *Syncephalastrum*), thus expanding knowledge of fungal diversity in Iran's coastal ecosystems and revealing novel host-fungus associations. *Aspergillus* dominated the isolates (34%), consistent with its widespread occurrence in marine algae^{30–31}, while *Alternaria* and *Syncephalastrum* had the lowest percentages, each at 9%.

A. caespitosus and *S. racemosum* were documented as endophytes of *Ulva* sp. for the first time globally. Although previously isolated from soil and terrestrial plants, respectively^{32–33}, their presence in marine algae underscores their adaptability to diverse environments. Also, the fungi *A. alternata*, *P. digitatum*, and *C. cladosporioides* were identified as endophytes of *Ulva* sp. for the first time globally. This study reports, for the first time, the isolation of *C. globosum* and *A. terreus* as endophytic fungi from the green macroalga *Ulva* sp. in Iran. *A. alternata* and *A. tenuissima* were recorded in Iranian waters for the first time, suggesting biogeographic variability in algal-fungal partnerships³⁴.

Robust species delimitation was achieved through the combined morphological and multi-gene phylogenetic analyses (ITS, β -tubulin, GAPDH, TEF, LSU). For instance, *A. terreus* was characterized by pale orange-buff colonies and globose conidia (2–2.5 μ m), confirmed by ITS/ β -tubulin sequencing, while *S. racemosum* exhibited rapid sporulation and ovoid sporangiospores (2–6 μ m), validated by LSU/ITS data. Comparisons with global studies reveal consistency with prior records of *A. terreus* and *C. globosum* as marine endophytes^{35–36}.

Previous studies in Iran have primarily focused on fungi associated with mangroves or fish, while endophytes in *Ulva* remain largely unexplored. In a recent study investigating fungal endophytes associated with algae from the southern shores of the Persian Gulf and the Sea of Oman, several species were isolated and reported. The fungi identified include *A. niger*, *A. flavus*, *A. terreus*, *A. puniceus*, *A. carlsbadensis*, *A. egyptiacus*, *A. chevalieri*, *P. chrysogenum*, *Penicillium* sp., *C. spicifera*, and *C. macrocarpum*. Notably, this study did not report any endophytic fungi from the genus *Ulva*. This highlights a substantial gap in our understanding of the diversity of endophytic fungi associated with marine algae within the Iranian ecosystem³⁷. Globally, only a few studies have investigated *Ulva* endophytes, such as research conducted in Bangladesh³⁸. The endophytic fungus *Beauveria* sp. has been reported to be isolated from the algae *Ulva* sp., specifically collected along the Mediterranean coastline³⁹. *Rigidoporus vinctus*, a basidiomycete fungus, and *Candida raiilensis*, a yeast, were identified in a study focused on the multi-functional bioactive secondary metabolites derived from endophytic fungi associated with marine algae. Specifically, these fungi were sourced from algae belonging to the genera *Enteromorpha* and *Ulva*, both of which are part of the Ulvaceae family⁴⁰. In a study focused on antioxidant activities, cytotoxicity and anticancer properties of extracts of endophytic fungi isolated from algae, different species of *Ulva* spp. were identified. The isolated endophytic fungi included *Chaetomium* sp., *Phomopsis* sp., *Acremonium* sp., *A. niger* and *Cladosporium* sp.⁴¹. *Ulva lactuca* algae as host of fungal endophytes *A. niger*, *A. terreus*, *Chatomium* sp., *Cladosporium* sp., *Eurotium* sp., *Leotiomyces* sp., *P. chrysogenum*, and *Wigrospora* sp. and *Ulva linza* algae as the host of the fungal endophyte *Alternaria* sp. have been reported. Additionally, fungal endophytes such as *Aspergillus* sp. from the algae *Ulva intestinalis* and *Penicillium* sp. from *Ulva* sp. have been reported⁴². The species *S. racemosum* has been isolated and identified as an endophytic fungus from the red algae *Gracilaria corticata*³⁴. In a study conducted on 14 different algae species from the Bay of Fundy in Canada, researchers aimed to explore the natural compounds produced by endophytic fungi associated with macroalgae. In this study, fungal species *Bionectria ochroleuca*, *Cordyceps* sp., *Penicillium* sp., and *Leptosphaeria* sp. were identified and isolated in connection with *Ulva intestinalis*³¹. From the *Ulva fasciata* algae gathered along the coast of Tamil Nadu, South India, endophytic fungi have been identified, including *A. niger*, *Curvularia* species (*Curvularia* sp. and *Curvularia lunata*), *Chaetomium* species, *Aspergillus* species (*Aspergillus* sp. and *A. terreus*), and *Paecilomyces* species³⁵. The fungal endophyte

C. globosum has been isolated from the marine green alga *Ulva pertusa* from China³⁶. The functional roles of these endophytes, such as nutrient exchange or stress tolerance, remain unexplored but deserve further study. For example, *A. terreus* is recognized for its production of bioactive compounds⁴³. Endophytes support host plant growth through processes like nitrogen fixation, phosphate solubilization, and biological control of plant pathogens⁴⁴. Broadening the scope of sampling to include additional Iranian coastal areas, such as the Persian Gulf and Sea of Oman, and diverse macroalgal hosts like *Gracilaria* and *Sargassum*, may reveal more extensive biogeographic patterns and co-evolutionary relationships. Additionally, endophytes like *A. caespitosus* may aid algal adaptation to climate change-induced stressors, such as warming oceans, a critical avenue for future research⁴⁵.

This study examines fungal endophytes associated with *Ulva* species in a specific marine region of Iran. Given the widespread distribution of *Ulva* species along both the southern and northern coasts of Iran, this research could serve as an important step toward expanding future studies and enhancing our understanding of the ecological interactions between fungal endophytes and seaweeds in Iranian marine ecosystems.

Conclusion

This study offers the first report of endophytic fungi in Iranian *Ulva* sp., revealing 7 new records and highlighting the need for integrative approaches (morphology + genomics) in mycological research.

Data availability

The datasets generated and/or analysed during the current study are available in the GenBank repository, <https://www.ncbi.nlm.nih.gov/> (Table 2.).

Received: 10 March 2025; Accepted: 25 September 2025

Published online: 31 October 2025

References

1. Hafezieh, M., Abkenar, A. M., Jadgal, S. & Ajdari, A. Biochemical composition and investigation on the economic feasibility of sodium alginate production of brown seaweed *Sargassum illicifolium* (Turner) C. Agardh, 1820 from Chabahar Bay (Gulf of Oman, Iran). *Iran. J. Fisheries Sci.* **20** (1), 1–12. <https://doi.org/10.22092/IJFS.2021.351036.0> (2021).
2. Whittaker, R. H. & Margulies, L. Protist classification and the Kingdom of organisms. *Biosystems* **10**, 3–18. (1978).
3. Schils, T. Marine plant communities of upwelling areas within the Arabian Sea (Doctoral dissertation, Ghent University) (2003).
4. Bonanno, G., Veneziano, V. & Piccione, V. The Alga *Ulva lactuca* (Ulvaceae, Chlorophyta) as a bioindicator of trace element contamination along the Coast of Sicily, Italy. *Sci. Total Environ.* **699** (3), 134329. <https://doi.org/10.1016/j.scitotenv.2019.134329> (2019).
5. Gharbi, Y., Barkallah, M., Bouazizi, E., Gdoura, R. & Triki, M. A. Differential biochemical and physiological responses of two Olive cultivars differing by their susceptibility to the hemibiotrophic pathogen *Verticillium dahliae*. *Physiological Mol. Plant. Pathol.* **97**, 30–39. <https://doi.org/10.1016/j.pmp.2016.12.001> (2017).
6. Rodriguez, R., White, J. R. J., Arnold, A. E. & Redman, A. R. A. Fungal endophytes: diversity and functional roles. *New Phytol.* **182** (2), 314–330. <https://doi.org/10.1111/j.1469-8137.2009.02773.x> (2009).
7. Fouda, A. H., Hassan, S. E. D., Eid, A. M. & Ewais, E. E. D. Biotechnological applications of fungal endophytes associated with medicinal plant *Asclepias Sinaica* (Bioss). *Annals Agricultural Sci.* **60** (1), 95–104. <https://doi.org/10.1016/j.aaos.2015.04.001> (2015).
8. Zheng, Y. K. et al. Diversity, distribution and biotechnological potential of endophytic fungi. *Ann. Microbiol.* **66** (2), 529–542. <https://doi.org/10.1007/s13213-015-1153-7> (2016).
9. Ali, A. H., Abdelrahman, M., Radwan, U., El-Zayat, S. & El-Sayed, M. A. Effect of thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. *Appl. Soil. Ecol.* **124**, 155–162. <https://doi.org/10.1016/j.apsoil.2017.11.004> (2018).
10. Singh, S. K. et al. An endophytic *Phomopsis* sp. possessing bioactivity and fuel potential with its volatile organic compounds. *Microb. Ecol.* **61** (4), 729–739. <https://doi.org/10.1007/s00248-011-9818-7> (2011).
11. Stierle, A. A. & Stierle, D. B. Bioactive secondary metabolites produced by the fungal endophytes of conifers. *Nat. Prod. Commun.* **10** (10), 1671–1682. <https://doi.org/10.1177/1934578X1501001012> (2015).
12. Strobel, G. & Daisy, B. Bioprospecting for microbial endophytes and their natural products. *Microbiol. Mol. Biol. Rev.* **67** (4), 491–502. <https://doi.org/10.1128/MMBR.67.4.491-502.2003> (2003).
13. Simmons, E. G. *Alternaria*: an identification manual. *CBS Biodivers. Ser.* **6**, 644 (2007).
14. Klich, M. A. *Identification of Common Aspergillus Species*116 (CBS, 2002).
15. Watanabe, T. *Pictorial Atlas of Soil and Seed Fungi, Morphologies of Cultured Fungi and Key To Species* 2nd edn (CRC, 2002).
16. Bensch, K., Braun, U., Groenewald, J. Z. & Crous, P. W. The genus *Cladosporium*. *Stud. Mycol.* **72**, 1–401 (2012).
17. Carmichael, J. W. Lacto-fuchsin: a new medium for mounting fungi. *Mycologia* **47**, 611–611 (1955).
18. Pitt, J. I. & Hocking, A. D. *Penicillium* and related genera. In: *Fungi Food Spoilage*, 169–273. (2009).
19. Benjamin, R. K. The Meroспорangium. *Mycologia* **58**, 1–42 (1966).
20. Domsch, K. H. & Gams, W. *Compendium of Soil Fungi*. Academic Press, London, 2. (1980).
21. Zycha, H., Siepmann, R. & Linnemann, G. Mucorales: eine beschreibung aller gattungen und Arten dieser Pilzgruppe. Mit einem Beitrag Zur Gattung Mortierella. *Lubrecht Cramer Ltd.* (1969). 355[organism = *Syncephalastrum racemosum*].
22. Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. *Mol. Ecol.* **2** (2), 113–118. <https://doi.org/10.1111/j.1365-294X.1993.tb00005.x> (1993).
23. White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protocols: Guide Methods Appl.* **18** (1), 315–322 (1990).
24. O'Donnell, K. & Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus, *Fusarium*, are nonorthologous. *Mol. Phylogenet. Evol.* **7** (1), 103–116. <https://doi.org/10.1006/mpev.1996.0376> (1997).
25. Carbone, I. & Kohn, L. M. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* **1**, 553–556. <https://doi.org/10.2307/3761358> (1999).
26. Berbee, M. L., Pirseyedi, M. & Hubbard, S. *Cochliobolus* phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. *Mycologia* **91**, 964–977. <https://doi.org/10.1080/00275514.1999.12061106> (1999).
27. De Hoog, G. S., Guarro, J., Gene, J. & Figueras, M. J. *Atlas of Clinical Fungi* 2nd edn (Universitat Rovira i Virgili Reus, 2000).

28. Kipp, R. M., McCarthy, M. & Fusaro, A. *Ulva* (Enteromorpha) *intestinalis* Linnaeus, 1753: U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville, FL, and NOAA Great Lakes Aquatic Nonindigenous Species Information System, Ann Arbor, MI. (2022).
29. Peasura, N., Laohakunjit, N., Kerdchoechuen, O. & Wanlapa, S. Characteristics and antioxidants of *Ulva intestinalis* sulfated polysaccharides extracted with different solvents. *Int. J. Biol. Macromol.* **81**, 912–919. <https://doi.org/10.1016/j.ijbiomac.2015.09.030> (2015).
30. Zuccaro, A. et al. Detection and identification of fungi associated with the brown seaweed *fucus serratus*. *Appl. Environ. Microbiol.* **74**, 931–941. <https://doi.org/10.1128/AEM.01158-07> (2008).
31. Flewellings, A. J., Johnson, J. A. & Gray, C. A. Isolation and bioassay screening of fungal endophytes from North Atlantic marine macroalgae. *Bot. Mar.* **56**, 287–297. <https://doi.org/10.1515/bot-2012-0224> (2013).
32. Raper, K. B. & Thom, C. New aspergilli from soil. *Mycologia* **36** (6), 555–575 (1944).
33. Rahmawati, R. et al. Effect of light exposure on secondary metabolite production and bioactivities of *Syncephalastrum racemosum* endophyte. *Trop. J. Nat. Prod. Res.* **5** (2), 312–318. <https://doi.org/10.13057/biodiv/d220618> (2021).
34. Flewellings, A. J., Gray, C. J., Johnson, J. A. & C.A., and Endophytes from marine macroalgae: promising sources of novel natural products. *Curr. Sci.* **109** (1), 10 (2015).
35. Suryanarayanan, T. S. et al. Internal mycoflora of marine macroalgae from the Tamil Nadu coast: distribution, diversity and biotechnological potential. *Bot. Mar.* **53**, 457–468. <https://doi.org/10.1515/bot.2010.045> (2010).
36. Cui, C. M., Li, X. M., Li, C. S., Proksch, P. & Wang, B. G. Cytoblobosins A–G, cytochalasans from a marine-derived endophytic fungus, *Chaetomium globosum* QEN-14. *J. Nat. Prod.* **73**, 729–733. <https://doi.org/10.1021/np900569t> (2010).
37. Baghazadeh Daryaii, L., Samsampour, D., Bagheri, A. & Sohrabipour, J. Macroalgae-Derived fungal endophytes promoted the growth of Mexican lime seedlings under heat stress in greenhouse condition. *J. Psychol. Res.* **5**, 2. <https://doi.org/10.48308/JPR.2021.102382> (2021).
38. Noor, S. et al. Bioactivity and chemical screening of endophytic fungi associated with the seaweed *Ulva* sp. of the Bay of Bengal, Bangladesh. *Bot. Mar.* **67** (2), 115–129. <https://doi.org/10.1515/bot-2023-0040> (2024).
39. Deutsch, Y., Gur, L., Frank, L. B. & Ezra, D. Endophytes from Algae, a potential source for new biologically active metabolites for disease management in aquaculture. *Front. Mar. Sci.* **8** <https://doi.org/10.3389/fmars.2021.636636> (2021).
40. Harikrishnan, M., Saipriya, P. P., Prakash, P., Jayabaskaran, C. & Bhat, S. G. Multi-functional bioactive secondary metabolites derived from endophytic fungi of marine algal origin. *Curr. Res. Microb. Sci.* **2** <https://doi.org/10.1016/j.crmicr.2021.100037> (2021).
41. Ahamed, F. & Murugan, M. Isolation and characterization of marine endophytic fungi from Seaweeds, and bioactivity of their crude extracts. *J. Pure Appl. Microbiol.* **13** (3), 1451–1460. (2019).
42. Ushasri, R. & Anusha, R. In vitro anti-diabetic activity of ethanolic and acetone extracts of endophytic fungi *Syncephalastrum racemosum* isolated from the seaweed *Gracilaria corticata* by alpha-amylase Inhibition assay method. *Int. J. Curr. Microbiol. Appl. Sci.* **4** (1), 254–259 (2015).
43. Krishnamoorthy, G., Kannan, S. & Marudhamuthu, M. Bioactive compound from *Aspergillus terreus* DMTMGK004 synergistically contributes towards potential anti-pathogenicity. *Lett. Appl. Microbiol.* **67** (6), 579–588. <https://doi.org/10.1111/lam.13071> (2018).
44. Raimi, A. & Adeleke, R. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. *Arch. Microbiol.* **203** (203), 1917–1942 (2021).
45. Jones, E. B. G., Pang, K. L. & Abdel-Wahab, M. A. Marine fungal communities and their potential role in climate change mitigation. *Fungal Divers.* **96**, 1–45. <https://doi.org/10.1007/s13225-019-00428-3> (2019).

Acknowledgements

The authors acknowledge Tarbiat Modares University, Tehran, Iran, for its financial support.

Author contributions

The research was designed, executed, and finalized through the collective efforts of Maryam Besharati-Fard, S. Ali Moosawi-Jorf, Mehdi Razzaghi-Abyaneh and Masoomeh Shams-Ghahfarokhi, who jointly contributed to conceptualization, experimentation, data analysis, and manuscript preparation.

Declarations

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to S.A.M.-J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025