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Based on the coupled thermoelasticity theory, this study presents a stochastic analysis of opto-
acoustic wave propagation in non-local semiconductor media subjected to magneto-photo-thermal 
effects. The model incorporates magnetic field influence and non-local elasticity to capture realistic 
semiconductor behavior. Stochastic thermal fluctuations are introduced through a Wiener process, 
enabling a probabilistic framework to assess uncertainty in the system response. The governing 
equations are solved analytically, yielding explicit expressions for the main physical fields, including 
displacements, stresses, temperature, acoustic pressure, carrier density, and strain. To examine the 
influence of physical parameters, the effects of the non-local parameter and magnetic field intensity 
are systematically investigated. In addition, stochastic envelope estimation is conducted using 30 
and 500 realizations to evaluate the statistical behavior of physical responses. Results demonstrate 
that increasing the number of realizations significantly reduces noise and sharpens the approximation 
of the mean solution. Finally, a heat map is generated for the 500-realization case to visualize the 
system’s spatial distribution and intensity of uncertainty. This work provides valuable insights into the 
dynamics of semiconductor media under combined magneto-photo-thermal and stochastic excitation, 
emphasizing acoustic pressure behavior and its interaction with non-local and magnetic effects.
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Semiconductors are central to optoelectronic, photovoltaic, and sensing technologies because of their coupled 
electrical, thermal, and mechanical behavior. Alzahrani and Abbas1 examined photo-thermo-elastic interactions 
without dissipation, while Mondal and Sur2 and Kumar et al.3 investigated wave propagation and photo-thermal 
excitation under dual-phase-lag theory with nonlocal effects. Fractional-order and non-local formulations 
have been developed by Hobiny and Abbas4, Geetanjali et al.5, and Sherief and Abd El-Latief6. Abouelregal 
and colleagues7–12 contributed through MGT and fractional models, while Chandel et al.13–15 and Bhattacharya 
and Kanoria16,17 studied thermo-diffusive responses with memory effects. Further contributions extended these 
models to viscoelastic beams18,19 and biomechanical tissues20,21.

The coupling between magnetic fields and thermoelastic responses has attracted significant attention. Deswal 
et al.22 analyzed Hall currents and photothermal effects in magneto-thermoelastic media with diffusion and 
gravity. Salah et al.23 studied diffusion in semiconductors under hyperbolic two-temperature photothermal 
waves, while Sur24 examined magneto-photo-thermoelastic interactions in strips with hereditary features. 
Extending this line of work, Salah et al.25 investigated ramp-type heating and initial stresses in rotating 
photothermal semiconductors. Yadav26 modeled plasma waves using two-temperature theory with multiphase-
lag thermoelasticity, and Jatain et al.27 considered micropolar continua with photothermal coupling. Khalil et 
al.28 addressed void-containing semiconductors under electromagnetic fields, and Rashid et al.29 studied the 
combined effects of rotation, magnetic fields, and internal heat sources. Bhattacharya and Kanoria30,31 extended 
these investigations to magneto-thermoelastic diffusion and ramp heating of biological tissues. Makkad et al.32–34 
further explored thermo-viscoelastic vibrations in microplate resonators, thermomass dynamics in nanorods, 
and cylindrical cavities under three-phase-lag diffusion. Together, these studies underline the destabilizing role 
of magnetic fields and the significance of Multiphysics coupling in semiconductor thermoelasticity.
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Stochastic and photoacoustic frameworks provide additional insight into randomness, fluctuations, and 
advanced detection. Wang et al.35, Brueck et al.36, and Lang et al.37 developed measurement and detection methods 
for photothermal and photoacoustic effects. McCullough38, Wang et al.39, Breunig and Jones40, Shiraishi41, Lin42, 
Jazwinski43, and Brémaud44 contributed statistical, filtering, and Fourier-based approaches to characterize 
random processes. Burgholzer et al.45 advanced acoustic reconstruction techniques, Tian et al.46 demonstrated 
coherent thermoacoustic wave generation in graphene, Liu et al.47 examined nanoscale photoacoustic responses 
via laser Doppler vibrometry, Zobeiri et al.48 analyzed phonon nonequilibrium in graphene, and Li et al.49 
modeled thermoacoustic effects in multilayer composites. The novelty of this work lies in integrating Monte 
Carlo simulation with photo-thermoelastic modelling. By generating random samples and estimating system 
envelopes, we capture stochastic variability in thermal and mechanical fields. In addition, this study extends 
the stochastic framework to analyze acoustic pressure responses, showing how randomness influences wave 
propagation in semiconductors. This dual focus—on both field variables and acoustic pressure—provides a more 
comprehensive description of semiconductor behavior under uncertainty, enhances predictive accuracy, and 
demonstrates how stochastic envelope estimation can make the model more realistic and effective for practical 
applications.

Basic equation and model assumptions
Figure 1 illustrates the conceptual model of the present study, where a two-dimensional, homogeneous, and 
isotropic silicon medium is subjected to photo-acoustic excitation. The medium is exposed to an external light 
source, initiating interactions that generate heat and acoustic pressure within the non-local semiconductor. This 
excitation induces non-uniform distributions in temperature, carrier density, and mechanical displacement 
fields. Additionally, a constant magnetic field is applied in the z-direction, perpendicular to the x − y plane, 
introducing Lorentz force effects into the system’s dynamic response. The silicon material is homogeneous, 
implying spatial uniformity of properties such as density ρ, thermal conductivity k, specific heat capacity Ce, 
and λ, µ elastic moduli. It is also isotropic, meaning its mechanical and thermal characteristics are identical 
in all directions. The mathematical formulation involves coupled equations governing the temperature field 
T (x, y, t), carrier density N(x, y, t), acoustic pressure P (x, y, t), and displacements u(x, y, t) and v(x, y, t) in 
the x− and y− directions, respectively, under the influence of non-local photo-acoustic excitation and magnetic 
field interactions.

Following the theoretical framework of Alzahrani and Abbas1 and further extended through fractional-
order formulations by Hobiny and Abbas4, the constitutive stress relation for the photo-magneto-thermoelastic 
semiconductor medium can be expressed as:

	 σij = µ(ui,j + uj,i) + (λuk,k − γT T − γN N)δij .� (1)

Here, σij  denotes the stress tensor component, while µ = E
2(1+ν)  and λ = Eν

(1+ν)(1−2ν) , are Lamé’s constants 
representing the elastic moduli of the material, E is the Young’s modulus, which measures the stiffness of a 
material (ratio of stress to strain in uniaxial loading), ν represents Poisson’s ratio, which represents the negative 
ratio of transverse strain to axial strain under uniaxial stress. The terms ui,j  and uj,i represent the displacement 
component and its spatial derivative, respectively, and uk,k  corresponds to the dilatational strain. The symbol 
δij\delta_{ij}δij is the Kronecker delta. The parameter γT = (3λ + 2µ)αt corresponds to the thermal expansion 
effect, with αt being the linear thermal expansion coefficient, while γN = (3λ + 2µ)dn represents the electronic 
deformation coefficient with dn denoting the electronic deformation parameter. In addition, T  is the absolute 
temperature and N  is the carrier density. This relation reflects the essential coupling among mechanical, thermal, 
and semiconductor effects, where thermal expansion and carrier diffusion introduce additional stresses in the 
material. This equation is derived from within the framework of generalized thermoelasticity and has been 

Fig. 1.  Schematic of the problem.
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adopted in previous studies addressing photo thermoelastic interactions in semiconductor media under thermal 
and optical excitation. For clarity, the explicit tensor components take the form:

	

σxx = 2µux,x + λ(ux,x + uy,y) − γT T − γN N,
σyy = 2µuy,y + λ(ux,x + uy,y) − γT T − γN N,
σxy = µ(ux,y + uy,x)

}
.� (2)

This expanded form highlights how the thermoelastic −γT T  and carrier −γN N  effects contribute directly to 
the normal stress components, while the shear stress depends only on the displacement gradients. In nonlocal 
elasticity and thermo-elasticity, the nonlocal operator is typically expressed as a convolution between a kernel 
function α (|x − x′|) and the local field variable. For a scalar displacement field u(x), the nonlocal stress or 
operator can be written as50:

	
N [u](x) =

ˆ

Ω
α

(
|x − x′|

)
u(x′)dx′.� (3)

where α (|x − x′|) is the attenuation kernel, describing the influence of a point x′ on the field at x, Ω is the 
material domain, and 

´
Ω α (|x − x′|) dx′ = 1 for normalization. For simplification in many thermoelastic 

models, this operator is reduced to an equivalent differential form:

	 N [u](x) ≈
(
1 − ξ2

1∇2)
u(x).� (4)

As demonstrated in the nonlocal thermoelastic formulations of Sherief and Abd El-Latief6 and further extended 
to cylindrical and nanostructure problems by Abouelregal11,12, the equation of motion for a non-local photo-
thermoelastic semiconductor medium can be expressed as:

	
ρ

(
1 − ξ2

1∇2) ∂2ui

∂t2 = µ∇2ui + (λ + µ) (uj,ji − γT T,i − γN N,i) + Fi.� (5)

where ρ represents the mass density of the material. In this formulation, the perfector 
(
1 − ξ2

1∇2)
 modifies the 

classical inertial term to incorporate non-local effects, where ξ1 is the characteristic nonlocality length scale. This 
form of the motion equation captures the complex interplay between mechanical deformations, temperature 
gradients, carrier diffusion, and external forces Fi within the framework of generalized thermoelasticity. 
Such formulations have been widely adopted in recent studies on magneto-photo-thermoelastic behavior 
in semiconductors. Building on the carrier transport formulations for semiconductors with diffusion 
and photothermal coupling developed by Salah et al.23 and further extended to micropolar continua with 
thermodynamical interactions by Jatain et al.27, the carrier density N(x, y, t) evolution in semiconductors 
is generally described by a transport equation incorporating diffusion, recombination, temperature-induced 
generation, and drift due to electric fields. The generalized form is given by

	
∂N

∂t
= De∇2N − N

τ
+ κT + µe∇ · (NE).� (6)

where De∇2N  accounts for carrier diffusion, − N
τ  represents recombination, κT  corresponds to thermal 

generation, and the term µe∇ · (NE) models drift under the action of the electric field E, µe denotes the carrier 
mobility. To close the model, boundary conditions on carrier flux are usually prescribed, such as vanishing 
carrier density at infinity. In this study, the drift contribution is neglected under the assumption of weak external 
fields and dominant thermoelastic–photothermal effects. Thus, the governing relation reduces to

	
∂N

∂t
= DEN, kk − N

τ
+ κT.� (7)

DE  is the diffusion coefficient for carriers, τ  denotes the average lifetime of generated carriers under external 
influence. The parameter κ is the thermal activation coefficient linking temperature to carrier generation, defined 
as κ = ∂N0

∂T
1
τ , with N0 being the carrier concentration under thermal equilibrium. The temperature field T  

couples this equation with the thermal and mechanical fields, highlighting the photo-thermoelectric interaction. 
This formulation is essential in modelling the behavior of photoexcited carriers in non-local semiconductor 
media, particularly under external thermal and optical perturbations. Within the framework of generalized 
coupled thermo-elasticity, as extended to hyperbolic two-temperature photothermal waves by Salah et al.23 
and further developed through nonlocal fractional heat transfer models by Abouelregal et al.12, the governing 
equation for the temperature field T (x, y, t) in the semiconductor medium is expressed as:

	
ρ Ce

∂T
∂t

= kT,kk + Eg

τ
N + γT T0uk,kt.� (8)

where Ce is the specific heat measured under constant strain, Eg  represents bandgap energy of the material, e is 
the dilatational strain (or volumetric strain), and T0 is the standard reference temperature where the deviation 
is assumed negligible. The mechanical-thermal coupling is introduced through the term γT T0uk,kt, which 
reflects the heat generated due to volumetric strain rate, emphasizing the bidirectional interaction between 
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elastic deformation and temperature variation. This formulation captures essential physical mechanisms such as 
photo-induced heating, thermally driven deformation, and their feedback loop in semiconductors, as discussed 
in previous studies on opto-thermoelastic coupling. Following the classical formulations of photoacoustic wave 
propagation presented by Wang et al.35 and further refined through detection approaches by Brueck et al.36 
and Lang et al.37, the governing equation for the acoustic pressure P (x, y, t) in the semiconductor medium, 
accounting for temperature variations, is written as:

	
P,kk − 1

C2
s

P,tt − CrβT,tt = 0.� (9)

where Cr  is the material’s adiabatic index, Cs is the thermomechanical wave speed in the material, and β is the 
material’s bulk thermal expansion parameter. This equation highlights the coupling between the thermal field 
and the resulting acoustic waves, an essential feature in optoacoustic and photothermal modeling. It models the 
photoacoustic wave propagation initiated by laser-induced thermal excitation in semiconductors.

The influence of the magnetic field
Consideering the magnetic field constant H = H0
In the present model, the influence of electromagnetic fields on the semiconductor medium is incorporated 
by considering the directional behavior of the associated field vectors and velocity components. The magnetic 
field H⃗  is assumed to be applied along the z − axis, i.e., H⃗ = (0, 0, H0), which is perpendicular to the plane 
of motion defined by the x − y axis. The material’s motion is confined to this plane, and the velocity vector 
is described by u⃗ = (u, v, 0). The electric current density vector J⃗  is defined as J⃗ = (Jx, Jy, Jz), where all 
components are potentially affected by the induced electromagnetic interactions due to photo-excitation and 
mechanical coupling. Under these assumptions, the electromagnetic behavior of the medium is governed by 
Maxwell’s equations, which describe the interaction between the electric field E⃗, the magnetic perturbation field 
h⃗, and the velocity of the material22,28,29:

	
∇ ·

→
h = 0, ∇ × −→

E = −µ0
∂

−→
h

∂t
,

−→
J = ∇ ×

−→
h − ε0

∂
−→
E

∂t
,

−→
E = −µ0(−→u t × −→

H ).� (10)

Maxwell’s stress tensor τij  is essential in quantifying the stress induced in a medium due to a magnetic field. It 
is expressed as:

	 τij = µ0(Hihj + Hjhi − Hkhkδij).� (11)

This tensor describes how the magnetic field exerts magnetic body forces on the material, contributing to its 
internal stress state. These forces are especially relevant in conducting or semiconducting media. Hkhkδij  
ensures isotropy without directional magnetic anisotropy. To assess the electromagnetic influence on the 
semiconductor medium, we begin by incorporating the directional assumptions for the induced electric field 
E⃗, magnetic perturbation h⃗, and current density J⃗ . Based on the background magnetic field H⃗ = (0, 0, H0) 
oriented along the z − axis and the mechanical velocity field u⃗ = (u, v, 0), the field expressions are obtained 
as:

	
E⃗ = (−µ0vtH0, µ0utH0, 0), J⃗ =

(
∂h

∂y
+ ε0µ0vttH0, − ∂h

∂x
− ε0µ0uttH0, 0

)
, h⃗ = (0, 0, −H0∇ · u⃗).� (12)

These relations are derived by applying Maxwell’s equations under the slowly moving media assumption, where 
the electromagnetic fields are influenced by both material deformation and charge transport phenomena. 
Subsequently, the Lorentz force per unit volume exerted by the electromagnetic fields is evaluated using the 
classical expression:

	 F⃗ = µ0(J⃗ × H⃗).� (13)

The expansion of (J⃗ × H⃗) can be determined as:

	
J × H =

∣∣∣∣∣
i j k

Jx Jy Jz

0 0 H0

∣∣∣∣∣ = (H0Jy, −H0Jx, 0) .� (14)

Substitute J⃗x, J⃗y  from (11):

	
J × H =

(
H0

(
−∂h

∂x
− ε0µ0H0u̇

)
, −H0

(
∂h

∂y
+ ε0µ0H0v̇

)
, 0

)
.� (15)

Multiply by µ0 and substitute with (15) into (13) the electromagnetic force vector F⃗  can be expressed, consistent 
with magneto-thermoelastic formulations under electromagnetic interactions in semiconductors22,23,28,29:
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F⃗ =

(
−µ0H0

∂h

∂x
− ε0µ2

0H2
0 utt, −µ0H0

∂h

∂y
− ε0µ2

0H2
0 vtt, 0

)
.� (16)

This Lorentz force formulation provides a fundamental mechanism for coupling semiconductors’ electromagnetic 
and thermoelastic fields, especially under photo-excitation and external magnetic bias, as demonstrated 
in prior studies. Thermal and carrier fields influence mechanical motion, and the Lorentz force results from 
electromagnetic effects.

Considering the magnetic field varying with time
If the background field is considered time-varying, i.e., H⃗ = H⃗(t), Maxwell’s equations take the more general 
forms:

	
∇ × E = −µ0

∂H
∂t

− µ0
∂h
∂t

, ∇ × h = µ0J + µ0ε0
∂E
∂t

,� (17)

where additional induced electric field and displacement current terms appear. Consequently, the Lorentz force 
becomes:

	 F⃗ = µ0(J⃗ × H⃗(t)).� (18)

with J⃗  now modified by both the temporal derivative of H⃗ = H⃗(t) and displacement currents. This introduces 
stronger coupling between the electromagnetic, thermal, and elastic subsystems, potentially leading to modified 
wave dispersion, resonance phenomena, and enhanced absorption. Therefore, assuming a constant background 
field provides a tractable framework that isolates the essential coupling mechanisms, while the time-varying 
field case introduces additional induced terms that represent an important direction for future studies. Thermal 
gradients affect Carrier generation and diffusion, while temperature evolution is driven by heat conduction, 
carrier recombination, and deformation-induced heat sources. Additionally, acoustic pressure propagation is 
thermally coupled with temperature changes. Following earlier formulations in generalized thermoelasticity 
and photoacoustic theory, as presented by Alzahrani and Abbas1, extended through nonlocal photo-thermal 
excitation frameworks by Kumar et al.3, and further supported by photoacoustic investigations of Wang et al.35 
and Brueck et al.36, the system of equations in two spatial dimensions is given by:

	
ρ

(
1 − ξ2

1∇2) ∂2u

∂t2 = µ∇2u + (λ + µ)
(

∂2u

∂x2 + ∂2v

∂x∂y

)
− γT

∂T

∂x
− γN

∂N

∂x
− µ0H0

∂h

∂x
− ε0µ2

0H2
0

∂2u

∂t2 ,� (19)

	
ρ

(
1 − ξ2

1∇2) ∂2v

∂t2 = µ∇2v + (λ + µ)
(

∂2u

∂x∂y
+ ∂2v

∂y2

)
− γT

∂T

∂y
− γN

∂N

∂y
− µ0H0

∂h

∂y
− ε0µ2

0H2
0

∂2v

∂t2 ,� (20)

	

∂N

∂t
= DE

(
∂2N

∂x2 + ∂2N

∂y2

)
− N

τ
+ κT,� (21)

	
ρCe

∂T

∂t
= k

(
∂2T

∂x2 + ∂2T

∂y2

)
+ Eg

τ
N + γT T0

(
∂2u

∂x∂t
+ ∂2v

∂y∂t

)
,� (22)

	
∂2P

∂x2 + ∂2P

∂y2 − 1
C2

s

∂2P

∂t2 − Crβ
∂2T

∂t2 = 0.� (23)

In line with the generalized constitutive stress relations for thermoelastic semiconductors, as established by 
Alzahrani and Abbas1, further extended through fractional-order formulations by Hobiny and Abbas4, and 
applied in nonlocal cylindrical media by Abouelregal11, the stress components in two dimensions are expressed 
as:

	
σxx = (λ + 2µ)∂u

∂x
+ λ

∂v

∂y
− γT T − γN N,� (24)

	
σyy = (λ + 2µ)∂v

∂y
+ λ

∂u

∂x
− γT T − γN N,� (25)

	
σxy = µ

(
∂u

∂y
+ ∂v

∂x

)
.� (26)

Dimensionalization and mathematical formulation
To facilitate the mathematical treatment of the two-dimensional displacement field (u, v) in the x − y plane, 
two scalar potential functions Π(x, y, t) and Ψ(x, y, t) are introduced. Following approaches employed in 
photo-thermoelastic analyses by Mondal and Sur2 and Geetanjali et al.5, these potentials enable the displacement 
components to be expressed as:
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u = ∂Π

∂x
+ ∂Ψ

∂y
, v = ∂Π

∂y
− ∂Ψ

∂x
.� (27)

This simplifies the governing equations by reducing the second-order vector partial differential equations system 
into a more manageable scalar form. A non-dimensionalization process is applied to the spatial coordinates, 
displacement fields, temperature, carrier density, and potential functions to simplify the analysis further and 
reduce the number of physical parameters. The dimensionless variables are defined by3,16:

	

(x′, y′, u′, v′) =(x, y, u, v)
CT t∗ , (T ′, N ′) = (γT T, γN N)

2µ + λ
, (Π′, Ψ′) = (Π, Ψ)

(CT t∗)2 ,

t′ = t

t∗ , σ′ = σ

µ
, ξ′

1 = ξ1

CT t∗ , P ′ = P

PO
, t∗ = k

ρCeC2
T

, C2
T = 2µ + λ

ρ
.

� (28)

This transformation transforms the coupled photo-thermoelastic system into a dimensionless framework, 
reducing complexity and exposing the relative influence of key physical parameters such as thermal expansion, 
carrier diffusion, and mechanical moduli. After applying the non-dimensionalization transformations to the 
physical system, the governing equations describing the coupled fields displacement potential Π, transverse 
displacement potential Ψ, carrier density N , temperature T , and acoustic pressure P  reduce to the following 
dimensionless form:

	
β3∇2Π − β1

(
Rh − ξ2

1∇2) ∂2Π
∂t2 − β1(T + N) = 0,� (29)

	
∇2ψ − a1

(
Rh − ξ2

1∇2) ∂2ψ

∂t2 = 0,� (30)

	

(
∇2 − a5

∂

∂t
− a6

)
N + a7T = 0,� (31)

	

(
∇2 − ∂

∂t

)
T + a8N + a9∇2

(
∂Π
∂t

)
= 0,� (32)

	

(
∇2 − a10

∂2

∂t2

)
P − a11

∂2T

∂t2 = 0,� (33)

To describe the internal forces within the medium under the influence of photo-thermoelastic coupling, the 
dimensionless stress components σxx, σyy , and σxy  are expressed in terms of the displacement potential 
functions Π and Ψ, as well as the thermal and carrier fields T  and N .

	
σxx = a1

∂2Π
∂x2 + a2

∂2Π
∂y2 + 2 ∂2Ψ

∂y∂x
− a1(T + N),� (34)

 

	
σyy = a1

∂2Π
∂y2 + a2

∂2Π
∂x2 − 2 ∂2Ψ

∂y∂x
− a1(T + N),� (35)

	
σxy = 2 ∂2Π

∂x∂y
+ ∂2Ψ

∂y2 − ∂Ψ
∂x2 .� (36)

where 
β1 = 2µ + λ, Rh = 1 + ϵ0µ2

0H2
0

ρ
, β3 = 2µ + λ + µ0H2

0 , a1 = 2µ+λ
µ

, a5 = k
ρCeDE

, a6 = t∗k
τρCeDE

,

a7 = κt∗kγN
ρCeDEγT

, a8 = Eg t∗ γT

ρCeτγN
, a9 = γ2

T T0 t∗

ρk
, a10 = C2

T

C2
s

, a11 = C2
T Cr β(2µ+λ)

P0γT
, a2 = λ

µ  Several critical 

dimensionless parameters govern the material properties and coupling interactions among the thermal, 
mechanical, and carrier fields within the non-dimensional framework.

•	 β1 is the longitudinal elastic modulus, related to the Lamé constants µ and λ.
•	 Rh is the dimensionless electromagnetic stiffness, determined by permittivity ε0, permeability µ0, and mag-

netic field H0.
•	 β3 is the total coupling parameter, accounting for both elastic and magnetic stiffness.
•	 a1 is the ratio of bulk to shear modulus, defining anisotropic elastic behavior.
•	 a5 the thermal diffusivity coefficient combines thermal conductivity, density, and specific heat.
•	 a6 is the dimensionless recombination-loss factor for carriers via heat.
•	 a7 is the thermo-carrier coupling coefficient, describing heat interaction with carrier density.
•	 a8 is the heat generation parameter, associated with energy released by carrier recombination.
•	 a9 is the photo-thermoelastic coupling coefficient, linking temperature to elastic strain rate.
•	 a10 is the normalized wave speed squared, comparing fiber wave speed CT  to acoustic speed Cs.
•	 a11 is the acoustic–thermal coupling term, quantifying the influence of pressure on temperature through 

elasticity.
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Analytical representation of the normal mode method
The normal mode method is applied to obtain analytical insight into the system by assuming exponential solutions 
for the field variables, a technique widely used in wave propagation and stability analysis of thermoelastic 
media2,16. Specifically, each dependent variable (temperature T , carrier density N , displacement potentials Π, 
Ψ, and acoustic pressure P ) is expressed in the form:

	 (T, N, Π, Ψ, P ) = (T ∗, N∗, Π∗, Ψ∗, P ∗)eωt+iby.� (37)

Here, ω is the complex circular frequency and b is the wave number in the y − direction. The resulting system 
of ordinary differential equations (ODEs) presented in Eqs. (38–42) allows for a thorough analysis of wave 
behavior, stability characteristics, and the effects of thermoelastic, photoacoustic, and semiconductor coupling 
mechanisms. In the application of the normal mode method, all field variables are expressed in exponential 
form (T, N, Π, Ψ, P ) ∼ eωt+iby , consistent with earlier formulations for wave propagation in generalized 
thermoelasticity2,16. This choice is standard in stability analysis of linear systems because exponential 
functions represent harmonic modes that naturally arise as solutions of linear PDEs with constant coefficients. 
Mathematically, this assumption reduces the governing equations to an algebraic eigenvalue problem, enabling 
the derivation of dispersion relations. Physically, the exponential form captures both oscillatory and decaying/
growing behavior, with the real part of ω associated with wave propagation and resonance, while the imaginary 
part indicates the stability of the system. Thus, adopting exponential modes not only facilitates the derivation 
of closed-form solutions but also provides direct insight into the stability and resonance characteristics of the 
coupled photo–acoustic–thermoelastic medium.

	 (D2 − E1)Π∗ − α1(T ∗ + N∗) = 0,� (38)

	
(
D2 − E2

)
Ψ∗ = 0,� (39)

	
(
D2 − E3

)
N∗ + a7T ∗ = 0,� (40)

	
(
D2 − α2

)
T ∗ + α3N∗ + α4Π∗ = 0,� (41)

	
(
D2 − E7

)
P ∗ − E8T ∗ = 0.� (42)

The stress components obtained by applying the normal mode method can be reformulated using the amplitude 
functions. These stress expressions, corresponding to the transformed fields, are detailed below:

	 σ∗
xx = (a1D2 − a2b2)Π∗ + 2ibDΨ∗ − a1(T ∗ + N∗),� (43)

	 σ∗
yy = (a2D2 − a1b2)Π∗ − 2ibDΨ∗ − a1(T ∗ + N∗),� (44)

	 σ∗
xy = −(D2 + b2)Ψ∗ + 2ibDΠ∗.� (45)

where α1 = β1
β4

, E1 = b2 + α1ω2Rh, E2 = b2 + a1ω2Rh

1+a1ξ2
1ω2 , E3 = b2 + a5ω + a6, E4 = b2 + ω,E5 = a9ω

α2 = E4 + E5α1, α3 = a8 + E5α1, α4 = E5ω2α1Rh, E7 = b2 + a10ω2,E8 = a11ω2, E6 =
√

E2.

Matrix differential equation formulation and solution
The matrix differential equation technique offers an efficient and systematic approach to solve the system of 
governing Eqs. (38–42). By reformulating the coupled partial differential equations into a first-order vector–
matrix system, one can leverage linear algebra tools such as eigenvalue and eigenvector analysis to gain insight 
into the stability and dynamic behavior of the physical system16,30.

	
dV⃗

dx
= AV⃗ ,� (46)

where the state vector V⃗  and the coefficient matrix A can be defined as:

	

V⃗ =
(

T ∗, N∗, Π∗, P ∗,
dT ∗

dx
,

dN∗

dx
,

dΠ∗

dx
,

dP ∗

dx

)T

,

A =




0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

B51 B52 B53 B54 0 0 0 0
B61 B62 B63 B64 0 0 0 0
B71 B72 B73 B74 0 0 0 0
B81 B82 B83 B84 0 0 0 0




,

� (47)

where 
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B51 = α2, B52 = −α3, B53 = −α4, B54 = 0, B61 = −a7, B62 = E3, B63 = 0, B64 = 0, B71 = B72 = α1, 
B73 = E1, B74 = 0, B81 = E8, B82 = 0, B83 = 0, B84 = E7.

After formulating the coupled system in the vector–matrix differential form as shown in Eq. 46, the eigenvalue 
problem is addressed by solving the associated characteristic equation. This leads to the following algebraic 
equation for the eigenvalues λ:

	 λ8 − C1λ6 + C2λ4 − C3λ2 + C4 = 0.� (48)

where

	

C1 = −B51 − B62 − B73 − B84,

C2 = B51B62 + B51B73 + B51B84 − B52B61 − B53B71 + B62B73 + B62B84 + B73B84,

C3 = −B51B62B73 − B51B62B84 − B51B73B84 + B52B61B73 + B52B61B84 − B53B61B72 + B53B62B71

+B53B71B84 − B62B73B84,

C4 = B84(B51B62B73 − B52B61B73 − B53B61B72 − B53B62B71)





.� (49)

Equation (48) represents an eighth-order characteristic equation arising from the coupled system of differential 
equations. The nature of the roots of this equation depends on the physical parameters involved, particularly 
those related to thermoelastic and thermo-energy coupling, relaxation times, and thermal diffusivity. Under 
physically realistic parameter values (as adopted in the numerical simulations), the characteristic equation 
yields four distinct pairs of complex roots, reflecting the oscillatory-decaying nature of the solution modes. Out 
of these eight roots, only the four roots with negative real parts are retained, as they correspond to decaying 
modes that satisfy the boundary conditions and physical constraints (e.g., finite values at infinity or within a 
bounded domain). The remaining three roots with positive real parts are excluded because they lead to non-
physical exponentially growing solutions. As a result, Eq. 51 includes only four exponential terms corresponding 
to the retained roots with decaying behavior. These modes capture the dominant physical response of the 
system without introducing instabilities or divergence, in line with the standard practice in normal mode and 
eigenvalue-based analyses for such problems. This choice ensures the physical plausibility and mathematical 
well-posedness of the solution, especially when modelling bounds physical systems or semi-infinite domains 
with absorbing conditions at the far boundary. The roots of the characteristic formula Eq. 48, which represent 
the eigenvalues, are:λ = λ1, λ = λ2, λ = λ3, λ = λ4, λ = λ5, λ = λ6, λ = λ7, λ = λ8. Conversely, the 
eigenvectors in this instance are represented by Q⃗ = [q1, q2, q3, q4, q5, q6, q7, q8]T  corresponding to the 
eigenvalues λj(j = 1, 2, 3, 4, 5, 6, 7, 8), which can be given as: 

	
q1 = 1, q3 = −B71(B62 − λ2) − B72B61

(B62 − λ2)(B73 − λ2) , q2 = −
(
β51 − λ2)

+ q3B53

B52
, q4 = − B81

B84 − λ2 , q5 = λq1, q6 = λq2, q7 = λq3, q8 = λq4.� (50)

Under these conditions, the vector solution can take the linear form as follows:

	
V⃗ =

4∑
j=1

ZjQ⃗je−λj x.� (51)

Utilizing the principle of superposition, the expressions for the physical variables can be represented in the 
following linear form:

	

T ∗ =
4∑

j=1

ZjQ1
j e−λj x,

N∗ =
4∑

j=1

ZjQ2
j e−λj x,

Π∗ =
4∑

j=1

ZjQ3
j e−λj x,

P ∗ =
4∑

j=1

ZjQ4
j e−λj x





.� (52)

On the other hand, since Eq. (39) governing Ψ∗ is uncoupled and homogeneous, its solution takes the simpler 
form:

	 Ψ∗ = Z5e−E6x.� (53)

The displacements u∗(x) and v∗(x) are derived by substituting the potentials into their definitions. They are 
expressed using normal mode representation as:
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u∗(x) = DΠ∗ + ibΨ∗ =

4∑
i=1

H6iZie
−λix + g4Z5e−E6x,� (54)

	
v∗(x) = ibΠ∗ − DΨ∗ =

4∑
i=1

H7iZie
−λix + g5Z5e−E6x.� (55)

Using the derived expressions for the displacement potentials, the stress components can be reformulated in 
terms of the amplitude functions and their corresponding derivatives as given below:

	
σ∗

xx =
4∑

j=1

H3jZje−λj x + g1Z5e−E6x,� (56)

	
σ∗

yy =
4∑

j=1

H4jZje−λj x + g2Z5e−E6x,� (57)

	
σ∗

xy =
4∑

j=1

H5jZje−λj x + g3Z5e−E6x.� (58)

where 

	

H3j = (a1λ2
j − a2b2)Q3

j − a1(1 + Q2
j ), H4j = (a2λ2

j − a1b2)Q3
j − a1(1 + Q2

j ), H5j = −2ibλjQ3
j ,

H6j = −λjQ3
j , H7j = ibQ3

j , g1 = −2iE6, g2 = 2ibE6, g3 = − (E2 + b2), g4 = ib, g5 = E6.
� (59)

Boundary conditions
The boundary assumptions follow earlier treatments in photo-thermoelastic and magneto-thermoelastic 
semiconductors, where rigid boundaries, harmonic excitation, and vanishing conditions at infinity are 
applied for analytical tractability1,2,23. At the illuminated surface x = 0, the medium is assumed rigid in both 
directions, preventing displacement, while the normal stress is subjected to harmonic optical excitation and the 
photoacoustic fields are modelled as harmonic in time. At x → ∞, all field variables vanish, ensuring stability 
and convergence. No additional effects such as radiation or partial absorption are considered, providing a 
simplified framework for coupled thermoelastic, acoustoelastic, and carrier dynamics.

	i	 Axial displacement constraint:

	 u(0, y, t) = 0.� (60)

	ii	 Transverse displacement constraint:

	 v(0, y, t) = 0.� (61)

	iii	 Normal stress under harmonic excitation:

	 σxx(0, y, t) = σ0eωt+iby.� (62)

	iv	 Photoacoustic pressure excitation:

	 P (0, y, t) = P0eωt+iby.� (63)

	v	 Carrier generation due to illumination:

	 N(0, y, t) = N0eωt+iby.� (64)

These five conditions form a linear system that enables evaluation of the amplitude constants Zi. Substituting 
them into the general solution yields the complete field response of the medium under coupled photo–acoustic–
thermoelastic excitation.

Stochastic analysis for the main functions
Stochastic carrier density
The constants Zj(j = 1, 2, 3, 4, 5) are initially defined as linear functions of the deterministic boundary 
carrier density N1(t), such that:

	 Z1 = A11 + N0A21, Z2 = A12 + N0A22, Z3 = A13 + N0A23, Z4 = A14 + N0A24.� (65)
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The boundary carrier density is modelled as a stochastic process to incorporate uncertainty in the thermal input, 
consistent with established approaches in stochastic process theory38,42,43. Specifically, the boundary condition 
N0(t) is expressed as the sum of a deterministic function N1(t) and a stochastic fluctuation φ0(t), yielding:

	 N0(t) = N1 + φ0.� (66)

This process is assumed to be zero-mean, satisfying:

	 E[φ0(t)] = 0.� (67)

The function φ0(t)) is taken to be a white noise process on the surface38,43. Consequently, the system becomes 
stochastic, as all physical fields inherit randomness from this perturbed boundary condition. The ensemble mean 
of the perturbed carrier density field converges with the deterministic solution as the number of realizations 
increases. That is,

	
lim

n→∞

1
n

n∑
l=1

N(x, y, t) + φl
0(t)Z(x, y, t) = N(x, y, t).� (68)

where n is the number of realizations, N(x, y, t) is the deterministic carrier density field, and φl
0 represents 

the lth realization of the white-noise process. This ensures preservation of the mean temperature field in the 
limit of large n. Since the noise has zero mean E[φ0(t)] = 0, the mean of the carrier density field over all 
realizations equals the deterministic solution.

That is,

	 E[N(x, y, t)] = Nd(x, y, t).� (69)  

This indicates that the mean behavior of the carrier density distribution is preserved, while the random 
component only affects the variance and higher-order statistical moments38,42,43. The expression is further 
written in terms of exponential decay modes associated with the solution to the governing differential equation. 
Each mode includes both constant and boundary-dependent coefficients,

	
N(x, y, t) =

4∑
j=1

ZjQ2
j e−λj x+ωt+iby.� (70)

Applying Eq. (65) and inserting them into Eq. (70) the carrier density distribution is split into two parts,Γ(x, y, t) 
is the deterministic part, Z(x, y, t)N0(t) is the influence function (or transfer kernel), which describes how the 
boundary input N0(t), including its stochastic component φ0, propagates into the domain, so:

	 N(x, y, t) = Γ(x, y, t) + Z(x, y, t)N0(t).� (71)

where the two components Γ(x, y, t) and Z(x, y, t) are explicitly defined as:

	
Γ(x, y, t) =

4∑
j=1

A1jQ2
j e−λj x+ωt+iby,� (72)

	
Z(x, y, t) =

4∑
j=1

A2jQ2
j e−λj x+ωt+iby.� (73)

The coefficients Aij  are determined analytically (as mentioned in Appendix A) and depend on the system’s 
physical and geometrical parameters. To explicitly account for the stochastic boundary’s influence, the 
deterministic boundary condition was incorporated by substitute with N0(t) in the solution expression from 
Eq. (71) This yields the updated form of the carrier density field:

	 N(x, y, t) = (Γ(x, y, t) + Z(x, y, t)N1(t)) + Z(x, y, t)φ0.� (74)

The stochastic fluctuation φ0 thus acts as a multiplicative noise term, modulated by the spatial–temporal 
response kernel, and introduces uncertainty into the carrier density distribution across the domain. To simplify 
the representation of the carrier density field, the solution is split into two distinct terms:

	 N(x, y, t) = Nd(x, y, t) + Z(x, y, t)φ0(t),� (75)

where the deterministic contribution Nd(x, y, t) is defined as:

	 Nd(x, y, t) = Γ(x, y, t) + Z(x, y, t)N1(t).� (76)

Scientific Reports |        (2025) 15:40403 10| https://doi.org/10.1038/s41598-025-22132-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


This separation isolates the random fluctuation φ0(t), which affects the system only through the multiplicative 
modulation by the response function Z(x, y, t). Such a form is handy for statistical analysis, especially for 
computing the mean and variance of the carrier density field. The interaction between a system response 
function and a random input can be expressed via the convolution integral in linear systems with stochastic 
boundary input. Specifically, the convolution of Z(x, y, t) and φ0(t) is given by:

	

Z(x, y, t)φ0(t) =
tˆ

0

Z(x, y, t − u)φ0(u)du.� (77)

This formulation describes how the history of the stochastic process φ0(t) influences the carrier density field 
through the impulse response Z(x, y, t).  It is foundational to computing statistical measures such as variance 
and the stochastic envelope. The carrier density field N(x, y, t) can be expressed as:

	

N(x, y, t) = Nd(x, y, t) +
tˆ

0

Z(x, y, t − u)φ0(u)du.� (78)

Here, Nd(x, y, t) denotes the deterministic component of the carrier density field. We can rewrite the equation 
using the Wiener process W (u) yielding,

	

N(x, y, t) = Nd(x, y, t) +
tˆ

0

Z(x, y, t − u)dW (u).� (79)

This formulation provides a mathematically rigorous description of how stochasticity at the boundary propagates 
through the system. Squaring Eq. (78) we get:

	

[N(x, y, t)]2 =[Nd(x, y, t)]2 +
tˆ

0

tˆ

0

φ0(u1)φ0(u2)Z(x, y, t − u1)Z(x, y, t − u2)du1du2

+ 2
tˆ

0

Nd(x, y, t)φ0(u)Z(x, y, t − u)du.

� (80)

Taking the expectation on both sides and using properties of stochastic integrals, we obtain:

	

E[N(x, y, t)2] =[E (N(x, y, t))]2 +
tˆ

0

tˆ

0

E[φ0(u1)φ0(u2)Z(x, y, t − u1)Z(x, y, t − u2)du1du2

+ 2Nd(x, y, t)
tˆ

0

E[φ0(u)]Z(x, y, t − u)du.

� (81)

This simplification is made possible by recalling that:

	 E[φ0(t)] = 0, E[φ0(u1)φ0(u2)] = δ(u1 − u2).� (82)

To compute the variance of the stochastic carrier density field N(x, y, t), we begin by evaluating the second 
moment of N(x, y, t), which includes a deterministic part and a stochastic convolution integral. Applying 
Eq. (82) into Eq. (81), we can get the following relation,

	

V ar[N(x, y, t)] =
tˆ

0

Z(x, y, t − u1)2du1.� (83)

Introducing the substitution ℑ = t − u1, the integral is transformed, and the variance is equivalently expressed 
in terms of ℑ as

	

V ar[N(x, y, t)] =
tˆ

0

[Z(x, y, ℑ)]2dℑ.� (84)

To guarantee the convergence of the carrier density variance, suitable boundary conditions are imposed 
on the stochastic field N(x, y, t). At the excitation boundary x = 0, the carrier density takes the form 
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N(0, y, t) = Γ(0, y, t) + Z(0, y, t)N0(t) = N0(t)eωt+iby , where N0​ is the equilibrium carrier concentration 
and eωt+iby  represents the harmonic modulation in time and space. This condition implies Γ(0, y, t) and 
Z(0, y, t) = eωt+iby , thereby defining the stochastic boundary input. At the far-field boundary, the condition 
lim

x→∞
N(x, y, t) = 0 is enforced, reflecting the physical requirement that carrier perturbations vanish deep 

within the medium, while the kernel satisfies lim
x→∞

Z(x, y, t) < ∞, ensuring that stochastic fluctuations remain 
bounded. Collectively, these conditions constrain the behavior of the system so that the stochastic integrals in 
the variance expression remain finite, thereby ensuring the convergence of the carrier density variance across 
the domain.

Distribution of temperature (thermal waves)
The temperature field T (x, y, t) is influenced by the randomness introduced through the stochastic boundary 
temperature. Based on the deterministic solution form, the temperature can initially be written using the 
constants Zn as follows:

	 T (x, y, t) = (Z1e−λ1x + Z2e−λ2x + Z3e−λ3x + Z4e−λ3x)e(ωt+iby).� (85)

By substituting the expression of the constants Zn in terms of the boundary input N1 + φ0 and applying the 
same transformation used in the stochastic carrier density analysis, the temperature field is expressed as:

	 T (x, y, t) = Td(x, y, t) + G(x, y, t)φ0(t).� (86)

where Td(x, y, t), is the deterministic component given by:

	
Td(x, y, t) =

4∑
j=1

A1je−λj x+ωt+iby + G(x, y, t)N1(t).� (87)

And G(x, y, t), is the stochastic kernel function defined by:

	
G(x, y, t) =

4∑
j=1

A2je−λj x+ωt+iby.� (88)

Assuming φ0(t) is a white-noise stochastic process satisfying Eq. (82), the variance of the stochastic temperature 
becomes:

	

V ar[T (x, y, t)] =
tˆ

0

[G(x, y, t − u1)]2du1.� (89)

By changing variables using ℑ = t − u1 we obtain:

	

V ar[T (x, y, t)] =
tˆ

0

[G(x, y, ℑ)]2dℑ,� (90)

This integral quantifies the contribution of the boundary randomness to the overall uncertainty in the 
temperature field.

Stochastic horizontal and vertical displacements
Horizontal displacement
The horizontal displacement u(x, y, t) is influenced by the stochastic boundary carrier density N1 + φ0 and is 
initially given by:

	
u(x, y, t) =

4∑
j=1

H6jZje−λj x+ωt+iby + g4Z5e−E6x+ωt+iby.� (91)

Substituting the expressions of Zj  and applying the stochastic boundary, the displacement becomes:

	 u(x, y, t) = ud(x, y, t) + X(x, y, t)φ0(t).� (92)

where ud(x, y, t), is the deterministic component given by:

	
ud(x, y, t) =

(
4∑

j=1

H6jA1je−λj x+ωt+iby + g4A15e−E6x+ωt+iby

)
+ X (x, y, t) N1(t).� (93)
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And X(x, y, t), is the stochastic kernel function defined by:

	
X(x, y, t) =

4∑
j=1

H6jA2je−λj x+ωt+iby + g4A25e−E6x+ωt+iby.� (94)

Since the displacement u(x, y, t) includes a stochastic component due to the random boundary carrier density, 
its variance can be computed as:

	

V ar[u(x, y, t)] =
tˆ

0

[X(x, y, t − u1)]2du1.� (95)

By changing variables using ℑ = t − u1 we obtain:

	

V ar[u(x, y, t)] =
tˆ

0

[X(x, y, ℑ)]2dℑ.� (96)

Vertical displacement  The vertical displacement solution can initially be written in its expanded linear form as:

	
v(x, y, t) =

(
4∑

j=1

H7jZje−λj x+ωt+iby + g5Z5e−E6x+ωt+iby

)
.� (97)

 

Substituting the expression for the constants Zj  in terms of the deterministic boundary condition N1(t) and 
the stochastic fluctuation φ0(t), and inserting them into Eq. (97), the vertical displacement is reformulated as:

	 v(x, y, t) = vd(x, y, t) + Y (x, y, t)φ0(t).� (98)

where vd(x, y, t), is the deterministic component given by:

	
vd(x, y, t) =

(
4∑

j=1

H7jA1je−λj x+ωt+iby + g5A15e−E6x+ωt+iby

)
+ Y (x, y, t)N1(t).� (99)

And Y (x, y, t), is the amplitude of the stochastic response given by:

	
Y (x, y, t) =

4∑
j=1

H7jA2je−λj x+ωt+iby + g5A25e−E6x+ωt+iby.� (100)

The variance of the vertical displacement becomes:

	

V ar[v(x, y, t)] =
tˆ

0

[Y (x, y, t − u1)]2du1.� (101)

By changing variables using ℑ = t − u we obtain:

	

V ar[v(x, y, t)] =
tˆ

0

[Y (x, y, ℑ)]2dℑ.� (102)

This provides a measure of the uncertainty in vertical displacement due to random fluctuations on the boundary.

Stochastic normal and shear stresses
Stochastic of normal stresses
The normal stress component σxx(x, y, t) can be expressed in its expanded form as:

	
σxx(x, y, t) =

(
4∑

j=1

H3jZje−λj x+ωt+iby + g1Z5e−E6x+ωt+iby

)
.� (103)

By substituting the expressions of Zj ​ in terms of the deterministic and stochastic parts of the boundary carrier 
density, and applying the transformation N1 + φ0, the stress function becomes:
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	 σxx(x, y, t) = σd(x, y, t) + S(x, y, t)φ0(t).� (104)

where σd(x, y, t), is the deterministic component given by:

	
σd(x, y, t) =

(
4∑

j=1

H3jA1je−λj x+ωt+iby + g1A15e−E6x+ωt+iby

)
+ S(x, y, t)N1(t).� (105)

And S(x, y, t), is the amplitude of the stochastic response given by:

	
S(x, y, t) =

(
4∑

j=1

H3jA2je−λj x+ωt+iby + g1A25e−E6x+ωt+iby

)
.� (106)

The variance of the stress component due to thermal randomness is given by:

	

V ar[σxx(x, y, t)] =
tˆ

0

[S(x, y, ℑ)]2dℑ.� (107)

Stochastic of shear stress
Similarly, the shear stress component σxy(x, y, t) can be represented in its linear form as:

	
σxy(x, y, t) =

4∑
j=1

H5jZje−λj x+ωt+iby + g3Z5e−E6x+ωt+iby.� (108)

Substituting the stochastic boundary condition

	 σxy(x, y, t) = τd(x, y, t) + R(x, y, t)φ0(t).� (109)

where τd(x, y, t), is the deterministic component given by:

	
τd(x, y, t) =

(
4∑

j=1

H5jA1je−λj x+ωt+iby + g3A15e−E6x+ωt+iby

)
+ R(x, y, t)N1(t).� (110)

And R(x, y, t), is the amplitude of the stochastic response given by:

	
R(x, y, t) =

4∑
j=1

H5jA2je−λj x+ωt+iby + g3A25e−E6x+ωt+iby.� (111)

The variance due to the stochastic fluctuation is:

	

V ar[σxy(x, y, t)] =
tˆ

0

[R(x, y, ℑ)]2dℑ.� (112)

Distribution of acoustic pressure
The acoustic pressure field P (x, y, t) is influenced by the randomness introduced through the stochastic 
boundary condition. Based on the deterministic solution form, the acoustic pressure can initially be written 
using the constants Zn as follows:

	
P (x, y, t) =

4∑
j=1

Q4
j Zje−λj x+ωt+iby � (113)

By substituting the expression of the constants Zj  in terms of the boundary input N1 + φ0 and applying the 
same transformation used in the stochastic carrier density analysis, the acoustic pressure field is expressed as:

	 P (x, y, t) = Pd(x, y, t) + J(x, y, t)φ0(t).� (114)

where Pd(x, y, t), is the deterministic component given by:

	
Pd(x, y, t) =

4∑
j=1

A1jQ4
j e−λj x+ωt+iby + J(x, y, t)N1(t).� (115)
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And J(x, y, t), is the stochastic kernel function defined by:

	
J(x, y, t) =

4∑
j=1

A2jQ4
j e−λj x+ωt+iby � (116)

Assuming φ0(t) is a white-noise stochastic process satisfying Eq. (82), the variance of the stochastic acoustic 
pressure becomes:

	

V ar[P (x, y, t)] =
tˆ

0

[J(x, y, t − u1)]2du1.� (117)

By changing variables using ℑ = t − u1 we obtain:

	

V ar[P (x, y, t)] =
tˆ

0

[J(x, y, ℑ)]2dℑ,� (118)

This integral quantifies the contribution of the boundary randomness to the overall uncertainty in the acoustic 
pressure field.

Distribution of dilation strain
The dilation strain field e(x, y, t) is influenced by the randomness introduced through the stochastic boundary 
condition. Based on the deterministic solution form, the dilation strain can initially be written using the 
constants Zn as follows:

	
e(x, y, t) =

4∑
j=1

(ibH7j − H6jmj) Zje−λj x+ωt+iby + (ibg5 − E6g4)Z5e−E6x+ωt+iby � (119)

By substituting the expression of the constants Zj  in terms of the boundary input N1 + φ0 and applying the 
same transformation used in the stochastic carrier density analysis, the acoustic pressure field is expressed as: 

	 e(x, y, t) = ed(x, y, t) + I(x, y, t)φ0(t).� (120)

where ed(x, y, t), is the deterministic component given by:

	
ed(x, y, t) =

4∑
j=1

A1j (ibH7j − H6jmj) e−λj x+ωt+iby + A15 (ibg5 − E6g4) e−E6x+ωt+iby + I(x, y, t)N1(t).�(121)

And I(x, y, t), is the stochastic kernel function defined by:

	
I(x, y, t) =

4∑
j=1

(ibH7j − H6jmj) A2je−λj x+ωt+iby + (ibg5 − E6g5)A25e−E6x+ωt+iby � (122)

Assuming φ0(t) is a white-noise stochastic process satisfying Eq. (82), the variance of the stochastic dilation 
strain becomes:

	

V ar[e(x, y, t)] =
tˆ

0

[I(x, y, t − u1)]2du1.� (123)

By changing variables using ℑ = t − u1 we obtain:

	

V ar[e(x, y, t)] =
tˆ

0

[I(x, y, ℑ)]2dℑ,� (124)

This integral quantifies the contribution of the boundary randomness to the overall uncertainty in the dilation 
strain field.

Numerical results and discussion
In this section, we present the numerical results obtained using silicon (Si) material properties, as outlined 
in Table 1. These constants were employed to model the response of the semiconductor medium under the 
combined effects of magnetic field and photo-acoustic excitation, consistent with earlier studies on silicon-
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based semiconductor media10–12,35. The simulations were carried out using Python, implementing a custom 
computational routine to solve the governing equations described earlier. The results are illustrated through 
a series of figures, each demonstrating the variation of key response quantities, such as acoustic pressure, 
displacement, carrier density, and temperature, as a function of time, spatial coordinates, or varying system 
parameters. The figures aim to reveal the dynamic behavior of the system under stochastic and thermal 
excitation, offering insights into the influence of key constants on wave propagation and thermal transport in 
the non-local semiconductor medium.

Amplitude profiles of thermoelastic, electronic, mechanical, and acoustic fields
Figures 2, 3, 4, 5, 6, 7, 8 and 9 present the amplitude distributions of the thermoelastic, electronic, mechanical, and 
acoustic fields along the spatial axis x, excluding the oscillatory exponential factor eωt+iby . Figure 2 shows the 
temperature amplitude T ∗, which decays rapidly with distance from the surface, indicating strong confinement 
of thermal energy near the boundary. A similar decay is observed in Fig. 3 for the carrier density amplitude 
N∗, reflecting the diminishing influence of photo-generated carriers as the excitation penetrates deeper. The 
displacement amplitude in the x-direction, u∗, illustrated in Fig. 4, initially rises to a sharp peak close to the 
boundary before decaying, signifying localized elastic deformation. In contrast, the transverse displacement 
amplitude v∗ in Fig.  5 exhibits an initial negative excursion (compression) followed by gradual recovery, 
capturing the lateral elastic response. The normal stress amplitude σ∗

xx in Fig. 6 starts with a large compressive 
value near the surface and relaxes toward zero with increasing x, while the shear stress amplitude σ∗

xy  in Fig. 7 
peaks near the boundary and diminishes rapidly, highlighting the coupling between thermal and shear responses. 
The acoustic pressure amplitude P ∗, shown in Fig. 8, decays sharply, demonstrating that photoacoustic waves 
are strongly localized near the illuminated surface. Finally, Fig. 9 illustrates the dilatation amplitude e∗, which 
decreases exponentially with a slight overshoot before stabilizing, characterizing the volumetric relaxation of the 
medium. Collectively, these results emphasize the localized nature of thermal, electronic, elastic, and acoustic 
responses, offering a clear representation of the stationary amplitude envelopes relevant to stochastic and Monte 
Carlo analyses.

The influence of the non-local parameter
Figures 10, 11, 12, 13, 14, 15, 16 and 17 illustrate the spatial variation of the dimensionless physical fields in 
the context of photo-thermo-elasticity theory under the influence of the non-local parameter ξ1. In Fig. 10, 
the temperature distribution T (x) exhibits a decaying exponential behavior, where an increase in ξ1 leads to a 
noticeable reduction in the thermal peak near the boundary and a faster decay rate, reflecting enhanced non-
local thermal conduction effects. Figure 11 presents the carrier density N(x), which also decays exponentially; 
however, it is minimally affected by changes in ξ1, indicating that the non-local parameter has a negligible impact 

Symbol Si Unit

λ 6.4 × 1010 N/m2

µ 5.1 × 1010 N/m2

ρ 2330 kg/m3

T0 300 K

τ 5 × 10−5
s

DE 2.5 × 10−3 kg/m3

Eg 1.11 × 10−19
J

dn − 9 × 10−31
m3

αt 2.6 × 10−6
K−1

Ce 695 J/(kg .K)

k 150 W .m−1.K−1

P0 1
N0 1

ε0 10−9
/

36π F/m

µ0 1.4π × 10−7 H/ m

H0 107
/

4π A/ m

Cs 8430 m/ s

Cr 1.666
β 2.56 × 10−6

σ0 −5

Table 1.  Describe the parameters’ constants in the silicon (Si) SI units.
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on the photogenerated carrier diffusion. In Fig. 12, the in-plane displacement u(x) shows a clear peak close 
to the surface and diminishes as ξ1 increases, implying that non-local effects suppress elastic deformation. A 
similar trend is observed in Fig. 13 for the transverse displacement v(x), with a prominent surface response that 
becomes damped for higher values of ξ1, accompanied by a shift in the sign, indicating oscillatory-type behavior 
induced by coupling with thermal and photogenerated fields. Figure 14 illustrates the normal stress σxx, which 

Fig. 3.  Variation of the carrier density amplitude N∗ with spatial coordinate x.

 

Fig. 2.  Variation of the temperature amplitude T ∗ with spatial coordinate x.
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rises monotonically from compressive stress near the boundary to zero as x increases; higher ξ1 values reduce 
the stress magnitude near the boundary, showing stress relaxation effects under non-local elasticity. In contrast, 
Fig. 15 shows the shear stress σxy  rapidly decaying with oscillations around zero; increasing ξ1 significantly 
damps this response, confirming the stabilizing influence of non-local interactions on shear behavior. The 
photoacoustic pressure P (x) in Fig. 16 demonstrates a steep initial peak followed by exponential decay, with 
almost no change under varying ξ1, suggesting that the pressure field is predominantly governed by local photo-
excitation mechanisms rather than non-locality. Finally, Fig. 17 depicts the strain distribution e(x), which exhibits 

Fig. 5.  Variation of the vertical displacement amplitude v∗ with spatial coordinate x.

 

Fig. 4.  Variation of the horizontal displacement amplitude u∗ with spatial coordinate x.
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a highly oscillatory and non-monotonic decay pattern near the boundary. As ξ1 increases, the strain amplitude 
significantly decreases, and the oscillatory behavior becomes smoother, indicating that non-local effects reduce 
internal deformation gradients and contribute to a more stable strain field. Physically, these trends reveal that the 
non-local parameter ξ1 acts as a stabilizing mechanism in the semiconductor medium. By allowing each material 
point to interact with its neighborhood rather than only its immediate location, non-locality enhances thermal 
diffusion, suppresses localized deformation peaks, and reduces sharp stress oscillations. This explains why 

Fig. 7.  Variation of the share stress amplitude σ∗
xy  with spatial coordinate x.

 

Fig. 6.  Variation of the normal stress amplitude σ∗
xx with spatial coordinate x.
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temperature decays faster, displacements are damped, and stress/strain fields become smoother with increasing 
ξ1. In contrast, carrier density and acoustic pressure remain largely insensitive, since they are primarily governed 
by diffusion-recombination balance and local photoacoustic excitation, respectively. Overall, the results confirm 
that non-locality mitigates strong field gradients and improves system stability, linking the observed numerical 
patterns directly to the underlying physical mechanisms of energy transport and elastic wave dispersion in the 
medium.

Fig. 9.  Variation of the strain amplitude e∗ with spatial coordinate x.

 

Fig. 8.  Variation of the acoustic pressure amplitude P ∗ with spatial coordinate x.
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Effect of magnetic field intensity Rh on various physical quantities during thermoelastic and 
photoacoustic responses
Figures 18, 19, 20, 21, 22, 23, 24 and 25 display the influence of the magnetic field intensity parameter Rh​ on 
the distributions of physical quantities within the framework of photo-thermo-elasticity. Figure 18 shows the 
temperature profile T (x), where increasing Rh​ results in a noticeable decrease in the thermal peak and a more 
rapid decay along the spatial domain. This behavior highlights the enhanced damping effect introduced by the 
magnetic field on thermal diffusion. In Fig. 19 the carrier density N(x) shows negligible sensitivity to variations 
in Rh​, implying that the magnetic field does not significantly affect the carrier recombination or diffusion 
mechanisms. Figure 20 presents the in-plane displacement u(x), which decreases in both peak amplitude and 

Fig. 11.  The approach of the non-local parameter on the carrier density distribution.

 

Fig. 10.  The approach of the non-local parameter on the temperature distribution.
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spatial extent as Rh​ increases, indicating that the magnetic field suppresses thermoelastic deformation due to 
its resistive Lorentz force contribution. A similar trend is seen in Fig. 21 for the transverse displacement v(x), 
where the oscillatory nature of the displacement is reduced under higher magnetic field strengths, leading to 
more stable mechanical behavior. Figure 22 shows the axial stress σxx, which becomes less negative ‘near the 
boundary and transitions to zero faster as Rh​ increases. This suggests that the magnetic field alleviates the 
compressive stress buildup. In Fig. 23 the shear stress σxy  also shows a significant reduction in amplitude and 
oscillations with increasing Rh​, reinforcing the notion that magnetic effects mitigate interfacial shear. The 
photoacoustic pressure P (x), shown in Fig. 24 remains nearly unaffected by variations in Rh​, which suggests 
that the pressure field is primarily governed by optical excitation rather than magneto-thermoelastic coupling. 
Finally, Fig. 25 illustrates the strain distribution e(x), where increasing Rh​ leads to a clear reduction in the strain 

Fig. 13.  The approach of the non-local parameter on the vertical displacement distribution.

 

Fig. 12.  The approach of the non-local parameter on the horizontal displacement distribution.
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amplitude and a smoother profile. This confirms the magnetic field’s role in damping internal deformation and 
stabilizing the photo-thermoelastic response. These results highlight the role of the magnetic field as a stabilizing 
agent in the coupled photo-thermoelastic system. The Lorentz force resists charge carrier motion, which in 
turn reduces the thermoelastic energy transfer into mechanical deformation. This explains the damping of 
displacements, stresses, and strain amplitudes with higher Rh​. The temperature field also shows enhanced decay, 
since the magnetic field restricts thermal transport by coupling with the moving carriers. On the other hand, 
photoacoustic pressure and carrier density remain largely unaffected because their dynamics are dominated by 
optical absorption and recombination rather than magneto-mechanical forces. Overall, the observed patterns 
confirm that the magnetic field primarily suppresses elastic and thermal instabilities, linking the numerical 
trends to the underlying magneto-thermoelastic physics.

Fig. 15.  The approach of the non-local parameter on the shear stress distribution.

 

Fig. 14.  The approach of the non-local parameter on the normal stress distribution.

 

Scientific Reports |        (2025) 15:40403 23| https://doi.org/10.1038/s41598-025-22132-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Stochastic envelope estimation and the effect of boundary noise on field profiles with 30 
realizations
Figures 26, 27, 28, 29, 30, 31, 32 and 33 illustrate the stochastic envelope of the primary physical fields affected 
by temperature fluctuations modelled via the Wiener process. Each figure presents four distinct curves: the 
deterministic solution (red line), the approximated mean of 30 realizations (blue line), and the corresponding 
upper and lower bounds constructed using the standard deviation (black and green lines, respectively). 
Figure 26 displays the temperature T (x), where the stochastic upper and lower bounds deviate notably from 
the deterministic solution near the boundary, capturing the uncertainty due to random heat input. The envelope 

Fig. 17.  The approach of the non-local parameter on the strain distribution.

 

Fig. 16.  The approach of the non-local parameter on the acoustic pressure distribution.
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narrows with increasing x, indicating the dissipative nature of thermal noise. Figure 27 shows the carrier density 
N(x), which exhibits a similar envelope behavior but with more significant spread in the lower bound, reflecting 
sensitivity to random perturbations in the thermal field. Figure 28 presents the in-plane displacement u(x), 
where the stochastic envelope reveals substantial deviations from the deterministic solution in the vicinity of 
the peak, suggesting that mechanical responses are strongly influenced by thermal randomness. In Fig. 29, the 
transverse displacement v(x) also exhibits stochastic variability, though the effect is relatively moderate and 
concentrated near the origin. Figure  30 plots the axial stress σxx, which shows wider uncertainty bands in 
the near-surface region, consistent with higher stress gradients induced by fluctuating thermal input. Figure 31 
demonstrates the shear stress σxy , where the stochastic effect leads to visible oscillatory deviations in the envelope 

Fig. 19.  The variation of the intensity of the magnetic field on the carrier density distribution.

 

Fig. 18.  The variation of the intensity of the magnetic field on the temperature distribution.
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around the deterministic profile, indicating that the shear response is highly susceptible to thermal noise. In 
Fig. 32, the acoustic pressure P (x) shows a bounded stochastic influence, with the envelope tightly tracking 
the deterministic curve except near the initial peak. Lastly, Fig. 33 depicts the strain field e(x), which shows a 
clear difference between the deterministic and mean response, with the stochastic envelope capturing potential 
undershooting and overshooting behavior due to the randomness in temperature evolution. Collectively, these 
results emphasize the critical role of stochastic thermal effects in broadening the solution space and quantifying 
uncertainty in photo-thermoelastic systems. From a physical perspective, the widening of the stochastic 
envelopes near the boundary directly reflects the amplification of thermal noise in regions with strong gradients 
of temperature and stress. The Wiener process introduces random fluctuations in heat input, which propagate 
into the elastic and carrier fields, causing overshooting/undershooting behavior relative to the deterministic 
solution. As the distance xxx increases, dissipation mechanisms suppress these fluctuations, leading to narrower 

Fig. 21.  The variation of the intensity of the magnetic field on the vertical displacement distribution.

 

Fig. 20.  The variation of the intensity of the magnetic field on the horizontal displacement distribution.
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envelopes and convergence toward deterministic profiles. The stronger sensitivity of displacement and shear 
stress compared to carrier density and acoustic pressure highlights that elastic responses are more vulnerable 
to random perturbations than optical or carrier-driven fields. Thus, these stochastic envelopes provide a 
quantitative measure of uncertainty propagation in photo-thermoelastic media, linking the observed numerical 
deviations directly to the underlying mechanism of noise-driven thermal fluctuations.

Convergence behavior of stochastic envelopes with increased realizations
Figures 34, 35, 36, 37, 38, 39, 40 and 41 demonstrate the statistical behavior of the main physical quantities under 
boundary noise, computed over 500 stochastic realizations. Compared to the earlier case with 30 realizations, 
this set highlights the convergence of the approximated mean toward the deterministic solution, reinforcing that 

Fig. 23.  The variation of the intensity of the magnetic field on the shear displacement distribution.

 

Fig. 22.  The variation of the intensity of the magnetic field on the normal displacement distribution.
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increasing the number of realizations stabilizes the stochastic estimates and reduces the influence of random 
fluctuations. In Fig.  34, the temperature field T (x) shows excellent agreement between the stochastic mean 
and deterministic curve, especially beyond x > 1, indicating that the thermal field becomes statistically stable 
even under noisy boundary conditions. The envelope bounds (black and green) are smoother and narrower 
than in the 30-realization case, confirming variance reduction with larger samples. Figure  35 illustrates the 
carrier density N(x) profile. The mean and deterministic solutions are almost indistinguishable throughout 
the domain, and the upper and lower bounds lie within a tightly confined region, emphasizing the robustness 
of carrier dynamics against stochastic fluctuations. In Figs. 36 and 37, the displacements u(x) and v(x) show 
moderate variance near the boundary but with a visibly smoother and narrower envelope compared to previous 
realizations. This confirms that mechanical responses converge well in expectation as the sample size increases 

Fig. 25.  The variation of the intensity of the magnetic field on the strain distribution.

 

Fig. 24.  The variation of the intensity of the magnetic field on the acoustic pressure distribution.
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while also providing insight into the residual variability due to boundary-induced randomness. Figures  38 
and 39 present the normal and shear stress components σxx(x) and σxy(x), which continue to show higher 
sensitivity to noise near the boundary. However, the upper and lower bounds now form clear and smooth 
confidence intervals, which were previously oscillatory with fewer realizations. This improvement reinforces 
the effectiveness of statistical averaging in modeling stress fields. In Fig. 40, the acoustic pressure P (x) again 
exhibits reduced variability with a tightly bound envelope. The approximated mean remains consistently close 
to the deterministic curve, showing stable pressure propagation under noise. Finally, Fig. 41 illustrates the strain 
e(x). Although still slightly sensitive near x = 0, its envelope is narrower and much smoother than in previous 
cases. This indicates that strain fluctuation becomes quantifiable and predictable with many realizations. The 

Fig. 27.  Influence of the 30 realizations of the envelope for the carrier density distribution.

 

Fig. 26.  Influence of the 30 realizations of the envelope for the temperature distribution.
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convergence behavior between 30 and 500 realizations is clearly illustrated in Figs. 26, 27, 28, 29, 30, 31, 32 
and 33, 34, 35, 36, 37, 38, 39, 40 and 41). For 30 realizations, the estimated mean response already follows the 
deterministic solution closely, but the upper and lower bounds remain irregular due to the limited sampling size. 
When the number of realizations is increased to 500, the stochastic envelopes become significantly smoother 
and narrower, consistent with the theoretical convergence rate of Monte Carlo sampling, which decreases as 
O

(
1
/√

N
)

. This reduction in statistical scatter indicates that the computed stochastic mean has reached a 
stable approximation of the exact expectation. Physically, the stochastic envelopes represent the possible range 
of system responses in the presence of random boundary perturbations. The upper and lower bounds can be 
interpreted as confidence bands, showing the excursions of temperature, carrier density, displacement, stresses, 

Fig. 29.  Influence of the 30 realizations of the envelope for the vertical displacement distribution.

 

Fig. 28.  Influence of the 30 realizations of the envelope for the horizontal displacement distribution.
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acoustic pressure, and strain under noisy excitation. This envelope-based representation is highly valuable 
because it does not only tracks the deterministic trend but also quantifies uncertainty and fluctuation levels. 
From a practical perspective, such information enhances the reliability of the model: in noisy operational 
environments, engineers and designers can evaluate not just the average performance but also the variance 
and worst-case limits of the system. Thus, the use of stochastic envelopes ensures that the proposed framework 
accounts for robustness, providing greater confidence in semiconductor and optoacoustic device performance 
under realistic noisy conditions.

Fig. 31.  Influence of the 30 realizations of the envelope for the shear stress distribution.

 

Fig. 30.  Influence of the 30 realizations of the envelope for the normal stress distribution.
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Effect of noise parameter σ on the stochastic thermal field on the boundaries
In our formulation, the variance and stochastic envelope were obtained using a Monte Carlo procedure 
with 30 or 500 independent realizations of the Wiener process W (t). For each realization, the stochastic 
perturbations were generated adaptively at every time step with increment ∆W (t) following a Gaussian 
distribution N(0, σ2∆t) with zero mean and variance σ2∆t, consistent with the definition of white noise. The 
ensemble-averaged fields were then used to compute the mean response, while the standard deviation defined 
the upper and lower stochastic bounds. This procedure captures both the deterministic mean-field dynamics 
and the variability introduced by random fluctuations, ensuring that the stochastic kernels evolve dynamically 
rather than relying on precomputed noise samples. As a special case, we present the results for 30 realizations 

Fig. 33.  Influence of the 30 realizations of the envelope for the strain distribution.

 

Fig. 32.  Influence of the 30 realizations of the envelope for the acoustic pressure distribution.
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to illustrate the impact of the noise intensity parameter σ on the thermal response. The noise parameter σ 
governs the volatility of fluctuations, linking microscopic random excitations to the macroscopic thermoelastic 
and photothermal response of the medium. A normalized value of σ = 0.1 was adopted to balance weak and 
excessively strong stochastic forcing, enabling the model to reproduce both deterministic-like dynamics and 
the variability arising from higher-order statistical fluctuations. Figures  42, 43, 44, 45 illustrate the effect of 
increasing σ on the temperature distribution for σ = 0.1, 0.2, 0.3, and 0.4, respectively. For σ = 0.1 Fig. 42, the 
thermal field remains close to the deterministic profile, with narrow stochastic bounds and minimal fluctuations. 
For σ = 0.1 Fig. 43, noise becomes more visible near the boundary region, though the approximated mean still 

Fig. 35.  Influence of the 500 realizations of the envelope for the carrier density distribution.

 

Fig. 34.  Influence of the 500 realizations of the envelope for the temperature distribution.
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aligns closely with the deterministic solution. At σ = 0.3 Fig. 44, variability is amplified, producing noticeable 
irregular oscillations in the stochastic bounds. Finally, at σ = 0.4 Fig. 45, the temperature field exhibits strong 
random fluctuations, with the stochastic envelope dominating the response and deviating substantially from the 
deterministic profile. These results confirm that increasing σ amplifies stochastic variability, driving the system 
from near-deterministic behaviour to highly uncertain dynamics.

Fig. 37.  Influence of the 500 realizations of the envelope for the vertical displacement distribution.

 

Fig. 36.  Influence of the 500 realizations of the envelope for the horizontal displacement distribution.
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Heatmap visualization of randomness-induced fluctuations
Figures 46, 47, 48, 49, 50, 51, 52 and 53 illustrate the stochastic behavior of the primary physical fields under 
500 realizations, represented as heatmaps across the spatial domain x ∈ [0, 7][0, 7]. These visualizations 
highlight the propagation and attenuation of noise resulting from boundary-induced randomness. In Fig. 46 
the temperature profile T (x) exhibits high variability near the boundary at x = 0, which quickly decays along 
the domain, indicating effective thermal diffusion and stabilization. Similarly, Fig. 47 displays the randomness 

Fig. 39.  Influence of the 500 realizations of the envelope for the shear stress distribution.

 

Fig. 38.  Influence of the 500 realizations of the envelope for the normal stress distribution.
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in the carrier density profile N(x), where the strongest fluctuations also occur near the boundary and fade with 
increasing x, suggesting strong recombination or absorption mechanisms of the photocarriers. The horizontal 
and vertical displacement profiles u(x) and v(x) shown in Figs. 48 and 49, respectively, reveal significant 
stochastic variation concentrated near the boundary, with gradual damping away from the source, reflecting 
the system’s elastic stability under dynamic loading. For the normal stress σxx(x) in Fig. 50, the heatmap shows 
compressive fluctuations localized near the excitation region, followed by rapid attenuation, indicating localized 
mechanical impact due to noise. In contrast, Fig. 51, which shows the shear stress σxy(x), displays bi-directional 

Fig. 41.  Influence of the 500 realizations of the envelope for the strain distribution.

 

Fig. 40.  Influence of the 500 realizations of the envelope for the acoustic pressure distribution.
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randomness with pronounced variation at the boundary and minimal spread beyond, consistent with rapid 
shear wave damping. Figure 52 depicts the pressure field, which exhibits high variability near the noise-injected 
boundary but remains largely stable along the domain, highlighting the system’s ability to localize and dampen 
pressure-induced fluctuations. Lastly, Fig. 53 presents the randomness in the strain distribution e(x), showing 
moderate fluctuations near the boundary that diminish steadily, reaffirming the material’s mechanical resilience 

Fig. 43.  Temperature distribution envelope at the boundary for σ = 0.2.

 

Fig. 42.  Temperature distribution envelope at the boundary for σ = 0.1.
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under stochastic loading conditions. Overall, these heatmaps emphasize that while boundary noise significantly 
perturbs each function near x = 0, the stochastic effects are effectively contained and decay spatially, confirming 
the stability of the medium under noisy excitation and the reliability of the approximated mean solutions over 
many realizations. The heatmaps in Figs. 46, 47, 48, 49, 50, 51, 52 and 53 provide an engineering-oriented 
visualization of how physical quantities fluctuate under 500 stochastic realizations, offering a spatial statistical 

Fig. 45.  Temperature distribution envelope at the boundary for σ = 0.4.

 

Fig. 44.  Temperature distribution envelope at the boundary for σ = 0.3.

 

Scientific Reports |        (2025) 15:40403 38| https://doi.org/10.1038/s41598-025-22132-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


map of uncertainty across the medium. Unlike line plots, which only show mean and bounds, the heatmaps 
reveal localized zones where fluctuations are most intense and stability naturally emerges. For instance, 
high-variance regions near the illuminated boundary correspond to areas of greater thermal and mechanical 
sensitivity. At the same time, the rapid decay of randomness with depth indicates robust stability farther inside 
the material. From an engineering perspective, such visualizations are essential for designing semiconductor and 
opto-acoustic devices that must operate in noisy thermal environments, since they allow designers to identify 
potential hotspots, stress concentrations, and regions of reliable performance. In this way, heatmaps confirm 
statistical convergence and serve as diagnostic tools that guide material tailoring and optimization strategies to 
ensure resilience under stochastic operating conditions.

Fig. 47.  The heat map for 500 realizations of the randomness of the carrier density distribution.

 

Fig. 46.  The heat map for 500 realizations of the randomness of the temperature distribution.
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White noise versus colored noise assumptions
In the present analysis, thermal fluctuations at the boundary were modeled using white noise, which is 
characterized by zero mean and the absence of temporal or spatial correlation. This assumption simplifies 
the mathematical formulation and ensures that the mean stochastic solution coincides with the deterministic 
response, while random deviations are captured through the variance and stochastic envelope. However, real 
thermal environments are often better represented by colored noise, where fluctuations possess finite correlation 
and a non-uniform spectral distribution. For instance, red noise emphasizes low-frequency variations with long-
term persistence, while blue noise highlights high-frequency fluctuations. Incorporating colored noise would 
primarily affect the spread and structure of the stochastic envelope: correlated fluctuations would either amplify 

Fig. 49.  The heat map for 500 realizations of the randomness of the vertical displacement distribution.

 

Fig. 48.  The heat map for 500 realizations of the randomness of the horizontal displacement distribution.
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or suppress variance in specific frequency ranges, thereby modifying the uncertainty bands without altering the 
deterministic mean solution. Consequently, while the white noise approximation provides a mathematically 
tractable baseline, extending the model to account for colored noise could offer a more realistic description of 
experimental thermal fluctuations.

Conclusion
This study developed a comprehensive two-dimensional model to investigate the magneto-photo-thermal 
behavior of wave propagation in non-local semiconductor media under the framework of coupled 
thermoelasticity theory. The material was considered homogeneous and isotropic, and the governing equations 
were formulated based on small deformation and linear elasticity assumptions. The model incorporated full 

Fig. 51.  The heat map for 500 realizations of the randomness of the shear stress distribution.

 

Fig. 50.  The heat map for 500 realizations of the randomness of the normal stress distribution.
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coupling between thermal conduction, elastic deformation, acoustic pressure, and carrier density transport. By 
employing the normal mode method and separation of variables with harmonic time dependence, the system 
of partial differential equations was reduced to a set of solvable ordinary differential equations, enabling the 
derivation of exact analytical solutions. The physical responses including displacements, stress components, 
acoustic pressure, carrier density, and strain were analyzed under variations in the non-local parameter and 
magnetic field intensity. The results highlighted the stabilizing and damping roles of both non-local elasticity 
and magnetic fields in wave attenuation and mechanical response. A key research gap addressed in this work 

Fig. 53.  The heat map for 500 realizations of the randomness of the strain distribution.

 

Fig. 52.  The heat map for 500 realizations of the randomness of the acoustic pressure distribution.
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is the absence of stochastic boundary formulations in existing non-local photo-thermoelastic models. Earlier 
studies have largely relied on deterministic excitation, which cannot capture the randomness introduced by laser 
fluctuations, material heterogeneity, or thermal noise. By incorporating stochastic boundary conditions through 
a zero-mean Wiener process, this study enhances the understanding of non-local semiconductor behavior by 
quantifying how uncertainty propagates through coupled fields and influences stability, variance, and reliability 
of the system response. The contribution of this work lies in its extension to stochastic modeling, where thermal 
excitation at the boundary was perturbed using a zero-mean Wiener process. Through envelope estimation 
for both 30 and 500 realizations, the influence of thermal randomness on system behavior was quantified. 
The results demonstrated that increasing the number of realizations significantly reduced stochastic noise and 
yielded smoother, more statistically reliable physical responses. Furthermore, a heat map visualization was 
generated to illustrate the spatial distribution of uncertainty across the domain, offering additional insights into 
the stochastic behavior of the system. In comparison with previous deterministic models, the present framework 
introduces three key improvements. First, it incorporates stochastic boundary conditions that realistically 
represent thermal fluctuations and material irregularities. Second, it enables probabilistic characterization of 
responses through variance, envelope estimation, and mean convergence, thereby providing a more reliable 
prediction of semiconductor performance under uncertainty. Third, it unifies magneto-photo-thermoelastic and 
opto-acoustic interactions with non-local effects under stochastic excitation, delivering a more comprehensive 
and scientifically rigorous representation of wave propagation in semiconductor media. This work provides 
a robust theoretical and stochastic framework for modeling complex multi-physics interactions in advanced 
semiconductor materials. The outcomes of this study hold potential applications in the design and optimization 
of advanced optoelectronic components, photoacoustic imaging systems, microelectromechanical systems 
(MEMS), semiconductor energy-conversion devices, and thermal management systems that operate under 
magneto-thermoelastic and stochastic conditions. The unified framework developed here can support the 
engineering of next-generation materials and devices functioning under variable and uncertain thermal 
environments, directly relevant to photovoltaics, energy harvesting, smart materials, and nano-engineered 
sensors. In terms of future directions, the present framework may be extended to incorporate more sophisticated 
models and Multiphysics effects. Possible avenues include combining the Moore–Gibson–Thompson equation 
with two-temperature theories under stochastic excitation, exploring three-phase-lag models with microstretch 
continua and gravitational effects coupled with stability analysis using the Routh–Hurwitz criterion, and 
employing Love–Bishop rod theory within micropolar continua under moisture diffusion and stochastic 
influences. These extensions would provide a richer understanding of wave propagation, resonance, and stability 
in complex media and expand the model’s applicability to a wider range of engineering and physical problems.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Appendix A

	

denominator =
H11H32H63H84g5 − H11H32H64H83g5 − H11H32H73H84g4 + H11H32H74H83g4−
H11H33H62H84g5 + H11H33H64H82g5 + H11H33H72H84g4 − H11H33H74H82g4 + H11H34H62H83g5

−H11H34H63H82g5 − H11H34H72H83g4 + H11H34H73H82g4 + H11H62H73H84g1 − H11H62H74H83g1

−H11H63H72H84g1 + H11H63H74H82g1 + H11H64H72H83g1 − H11H64H73H82g1 − H12H31H63H84g5

+H12H31H64H83g5 + H12H31H73H84g4 − H12H31H74H83g4 + H12H33H61H84g5 − H12H33H64H81g5

−H12H33H71H84g4 + H12H33H74H81g4 − H12H34H61H83g5 + H12H34H63H81g5 + H12H34H71H83g4

−H12H34H73H81g4 − H12H61H73H84g1 + H12H61H74H83g1 + H12H63H71H84g1 − H12H63H74H81g1

−H12H64H71H83g1 + H12H64H73H81g1 + H13H31H62H84g5 − H13H31H64H82g5 − H13H31H72H84g4

+H13H31H74H82g4 − H13H32H61H84g5 + H13H32H64H81g5 + H13H32H71H84g4 − H13H32H74H81g4

+H13H34H61H82g5 − H13H34H62H81g5 − H13H34H71H82g4 + H13H34H72H81g4 + H13H61H72H84g1

−H13H61H74H82g1 − H13H62H71H84g1 + H13H62H74H81g1 + H13H64H71H82g1 − H13H64H72H81g1

−H14H31H62H83g5 + H14H31H63H82g5 + H14H31H72H83g4 − H14H31H73H82g4 + H14H32H61H83g5

−H14H32H63H81g5 − H14H32H71H83g4 + H14H32H73H81g4 − H14H33H61H82g5 + H14H33H62H81g5

+H14H33H71H82g4 − H14H33H72H81g4 − H14H61H72H83g1 + H14H61H73H82g1 + H14H62H71H83g1

−H14H62H73H81g1 − H14H63H71H82g1 + H14H63H72H81g1



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A21 =
H32H63H84g5 − H32H64H83g5 − H32H73H84g4 + H32H74H83g4 − H33H62H84g5+
H33H64H82g5 + H33H72H84g4 − H33H74H82g4 + H34H62H83g5 − H34H63H82g5 − H34H72H83g4

+H34H73H82g4 + H62H73H84g1 − H62H74H83g1 − H63H72H84g1 + H63H74H82g1 + H64H72H83g1

−H64H73H82g1)/denominator





A22 =
−H31H63H84g5 + H31H64H83g5 + H31H73H84g4 − H31H74H83g4 + H33H61H84g5 − H33H64H81g5

−H33H71H84g4 + H33H74H81g4 − H34H61H83g5 + H34H63H81g5 + H34H71H83g4 − H34H73H81g4

−H61H73H84g1 + H61H74H83g1 + H63H71H84g1 − H63H74H81g1 − H64H71H83g1 + H64H73H81g1)
/denominator




	

A23 =
H31H62H84g5 − H31H64H82g5 − H31H72H84g4 + H31H74H82g4 − H32H61H84g5+
H32H64H81g5 + H32H71H84g4 − H32H74H81g4 − H34H61H82g5 + H34H62H81g5 − H34H71H82g4

+H34H72H81g4 + H61H72H84g1 − H61H74H82g1 − H62H71H84g1 + H62H74H81g1 + H64H71H82g1

−H64H72H81g1)/denominator





A24 =
−H31H62H83g5 + H31H63H82g5 + H31H72H83g4 − H31H73H82g4 + H32H61H83g5 − H32H63H81g5

−H32H71H83g4 + H32H73H81g4 − H33H61H82g5 + H33H62H81g5 + H33H71H82g4 − H33H72H81g4

−H61H72H83g1 + H61H73H82g1 + H62H71H83g1 − H62H73H81g1 − H63H71H82g1 + H63H72H81g1)
/denominator




	

A25 =
−H31H62H73H84 + H31H62H74H83 + H31H63H72H84 − H31H63H74H82 − H31H64H72H83 + H31H64

H73H82 + H32H61H73H84 − H32H61H74H83 − H32H63H71H84 + H32H63H74H81 + H32H64H71H83

−H32H64H73H81 − H33H61H72H84 + H33H61H74H82 + H33H62H71H84 − H33H62H74H81 − H33H64

H71H82 + H33H64H72H81 + H34H61H72H83 − H34H61H73H82 − H34H62H71H83 + H34H62H73H81

+H34H63H71H82 − H34H63H72H81)/denominator



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