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Large animal model research is a vital step in the pre-clinical testing of new therapeutic interventions 
in congenital heart disease to ensure that they are safe and effective before clinical trials are begun. 
Although swine hearts are an excellent model for the study of cardiovascular disease due to their 
anatomical and physiological similarities with human hearts, there are differences in body habitus 
and internal organ positioning that necessitate a deviation from standard human echocardiography 
protocols. Previously published data on swine echocardiography has focused on mature animals and 
a standardized protocol for serial valvar assessment is lacking. The aim of this study was to create a 
protocol for a complete sedated piglet transthoracic echocardiogram. The protocol is designed for the 
evaluation of ventricular size and function and detailed evaluation of all cardiac valves. Additionally, 
we demonstrate implementation of this protocol by reporting normative growth trends of semilunar 
valves and left ventricular dimensions in piglets studied in our research lab. The goal of this 
standardized protocol is to allow for further cardiovascular research on growing piglets, particularly 
in the field of partial heart transplantation. Standardized views for valve measurements enable 
reproducibility across observers and across serial follow-up to reliably assess hemodynamic function 
and growth over time.

Keywords  Congenital heart disease, Cardiac imaging, Animal echocardiography, Partial heart 
transplantation, Pig, Translational research, Pre-clinical

Abbreviations
PHT	� Partial heart transplantation
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Large animal research is a major component of preclinical testing and validation of new surgical techniques, 
medications and devices for the treatment of cardiovascular disease1–4. Swine are an excellent model for the 
study of cardiovascular disease due to their rapid growth, and anatomical and physiological similarities to 
human hearts and have thus become the favored large animal model for the study of cardiovascular disease5. 
Echocardiography is a non-invasive cardiac imaging modality that is easily accessible and has multiple 
advantages including real-time imaging, ease of transportation and lower cost compared to other modalities 
such as computed tomography or magnetic resonance imaging.

While the anatomy and physiology of the heart in swine is very similar to the human heart, the positioning 
of the heart relative to the other structures differs significantly between swine and humans. These differences 
are primarily due to the quadruped stance of swine as well as the unusual sternal structure of humans compared 
to other mammals. While mammals generally have laterally compressed thoraces, the human thorax is 
dorsoventrally compressed6. Due to these thoracic structural differences, the commonly used echocardiography 
views of humans are not optimal use in swine models. Echocardiography in the piglet has been shown to be 
feasible but there is currently no standardized transthoracic echocardiography (TTE) protocol7. Standardized 
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landmarks are important to ensure reproducibility of echocardiographic measures. Our group is studying partial 
heart transplantation (PHT) using piglet models1,2,8,9, which involves monitoring of transplanted semilunar 
valves for growth and function over time, with piglet TTE being the most important surveillance technique for 
the transplanted valves. Normative data on semilunar valve growth rate over time in healthy piglets has not been 
reported in the literature and is important for studying and extrapolating the effects of therapies such as valve 
transplants in translational research.

The goal of this study was to: (1) create a standardized piglet TTE protocol with defined areas on the piglet’s 
chest wall to evaluate and measure semilunar valves; (2) report normal semilunar valve and left ventricular 
dimension growth rates in piglets.

Methods
Standardized piglet TTE protocol
This study used purpose-bred Yorkshire pigs (8–15  kg, 5–8 weeks old), obtained from the National Swine 
Resource and Research Center (Columbia, MO) and Oak Hill Genetics (Ewing, IL). All animal procedures were 
approved by the Institutional Animal Care and Use Committee of the University of Arkansas Medical Sciences 
(Protocol # IPROTO202300000160) and conformed to standard Office of Laboratory Animal Welfare on the 
housing and medical care of swine used in research. This study was conducted in compliance with relevant 
guidelines and regulations and is reported in accordance with the ARRIVE guidelines.

Our standardized protocol (Table 1; Figs. 1, 2, 3 and 4) was developed by a trained pediatric cardiologist and 
pediatric cardiac sonographer. Piglets were scanned under anesthesia using 5 MHz and 6 MHz probes on the 
Phillips EPIQ 7 ultrasound machine [Epiq7c Circular Edition] to obtain views like those acquired in human 
echocardiography. Landmarks were recorded for obtaining the views.

The details of housing animals in our facility between echocardiograms as well as anesthesia techniques are 
included in Supplemental material.

Study population and data collection
Serial TTEs were performed on eight piglets under anesthesia using our standardized echocardiography protocol 
(Table 1), each evaluated between 4 and 8 times from the approximate age of 4 weeks to 5 months at intervals 
of 1–2 weeks. Additional echocardiographic evaluation was performed for preoperative piglets (Table 2). Every 
session was performed under general anesthesia. At each imaging session, measurements of the aortic and 
pulmonary valve annuli were recorded in millimeters. The aortic valve was measured in end-systole from the 
parasternal long axis view (Fig. 4b), and the pulmonary valve was measured in end-systole and diastole from 
the parasternal short axis view (Fig. 3g). Ventricular cavity dimensions and wall thickness measurements were 
obtained using M-mode from the parasternal short axis view (Fig. 3b and c). Ventricular ejection fraction and 
shortening fraction were calculated using M-mode measurements. Simultaneously, age (in days), weight (in 
kilograms), and length (in centimeters), were collected on the day of the echocardiogram.

Statistical analysis
To characterize how valve size changes with growth, generalized additive mixed models (GAMM) were employed. 
To explore the association individually, we fit a model for each combination of two valves’ size (aortic and 
pulmonary valves measured in centimeters) and cardiac dimensions (left ventricular end diastolic dimension 
[LVEDD], left ventricular end systolic dimension [LVESD] and left ventricular posterior wall dimension in 
systole [PWs]) as response and the three predictors (age, weight and length), resulting in a total of 15 models. 
For each predictor X , each response Y  was modeled as:

	 Y = β 0 + f (X) + Zu + ϵ

where β 0 is the intercept, f  represents a penalized cubic regression spline function, Z  is the known desgin 
matrix for the random effect, u is the random intercept subject to each piglet, and ϵ is the error term.

In addition, a multivariable GAMM was also fitted to account for the combined effects of age, weight and 
length to each valve size and cardiac dimensions, which takes the following form:

	
Y = β 0 +

∑
3
i=1fi (Xi) + Zu + ϵ

where Xi is age, weight and length respectively and fi is the corresponding penalized cubic spline function.
The use of penalized cubic spline relaxes the assumption on the actual relationship between our responses 

and predictors. The upper limits of knots are set to be 10 by default and the actual number of knots that 
reflects the flexibility is determined by the penalization process. Model-based marginal prediction and its 95% 
confidence band were used to visualize the growth for each combination of valves and predictors. Predictions 
were computed over the observed range of each predictor, from its minimum to maximum values in the data. 
P-values < 0.05 were considered statistically significant. For model fitting, we used the mgcv package in R. All 
data were analyzed using R version of 4.4.3.

Results
A total of 59 readings from 8 piglets were included in the analysis, with a median of 8 readings per piglet 
(minimum: 4, maximum: 10). The overall ejection fraction has a mean of 53.8% (95% CI: [49.0%, 58.8%]) and 
the overall shortening fraction has a mean of 27.6% (95% CI: [24.6%, 30.6%]). The growth trends generated for 

Scientific Reports |        (2025) 15:38300 2| https://doi.org/10.1038/s41598-025-22176-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Method Representative figures

Subcostal view 

(Fig. 1)

How to obtain:

Sub-xyphoid, notch at 4–5 o’clock. Piglet laying supine or left lateral 
decubitus (Fig. 1a)

• Evaluate biventricular size and function, look for effusion (Fig. 1b)

• Tilt anteriorly to evaluate aortic valve by 1b, color & spectral Doppler 
(Fig. 1c)

Apical 4 chamber view

(Fig. 2)

How to obtain:

Right mid-axillary line, fifth inter-costal space, notch at 4–5 o’clock. 
Piglet laying left lateral decubitus (Fig. 2a)

• Evaluate biventricular size and function, look for effusion (Fig. 2b)

• Assess mitral and tricuspid valves in 4 chamber type view by 2D, 
color Doppler and spectral Doppler (Fig. 2c and d)

• Attempt to get a TR jet if possible

• Tilt anteriorly to evaluate aortic valve by 2D, color & spectral 
Doppler (Fig. 2e and f)

Parasternal short axis view 

(Fig. 3)

How to obtain:

Right mid-axillary line, second to third intercostal space, notch at 1–2 
o’clock, pointed to left shoulder (Fig. 3a)

• Evaluate ventricular size and function (Fig. 3b and c)

• Tilt anteriorly to evaluate pulmonary valve by 2D, color & spectral 
Doppler (Fig. 3d-f)

• Measure pulmonary valve annulus in systole and diastole (Fig. 3g)

Continued
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valve size against age, weight and length are shown in Fig. 7, and those for cardiac dimensions are shown in 
Fig. 8. Full model summaries are provided in the Supplementary Material.

Univariate analysis showed age was the strongest variable predictor (adjusted R2 = 0.848, Fig. 7A) and length 
was the poorest predictor (adjusted R2 = 0.723, Fig. 7C) for pulmonary valve size. For aortic valve size, length 
was the strongest predictor (adjusted R2 = 0.892, Fig. 7F) and age was the poorest predictor (adjusted R2 = 0.876, 
Fig.  7D). All terms in the univariate models were significant. For cardiac dimensions, weight was the best 
predictor for LVEDD (adjusted R2 = 0.819, Fig. 8B) and PWs (adjusted R2 = 0.709, Fig. 8H), whereas age was the 
best predictor for LVESD (adjusted R2 = 0.638, Fig. 8D).

The multivariate GAMM with age, weight and length outperform all the univariate models for both valve sizes 
and cardiac dimensions. The adjusted R² values were 0.877 for the pulmonary valve and 0.918 for the aortic valve, 
and 0.877, 0.918, and 0.918 for LVEDD, LVESD, and PWs, respectively. Weight was not statistically significant 
in the multivariable model for either the pulmonary or aortic valve when all three growth characteristics were 
included as predictors. For cardiac dimensions, weight was the only predictor significantly associated with 
LVEDD and PWs, whereas none of the growth characteristics were significantly associated with LVESD in the 
full model.

Discussion
This is the first description of a standardized piglet echocardiography protocol for the assessment of porcine 
semilunar valve growth over time as well as the first report of normative porcine semilunar valve growth trends. 
Piglet echocardiography has been reported to be feasible7 and has been used to assess ventricular function 
and pulmonary hypertension in porcine models10–1213. There were no complications in the 59 serial sedated 
echocardiograms performed for this study in control piglets. We have reported our emergency protocol for 
potential emergencies in the supplementary materials.

We found that to obtain views like parasternal short and long axis, we had to scan the piglet from the right 
side of the chest and have reported the best way to acquire the images in this protocol. We have used this protocol 
successfully to generate serial comprehensive echocardiographic assessments of dozens of piglets undergoing 
partial heart transplantation as well as several controls8,9. Preoperative assessment for presence of patent ductus 
arteriosus and intracardiac shunts (using a bubble study) is helpful for procedural planning prior to cardiac 
surgery.

Secondly, data on serial semilunar valve evaluation and normative semilunar valve growth trends was lacking 
prior to this study and would be important for studying cardiovascular models like partial heart transplantation 
in the piglet1–4. This study provides a useful protocol as well as normative data for all researchers conducting 
long term studies utilizing porcine donors as it allows for accurate and reproducible evaluation of the valves that 
are being studied.

Additionally, while prior work has reported feasibility of ventricular function assessment in piglets7,12 our 
data is the first to report serial interventricular dimensions over time and ventricular ejection fraction over time 
in piglets.

While this is a small sample, the repeated measurements over time allowed us to develop normal growth 
curves. This is important in advancing the piglet model specifically for pediatric cardiovascular disease as it will 
allow researchers interested in a variety of diseases and treatments to better estimate the valve growth and identify 
outliers within their cohort. This advancement could also prove useful to future xenotransplantation efforts as 

Method Representative figures

Parasternal long axis view

(Fig. 4)

How to obtain:

Right mid-axillary line, second to third intercostal space, notch at 
10–11 o’clock, pointed to right shoulder (Fig. 4a)

• Evaluate aortic valve and measure annulus size in systole (Fig. 4b)

• Evaluate aortic and mitral valve by color Doppler (Fig. 4c)

• Tilt probe anteriorly to evaluate pulmonary valve (Fig. 4d and e)

Table 1.  Standardized piglet transthoracic echocardiography protocol [RA: right atrium; LA: left atrium; RV: 
right ventricle; LV: left ventricle; aov: aortic valve; PV: pulmonary valve; MPA: main pulmonary artery; R: 
right; L: left].
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data on the growth and size of piglet cardiac features in relation to weight, age and body size will be useful for 
selecting donors with appropriate sizes for the desired recipient. Our data show that age is the strongest predictor 
of pulmonary valve growth and length is the strongest predictor of aortic valve growth in control piglets. In our 
experience, in piglets undergoing cardiac surgery that have poor post-operative growth, correlation with weight 
is the most useful. These growth trends serve as a comparison for our future experimental models.

Fig. 1.  Subcostal view.

 

Scientific Reports |        (2025) 15:38300 5| https://doi.org/10.1038/s41598-025-22176-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 3.  Parasternal long axis (PLAX) view.

 

Fig. 2.  Apical 4 chamber view.
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Conclusions
We report our standardized piglet echocardiography protocol and normative semilunar valve and left ventricular 
growth trends by age, weight and length.

Institutional review board statement
The animal study protocol was conducted in accordance with the Institutional Animal Care and Use Committee 
of the University of Arkansas Medical Sciences (Protocol # IPROTO202300000160) and conformed to standard 
Office of Laboratory Animal Welfare on the housing and medical care of swine used in research. The study is 
reported in accordance with ARRIVE guidelines.

Fig. 4.  Parasternal short axis (PSAX) view.
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Method Representative figures

PDA view (Fig. 5a-c)

How to obtain:
Supine position, probe positioned in the left axillary region, notch 1–3’oclock 
(Fig. 5a)
• Evaluate branch pulmonary arteries by 2 d and color Doppler to look for 
patent ductus arteriosus (Fig. 5b-c)

Bubble Study (Fig. 6a-f)

How to obtain:
Agitated saline contrast injected from peripheral IV by certified veterinarian 
and Apical 4 chamber view obtained as described in Table 1 (Fig. 6a-c)
• Evidence for bubbles crossing to left side in the first five cardiac cycles noted 
after right sided opacification (Fig. 6d-f) for evidence of intracardiac shunting.

Table 2.  Additional echocardiographic evaluation prior to cardiac surgery [RA: right atrium; LA: left atrium; 
RV: right ventricle; LV: left ventricle; aov: aortic valve; PV: pulmonary valve; MPA: main pulmonary artery; R: 
right; L: left].

Fig. 5.  Patent ductus arteriosus (PDA) view.
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Fig. 7.  Generalized additive mixed models for pulmonary and aortic valve size in relation to age, weight and 
length. Solid lines denote marginal predictions from the generative additive mixed models. Pink and blue 
shaded areas denote 95% confidence interval. Circle points represent echocardiographic measurements, with 
dotted lines linking repeated observations from the same piglet to show within-subject trajectories.

 

Fig. 6.  Bubble study.
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Data availability
The data presented in this study is available upon request from the corresponding author.
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