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The growing use of indoor localization systems (ILS) in essential applications, including healthcare, 
smart buildings, and logistics, has created serious security and privacy concerns. This paper thoroughly 
analyzes the existing security and privacy concerns in ILS, emphasizing risks such as spoofing, 
signal jamming, and adversarial attacks. We explore defense strategies, such as federated learning, 
adversarial machine learning, and cryptographic protocols, emphasizing their efficacy and constraints. 
The study examines the trade-offs among privacy, accuracy, and efficiency in ILS while tackling 
significant difficulties such as non-Independent and Identically Distributed (non-IID) data, energy 
efficiency, and scalability in practical applications. This review provides a comprehensive overview 
of the state of the art in protecting ILS against growing adversarial threats by integrating major 
trends and approaches from the last five years. This survey paper will help researchers and industry 
professionals gain a deeper understanding of privacy and security concerns in ILS.
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CSI	� Channel state information
CV	� Computer vision
DNN	� Deep neural network
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FMCW	� Frequency modulated continuous wave
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GDPR	� General data protection regulation
GNSS	� Global navigation satellite system
GPS	� Global positioning system
ILS	� Indoor localization systems
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IoT	� Internet of Things
KNN	� K-nearest neighbor
LBS	� Location-based services
LDP	� Local differential privacy
LIDAR	� Light detection and ranging
LoS	� Line-of-sight
MAC	� Media access control
MIM	� Momentum iterative method
ML	� Machine learning
NFC	� Near-field communication
NLoS	� Non-line-of-sight
ODE	� Ordinary differential equation
PGD	� Projected gradient descent
PST	� Probability suffix trees
RF	� Radio frequency
RFID	� Radio-frequency identification
RL	� Reinforcement learning
RNNs	� Recurrent neural networks
RSS	� Received signal strength
RSSI	� Received signal strength indicator
SNR	� Signal-to-noise ratio
SVM	� Support vector machine
TDoA	� Time difference of arrival
ToA	� Time of arrival
UWB	� Ultra-wideband
ZKP	� Zero-knowledge proof
ZUPT	� Zero-velocity update

Location-based services (LBS) are applications that deliver location-specific information regarding a user or 
device via mobile devices or communication networks. Recent years have seen an increase in demand due to 
their broad range of applications, which include navigation, mapping, social networking, targeted advertising, 
virtual reality, healthcare, transportation, smart cities, and gaming1. While outdoor localization largely depends 
on global navigation satellite systems (GNSS), many emerging services require accurate positioning indoors, 
where GNSS is unreliable. Indoor Localization Systems (ILS) fulfill this requirement by utilizing several 
technologies, including frequency modulation (FM), amplitude modulation (AM), Bluetooth, global system for 
mobile communications (GSM), Wi-Fi, and long-term evolution (LTE)2,3.

Localization fundamentally involves determining the position of an object or individual in relation to 
reference points (RP) within a specified indoor environment4, as depicted in Fig. 1, which emphasizes the 
difference between indoor and outdoor methodologies. The increasing dependence on ILS in essential 
sectors, such as healthcare, smart infrastructure, logistics, and emergency response, highlights the necessity 
for dependable, secure, and privacy-respecting systems. Indoor locations present distinct issues, including 

(a) Indoor localization systems.

(b) Outdoor localization systems.

Fig. 1.  Indoor versus outdoor localization systems.
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signal blockage, multipath effects, and vulnerability to malicious interference. Security threats such as signal 
spoofing and jamming, along with privacy risks like unauthorized tracking, can result in significant real-world 
repercussions. It is therefore essential to understand and address these threats, which highlight the importance 
of a comprehensive review of existing vulnerabilities, defense mechanisms, and future research directions in this 
evolving field.

The study distinguishes itself from others5–7 by providing a comprehensive examination of security and 
privacy concerns in ILS, something that is frequently overlooked in previous research. Numerous present 
assessments concentrate on security concerns or privacy troubles, although seldom do they examine the 
combination of both. Our analysis underscores the imperative for a dual approach, particularly in response 
to rising threats such as signal spoofing, jamming, and data privacy violations. This report highlights recent 
trends and offers a current view of the growing environment of ILS, including developments in FL and AML as 
defensive strategies. Unlike prior studies that narrow their scope to specific technologies, our paper broadens the 
scope by analyzing the latest developments across diverse ILS applications, providing insights into both attack 
prevention and defense mechanisms, and identifying gaps in the literature. The main contributions of this study 
are summarized as follows:

•	 Comprehensive literature synthesis We provide a structured and up-to-date review of recent developments 
(2020–2025) in ILS security and privacy, emphasizing the interplay between threats such as spoofing, jam-
ming, and data breaches, which are often treated separately in prior surveys.

•	 Methodological integration of defense paradigms This study uniquely integrates discussions on federated learn-
ing (FL), adversarial machine learning (AML), and cryptographic protocols, offering a comparative analysis 
of their effectiveness and limitations across varied ILS scenarios.

•	 Evaluation of privacy–utility trade-offs We critically examine the trade-offs between privacy, accuracy, and 
computational efficiency in decentralized ILS architectures, offering insights into real-world applicability and 
constraints that are often overlooked in more theoretical studies.

•	 Identification of open challenges and research Ddrections The study highlights unresolved issues such as non-
IID data handling, scalability limitations, and energy efficiency bottlenecks. Based on these, we propose con-
crete future research directions to support the design of more secure and privacy-preserving ILS frameworks.

While several prior reviews have discussed either security or privacy in indoor localization systems, few 
studies have offered an integrated perspective that systematically addresses both concerns in tandem. This gap 
is particularly significant given the increasing interdependence between privacy-preserving mechanisms and 
security defenses in real-world ILS deployments. Existing literature has tended to focus on isolated technical 
challenges–such as specific attack types, encryption techniques, or signal interference–but has often lacked 
a comprehensive view that maps these threats to emerging defensive strategies like federated learning and 
adversarial machine learning. In response, this study presents a structured and up-to-date synthesis of both 
vulnerabilities and countermeasures in ILS, covering technological trends from 2020 to 2025. Methodologically, 
this review differs from past works by bridging siloed research areas and offering a comparative analysis of 
ILS privacy and security solutions across a range of practical application scenarios. By doing so, it not only 
identifies unresolved challenges but also outlines future research directions to guide the development of robust 
and privacy-aware indoor localization architectures.

To conduct this comprehensive review, we systematically searched leading academic databases, including 
IEEE Xplore, Scopus, and Web of Science, for peer-reviewed journal and conference papers published between 
2020 and 2025. Keywords such as indoor localization, privacy, security, federated learning, and adversarial 
machine learning guided our search. We included articles that specifically addressed either security or privacy 
concerns or both within the context of Indoor Localization Systems (ILS). Studies that focused exclusively on 
hardware-level improvements or unrelated positioning technologies were excluded. We restrict the time window 
to 2020–2025 to capture the rapid shift toward FL/AML and cryptographic defenses during these years, provide 
a coherent and up-to-date scope, and complement–rather than duplicate–pre-2020 surveys. For the detailed 
eligibility rules and screening workflow, see “earch Strategy and Eligibility Criteria”Section.

As a survey paper, this study aims to synthesize and evaluate existing research, without proposing new 
algorithms or experiments. Selected articles were analyzed and categorized based on attack types, defense 
mechanisms, and system architectures, as illustrated in Fig. 3, to support a structured exploration of current 
trends and open challenges in the field.

Unlike prior surveys, this work integrates recent advances and organizes threats and solutions using a 
taxonomy aligned with AI-driven and cryptographic methodologies, offering a novel perspective on the dual 
challenge of privacy and security in ILS.

Search strategy and eligibility criteria
To enhance transparency and reproducibility, we specify the eligibility rules governing study selection and 
outline the screening workflow used to assemble the final corpus. A concise summary appears in Table 1.

Inclusion criteria (all must be satisfied).

	1.	 Peer-reviewed journal or conference papers published during 2020-2025.
	2.	 English-language publications.
	3.	 Full text available.
	4.	 Studies focused on ILS that analyze security and/or privacy (e.g., threats, defenses, trade-offs).
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	5.	 Study designs including empirical evaluations, simulations, algorithmic/framework proposals, or surveys 
that substantively address ILS security or privacy.Exclusion criteria (any single criterion is sufficient for 
exclusion)

	1.	 Works focused exclusively on hardware-level improvements with no ILS security/privacy analysis.
	2.	 Studies on outdoor-only localization or otherwise unrelated positioning technologies.
	3.	 Non–peer-reviewed items (e.g., theses, patents, white papers), abstracts without full text, or non-English 

publications.Screening workflow Records aggregated from the selected bibliographic sources were first dedu-
plicated. We then conducted title/abstract screening against the eligibility rules above, followed by a full-text 
assessment of the remaining candidates. For transparency, reasons for exclusion were documented at the 
full-text stage. The subsequent taxonomy and synthesis consider only studies meeting the inclusion criteria.

The remainder of the paper is organized as follows: Section "Fundamentals of indoor localization systems" covers 
the basics of ILS, including their kinds, range methods, and localization algorithms. Section "Related work" 
summarizes current ILS security and privacy assessments and research. Section "Comparative study of privacy 
and security approaches in ILS" examines the strengths, weaknesses, and current trends of ILS security solutions 
and highlights key issues. Section "Security and privacy concerns in ILS" discusses ILS security and privacy 
issues, including spoofing and jamming attacks and their consequences. Section "Machine learning techniques 
for enhancing security and privacy in ILS" discusses the AI techniques that can be used for enhancing ILS 
privacy and security. Section "Discussion and synthesis of findings" synthesizes the findings from the previous 
sections by categorizing security and privacy techniques along the dimensions of effectiveness, scalability, and 
real-world applicability. Finally, sect. "Research gaps and future directions" provides a comprehensive discussion 
of gaps and future directions in the ILS study. Finally, sect. "Conclusion" concludes the paper by summarizing 
the findings and suggesting future research directions to improve ILS security and privacy. For a complete 
structure of this paper, refer to Fig. 2.

Fundamentals of indoor localization systems
Before delving into privacy and security challenges related to ILS, let us briefly look into these systems. ILS estimates 
the position of a target continuously in an indoor environment by first applying a distance estimation algorithm 
using different ranging techniques, followed by a localization algorithm8. To offer a structured understanding of 
the security and privacy landscape in ILS, Fig. 3 presents a taxonomy that categorizes the common threat types, 
corresponding defense mechanisms (e.g., federated learning, adversarial training, cryptographic solutions), and 
deployment models. This taxonomy serves as a conceptual anchor for the techniques reviewed in subsequent 
sections.

Types of indoor localization
Indoor environments are diverse, and each indoor environment requires ILS tailored to its needs in terms of 
accuracy and coverage. For example, ambient assisted living applications require room-level coverage with an 
accuracy of less than one meter, while law enforcement requires urban or rural coverage with an accuracy of a 
few meters. Because of these diverse needs, there is no single solution to indoor localization; different localization 
techniques coexist. Indoor localization can broadly be divided into two categories: active localization and passive 
localization. A more detailed sub-classification of active and passive localization techniques is shown in a flow 
chart in Fig. 4.

Active localization
Active localization is ideal for application that require high accuracy like asset tracking, robot navigation, etc., but 
demands users to carry a tag or device like a mobile phone, smartwatch, etc. Some of the techniques used for active 
detection include computer vision (CV)9, light detection and ranging (LIDAR)10–12, ultrasound13, acoustic14,15, 
geometric fingerprinting16, wireless or radio frequency (RF)17, visible light18, and aroma fingerprinting19,20.

Passive localization
Unlike active localization, passive localization suitable for scenarios like occupancy detection, with limitations 
in precision is due to the lack of active tags. Some of the applications of passive detection are intrusion detection, 
fall detection, remote monitoring, emergency evacuation, business analytics, accessibility aids for the visually 
impaired21, etc. The techniques used in passive localization include camera- or vision-based localization22,23, 

Category Rule

Include Peer-reviewed journal or conference paper (2020–2025), English, full text available

Include Focus on ILS with analysis of security and/or privacy (threats/defenses/trade-offs)

Include Empirical, simulation, algorithm/framework, or survey with substantive ILS security/privacy content

Exclude Hardware-only improvements without ILS security/privacy analysis

Exclude Outdoor-only localization or unrelated positioning technologies

Exclude Non–peer-reviewed items; abstracts only; non-English

Table 1.  Eligibility criteria (summary).
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RF-based localization24, visual light-based localization25,26, infrared-based localization27,28, physical excitation21, 
and electric field sensing13,29.

Ranging techniques
Ranging techniques in ILS are different methods used to measure the distance between devices, such as beacons, 
sensors, or access points (AP), and a target object that could be a mobile device or person. These techniques are 
essential for determining the location of a target in an indoor environment. Different ranging techniques are 
used for ILS in the literature (Fig. 5); some of the common ones include the following:

Phase of arrival (PoA)
PoA is a ranging technique in which the phase difference of a signal that is received at multiple antennas or 
from multiple transmitters is measured. The phase information in PoA is used to estimate the target location. 
Although PoA can provide high accuracy, especially in environments with limited multipath path effects, it is 
challenging because it requires precise measurement and is sensitive to environmental factors and frequency 
offset30,31.

The PoA is estimated by evaluating the phase difference of the signal received at various antennas. 
Mathematically, the phase difference ∆ϕ between the two antenna positioned at a distance d is represented as

	
∆ϕ = 2πd cos θ

λ
,� (1)

Fig. 2.  Outline of the study.

 

Scientific Reports |        (2025) 15:44625 5| https://doi.org/10.1038/s41598-025-22204-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where, θ is the angle of arrival of the signal, λ represents the wavelength of the signal, and d denotes the distance 
between the antennas. The angle of arrival, θ, can be approximated using the measured phase difference ∆ϕ:

	
θ = cos−1

(
∆ϕ · λ

2πd

)
.� (2)

The approximated phase can then be used to determine the target’s position in either a two or three dimensional 
space. The effectiveness of this method depends upon the accurate measurements and careful calibration, which 

Fig. 3.  Taxonomy of security and privacy mechanisms for indoor localization systems (ILS), classified by 
attack type, mitigation approach, and system architecture.
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help mitigate influences such as frequency offset and environmental noise. Although PoA provides high accuracy 
in controlled settings, its susceptibility to noise, frequency offsets, and calibration issues limits its practicality in 
dynamic or large-scale applications.

Angle of arrival (AoA)
Angle of arrival (AoA) is a method that measures the direction from which a signal reaches the receiver. This 
method triangulates the target location by combining multiple AoAs from different receiver locations. AoA 
provides high accuracy, especially when directional antennas are used. However, it requires specialized hardware 
and can be affected by multipath interference32. In practice, the AoA technique determines the angle θ of the 
incoming signal at each receiver, which can be calculated using the coordinates of the transmitter (xt, yt) and 
the receiver (xr, yr).

	
θ = tan−1

(
yt − yr

xt − xr

)
.� (3)

Fig. 4.  Types of indoor localization.
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Several receivers with known positions are employed to determine the transmitter’s location through 
triangulation. Using the AoA information θi at receiver i, the lines of bearing (LoB) can be described as

	 y − yri = tan(θi) · (x − xri ),� (4)

(xri , yri ) denotes the coordinates of the i-th receiver. The intersection of these LoBs from various receivers 
yields the estimated location of the transmitter (xt, yt). In actual situations, noise and multipath effects can 
distort AoA readings, requiring error minimization strategies to enhance the accuracy of the estimated position.

Although AoA is highly accurate, it is especially susceptible to multipath effects. Additionally, the requirement 
for specialized directional antennas and noise reduction techniques can make its deployment in real-world 
situations more complex.

Signal propagation time
In the signal propagation time technique, the distance between the target and a reference point (RP) with a 
known location is estimated by measuring the time it takes for a signal to arrive between them. Based on this 
principle, two common techniques are used, namely time of arrival (ToA) and time difference of arrival (TDoA). 
ToA provides high accuracy in line of sight (LOS) environments but its performance decreases in no line of sight 
(NLOS) scenarios due to the multi-path effect and signal reflection33. A major challenge in ToA is the need for 
accurate time synchronization between the transmitter and receiver, which TDoA addresses. However, TDoA 
requires multiple receivers and the use of complex algorithms to estimate the target location, which introduces 
its own difficulties.

In the ToA method, the distance d between the transmitter and receiver is calculated as

	 d = c · t,� (5)

where c is the speed of light (or more generally, the signal propagation velocity in a medium), and t represents the 
measured signal propagation duration. This equation presumes that the signal propagates on a linear trajectory 
without considerable delays caused by obstructions.

The TDoA technique uses the time difference of arrival (∆t) between two receivers at known locations to 
calculate the difference in distances (∆d) from the target to these receivers, expressed as ∆d = c · ∆t. Here, ∆t 
represents the time difference between the signals reaching the two receivers, defined as ∆t = t2 − t1, where t1 

Fig. 5.  Ranging techniques in ILS.
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and t2 denote the arrival times at the first and second receivers, respectively. The target’s location is determined 
by integrating several measurements through trilateration or other geometric methods.

ToA and TDoA perform well under ideal line-of-sight conditions, but their accuracy decreases in non-line-
of-sight environments. Beyond classical multilateration, a recent approach couples propagation modeling with 
a genetic algorithm to efficiently explore the position space and improve indoor localization under multipath 
constraints34.

Received signal strength indicator (RSSI)
RSSI, as the name suggest, is a measure of the real signal power received by the receiver. It is calculated in decibel 
milliwatts (dBm) or milliwatts (mW)35. The RSSI technique estimates the distance between the transmitter and 
receiver based on the strength of the received signal. As the distance between the devices increases, the signal 
strength decreases, which is used to approximate the distance between them.

The received signal strength (RSS) is represented by the path loss equation:

	 Pr(d) = Pt − 10 · n · log10(d) + Xg,� (6)

where Pr(d) represents the received power at a distance d (in dBm), Pt denotes the transmitted power (in 
dBm), n signifies the path loss exponent (typically ranging from 2 to 4 in indoor environments), d indicates 
the distance between the transmitter and receiver (in meters), and Xg  refers to the Gaussian noise that accounts 
for environmental factors (e.g., obstacles and interference). The estimated distance d̂ can be computed using the 
following equation:

	 d̂ = 10
Pt−Pr(d)+Xg

10·n .� (7)

RSSI based localization is easy to implement without requiring complex hardware or calculations. Another 
advantage of RSSI is that they are inexpensive and are widely supported by existing wireless technologies like Wi-
Fi and Bluetooth. Accuracy of RSSI is directly influenced by environmental factors like obstacles, interference, 
and multi-path propagation36. Compared to other techniques RSSI is generally less accurate, especially in 
complex indoor environments.

RSSI provides ease of use and cost benefits; however, it faces challenges with accuracy in areas with many 
obstacles or interference, which reduces its reliability for accurate indoor localization.

Frequency modulated continuous wave (FMCW)
FMCW is a technique in which a continuous waveform is transmitted along with its frequency modulation over 
time. The transmitted signal can be represented as

	 stx(t) = A cos
(
2πf0t + πkt2)

,� (8)

where A denotes the amplitude of the signal, f0 represents the initial frequency, and k = B
T  represents the chirp 

rate, with B indicating the bandwidth and T  the duration of the chirp. This signal reflects off an object and is 
received by the system. The received signal, delayed by the duration τ , is expressed as

	 srx(t) = A cos
(
2πf0(t − τ) + πk(t − τ)2)

.� (9)

The system estimates the frequency shift f∆, defined as the difference between the transmitted and received 
signals. The frequency shift is expressed as

	
f∆ = kτ = 2kR

c
,� (10)

where τ = 2R
c  denotes the round-trip time delay, R represents the distance from the transmitter to the object, 

and c signifies the speed of light. Hence, the distance R to the item can be calculated using the formula:

	
R = cf∆

2k
.� (11)

FMCW is a versatile technique that supports both short- and long-range sensing, making it suitable for a wide 
range of indoor applications37. While it offers high accuracy, its performance is sensitive to environmental factors 
and relies on advanced signal processing and sophisticated hardware. These requirements increase system cost 
and complexity, limiting its feasibility for large-scale or cost-sensitive deployments38.

Channel state information (CSI)
CSI is an advanced technique for measuring distance in ILS. CSI holds detailed data about the propagation 
characteristics of a wireless communication channel like Wi-Fi. It includes information regarding the variations 
in signal as it passes through an environment, which can be affected by factors like walls, furniture, and people 
moving around39. CSI provides more precise data compared to traditional RSSI data which allows for a more 
accurate localization, device tracking, and environment sensing.

The CSI captures the frequency response of the channel, mathematically expressed as
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	 H(f) = |H(f)|ejϕ(f),� (12)

where H(f) denotes the complex channel frequency response at frequency f , |H(f)| represents the amplitude 
response, and ϕ(f) indicates the phase response. The received signal can be expressed with the CSI as follows:

	 Y (f) = H(f) · X(f) + N(f),� (13)

In the frequency domain, Y (f) denotes the received signal, X(f) signifies the broadcast signal, H(f) represents 
the CSI, and N(f) indicates noise. In a multipath environment, where signals arrive at the receiver via multiple 
routes, the CSI is generally represented as

	
H(f) =

L∑
i=1

αie
−j2πfτi ,� (14)

where L denotes the number of propagation paths, αi signifies the amplitude attenuation of the i-th path, and 
τi indicates the propagation delay of the i-th path.

CSI provides exceptional accuracy and depth in localization data through its comprehensive channel 
measurements. However, its substantial computational demands and sensitivity to environmental changes pose 
considerable challenges for real-time and resource-limited applications.

Localization algorithms
Indoor localization algorithms are used to determine the position of a target object based on factors like RSSI, 
CSI, ToA, etc. These algorithms are broadly classified as follows:

Proximity-based algorithms
Proximity-based localization algorithms determine the location of a device by measuring its closeness to some 
known fixed point40. Bluetooth beacons are a common proximity-based approach that measures device closeness 
by measuring the strength of the signals from the beacons set at known locations. This method is commonly 
implemented in indoor environments. Near-field communication (NFC) is another example of a proximity-
based algorithm in which the location of the device is determined by directly interacting with NFC tags that are 
embedded in the area of interest.

Triangulation-based algorithms
Triangulation-based algorithms utilize the geometric relationship between the known RP or anchor. It includes 
methods like lateration13, which determines the target distance from multiple anchors to calculate its location. 
TDoA and ToA are examples of lateration, which improves localization accuracy using signal travel times. 
Angulation (or AoA) is another triangulation-based algorithm that estimates the target location using the 
measure of the angle of the signal arriving from multiple anchors. Both lateration and angulation are widely 
used methods, and they balance accuracy and computational requirements based on the indoor environment 
and infrastructure.

Dead reckoning
Dead reckoning, though a navigation method, can be used for indoor localization. It estimates the current 
position of the target using previously known locations, along with its velocity measurement and direction of 
movement. Dead reckoning is sensitive to error accumulation over time41; hence, it is often combined with other 
localization techniques to improve its accuracy.

Trilateration/multilateration
Trilateration and multilateration are techniques that find an unknown node by using three (in the case of 
trilateration) or more (in the case of multilateration) reference nodes. In trilateration, the position of the target 
node is determined by finding the intersection of three imaginary circles that are centered at the reference 
nodes42.

Magnetic field-based localization
In the magnetic field-based localization algorithm, distortions in the earth’s magnetic field are used to pinpoint 
locations43. This distortion in the magnetic field is caused by the structural elements of the buildings. Magnetic 
field-based localization involves creating detailed maps of the indoor environment’s magnetic field, which are 
then used as references in indoor localization.

Range-free
Range-free localization algorithms are methods that do not rely on distance or angle measurements to predict the 
position of the target and are used in wireless sensor networks (WSNs). Range-free localization algorithms use, 
instead, the connectivity information to infer the relative position of nodes in a network. Common range-free 
algorithms include distance vector-hop (DV-Hop)44, centroid localization, approximate point-in-triangulation 
(APIT), and multidimensional scaling mapping (MDS-MAP).
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Machine learning (ML)-based algorithms
ML-based algorithms use methods like neural networks, like deep neural networks (DNNs), convolutional 
neural networks (CNNs), and recurrent neural networks (RNNs), to improve localization accuracy by learning 
from a large dataset35. These neural networks effortlessly model complex relationships between the signal 
features and specific location coordinates. Support vector machines (SVMs) are another ML algorithm used 
for localization problems due to their robust classification capabilities. SVMs efficiently determine the position 
based on different signal attributes.

Fingerprinting
Fingerprinting in indoor localization is the process of creating a radio map (database) of signal characteristics 
like RSSI and CSI at multiple locations in the area of interest45. This radio map is used as a reference to match 
the current signal measurements with those in the database and predict the location based on this comparison. 
The most popular method, Wi-Fi fingerprinting, uses RSSI data from many APs to estimate the device location. 
Another method of fingerprinting is RFID fingerprinting, which builds complex signal maps using RFID tags 
and readers, allowing for more accurate localization (Fig. 6).

Related work
ILS security and privacy surveys and case studies are reviewed in this section, highlighting key findings and 
limitations. It includes case studies and real-world applications in indoor localization from 2020 to 2025.

Fig. 6.  Localization algorithms.
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Existing surveys and reviews
Recent surveys on ILS have explored various aspects of security and privacy, yet gaps remain in their coverage 
and depth. Early reviews, such as46, provided a foundational categorization of privacy concerns–device, 
transmission, and server-level–but their relevance is limited due to outdated datasets. More recent works have 
examined the intersection of machine learning and IoT security47, as well as the broader landscape of indoor/
outdoor localization in IoT42. Studies focusing on specific technologies, like BLE in wearable devices48, and 
deep learning-based approaches using Wi-Fi, Bluetooth, and UWB49, highlight ongoing challenges such as 
multipath interference, data scarcity, and environmental noise. While these surveys contribute valuable insights, 
particularly on hybrid techniques and device-free localization, standardization and efficiency remain critical 
concerns. More recent efforts7 have introduced structured classifications based on collaboration and security 
principles but offer limited treatment of privacy-preserving methods. Privacy-specific surveys5,50 have begun 
to explore novel attack models and protection strategies in location fingerprinting, though their scope is often 
narrow and lacks comprehensive analysis. Overall, existing literature reveals a fragmented approach to privacy 
in ILS, underscoring the need for more integrative and up-to-date reviews. For a cutting-edge 2025 synthesis of 
AI–cybersecurity fusion trends–spanning FL, AML, privacy mechanisms, and policy directions–see51, which 
complements our ILS-focused review. Given that several pre-2020 surveys are limited or outdated with respect 
to modern datasets and techniques, our review focuses on 2020–2025 to provide an up-to-date synthesis that 
complements these earlier works.

Evolution of security and privacy techniques in indoor localization
2020
Several studies have explored privacy and security concerns in indoor positioning systems (IPS), particularly the 
handling of sensitive user data and resilience against adversarial behavior. Barsocchi et al.52 propose a GDPR-
compliant, privacy-by-design framework for location-based services, demonstrated through a Telegram-based 
proximity marketing application. While the architecture supports regulatory compliance, it remains limited in 
scope and reveals ongoing vulnerabilities in data protection. Addressing malicious data manipulation, Li et al.53 
introduce the ACTD framework, which employs machine learning and outlier detection to identify anomalous 
RSS fingerprint submissions. Although effective in simulations, the lack of real-world validation limits its 
practical reliability. To counter fraudulent check-ins, Li et al.54 present an AP subset selection strategy that 
optimizes positioning accuracy and robustness; however, the method is sensitive to environmental variation, 
computationally demanding, and may struggle with emerging threats. Expanding on this, Li et al.55 propose a 
boundary-based defense using fingerprint refinement and level-set methods to improve localization security. 
Despite promising simulated results, its effectiveness remains constrained by untested assumptions and partial 
mitigation of attack vectors.

Building on these efforts to strengthen IPS resilience, Yang et al.56 focus on secure state estimation under 
sensor attacks, where measurements can be manipulated even with protected communication channels. Their 
map-based localization algorithm ensures robust estimation against such threats, though practical deployment 
under diverse attack scenarios remains unexplored. To address localization in large, multi-floor environments 
with limited labeled data, Li et al.57 propose a decentralized federated learning (FL) approach combined with 
pseudo-labeling. Their centralized indoor localization method using the Pseudo-label(CRNP) method enhances 
accuracy while preserving privacy and reducing network costs, yet challenges persist with data heterogeneity, 
privacy sensitivity, and the computational burden of distributed training. In parallel, Ko et al.58 introduce RFBSA, 
a random forest-based filter designed to mitigate localization errors caused by MAC spoofing. The technique 
proves effective against attacker-generated noise, outperforming traditional filters and deep learning models, 
but maintaining robustness against increasingly sophisticated spoofing remains a concern. Ciftler et al.59 further 
explore privacy-preserving localization by applying FL to crowdsourced RSS fingerprint data. While achieving 
notable accuracy gains and safeguarding user privacy, their approach is constrained by scalability issues, slower 
convergence on non-IID data, and the performance limitations of low-power devices in real-time scenarios.

Further contributions focus on enhancing privacy and spoofing resistance in localization systems. Zhang et 
al.60 propose a lightweight privacy-preserving solution (LW P 2) for Wi-Fi fingerprinting, utilizing the Paillier 
cryptosystem to perform secure computations in the encrypted domain. Although it improves localization 
accuracy and privacy, the method incurs higher processing and communication overhead and offers limited 
protection for the localization server itself. Shubina et al.61 explore the privacy-accuracy trade-off in wearable 
networks, introducing metrics that allow users to manage location obfuscation. Their findings are informative for 
dense environments but may not generalize to sparse settings and highlight the ongoing challenge of balancing 
privacy with utility in location-based services. To detect physical-layer spoofing, Yan et al.62 develop PHY-
IDS, an RSSI-based system that performs well against both naïve and informed attackers. However, its scope 
is limited to wearable devices and does not address broader security threats. Similarly, Madani et al.63 present 
a randomized moving target defense (RMTD) for detecting MAC spoofing in IoT systems. By dynamically 
altering network parameters, RMTD improves spoofing resistance but depends heavily on accurate modeling of 
advanced adversarial behavior, which may not always be feasible.

Privacy-preserving and three-dimensional localization techniques have also received notable attention. 
Nieminen et al.64 propose a secure two-party computation method for indoor localization, integrating Wi-
Fi fingerprinting with privacy models. While their Android-based proof-of-concept demonstrates feasibility 
with reasonable retrieval times, scalability is hindered by computational and communication overhead. Kordi 
et al.65 offer a broad review of wireless IoT-based indoor localization methods, covering proximity, lateration, 
fingerprinting, and hybrid techniques. Although the study provides a useful taxonomy and highlights the 
potential of machine learning for optimization, it lacks empirical performance evaluations and real-world 
deployment considerations. Addressing the limitations of 2D systems, Alhammadi et al.66 present a 3D Bayesian 
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graphical model (3D-BGM) that reduces reference point requirements while achieving competitive accuracy. 
Despite outperforming several baseline models, the system’s reliance on static environments and challenges 
in scaling to multi-story buildings limit its generalizability. A related approach by the same authors67 extends 
3D-BGM with RF fingerprinting, leveraging existing Wi-Fi infrastructure to improve localization accuracy and 
efficiency. However, the system still requires frequent radio map updates and does not fully address scalability, 
security, or privacy in dynamic IoT environments.

2021
Adversarial robustness and cross-technology attacks have emerged as critical challenges in indoor localization 
and activity recognition systems. Patil et al.68 explore the vulnerability of RSSI-based systems to adversarial 
inputs, demonstrating that their deep learning model (DMLP) outperforms traditional methods and benefits 
from adversarial training. However, the model remains limited by its focus on white-box attacks, susceptibility 
to dynamic environments, and dependency on high-quality RSSI data. Similarly, Ambalkar et al.69 investigate 
adversarial attacks on Wi-Fi CSI-based human activity recognition systems, proposing a defense framework 
using Projected Gradient Descent (PGD) and Momentum Iterative Method (MIM) techniques. While the 
framework enhances resilience, it shares limitations with Patil et al., including an exclusive focus on white-box 
scenarios, sensitivity to data quality, and lack of real-world validation. Addressing secure indoor localization at 
scale, Wang et al.70 present RMBMFL, a multi-task collaborative learning approach achieving high accuracy in 
large building environments. Despite its strong performance, the method’s generalizability is uncertain due to 
evaluation on a single, fixed site. In a related threat landscape, Na et al.71 introduce Wi-attack, a cross-technology 
impersonation attack exploiting BLE advertising via Wi-Fi. Although their detection method based on power 
consumption variance shows promise, the approach suffers from high localization errors, low packet reception 
rates, and reliance on cross-technology interaction, limiting practical deployment.

Comparative evaluations of indoor localization technologies have revealed both performance differences and 
persistent security challenges. Dervicsouglu et al.72 assess UWB and BLE systems, showing that UWB achieves 
superior accuracy (0.43 m vs. BLE’s 1.54 m), but note that variations in standards and distance estimation 
methods introduce unpredictable security vulnerabilities, with BLE being less reliable for precise positioning. 
Expanding on BLE-based solutions, Sun et al.73 propose a crowdsourced localization framework using dual 
BERT models–BERT-AD for adversarial sample detection and BERT-LOC for localization refinement. While the 
system improves robustness and accuracy, its reliance on BLE alone, environmental sensitivity, and scalability 
issues limit broader applicability. In parallel, Madani et al.74 introduce an LSTM autoencoder-based method 
for detecting MAC-layer spoofing in IoT networks using RSSI data. The model handles real-time detection and 
adapts to signal volatility, but its applicability is constrained to specific topologies, lacks multi-node coordination, 
and depends on manual data labeling. Addressing data scarcity, Njima et al.75 employ GAN-based augmentation 
with semi-supervised learning to improve RSSI-based localization. Their approach enhances accuracy on both 
simulated and real datasets, yet still falls short of optimal performance and faces limitations related to training 
data requirements and potential inaccuracies in synthetic samples.

Security vulnerabilities in Wi-Fi-based activity recognition and location privacy remain pressing concerns. 
Huang et al.76 introduce IS-WARS, a stealthy adversarial attack that manipulates wireless interference from 
protocols like ZigBee and Bluetooth to mislead Wi-Fi-based recognition systems without detection. Their 
results expose the vulnerability of such systems to cross-protocol interference, which is often overlooked, 
compromising reliability in real-world environments. To address location privacy, Min et al.77 propose a 3D 
geo-indistinguishability (3D-GI) mechanism that perturbs user coordinates while maintaining service quality. 
Although the method effectively adapts 2D privacy models to 3D settings, it remains simulation-based and 
lacks real-world validation, limiting its practical impact. Beko et al.78 focus on secure localization in randomly 
deployed networks, combining clustering, weighted central mass, and a bisection-based GTRS approach to 
detect spoofing and improve localization accuracy. While outperforming existing methods in simulations, the 
framework’s dependence on specific network assumptions may hinder its adaptability to dynamic, real-world 
scenarios.

2022
Privacy-preserving indoor localization continues to evolve through edge computing, federated learning, 
and anonymization frameworks. Zhang et al.79 introduce Adp-FSELM, a federated stacked extreme learning 
model integrated with differential privacy within an edge computing framework. The system achieves robust 
ε–differential privacy and low localization error while minimizing calibration effort. However, fingerprint 
collection remains labor-intensive, and scalability is limited. Similarly, Navidan et al.80 propose a local differential 
privacy (LDP)-based framework for population frequency estimation in indoor spaces. Though effective under 
moderate privacy settings, its performance degrades with increased noise and varies across datasets, limiting 
generalizability. Fathalizadeh et al.81 address location privacy using a k-anonymity and l–diversity model 
combined with Dijkstra’s algorithm, allowing secure data sharing while maintaining utility. Still, the method 
overlooks more sophisticated threats like poisoning and collusion and incurs computational overhead, reducing 
its adaptability to dynamic or sparsely covered environments. In a related study, Boora et al.82 focus on adversarial 
robustness in large MIMO localization using DCNNs and neural ODEs. While adversarial training enhances 
resilience, models remain sensitive to noise and hyperparameters, and suffer from high computational costs, 
limiting scalability in real-world, evolving environments.

Adversarial training and federated learning continue to play a central role in enhancing the robustness 
of indoor localization and activity recognition systems. Yang et al.83 propose SecureSense, which employs 
techniques like label smoothing and virtual adversarial training to improve defense against both black-box and 
white-box attacks in device-free human activity recognition. While it strengthens DNN resilience, challenges 
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such as training instability, hyperparameter sensitivity, and limited real-world validation restrict its deployment 
in dynamic or resource-constrained environments. In a similar direction, Ye et al.84 introduce SE-Loc, a semi-
supervised method that effectively combines labeled and unlabeled data for secure indoor localization. Despite 
high robustness under adversarial conditions, its accuracy is still affected by the presence of numerous malicious 
APs. Addressing adversarial threats in RSSI-based systems, Wang et al.85 develop AdvLoc using DCNNs with 
adversarial training, demonstrating strong performance against first-order attacks. However, the method lacks 
evaluation against more advanced attacks and across diverse environments. Han et al.86 present a CNN and 
ResNet-based defense for device-free localization that effectively detects spoofed signals and sensor faults, 
though it remains vulnerable to physical damage and tampering. Finally, Gao et al.87 propose FedLoc3D, a 
federated learning framework for cross-building 3D localization. Their approach, combining CNN-based 
classification and regression models, shows improved accuracy and privacy preservation but faces challenges 
related to network unreliability, data heterogeneity, and scaling in 3D environments.

2023
Recent efforts have focused on enhancing the reliability, security, and privacy of indoor localization systems 
through trust modeling, blockchain, and decentralized authentication. Peterseil et al.88 propose a trustworthiness 
score integrated with autoencoder neural networks and weighted non-linear least squares to reduce UWB 
localization errors by up to 50% in dynamic environments. While effective in controlled settings, the approach 
relies heavily on high-quality training data and requires calibration for varied deployments, limiting scalability 
and robustness under non-line-of-sight conditions. Shakerian et al.89 introduce a blockchain-supported indoor 
navigation system combining dual IMU sensors and the ZUPT algorithm, achieving reliable navigation with 
a mean root mean square error (RMSE) of 1.2 m. Despite secure data handling through Hyperledger Fabric, 
challenges include limited energy capacity, dependence on Wi-Fi, and untested performance under complex 
movements or large-scale deployments. Addressing adversarial threats, Mitchell et al.90 assess the vulnerability 
of learning-based localization models, showing that omniscient attacks significantly degrade accuracy. While 
adversarial training and outlier detection improve resilience, broader threat models and infrastructure-level 
vulnerabilities remain unexplored. Casanova et al.91 propose a decentralized attribute-based authentication 
(ABA) protocol using BLE and zero-knowledge proofs to secure collaborative indoor positioning systems. 
The protocol improves privacy, untraceability, and unlinkability, offering a practical alternative to centralized 
schemes, though it highlights the limitations of existing CIPS protocols in safeguarding user identity.

Privacy, energy efficiency, and threat detection remain key themes in recent indoor localization research. 
Mohsen et al.92 present PassiFi, a privacy-preserving system using passive Wi-Fi TDoA and deep learning 
regression to achieve sub-meter accuracy, outperforming traditional multilateration. However, its scalability 
and performance degrade under environmental changes, and privacy trade-offs–such as reliance on trusted 
entities and vulnerability to spatio-temporal attacks–remain unresolved. Focusing on secure 3D localization, 
Kalpana et al.93 propose a hybrid method combining acoustic and distance-based approaches with cryptographic 
safeguards. Their solution reduces localization error and energy use while identifying Sybil and malicious 
nodes. Yet, computational overhead, sensitivity to RSSI fluctuations, and reliance on beacon nodes limit its 
real-time applicability. In a related effort, Gebremariam et al.94 develop a hybrid machine learning framework 
for detecting routing threats in WSNs, achieving high localization precision and perfect threat detection in 
simulations. Nevertheless, the model’s processing demands, dependency on accurate training data, and lack 
of validation in dynamic environments raise concerns about scalability and practical deployment. Addressing 
spoofing attacks, Chen et al.95 introduce UnSpoof, a UWB-based system leveraging passive anchors and secure 
two-way ranging to detect and locate spoofed tags. While effective at distinguishing spoofed from genuine tags, 
its accuracy declines when devices fall outside the anchor-defined area, and its adaptability to diverse spoofing 
techniques remains uncertain.

Adversarial robustness, privacy, and federated learning continue to shape the advancement of indoor 
localization systems. Xiao et al.96 propose FooLoc, an over-the-air adversarial attack that generates subtle 
yet effective perturbations to mislead Wi-Fi-based DNN localization models, achieving up to 90% success in 
untargeted attacks. Despite its efficiency, the method relies on downlink CSI and faces challenges in practical 
implementation due to the limitations of additive perturbation on CSI measurements. Addressing privacy, 
Fathalizadeh et al.97 introduce GeoInd, a differential privacy-based framework that adds Gaussian noise to 
RSS data for geo-indistinguishability without relying on third parties. While effective in simulations, its lack of 
real-world deployment and limited scope raise concerns about broader applicability. In the realm of federated 
learning, Guo et al.98 present FedPos, a federated transfer learning system that reuses feature extractors across 
domains to reduce training data needs by 65% and achieve a mean localization error of 42.18 cm. However, 
its performance may be insufficient for precision-critical applications and remains validated only in limited 
indoor environments. Gufran et al.99 further advance this field with FedHIL, a heterogeneous FL framework 
incorporating stacked autoencoders and communication-efficient strategies to enhance accuracy while reducing 
latency. Though it outperforms existing models, its sensitivity to device heterogeneity, environmental noise, and 
generalization issues limits its scalability and robustness in dynamic settings.

Privacy-preserving indoor localization techniques have increasingly incorporated differential privacy, 
reinforcement learning, and federated learning. Xu et al.100 utilize Wi-Fi fingerprints and extreme learning 
machines with local differential privacy (LDP) to reduce data exposure during model training, demonstrating 
improved privacy with lower data quality degradation than centralized approaches. However, their method still 
suffers from up to 7.2% data loss and potential performance trade-offs compared to established techniques. 
Addressing semantic location privacy, Min et al.101 propose SALPPM, a reinforcement learning-based framework 
using modified geolocation data and semantic tags in 3D indoor environments. By leveraging D3QN and A3C 
algorithms, the system refines perturbation strategies and policy selection. Yet, its scope is limited to specific 
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RL methods, excluding alternative algorithms or continuous action spaces, which may hinder adaptability. 
Similarly, Kumar et al.102 present f-ILC, a federated learning-based Wi-Fi fingerprinting framework combining 
CNN-LSTM to enhance localization accuracy and preserve user anonymity. The system performs well across 
IID and non-IID settings but faces challenges in hierarchical space modeling, resource demands, and real-
time deployment feasibility. Finally, Shahbazian et al.103 provide a broader examination of machine learning 
applications in IoT localization, highlighting both current limitations and future opportunities, though lacking 
specific experimental validations or frameworks.

Security and privacy remain central to recent innovations in indoor localization. Chen et al.104 propose 
UnSpoof-Passive Ranging, a hybrid active-passive system that achieves 30 cm accuracy for legitimate tags and 
sub-meter precision for spoofed tags using ToF and TDoA measurements. While effective at detecting distance 
manipulation attacks even beyond the anchor convex hull, its performance is sensitive to anchor geometry, non-
line-of-sight conditions, and multi-antenna spoofing. Additional limitations include high energy consumption, 
computational overhead, and limited scalability in multi-client deployments. In a parallel effort, Wang et al.105 
introduce a privacy-preserving localization method based on two-party computation and Paillier encryption, 
offering enhanced RSS protection and reduced communication costs. However, the computational complexity 
of encryption may hinder real-time performance, and the reliance on a two-party model restricts applicability 
in decentralized systems. Addressing access point vulnerabilities, Tiku and Pasricha106 develop S-CNNLOC, 
a secure CNN-based framework that improves robustness against AP-level attacks, achieving up to 10 times 
greater resilience than conventional models. Despite its strong accuracy and security gains, challenges remain in 
scaling the framework and adapting it to diverse and dynamic network environments.

Recent advancements in indoor localization continue to address challenges related to security, privacy, 
and performance under dynamic conditions. Ma et al.107 propose LENSER, a CSI-based system for detecting 
unauthorized devices, which improves localization accuracy by 86.1% and reduces time overhead by 58.2% 
compared to existing methods. Despite these gains, the system remains sensitive to environmental fluctuations, 
indicating a need for enhanced robustness. Brachmann et al.108 examine privacy risks in XR localization 
using the LINDDUN framework, identifying threats such as identifiability and linkability in XR glasses and 
suggesting targeted mitigation strategies. However, the framework’s reliance on static threat categories may 
limit its adaptability in evolving XR scenarios. To strengthen privacy in LBS, Yan et al.109 introduce LDPORR, 
a local differential privacy method that applies Hilbert encoding and spatial decomposition to enhance both 
privacy and efficiency. While effective on real-world datasets, its processing complexity may hinder scalability in 
dynamic environments. Pandey and Patel110 develop SLABLDA, a secure fingerprinting algorithm that models 
AP location diversity and compensates for RSSI variability, yielding improved accuracy in complex indoor 
environments. Nonetheless, reliance on offline evaluations may restrict responsiveness in rapidly changing 
conditions. Lastly, Billa et al.111 offer a comprehensive review of indoor localization technologies for IoT systems, 
highlighting the trade-offs between cost and accuracy, particularly in hybrid and high-precision systems like 
UWB and VLC. Their work underscores the need for adaptable and cost-effective solutions that balance 
performance and practical deployment constraints.

2024
Recent research in 2024 has focused on enhancing indoor localization systems through federated learning, 
adversarial resilience, and cryptographic privacy-preserving techniques. Etiabi et al.112 propose a federated 
distillation (FD) approach that reduces communication overhead in IoT networks by 98% while maintaining 
localization accuracy and improving energy efficiency. However, its applicability to regression-based tasks like 
localization remains limited, and transmission energy savings come at the cost of increased computational 
demand. Gufran et al.113 introduce CALLOC, a lightweight, adversarial-resilient framework leveraging 
curriculum learning to improve localization robustness across devices and settings. Although it significantly 
reduces localization error, its performance depends heavily on curriculum design and has yet to be validated 
in dynamic real-world environments. Additionally, the computational load from attention mechanisms and 
adversarial training may hinder deployment on low-power devices. Eshun et al.114 present a cryptographic 
localization framework that ensures mutual privacy between users and service providers by offloading encrypted 
computation to a third-party cloud server. While it achieves up to 99% cost reduction, the system’s resilience 
against active adversaries remains unexplored. Huang et al.115 examine vulnerabilities in off-device wireless 
positioning systems and demonstrate practical attacks using homomorphic encryption and oblivious transfer. 
Although defenses are proposed, the study is confined to specific wireless environments, and inherent privacy 
concerns in off-device architectures present challenges for secure deployment in future networks.

Privacy-preserving indoor localization systems in 2024 have increasingly leveraged generative models, 
differential privacy, and adversarial threat analysis. Moghtada et al.116 propose DPGANs, a framework 
combining generative adversarial networks with differential privacy to protect user data while generating realistic 
synthetic fingerprints. While effective at preserving accuracy under moderate privacy constraints, performance 
degrades at higher privacy levels, and the reliance on a single generator-discriminator pair limits scalability and 
adaptability to complex environments. Fathalizadeh et al.5 provide a comprehensive review of privacy-preserving 
fingerprinting techniques, offering a novel classification framework for adversary models, vulnerabilities, and 
evaluation metrics. The study highlights critical research gaps and encourages future exploration into unified 
privacy frameworks. Examining attack impacts, Machaj et al.117 analyze Wi-Fi AP spoofing using KNN and the 
UJIIndoorLoc dataset, showing significant degradation in localization accuracy tied to the number of spoofed 
APs and reference points. However, the study’s focus on a single method and dataset limits generalizability 
to broader contexts and techniques. Addressing task privacy in mobile crowdsensing, Hemkumar et al.118 
introduce a geo-obfuscation strategy combining local differential privacy, geo-indistinguishability, and k-means 
clustering to defend against inference attacks. Despite outperforming existing methods like Eclipse and PIVE, 
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its effectiveness depends on environmental conditions, clustering parameters, and AP density, and it lacks 
evaluation against more advanced or emerging attack models.

Emerging 2024 studies continue to explore privacy threats and adversarial defenses in indoor localization. Li et 
al.119 propose RFTrack, a stealthy tracking attack that leverages RSSI time sequences and reinforcement learning 
to infer device locations using passive Wi-Fi sniffing. While it achieves high precision in structured environments, 
its effectiveness is limited by RSSI instability, bootstrap inaccuracies, and challenges in differentiating similar 
trajectories, particularly in open or dynamic settings. Pettorru et al.6 offer a comprehensive review of IoT 
localization strategies, examining vulnerabilities and the potential of AI, blockchain, and quantum computing 
for improving security. Despite identifying key advancements, the study notes issues such as hybrid system 
complexity, high energy demands, and a lack of empirical validation across many proposed solutions. Addressing 
robustness in noisy environments, Yang et al.120 introduce TRAIL, a three-phase adversarial architecture that 
combines transfer learning and adversarial interaction to improve accuracy in low SNR conditions. Though 
it outperforms existing methods, the model struggles with environmental variability and balancing offline-
online data alignment during training. Lastly, Wang et al.121 present a privacy-preserving scheme using inner 
product encryption to secure location data from untrusted cloud services. While it maintains accuracy with low 
computational overhead, its scalability and adaptability to real-time, large-scale deployments remain untested, 
particularly under frequent data updates.

Privacy-preserving and trustworthy localization frameworks have continued to evolve through encryption, 
blockchain, and probabilistic modeling. Wang et al.122 propose a secure indoor localization framework using inner 
product encryption (IPE) and ranging transformation to protect user and anchor data in cloud-based systems. 
While it maintains localization accuracy with low overhead, its scalability in real-time, dynamic environments 
remains a concern. Zocca and Hasan123 introduce a blockchain-based localization scheme using Hyperledger 
Fabric to ensure trust, data integrity, and privacy. The system shows strong security performance and leverages 
UWB for improved accuracy, but its reliance on centralized storage and blockchain transaction overhead may 
hinder scalability in large IoT networks. Verma et al.124 highlight privacy risks from unauthorized geo-tracking 
using device sensors, presenting an attack model with 98% accuracy without GPS and recommending mitigation 
strategies for Android platforms. However, the approach lacks real-world deployment and generalization 
beyond Android ecosystems. Addressing physical-layer privacy, Li and Mitra125 propose the DAIS method, 
which obfuscates delay and angle information to mislead eavesdroppers while preserving authorized 
localization accuracy. Though resilient to precoder leakage and effective under high SNR, its reliance on secure 
communication may be vulnerable in dynamic or adversarial conditions. Finally, Alhammadi et al.126 present a 
3D Bayesian graphical model that reduces localization error to 1.8 meters using Wi-Fi fingerprints and adaptive 
probabilistic reasoning. While it demonstrates scalability and efficiency, limitations include dependence on 
static access points, lack of built-in security features, and computational intensity during sampling in resource-
constrained settings.

2025
Recent studies in 2025 have emphasized privacy, efficiency, and robustness in Wi-Fi and BLE-based localization 
and sensing systems. Abuhoureyah et al.127 provide a comprehensive review of CSI-based human activity 
recognition (HAR), highlighting CSI’s advantages in mitigating signal distortion for location-independent 
sensing. However, transmission and reception noise remain key limitations, especially in constrained 
environments. David et al.128 explore privacy vulnerabilities in BLE beacons and propose a quasi-periodic 
randomized scheduling method to counter battery insertion attacks. While effective at obfuscating initialization 
timestamps, the study does not fully address power trade-offs or large-scale deployment feasibility. Enhancing 
secure location queries, Li et al.129 introduce ROLQ-TEE, a TEE-based framework that supports privacy-
preserving and revocable location queries via cryptographic RNN techniques. Despite improved performance 
over traditional schemes, TEE-related processing overhead raises concerns for scalability in larger systems. 
Boudlal et al.130 present a low-cost, non-intrusive HAR system using existing Wi-Fi CSI and deep learning 
to detect activities without wearables or cameras. While demonstrating strong performance, the system faces 
challenges related to hardware variability, environmental sensitivity, and computational demand. Finally, Nie 
et al.131 propose MS.Id, a mobile single-station identification method leveraging spatiotemporal data and MAC 
de-randomization to improve user identification. Achieving 95.24% accuracy and reduced localization error, 
the system offers scalable, infrastructure-light deployment but may encounter issues in dynamic environments, 
device heterogeneity, and potential privacy concerns from MAC-level data handling.

As shown in Table   2, security and privacy solutions in ILS vary widely in trade-offs between robustness, 
scalability, and efficiency. Cryptographic methods ensure strong confidentiality but often introduce significant 
latency and overhead, limiting real-time deployment64,114. Federated learning enhances data privacy in 
decentralized settings, yet remains vulnerable to poisoning and struggles with non-IID data59,87. Differential 
privacy offers theoretical guarantees but often degrades localization accuracy in dense environments [77], [114]. 
Adversarial training and GAN-based defenses improve resilience against spoofing but lack generalizability 
and are resource-intensive79,116. Blockchain solutions add transparency but suffer from scalability and energy 
constraints89,123. Lightweight approaches like MAC de-randomization and TEE-assisted queries are promising 
for real-time IoT deployments, though they trade off latency and coverage127–131. Overall, no single approach 
offers a balanced solution across privacy, accuracy, and computational efficiency–highlighting the need for 
hybrid, adaptive frameworks.

To provide a clearer overview of the existing research landscape, Table 3 presents a comparative summary 
of key studies in the domain of ILS security and privacy. It highlights the respective threat models, techniques, 
datasets or environments, main results, and known limitations, enabling readers to identify major trends and 
remaining gaps in the field.
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Study Attack type Defense method Dataset Accuracy Privacy Performance

Ciftler et al.59 Privacy breach Federated learning Real 1.8 m ✓ Strong Low (scalability 
issues)

Ko et al.58 MAC spoofing Random forest filtering Real Improved vs baseline ✗ Medium

Li et al.55 Malicious check-ins Fingerprinting + AP subset Simulated + Real High ✗ Medium

Li et al.54 Fraudulent check-ins Optimal boundary + LSM Simulated High ✗ Medium

Nieminen et al.64 Privacy breach Secure two-party computation Real  2.2 s query time ✓ Moderate High

Shubina et al.61 Privacy vs Accuracy 
trade-off Obfuscation control Real Moderate ✓ Moderate Medium

Yan et al.62 Physical-layer spoofing RSSI-based detection Real 99.8% ✗ Medium

Zhang et al.60 Privacy exposure Paillier encryption Simulated Efficient (no exact error) ✓ Moderate
High 
(processing 
cost)

Ambalkar et al.69 Adversarial ML PGD + MIM + Defense Simulated Good (exact N/A) ✗ High

Beko et al.78 Spoofing WCM + GTRS bisection Simulated Improved ✗ Low

Dervicsouglu et al.72 Security comparison UWB vs BLE Real UWB: 0.43 m, BLE: 1.54 m ✗ Medium

Min et al.77 Privacy leak 3D geo-indistinguishability Simulated Good (no error given) ✓ Strong Medium

Na et al.71 Cross-tech impersonation Detection by power variance Real >20 m error ✗ Low

Njima et al.75 Data scarcity GAN + Semi-supervised Sim + Real 21.7%/15.3% ↑ ✗ Medium

Patil et al.68 Adversarial ML Adversarial training + DNN Simulated 84.18% ✗ High

Wang et al.70 General security Multi-task learning Real <2 m ✗ Medium

Boora et al.82 Adversarial ML Neural ODE + Adversarial defense Simulated High ✗ High

Fathalizadeh et al.81 Anonymization k-Anonymity + Dijkstra Sim + Real Moderate ✓ Moderate High

Gao et al.87 Data privacy FL (FedLoc3D) Real Improved ✓ Strong Medium

Han et al.86 Spoofing/Faulty Sensors CNN/ResNet filter Real High ✗ Medium

Wang et al.85 First-order adversarial AdvLoc (DCNN) Simulated <1 m ✓ Moderate Medium

Yang et al.83 Adversarial ML SecureSense Simulated High (not exact) ✗ High

Ye et al.84 Adversarial APs SE-loc semi-supervised Simulated 8.9 m ✓ Weak Medium

Zhang et al.79 Privacy leakage FL + DP (Adp-FSELM) Real 2.22% MAE ✓ Strong Low

Casanova et al.91 Tracking Zero-knowledge ABA Real Secure Auth (no loc error) ✓ Strong Medium

Chen et al.95,104 Spoofing UnSpoof (UWB + ToA) Real 30 cm ✓ Strong Medium

Kalpana et al.93 Node attacks 3D DV-Hop + Cryptography Simulated <2m ✓ Strong High

Mitchell et al.90 Adversarial ML Adversarial training + Outlier 
detection Simulated Improved vs baseline ✗ High

Mohsen et al.92 Privacy leakage PassiFi (DL + TDoA) Real Sub-meter ✓ Strong Medium

Peterseil et al.88 Signal tampering Autoencoder + Trust score Real  50% RMSE reduction ✗ Medium

Shakerian et al.89 Privacy, Tampering Blockchain + IMU + ZUPT Real 1.2 m ✓ Strong High

Xiao et al.96 OTA adversarial FooLoc perturbations Real 70–90% attack success ✗ High

Eshun et al.114 Data leakage Cloud Offload + Crypto Real Good ✓ Strong Medium

Etiabi et al.112 Communication privacy Federated distillation Simulated Good (no value) ✓ Moderate Low

Fathalizadeh et al.5 Privacy Survey + Framework N/A N/A ✓ Strong N/A

Gufran et al.113 Adversarial ML CALLOC + Curriculum FL Simulated  6× Error Reduction ✓ Strong Medium

Hemkumar et al.118 Geo-inference LDP + Clustering Real Good (empirical) ✓ Strong Medium

Li et al.119 Tracking RFTrack + RL agent Simulated Improved ✗ Medium

Machaj et al.117 AP spoofing KNN accuracy degradation Real Impacted ✗ Low

Moghtada et al.116 Privacy leakage DPGAN Simulated Balanced ✓ Strong Medium

Boudlal et al.130 Passive tracking Wi-Fi CSI + DL Real  26.4 cm ✓ Moderate Medium

David et al.128 BLE beacon privacy Randomized ID timing Real Tracked avoidance ✓ Moderate Low

Nie et al.131 User identification MAC de-randomization + DR.LIE Real 1.15 m ✗ Medium

Abuhoureyah et al.127 Signal distortion CSI-enhanced HAR analysis Literature review Not specified ✗ Medium

Li et al.129 Location query privacy TEE + RNN + Key revocation Real <1 m ✓ Strong Medium

Table 2.  Comparative analysis of indoor localization studies (2020–2025). The accuracy values are presented 
exactly as reported in the original studies. As different works adopt diverse metrics–such as horizontal 
or vertical error (in meters), relative improvements, percentages, or qualitative descriptions– no post-
standardization was applied in order to preserve the fidelity of the original results. Readers should interpret the 
values in the context of each study’s methodology and evaluation criteria.
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Privacy–accuracy trade-offs with case examples
A recurring theme in ILS research is the tension between preserving user privacy and maintaining localization 
accuracy. While theoretical discussions highlight this balance, concrete case studies illustrate the trade-offs more 
vividly.

For example, healthcare applications often require strict privacy guarantees when handling patient movement 
data. Zhang et al.79 demonstrate that integrating differential privacy into federated edge learning frameworks 
substantially reduces the risk of individual data leakage. However, they also report up to a 7–10% decline in 
localization accuracy in dense hospital environments, underscoring the performance cost of strong ε–privacy 
guarantees. Similarly, Moghtadaiee et al.116 show that differentially private GANs (DPGANs) can protect patient 
location traces, but accuracy deteriorates sharply as the privacy budget tightens.

In the financial services sector, federated learning has been explored for collaborative location-based 
authentication without centralizing sensitive user trajectories. Ciftler et al.59 and Gao et al.87 both show that 
federated models achieve comparable accuracy to centralized methods under controlled conditions. However, 
when different institutions contribute heterogeneous datasets, it is common for their performance to drastically 
deteriorate in non-IID data scenarios. This points to an important trade-off in which statistical differences across 
sites can be reduced accuracy, while at the same time privacy is enhanced by keeping the data decentralized.

Real-time IoT applications provide practical examples of these challenges. David et al.  128 show that 
stochastical scheduling of BLE beacons can improve privacy by obscuring timestamps to reduce the risk of 
tracking attacks. However, in large-scale deployments, this approach often comes at a cost of reduced coverage 
and increased latency. Similarly, Li et al. 129 employed trusted execution environments (TEEs) to protect location 
queries. While their method offers strong security guarantees, the added processing overhead limits its scalability 
for real-world applications.

Taken all together, these findings point to a clear pattern in which privacy-preserving solutions almost 
always come with a cost. Common challenges include higher latency, limited scalability, and reduced accuracy. 
This highlights the need for adaptable hybrid frameworks that can dynamically balance accuracy, privacy and 
efficiency to address the requirements of different applications.

Comparative study of privacy and security approaches in ILS
Security threats in ILS
From 2020 to 2025, ILS security and privacy measures progressed from encryption approaches and GDPR-
compliant access controls to sophisticated methods such as FL and adversarial training. Initial techniques, such 
as the Paillier cryptosystem and fast gradient sign method (FGSM), facilitated the development of contemporary 
methods such as GAN-based data augmentation and LD for safeguarding privacy. Primary priorities encompass 

Reference Threat model Technique used Dataset/ Environment Results Limitations

Barsocchi et 
al.52, Privacy leakage in indoor navigation GDPR-compliant access control Telegram-based 

proximity marketing
Highlighted security/privacy 
issues in current frameworks

Specific to one use-case; 
lacks broader validation

Ko et al.58, MAC spoofing attacks Random Forest-based filtering 
(RFBSA) Real-world Wi-Fi data Improved filtering accuracy 

over baselines
Vulnerable to advanced 
spoofing tactics

Ciftler et 
al.59, Data leakage in federated learning Federated Learning (FL) Crowdsourced RSS 

fingerprint dataset
Improved privacy with modest 
accuracy trade-off

Scalability and convergence 
challenges with non-IID data

Patil et al.68, Adversarial RSSI perturbations Deep learning with adversarial 
training

Simulated/real RSSI 
data

Enhanced robustness over 
traditional ML

Limited to white-box attacks; 
environment-sensitive

Na et al.71, Cross-technology impersonation 
(BLE–Wi-Fi) Power variance-based detection BLE advertising + Wi-Fi 

interference
Detected impersonation via 
power consumption

High localization error; low 
packet reception rates

Zhang et 
al.79, Data leakage in FL Differentially private FL (Adp-

FSELM)
Edge computing 
testbeds

Achieved ε-privacy with low 
error

High fingerprinting cost; 
limited scalability

Yang et al.83, Black-box and white-box adversarial 
attacks

Virtual adversarial training + 
label smoothing

Device-free HAR 
datasets Strengthened DNN resilience Instability and 

hyperparameter sensitivity

Peterseil et 
al.88, UWB signal manipulation Trust score + autoencoder 

models
Real-world UWB 
datasets

50% error reduction in 
dynamic settings

Heavy reliance on training 
data quality

Casanova et 
al.91, Privacy/identity leaks in CIPS Decentralized attribute-based 

authentication (ABA)
BLE + zero-knowledge 
proofs

Improved untraceability and 
unlinkability

Scalability and deployment 
complexity

Etiabi et 
al.112, High communication overhead in FL Federated distillation (FD) IoT networks Reduced comm. cost by 98% Limited support for 

regression tasks

Moghtada et 
al.116, Data leakage in fingerprinting Differentially private GANs 

(DPGANs)
Wi-Fi fingerprint 
datasets

Preserved privacy with 
synthetic fingerprints

Degraded performance 
under strict privacy budgets

Li et al.119, Passive Wi-Fi sniffing attacks Reinforcement learning 
(RFTrack)

Controlled Wi-Fi 
environments Accurate stealthy tracking Limited in dynamic/open 

spaces

David et 
al.128, BLE beacon battery insertion attacks Quasi-periodic randomized 

scheduling BLE beacon testbed Obfuscated initialization 
timestamps

Power trade-offs; scaling 
issues

Li et al.129, Privacy leakage in location queries ROLQ-TEE (TEE + 
cryptographic RNN)

Simulated query 
workloads

Secure + revocable queries 
with efficiency gains

TEE overhead hinders 
scalability

Nie et al.131, MAC address de-randomization MS.Id (spatiotemporal + 
MAC-level) Mobile Wi-Fi devices 95.24% ID accuracy; reduced 

error
Privacy risks; heterogeneity 
challenges

Table 3.  Summary of key ILS security and privacy studies (2020–2025).
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precision, confidentiality, practical applicability, and energy efficiency. CNN-based and UWB systems have 
enhanced accuracy of over 90%; however privacy-preserving solutions frequently compromise accuracy for 
security. Energy efficiency and communication overhead continue to pose issues, especially for federated 
learning and IoT systems59,82,89,112.

In 2025, ILS privacy and security research expanded to wireless sensing, BLE beacon tracking, and privacy-
preserving location queries. Key advancements include CSI-based human activity recognition127, BLE beacon 
privacy enhancements128, TEE-based location queries129, Wi-Fi CSI-based indoor activity detection130, and 
mobile Wi-Fi user identification131. These developments highlight emerging privacy challenges, emphasizing 
the need for improved obfuscation, efficiency, and scalability.

To orient the reader, Table 2 synthesizes prominent ILS papers by threat/attack type, countermeasure, data 
setting, and utility trade-offs, providing a quick map of the security landscape before deeper discussion.

Highlighting trends over the years
Indoor localization research from 2020 to 2025 shows a clear evolution from privacy preservation to advanced 
machine learning integration. In 2020, emphasis was placed on privacy and federated learning (FL)59, with 
growing interest in encryption (Paillier cryptosystem60) and GDPR-compliant access control52. By 2021, 
adversarial training methods (FGSM, PGD, MIM69) gained traction, complemented by GAN-based data 
augmentation75 and BERT for adversarial recognition73. In 2022, noise-based privacy (LDP80), adversarial 
robustness82, and differential privacy techniques79 were consolidated. The year 2023 advanced deep learning with 
CNNs100 and FL98, while blockchain89 and UWB systems88 emerged for secure localization. In 2024, adversarial 
learning and FD dominated privacy-preserving localization112, reinforced by cryptographic protocols114 and 
GAN-driven synthetic data116. Finally, 2025 studies furthered privacy and security with CSI-based sensing for 
HAR127, BLE beacon analysis128, TEE-based queries129, Wi-Fi CSI activity detection130, and mobile station Wi-Fi 
user identification131.

Overall, the field has progressively integrated FL, adversarial training, privacy-preserving mechanisms, 
GANs, cryptographic protocols, and deep learning. Each methodology offers unique strengths and trade-offs, 
shaping the trajectory of modern indoor positioning systems. Table 4 concisely summarizes these developments 
from 2020–2025.

Privacy issues in ILS
 Comparisons of existing solutions
An analysis of current privacy and security solutions for ILS shows various methods, each with unique 
advantages and disadvantages depending on particular use cases and system needs. FL provides a decentralized 
approach to preserving privacy by not sharing sensitive data during the training process57,59,79. This method 
improves scalability and minimizes data-sharing risks, making it appropriate for dynamic settings such as 
crowdsourced localization and smart cities. However, it encounters challenges related to the scalability of large 
datasets, significant communication overhead, and vulnerability to model poisoning87,99. Conversely, differential 
privacy (DP) methods79,97 safeguard privacy by introducing noise to data, which helps keep individual location 
traces anonymous. Although differential privacy ensures robust privacy protection, finding the right balance 
between added noise and the accuracy of the system is a considerable challenge116. Cryptographic techniques 
like homomorphic encryption60,122 ensure strong data confidentiality and are resistant to unauthorized access. 
Nonetheless, their significant computational cost and communication overhead restrict their use in real-time 
systems and large-scale environments64,114.

Blockchain offers a reliable and transparent solution for location data due to its immutable ledger 
capabilities89,123. This ensures the authentication and verification of location-based transactions, making 
it suitable for systems that need clear data integrity, like IoT-based localization and supply chain tracking. 
Blockchain faces challenges related to scalability, significant energy consumption in its consensus mechanisms, 
and difficulties with integration89. Adversarial training83,85 improves model robustness by protecting against 
data manipulation. However, it comes with high computational costs and can result in overfitting when trained 
on adversarial examples. This approach is especially beneficial in applications where security is crucial, such as 
autonomous vehicles and AI-based navigation systems.

Year Key focus Methodology highlights Privacy/Security techniques Key trends /Development

202052,53,55,59,60 Privacy preservation FL, Encryption (Paillier), GDPR Access Control Pseudonymization, Dummy Locations Privacy with encryption 
methods

202168,69,71,73,75 Adversarial attacks GAN-based Augmentation, BERT, FGSM, PGD, 
MIM Adversarial Learning, Anonymization Adversarial attacks, GANs for 

data

202279,80,82,83 Robustness in adversarial 
scenarios Neural Networks, LDP, Differential Privacy Adversarial Training, Noise Addition Adversarial defenses, 

Differential privacy

202389–91,98,100 Advanced ML for security CNNs, Blockchain, UWB, FL Cryptographic Protocols, ZKP ML models, UWB, FL

2024112–114,116 FL & Cryptography FD, GANs, Cryptographic Privacy Adversarial Training, Cryptographic 
Protocols

Privacy-focused cryptography, 
Efficient FD

2025127–131 Wireless sensing & Privacy 
in BLE

CSI, TEE, BLE Privacy Analysis, Wi-Fi-based 
HAR, RNN Queries

MAC De-randomization, Key Refresh, 
Quasi-periodic Randomization

Privacy in BLE, CSI-based 
Sensing, TEE for Secure Queries

Table 4.  Trends over the years in ILS.
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Recent research in 2025 has further advanced privacy-preserving solutions for ILS. CSI-based sensing has 
been explored for human activity recognition (HAR) in wireless sensing, where Abuhoureyah et al.127 highlight 
the potential of Wi-Fi-based CSI for improving signal processing accuracy while recognizing challenges such 
as noise interference. Similarly, Boudlal et al.130 propose a cost-effective, privacy-preserving Wi-Fi CSI-based 
activity detection system, eliminating the need for wearable sensors or visual monitoring, making it a viable 
solution for smart environments.

Privacy concerns with BLE beacon tracking have been critically examined by David et al.128, who demonstrate 
the Battery Insertion Attack on BLE beacon randomization and propose quasi-periodic randomized scheduling 
as a countermeasure. However, their solution may introduce trade-offs in power consumption. In privacy-
preserving location queries, Li et al.129 introduce ROLQ-TEE, a TEE-based framework for securely handling 
outsourced location queries, ensuring location confidentiality while allowing for revocable query authorization. 
Nonetheless, TEE-based computations impo higher server-side processing costs, which may limit large-scale 
applicability.

se Efforts in Wi-Fi-based indoor localization have also been expanded by Nie et al.131, who propose MS.Id, a 
mobile single-station user identification approach leveraging IE-based MAC de-randomization. Their findings 
indicate improved accuracy over multi-station techniques while reducing infrastructure overhead, though 
potential privacy concerns regarding MAC de-randomization remain.

Privacy-preserving frameworks that integrate methods such as FL, cryptography, and anonymization (for 
example, k-anonymity) provide thorough protection81,116. These frameworks keep location data secure while 
maintaining system performance.

Each solution offers distinct advantages and limitations within the ILS context. While FL, DP, and 
cryptographic methods ensure privacy, they face scalability and real-time application challenges. Blockchain 
enhances transparency but struggles with energy efficiency and integration. Adversarial training improves 
robustness but increases computational costs. Recent 2025 advancements–CSI-based sensing, BLE beacon 
privacy, TEE-secured location queries, and MAC de-randomization for user identification–broaden privacy-
preserving options in ILS, each with distinct benefits and challenges. The summary of current trends, their 
advantages, disadvantages, and suitability in ILS is presented in Table 5.

Defense mechanisms in ILS
Strengths and limitations of various approaches
Upon conducting a thorough examination of the present methodologies, it becomes evident that there are 
several strengths and limits. Significant advancements have been made in adapting privacy-preserving and 
adversarial-attack-resistant models for real-world applications, especially in the fields of IoT, GNSS-denied 
environments, and indoor localization employing UWB systems88. FL and its advanced variations, such as FD, 
show great potential in facilitating safe and decentralized learning while avoiding privacy vulnerabilities112. 
Furthermore, there have been consistent advancements in localization accuracy, especially in the presence of 
noise and adversarial conditions82. These advancements have been particularly notable in solutions that utilize 
CNN-based and blockchain-based technologies75,85,86,89. Moreover, cryptographic protocols have been used to 
ensure security in collaborative localization tasks91.

Nevertheless, there are significant constraints. Methods such as adversarial training68, GAN data 
generation75, and cryptographic protocols91 often impose computational overhead, necessitating substantial 
processing capacity. Consequently, their implementation becomes challenging in situations with limited 
resources. Scalability is still a problem, as solutions that work well in simulations or small real-world settings 
may not adequately handle large systems82,93,104. FL models, in particular, have difficulty converging when 
dealing with non-IID data87,98. Privacy-preserving strategies, such as differential privacy97, include a trade-off 
between privacy and accuracy. Increasing privacy levels can sometimes result in decreased localization accuracy, 
a challenge that remains unresolved79. Table 6 summarizes the strengths and limitations of various approaches. 
However, challenges related to scalability and adaptability in dynamic environments persist. Combining location 
fingerprinting with anonymization techniques effectively protects user privacy117. However, it is susceptible 
to attacks such as Wi-Fi AP spoofing, which can undermine security.In conclusion, UWB-based systems for 
detecting spoofing attacks95,104 achieve high accuracy but face challenges in real-time detection and scalability 
in large networks.

Key parameters
The publications have identified accuracy, privacy, real-world feasibility, and energy efficiency as the main 
parameters. Accuracy remains the paramount factor, with the majority of approaches striving for a success 
rate of above 90%, namely in UWB-based and CNN-based positioning systems55,70,82. These systems attempt 
to enhance performance in both challenging and real-life situations. Privacy is a critical aspect, and differential 
privacy and encryption methods have a substantial impact52,80. Techniques such as adding noise to data81,97 
and employing cryptographic methods60,114 were extensively investigated to improve privacy safeguards. The 
emphasis on real-world viability increased as research transitioned from solely simulated environments in 2020-
202153,68 to tangible applications by 2024, particularly in the fields of IoT and ILS112. Finally, the issue of energy 
efficiency has become a significant problem, specifically in the context of blockchain-based and FL systems89,113. 
By 2024, the primary goal is to minimize communication overhead and increase energy consumption112.

In 2025, research continued to refine privacy-preserving techniques, especially in BLE beacon-based 
tracking and Wi-Fi CSI-based activity recognition. David et al.128 demonstrated vulnerabilities in BLE beacons, 
highlighting the need for improved temporal obfuscation mechanisms. Similarly, Li et al.129 introduced ROLQ-
TEE, leveraging Trusted Execution Environments (TEEs) to safeguard location-based queries while minimizing 
computational costs. Meanwhile, Wi-Fi CSI-based sensing gained traction as an energy-efficient and privacy-
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Solution Approach Strengths
Limitations and 
challenges Key findings

Adversarial risks 
addressed

Addressed practical 
applications

Federated learning 
(FL) for privacy and 
security57,59,79,87,98,99,112,113

Federated learning 
for decentralized 
model training 
with differential 
privacy or transfer 
learning.

Protects privacy 
by not sharing 
sensitive data, 
improves 
scalability, and 
reduces data-
sharing risks.

Challenges with 
large dataset 
scalability, high 
communication 
overhead, and 
limited labeled data 
for training.

FL enhances privacy-
preserving localization while 
ensuring data accuracy and 
robustness across multiple 
devices. FL frameworks 
like FedLoc3D and FedPos 
improve accuracy and reduce 
communication overhead.

Vulnerable to model 
poisoning and data 
poisoning attacks 
where adversaries 
can inject false 
data to corrupt the 
model.

Crowdsourced 
localization, smart 
cities, healthcare, 
multi-building 
indoor navigation 
systems, location-
based services.

Differential privacy 
(DP) for privacy 
preservation79,97,100,116,116,118

Uses differential 
privacy to add 
noise to data and 
ensure individual 
privacy during 
localization.

Strong privacy 
protection, 
maintains system 
utility with noise 
addition, widely 
applicable in 
decentralized 
systems.

Balancing privacy 
and accuracy, 
especially when 
dealing with high 
levels of noise. 
Computational 
cost for large-scale 
systems.

DP ensures privacy in 
localization systems by 
using noise addition (e.g., 
Gaussian noise, local DP) 
to mask user data. It allows 
geo-indistinguishability for 
location privacy without 
significant degradation in 
query precision.

Attacks targeting 
the noise 
mechanism, such 
as reconstructing 
individual data from 
aggregate outputs, 
can reduce privacy.

Indoor 
location-based 
services, mobile 
crowdsensing, 
geospatial data 
privacy, privacy-
preserving query 
systems, and 
healthcare.

Cryptographic techniques for 
secure localization60,64,114,115,121,122

Cryptographic 
techniques 
(e.g., Paillier 
cryptosystem, 
homomorphic 
encryption) for 
securing location 
data during 
transmission and 
processing.

High level of 
confidentiality 
and security 
protects against 
unauthorized 
access or 
manipulation of 
data.

High computational 
cost and 
communication 
overhead, especially 
for large-scale 
systems. May not 
be scalable for real-
time applications.

Secure cryptographic 
methods like homomorphic 
encryption and Paillier ensure 
confidentiality and prevent 
unauthorized access to 
sensitive location data. They 
can protect both user and 
service provider privacy.

Vulnerable to side-
channel attacks and 
cryptanalysis, where 
attackers can exploit 
computational 
or transmission 
weaknesses.

Secure wireless 
positioning, 
IoT-based 
localization, secure 
mobile networks, 
cryptographically 
protected location-
based services.

Blockchain for trust and 
security89,123

Blockchain (e.g., 
Hyperledger 
Fabric) for 
providing 
immutable ledgers 
to authenticate and 
verify location data 
transactions.

Immutable ledger, 
increased trust 
and accountability, 
and provides 
transparency 
in location data 
transactions.

Scalability issues 
in large-scale 
environments, high 
energy consumption 
in consensus 
mechanisms, 
and integration 
complexity with 
existing systems.

Blockchain solutions 
ensure trust and security 
in localization systems by 
providing decentralized 
verification of location data. 
The use of permissioned 
blockchain (e.g., Hyperledger 
Fabric) addresses privacy 
concerns.

Susceptible to 51% 
attacks, where 
adversaries control 
the majority of the 
network and can 
manipulate the 
blockchain.

Secure navigation, 
supply chain 
tracking, transparent 
location-based data 
transactions, IoT, 
and data integrity in 
mobile and indoor 
localization systems.

Adversarial training and 
robustness82,83,85,90,120

Adversarial 
training to improve 
system robustness 
by defending 
against attacks that 
manipulate sensor 
data or mislead 
models.

Improves model 
robustness, 
enhances 
resilience to 
adversarial 
attacks, and 
improves data 
integrity.

High computational 
cost, potential 
overfitting on 
adversarial 
examples, and 
scalability in real-
time systems

Adversarial training 
techniques like label 
smoothing and feature 
squeezing improve the 
model’s resistance to 
adversarial inputs, even under 
low signal-to-noise ratio 
conditions.

Adversarial risks 
include adversarial 
examples designed 
to evade detection 
and fool the model, 
potentially causing 
mislocalization.

Robust indoor and 
outdoor localization, 
autonomous vehicles, 
security in AI-driven 
navigation, and 
defense against data 
manipulation attacks 
in wireless networks.

Privacy-preserving 
frameworks5,81,116

Frameworks 
combining 
cryptography, 
anonymization 
(e.g., k-anonymity, 
l-diversity), and 
federated learning 
for privacy 
protection.

Comprehensive 
protection against 
unauthorized 
access, combines 
multiple privacy-
preserving 
techniques.

Trade-off between 
privacy, accuracy, 
and system 
performance; 
scalability 
in dynamic 
environments.

Privacy-preserving 
frameworks that combine 
multiple techniques (e.g., 
k-anonymity, federated 
learning, and differential 
privacy) ensure that location 
data remains secure without 
compromising system 
performance.

Vulnerable to 
attacks targeting 
anonymization 
algorithms (e.g., 
re-identification 
attacks) and 
federated learning 
poisoning.

Indoor localization, 
mobile applications, 
location-based 
services, and 
data privacy in 
crowdsensing and 
IoT systems.

Location fingerprinting and 
anonymization117

Uses location 
fingerprinting 
combined with 
anonymization 
techniques to 
protect user privacy 
in vulnerable 
fingerprint-based 
systems.

Protects user 
privacy by 
anonymizing 
location 
fingerprints, 
preventing 
tracking or 
reidentification.

Vulnerable to 
attacks like Wi-Fi 
AP spoofing that 
can disrupt the 
fingerprinting 
accuracy and 
compromise 
security.

Location fingerprinting 
can be enhanced with 
anonymization techniques, 
such as k-anonymity, to 
mitigate risks of tracking or 
re-identification in Wi-Fi-
based systems.

Spoofing attacks can 
mislead fingerprint 
matching and 
reduce system 
reliability.

Indoor navigation, 
Wi-Fi-based 
positioning systems, 
and secure location 
fingerprinting in 
public and private 
spaces.

Spoofing attack detection and 
prevention95,104

Detection of 
spoofed tags 
using UWB-based 
systems and time-
of-arrival (ToA) or 
time-difference-
of-arrival (TDoA) 
methods.

High accuracy in 
detecting spoofed 
tags with sub-
meter precision 
prevents malicious 
manipulation of 
location data.

Limited to specific 
technologies (e.g., 
UWB), real-time 
detection may be 
challenging, and 
scalability for large 
networks is difficult.

Spoofing detection systems 
using ToA and TDoA 
methods provide sub-meter 
localization accuracy and 
help mitigate the impact of 
spoofing attacks.

Vulnerable to 
advanced spoofing 
techniques that 
manipulate time-
of-arrival or signal-
to-noise ratios, 
potentially evading 
detection.

High-precision 
localization in IoT 
systems, security in 
navigation systems, 
anti-spoofing 
for UWB-based 
location systems, 
secure positioning 
in military or asset 
tracking applications.

Continued
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conscious alternative for indoor activity recognition130. Furthermore, Nie et al.131 proposed MS.Id, a mobile 
single-station Wi-Fi-based user identification approach that achieves high accuracy while reducing reliance 
on extensive infrastructure deployment. These developments underscore the growing intersection of accuracy, 
privacy, and feasibility in ILS research. Table 7 summarizes the key parameters in ILS.

Security and privacy concerns in ILS
ILS are becoming increasingly crucial in numerous applications; however, they have multiple weaknesses that 
might jeopardize the accuracy and reliability of location data. An important weakness is the proneness to signal 
interference and spoofing. Many ILS systems, dependent on RF signals like Wi-Fi, Bluetooth, or RFID, are 
vulnerable to disruption from other devices and ambient conditions. This vulnerability allows malicious attackers 
to launch adversarial assaults. These attacks can result in substantial inaccuracies in position monitoring or 

Parameter Importance Key techniques Real-world feasibility

Accuracy 55,57,68–70,82,86,87,98,100 Essential for localization Neural Networks, FL, CNNs Achieved up to 99% accuracy across years

Privacy preservation 
5,52,60,79–81,89,91,97,100,114 Key in IoT and Localization Differential Privacy, Cryptographic 

Protocols
Cryptographic techniques proved feasible in IoT 
systems

Real-world feasibility 
52,53,55,68,88,89,95,112 Increasing focus over years Blockchain-based localization, UWB, 

Adversarial training
Tested in real-world environments, especially IoT 
and GNSS-denied scenarios

Energy efficiency 98,112–114,116 Focus in resource-limited devices FD, Cryptographic Techniques Optimized for low-power environments like IoT

Scalability 89,95,112 Crucial for applicability across different 
sizes and complexities of environments

Decentralized architectures (e.g., 
Blockchain), Federated Learning

Verified with large-scale deployments, capable of 
adapting to various building sizes and user densities

Security robustness 57,68,70,88 Essential for protecting against spoofing, 
jamming, and other cyberattacks

Adversarial Training, Blockchain, 
Cryptographic Protocols

Proven to mitigate common threats, effectiveness 
depends on network size and attack sophistication

Latency and responsiveness 
55,69,100

Important for real-time applications such as 
augmented reality and emergency response

Edge Computing, Low-latency 
Communication Protocols (e.g., 5G)

Achieved low latency through edge computing, 
suitable for time-sensitive applications

Temporal privacy and obfuscation 
128–130

Critical for preventing tracking based on 
timing patterns in BLE and Wi-Fi-based 
localization

Quasi-periodic randomized scheduling, 
TEE-based encryption, CSI-based 
obfuscation

Demonstrated effectiveness but requires 
optimization for scalability and power consumption

Table 7.  Key parameters in ILS.

 

Aspect Strengths Limitations

Privacy solutions Strong privacy protection (encryption, differential privacy)5,79,91 Higher privacy levels may reduce accuracy (trade-off)79,97

Adversarial defenses Advanced defenses via GANs, CNNs, adversarial learning85,86,116 High computational overhead and energy consumption68,85,115

FL Decentralized and privacy-preserving87,98,112 Challenges in handling non-IID data, higher convergence time98,112

Real-world feasibility Tested in real-world (IoT, GNSS-denied, large-scale systems)88,89,93 Some solutions remain simulation-based, scalability concerns82,104,113

Table 6.  Strengths and limitations of various approaches.

 

Solution Approach Strengths
Limitations and 
challenges Key findings

Adversarial risks 
addressed

Addressed practical 
applications

Energy efficiency and scalability 
solutions58,79,93,94

Focus on 
improving the 
energy efficiency 
and scalability of 
privacy-preserving 
localization 
systems.

Reduces energy 
consumption, 
improves system 
efficiency, 
and addresses 
scalability issues 
in dynamic 
environments.

Computational and 
communication 
overheads may still 
hinder real-time 
performance in 
large-scale, dynamic 
environments.

Energy-efficient techniques 
can significantly improve 
system scalability, though 
challenges in real-
time computation and 
communication efficiency 
remain.

Attacks that drain 
energy resources 
or exploit system 
inefficiencies can 
cause service 
disruptions.

Energy-efficient 
positioning 
systems, smart grid 
applications, low-
power IoT networks, 
and real-time 
localization in large-
scale environments.

Privacy-preserving wireless 
sensing and BLE security 
(2025)127–131

CSI-based sensing 
for human activity 
recognition (HAR), 
BLE beacon 
privacy protection, 
TEE-based privacy-
preserving location 
queries, and MAC 
de-randomization 
for single-station 
user identification.

Leverages existing 
Wi-Fi and BLE 
infrastructure, 
enhances privacy 
without requiring 
additional 
hardware, 
enables privacy-
preserving 
location queries 
with revocability.

CSI-based sensing 
may suffer from 
noise interference, 
BLE beacon security 
solutions may 
introduce power 
consumption trade-
offs, and TEE-based 
queries require 
higher server-side 
processing costs.

Wi-Fi CSI can improve 
signal processing precision 
in HAR applications. BLE 
beacons require improved 
randomization techniques 
to avoid tracking risks. TEE-
based solutions can securely 
handle location queries while 
maintaining revocability. 
Mobile single-station 
identification techniques 
reduce infrastructure 
requirements while 
improving accuracy.

Privacy concerns 
in CSI-based 
HAR, BLE 
beacon tracking 
vulnerabilities, 
security challenges 
in outsourced 
location queries, 
and MAC de-
randomization risks.

Smart environments, 
privacy-preserving 
BLE-based tracking, 
secure location-
based services, 
privacy-aware 
IoT-based indoor 
positioning, and 
non-intrusive human 
activity recognition.

Table 5.  Existing privacy and security solutions in ILS (Part 1).
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unlawful entry into restricted areas, creating security risks, particularly in sensitive settings such as hospitals, 
military installations, or financial organizations.

The risk associated with ILS increased with the emergence of wearable technology. Wearable devices, such 
as smartwatches, fitness trackers, and AR glasses, frequently come with sensors and networking features that 
can be integrated with ILS. Although these devices improve the user experience by offering customized LBS, 
they also bring new opportunities for attacks. Attackers can exploit weaknesses in wearable devices to carry out 
side-channel assaults, or they can use them as entry points to compromise the entire localization system. For 
instance, attackers can intercept or alter information from wearable devices, leading to inaccurate location data, 
privacy violations, or even potential threats to physical security if they exploit the compromised data to gain 
unlawful entry132.

Overview of threats
ILS are essential for accurately identifying the location of objects or humans within buildings, but they are 
susceptible to several forms of malicious attacks. Spoofing and signal jamming are two prominent attacks in this 
context, both of which affect the RSSI data and undermine localization accuracy, as illustrated in Fig. 7.

Spoofing attacks
As categorized under ’Spoofing Attacks’ in the taxonomy in Fig. 3 these attacks involve the intentional 
transmission of counterfeit signals by a perpetrator, with the aim of making them undetectable from authentic 
signals to the ILS. Typically, the perpetrator transmits the faked signals with modified parameters like adjusted 
RSSI values, timestamps, or even variations in frequency. Attackers can change the apparent distance between 
a transmitter and receiver by faking the RSSI values133. This manipulation causes the device to look as if it is 
located at a different location than it actually is134. Figure 8 shows a spoofing attack.

Technically speaking, the majority of ILS utilize trilateration, a method that calculates the position of a device 
by estimating its distance from several predetermined reference points. In Wi-Fi fingerprinting-based ILS, the 
distance is estimated based on the RSSI values, which decrease proportionally to the square of the distance from 
the signal source. If an assailant transmits a forged signal with a strong RSSI from a considerable distance, the 
ILS may incorrectly perceive it as a signal emanating from nearby. Conversely, the ILS may misinterpret a faintly 
modified signal originating from a short distance as emanating from a far place. Information distortion can 
cause significant localization errors, leading to inaccurate monitoring of resources or individuals. As a result, 
there may be significant security vulnerabilities or operational inefficiencies.

Signal jamming
Signal jamming transpires when an attacker employs identical frequency channels as the ILS to transmit 
undesirable or disruptive messages, so obscuring genuine communications. This may diminish the signal-to-
noise ratio (SNR), complicating the ILS’s ability to detect and assess genuine signals. Jammer attacks diminish 
the accuracy of RSSI measurements by introducing random fluctuations, complicating the localization of 
objects. The modifications render the calculated distances less dependable, hence diminishing the accuracy of 
the trilateration process. Interference can hinder the ILS system’s ability to maintain consistent RSSI data. If 
an attacker continuously alters the signal strength, disrupting the ILS, it may impede the system’s ability to 
effectively counteract the interference, potentially resulting in inaccurate location predictions. Intense jamming 
signals can saturate the receiver’s analog-to-digital converters (ADCs), resulting in further distortion of signal 
measurements. Significant interference may necessitate the ILS to employ alternative methods or cease operation 
entirely, hence diminishing its efficacy. Figure 9 shows how the signal jamming attack works in the ILS.

Recent real-world incidents reinforce the practical impact of these threats on deployed Indoor Localization 
Systems (ILS). For example, the UWBAD attack demonstrated how commercially available ultra-wideband 
(UWB) hardware could be used to selectively jam ranging signals, effectively disrupting Apple’s AirTag devices 
and automotive keyless entry systems in operational environments135. This incident drew responses from major 
vendors, including Volkswagen and Audi, who acknowledged the system-level vulnerability. Similarly, an extensive 
BLE spoofing campaign was analyzed in Taipei Main Station, where attackers used cloned iBeacons to confuse 
indoor navigation services used by over 300,000 daily commuters. The study showed that without encrypted, 
time-varying identifiers, location services were easily deceived136. Furthermore, adversarial perturbations to 
Wi-Fi signal strength have been shown to trick deep learning models used in fingerprinting-based systems, 
causing significant localization errors even with imperceptible input changes68. These examples clearly illustrate 
the operational risks of spoofing, jamming, and adversarial attacks in real-world ILS deployments.

Impact of security breaches
ILS breaches have significant consequences, including user privacy, operational integrity, and safety in critical 
applications. A compromised ILS may permit unauthorized individuals to monitor and track users within a 
building, thus intruding upon their privacy. The violation of privacy may disclose personal information, 
including medical records in healthcare institutions or the movements of individuals in secure locations. The 
risk of data theft, corporate espionage, and stalking is greatly increased by unauthorized tracking. Therefore, 
security and privacy are the primary objectives in the context of ILS.

Attacks like spoofing and jamming are a big threat to the proper functioning of ILS. In retail transportation 
services, spoofing and jamming assaults can lead to wrong asset tracking, bad inventory management, and 
broken customer navigation systems. This can cause big problems with operations and cost a lot of money. 
Companies who need reliable indoor monitoring to run their businesses may have big problems because of these 
breaches. Moreover, security breaches can lead to incidents that jeopardize human life in sectors that are largely 
reliant on safety, such as industrial automation, emergency response, and healthcare. In industrial contexts, ILS 
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may provide patients, emergency personnel, or machinery with inaccurate location data, potentially leading 
to errors or fatalities. For localization technology to work well and reliably in these settings, ILS integrity and 
security are very important.

Machine learning techniques for enhancing security and privacy in ILS
ML approaches significantly improve the security and privacy of ILS. As ILS systems spread into more sensitive 
domains like healthcare, smart buildings, and industrial installations, the necessity of protecting them from 
risks such as signal spoofing, jamming, and unauthorized access grows. This section looks at various AI-based 
technologies that have been proved to have the capacity to increase the levels of both security and privacy in ILS.

Fig. 7.  End-to-end indoor localization workflow: from RSSI-based location estimation to spoofing and 
jamming detection.
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Adversarial machine learning
AML aims to make ILS better at standing up against adversarial attacks. In such systems, adversarial attacks 
introduce deliberate modification to the input data that misguides the learning model, causing it to degrade the 
localization accuracy to a large extent.

Adversarial Training Techniques Adversarial training is a robust defense method aimed at enhancing the 
resilience of ILS against adversarial attacks. This process includes training models with adversarial examples, 
which are specifically designed inputs that increase the model’s prediction error. This subsection describes three 
important adversarial training methods: FGSM, PGD, and MIM, including their mathematical formulations.

•	 FGSM FGSM creates adversarial examples by applying perturbations to the input, following the direction of 
the gradient of the loss function. The adversarial example is calculated as follows: 

	 xadv = x + ϵ · sign(∇xJ(θ, x, y)),� (15)

 where x is the original input, ϵ is the perturbation magnitude, J(θ, x, y) is the loss function, ∇xJ  is the gradient 
of the loss with respect to x, θ is the model parameters, and y is the true label.

Fig. 9.  Signal jamming attack.

 

Fig. 8.  Spoofing attack.
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•	 PGD PGD builds on FGSM by repeatedly applying gradient steps and projecting the adversarial example back 
onto the ϵ-ball surrounding the original input. The iterative update is expressed as follows: 

	 x
(t+1)
adv = ProjBϵ

(x(t)
adv + α · sign(∇xJ(θ, x

(t)
adv, y))),� (16)

•	 x
(t)
advis the adversarial example at iteration t, α the step size, and ProjBϵ

 is the projection onto the ϵ-ball.
•	 MIM MIM enhances PGD by adding a momentum term that stabilizes the direction of the gradient updates. 

The gradient update with momentum is: 

	
g(t+1) = µ · g(t) +

∇xJ(θ, x
(t)
adv, y)

∥∇xJ(θ, x
(t)
adv, y)∥1

, � (17)

	 x
(t+1)
adv = ProjBϵ

(x(t)
adv + α · sign(g(t+1))), � (18)

 where g(t) is the accumulated gradient at step t and µ is the decay factor for momentum.Real-world attack 
scenarios and implications The theoretical construction of adversarial scenarios is significant, although their 
practical implications are of greater importance to assess. Minor disturbances to input signals can substantially 
interfere with ILS, resulting in mislocalization. An attacker can add carefully crafted noise in the RSSI 
measurements, causing the system to misplace a user’s location. For example, showing them on the wrong floor 
of the hospital. Mistakes like these can have serious consequences, from delaying medical staff to hindering 
emergency response. Similarly, interference with Wi-Fi CSI data leads to inaccurate activity recognition, putting 
applications like elderly care monitoring and surveillance at risk. In smart buildings attackers can carry out 
spoofing attacks that copy and mimic real signals, potentially granting unauthorized access or hindering indoor 
navigation. These examples highlight that adversarial attacks on ILS are not just theoretical but pose a real threat 
to safety, security, and privacy.
To reduce these risks, ILS needs to be designed with strong resilience. Adversarial training methods like FGSM, 
PGD, and MIM provide protection by exposing models to realistic adversarial examples during training. This 
allows the models to learn how to recognize and adapt to signal disruptions that could otherwise reduce their 
accuracy and reliability. The training process follows a strict cycle as demonstrated by Fig. 10. It starts with clean 
data, then generates adversarial examples, followed by adding these adversarial examples to the training set and 
retraining the models. By repeating this cycle, the system gradually becomes more resilient against adversarial 
examples generated by attackers.

Anomaly detection Machine learning-based systems detect unusual patterns in signal behavior that could 
indicate security breaches. These systems analyze real-time data for violations of established signal standards, 

Fig. 10.  Adversarial training workflow illustrating how iterative inclusion of adversarial samples strengthens 
ILS models against real-world attack scenarios such as signal spoofing, floor misclassification, and adversarial 
noise injection.
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facilitating the early detection of threats such as signal manipulation and unauthorized localization. Anomaly 
detection can be formulated as a problem of identifying deviations δ between real-time observations xreal and 
the expected behavior xexpected:

	 δ = ∥xreal − xexpected∥p,� (19)

where ∥ · ∥p denotes the p-norm (e.g., Euclidean distance for p = 2) used to quantify the deviation. An anomaly 
is flagged if δ > τ , where τ  is a predefined threshold.

Integrating AML techniques into ILS can greatly strengthen their defense against complex attacks. For 
example, Patil et al.68 demonstrates that using adversarial training with FGSM and PGD improves both floor 
classifications and localization accuracy under attack. This is especially critical in environments like hospitals, 
where a misclassification could delay emergency response. Ambalkar et al.69 demonstrated that the use of MIM 
and PGD to Wi-Fi CSI data improved resistance against adversarial interference in human activity recognition, 
therefore diminishing the likelihood of false alarms in surveillance and assisted living contexts. Li et al.53 
presented the Abnormal Crowd Traffic Detection (ACTD) system to detect abnormalities in crowdsourced 
positioning data, demonstrating that real-time anomaly detection can thwart extensive manipulation of indoor 
mobility data in public spaces.

Furthermore, anomaly detection is essential for recognizing unusual trends in signal behavior that suggest 
adversary manipulation, including signal spoofing and jamming attempts. Li et al.53 created the Abnormal 
Crowd Traffic Detection (ACTD) system, utilizing machine learning methods, including probability suffix trees 
(PST), to identify anomalies in crowdsourced indoor positioning data. Extending this form of anomaly detection 
for monitoring real-time RSSI and CSI signals in ILS could allow prompt detection of signal modifications that 
adversarial attacks depend upon. Ko et al.58 developed a random forest-based filter (RFBSA) to eliminate noise 
resulting from MAC spoofing. This makes localization more accurate in systems that are vulnerable to spoofing 
attacks. Incorporating these anomaly detection methods will provide dynamic, real-time ILS defenses, ensuring 
system stability under hostile conditions.

Federated learning
In alignment with the mitigation strategies outlined in Fig. 3, FL is a decentralized machine learning methodology 
that addresses privacy concerns by ensuring that sensitive user information, such as location, remains on the 
local device. A central server receives model updates, thereby maintaining data privacy and improving model 
training efficacy. For an overview of FL schematics, refer to Fig. 11.

•	 Local Model Updates: Within the framework of ILS, FL enhances privacy by retaining location data on the 
user’s device. This method is particularly advantageous in multi-building configurations where data privacy 
is paramount. FL models integrate data from several devices while preserving the privacy of individual users. 
The local updates at device k is computed as 

Fig. 11.  Overview of FL in ILS99.
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	 wt+1
k = wt

k − η∇Lk(wt
k),� (20)

 where wt
k  represents the local model weights at device k during iteration t, η is the learning rate, and ∇Lk(wt

k) 
is the gradient of the loss function Lk  on the local data of device k.

•	 Managing Non-IID Data: In practical FL systems, addressing non-IID (independent and identically distrib-
uted) data is a considerable problem. Numerous advanced FL methodologies have been established to tackle 
these challenges, notably FD, which reduces communication overhead while maintaining high model accura-
cy. The global model aggregation in FL is given as 

	
wt+1 = 1

K

K∑
k=1

wt+1
k ,� (21)

 where wt+1 is the updated global model, K  is the total number of participating devices, and wt+1
k  are the 

updated weights from each device. This ensures that the global model benefits from diverse device data without 
transferring raw data.
To provide a clearer understanding of the overall FL workflow in indoor localization, we present the Algorithm 1 
outlining the process.

Algorithm 1.  Federated learning for privacy-preserving Indoor localization137

FL has shown great promise in improving privacy-preserving ILS solutions. A significant use is its capacity 
to preserve location data on local devices, guaranteeing that sensitive user information remains on the user’s 
device. Ciftler et al.59 came up with an FL strategy for crowdsourcing RSS fingerprint-based localization that 
protects user privacy while still ensuring accurate localization. This method aggregates model updates from 
several devices, enabling collaborative learning while protecting individual user data. Li et al.57 examined FL in 
ILS inside multi-building and multi-floor environments, employing pseudo-label-driven training to augment 
labeled data and address the challenge of insufficient labeled data in these scenarios. The decentralized nature 
of FL facilitates data aggregation across various locations or systems while complying with privacy regulations, 
as illustrated by Barsocchi et al.’s privacy-by-design framework for indoor navigation systems in alignment 
with GDPR standards52. Additionally, Gao et al.87 established a FL framework tailored for extensive indoor 
localization, appropriate for multi-floor and multi-building settings, therefore augmenting the relevance of FL in 
strengthening privacy preservation. This decentralized method also tackles issues related to the administration 
of non-IID data, frequently encountered in varied localization contexts, and is alleviated using sophisticated 
techniques such as FD112, which reduces communication overhead while maintaining model accuracy. The 
ability of FL to disseminate knowledge across devices while preserving privacy, as demonstrated by these 
instances, underscores its increasing significance in safe and efficient ILS.

While several advanced techniques have been proposed to mitigate security risks in ILS, their deployment 
in real-world systems presents significant challenges. FL, for instance, enables decentralized training without 
sharing raw data but suffers from non-IID data across clients. This heterogeneity can impair model convergence 
and degrade accuracy. To address this, SimDeep introduced similarity-aware aggregation strategies that improved 
accuracy to 92.9% despite client diversity 138. Similarly, adversarial defenses such as CALLOC apply curriculum 
learning and lightweight attention mechanisms to resist adversarial examples, but still require retraining 
and computational resources that may not be feasible for constrained IoT environments  113. Cryptographic 
approaches like TESLA and privacy-preserving schemes such as Sillcom 139 show promise in securing location 
information through authentication and secret sharing. However, these methods often increase communication 
overhead, introduce latency, and complicate synchronization–factors that can limit their scalability in dense 
or time-sensitive ILS applications. Therefore, while effective solutions exist in principle, translating them into 
robust, deployable systems remains an ongoing challenge.
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Deep learning for attack detection and localization
Deep learning models, especially CNNs and RNNs, are increasingly used in ILS for precise localization and 
attack detection. These models have demonstrated a robust capacity to learn intricate spatial and temporal 
patterns from signal data, including Wi-Fi and Bluetooth signals.

•	 CNNs for Localization: ILS has employed CNNs to analyze RSSI or CSI data for accurate location prediction. 
These algorithms have effectively identified signal anomalies that may indicate an attack, including spoofing 
attempts or interference.

•	 RNNs for Temporal Data: RNNs are highly proficient at modeling sequential data, including movement 
patterns inside indoor environments. Through the analysis of these temporal sequences, RNNs can identify 
anomalies that signify security vulnerabilities, enabling them to predict attacks such as signal jamming.

CNNs and RNNs are deep learning models that have demonstrated significant potential in enhancing ILS 
performance regarding security improvements and localization precision. CNNs have effectively predicted user 
locations by examining signal strength data, such RSSI or CSI. This method, illustrated by Ko et al.58, utilizes 
a random forest-based filter to detect and remove fraudulent signals that compromise localization accuracy. 
Likewise, Yang et al.56 devised a CNN-based map localization method to facilitate the assessment of a secure 
condition during hostile assaults. This illustrates the identification and resolution of signal difficulties with deep 
learning techniques.

The capability of RNNs to identify sequential movement patterns in temporal data enables real-time detection 
of anomalies such as signal jamming or movement disparities. Li et al.53 utilized machine learning approaches, 
such as probability suffix trees, to detect anomalous crowd traffic by analyzing temporal trends in signal data. 
RNNs may boost this by enhancing the prediction of temporal sequences within the signal data. Furthermore, 
Madani et al.63 illustrated the application of deep learning for the detection of MAC layer spoofing. This approach 
could be enhanced by employing RNNs to identify anomalous temporal patterns in wireless signals, so aiding 
in the prediction of possible attacks. These pictures exemplify how deep learning models can be customized to 
tackle both temporal and spatial difficulties in ILS.

Generative models for data privacy and augmentation
ILS use generative models, namely GANs, shown in Fig. 12, to produce synthetic data that improves the system’s 
privacy and resilience. GANs improve model training by producing realistic data samples while safeguarding 
the privacy of genuine user information. In ILS, GANs are utilized to generate synthetic training datasets that 
replicate various signal environments, including potential attack scenarios. This allows models to get insights 
from a larger dataset while protecting user privacy. Furthermore, GANs have been utilized to augment model 
resilience against adversarial attacks by producing adversarial samples for training purposes.

A GAN includes two neural networks: a generator G and a discriminator D, which compete against each 
other in a zero-sum game. The generator accepts random noise z drawn from a prior distribution pz(z) and 
produces synthetic data G(z). The discriminator analyzes whether the data is authentic (x ∼ pdata(x)) or 
fabricated (G(z)). The objective function for GANs can be defined as follows:

	

min
G

max
D

V (G, D) =Ex∼pdata(x)[log D(x)]

+ Ez∼pz(z)[log(1 − D(G(z)))].
� (22)

Within this paradigm, the discriminator attempts to optimize the likelihood of accurately distinguishing 
between real and synthetic data. The generator seeks to reduce the likelihood of the discriminator differentiating 
between generated data and real data. The application of GANs in ILS may improve privacy, robustness, and 
overall efficacy of these systems. In the field of crowdsourced location systems, as noted by Li et al.53, GANs can 
produce synthetic RSS signatures that replicate authentic data. This approach can improve the system’s resilience 
to anomalous traffic detection and spoofing assaults while safeguarding user privacy. GANs, by generating 
authentic synthetic data, can augment datasets for ILS and reduce dependence on user-provided data, hence 

Fig. 12.  GAN schematics116.

 

Scientific Reports |        (2025) 15:44625 29| https://doi.org/10.1038/s41598-025-22204-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


diminishing the danger of privacy violations. Ciftler et al.59 showed that FL may be integrated with GANs to 
enhance the privacy of indoor localization, enabling several devices to train on a common dataset without the 
necessity of revealing the raw data. In this context, GANs can generate synthetic training data that local models 
employ to improve system performance when labeled data is unavailable. Recent work shows that differentially 
private GANs can synthesize realistic indoor location fingerprints with formal privacy guarantees, enabling data 
sharing and model training without exposing raw trajectories140.

Furthermore, GANs can enhance defenses against adversarial attacks. Patil et al.68 investigate the vulnerability 
of deep learning models to attacks that modify signal strength data, hence reducing localization precision. GANs 
can generate adversarial instances during model training, enabling ILS to identify and counteract such attacks in 
practical applications. GANs enhance model training resilience by generating adversarial samples, safeguarding 
against deceptive inputs intended to compromise localization accuracy. Njima et al.75 noted that employing 
GANs to provide authentic adversarial inputs in RSSI vector augmentation markedly enhances the model’s 
accuracy and security, particularly in settings with less labeled data. In conclusion, the application of GANs in 
ILS, whether for privacy-preserving data production or adversarial defense, might significantly enhance both 
the security and efficiency of ILS.

Differential privacy
Differential privacy is a method that protects individual users’ privacy even when their data is being used for 
system training or decision-making. It accomplishes this by introducing noise (Figure 13) into the data in a way 
that preserves broad patterns while safeguarding individual items. ILS employs differential privacy techniques 
to introduce appropriately calibrated noise to user location data, therefore obstructing the identification of 
individual movements linked to a specific user. This approach is highly effective in scenarios requiring significant 
amounts of location data, such as smart buildings or retail environments.

Differential privacy guarantees that noise is incorporated according to a defined process, such as the Laplace 
mechanism or the Gaussian mechanism. For instance, in the Laplace mechanism. noise is sampled from the 
Laplace distribution as

	
Noise ∼ Laplace

(
0,

∆f

ϵ

)
,� (23)

where ∆f  denotes the sensitivity of the query (i.e., the greatest extent to which a single individual’s data can 
influence the output), and ϵ represents the privacy budget, governing the balance between privacy and accuracy. 
The output characterized by noise then becomes f̃(x) = f(x) + Noise. Similarly, in the Gaussian mechanism, 
noise is sampled from a Gaussian (normal) distribution as

	 Noise ∼ N
(
0, σ2)

,� (24)

where σ is the standard deviation of the noise, calibrated based on ϵ and δ (a parameter for approximate 
differential privacy).

Incorporating noise into the data safeguards privacy by guaranteeing that the presence or absence of an 
individual’s data in the dataset does not substantially influence the analysis results. For instance, with carefully 
adjusted noise, two datasets that differ solely by one individual’s data yield statistically indistinguishable 
outcomes. This makes it almost impossible for attackers to derive sensitive information on particular individuals 
while still enabling the dataset to yield accurate aggregate insights. The noise conceals individual contributions, 
preventing identification while preserving the overall data’s utility.

ILS can effectively integrate differential privacy by introducing noise to location data, so obscuring individual 
movements while maintaining the overall value of the data. This methodology has been implemented in various 
contexts, including smart buildings and retail environments, where substantial location data is essential for 
operations yet requires meticulous control of privacy concerns. Navidan et al.80 introduced a privacy-focused 

Fig. 13.  Differential privacy process.
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architecture utilizing LDP to safeguard users’ indoor location data. Their method breaks down the indoor 
environment into distinct zones and monitors user presence within each zone, employing binary noise to 
protect individual privacy while preserving the precision of aggregate data. Zhang et al.79 investigated a cloud-
based collaborative localization framework that integrates FSELM and differential privacy methodologies. This 
guarantees the confidentiality of users’ raw location data throughout the training process, especially relevant in 
crowdsourcing systems that aggregate vast datasets from users. Utilizing differential privacy, such systems can 
provide accurate geolocation while mitigating the danger of disclosing sensitive personal movements. Moreover, 
Fathalizadeh et al.81 introduced anonymization methods employing differential privacy to preserve the utility 
of location data while protecting individual identities. This method is especially beneficial in settings requiring 
enhanced security and privacy, such as hospitals or corporate campuses, as it restricts the use of location data 
for illicit surveillance of persons. These examples demonstrate the adaptation of differential privacy for various 
indoor localization contexts, seeking to balance privacy concerns with the practical requirements of systems.

Reinforcement learning for dynamic security
Reinforcement learning (RL) offers a dynamic approach to improve ILS by enabling systems to adapt over time 
to changing surroundings and security threats. Rather than depending solely on established rules, RL models 
acquire knowledge through ongoing contact with their environment and adjust their behavior based on previous 
results. As seen in Fig. 14, reinforcement learning can improve real-time dynamic security in indoor localization 
systems.

In the presence of threats like jamming or spoofing, RL algorithms can dynamically adjust system parameters, 
thereby enhancing the resilience of localization models in uncertain or adversarial environments. Through 
real-time modifications, RL significantly enhances the robustness of integrated logistics systems. It can identify 
anomalous patterns in RSSI or atypical user movements, thereby detecting suspicious activities and preventing 
fraudulent check-ins. This methodology corresponds with the research conducted by Li et al.54, who employed 
algorithmic strategies to identify aberrant behaviors.

In addition to accuracy and security, RL also facilitates privacy preservation. Barsocchi et al.52 demonstrate 
that privacy-by-design frameworks can be improved when RL dynamically reconciles accuracy with data 
protection requirements, modifying privacy policies in response to the intensity of the threat. In FL contexts, 
RL can direct distributed models to enhance their learning techniques by utilizing inputs from many clients, as 
suggested by Ciftler et al.59.

Yan et al.62 have emphasized the significance of RL in interpreting RSS fluctuations and alleviating the 
effects of physical-layer attacks, thus enhancing the security and reliability of localization. Collectively, these 
attributes highlight RL as a promising approach for enhancing the precision, adaptability, and security of indoor 
localization systems.

Hybrid cryptographic-AI approaches
The integration of AI with cryptographic techniques is attracting considerable interest for the enhancement of 
ILS. These methodologies offer robust safeguarding of sensitive information, thus guaranteeing both privacy and 
security during the localization process.

Fig. 14.  RL for real-time dynamic security in ILS.
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•	 Homomorphic Encryption with AI: Homomorphic encryption safeguards user location data by allowing 
computations to be executed directly on encrypted information. This technology, when combined with AI 
methodologies like FL, facilitates secure and privacy-preserving localization without compromising system 
speed.

•	 Zero-Knowledge Proofs: AI-enhanced applications of zero-knowledge proofs (ZKPs) facilitate safe device 
connectivity while preserving confidential information. These methods are especially efficient in collaborative 
indoor localization contexts, where numerous users must collaborate without revealing their raw data.

ILS can leverage hybrid frameworks that combine AI with cryptographic mechanisms such as ZKPs and 
homomorphic encryption to enhance privacy and security. Homomorphic encryption enables the processing 
of sensitive location data without decryption, so it maintains confidentiality while facilitating rapid computing. 
Ciftler et al.59 emphasize this concept in FL, wherein data resides on the local device while aiding in the 
development of a collective global model.

In ILS, AI-augmented ZKP procedures facilitate secure verification and communication. Casanova et al.91 
proposed a BLE-based collaborative positioning method that safeguards user anonymity, particularly beneficial 
when various stakeholders (e.g., users and service providers) need to collaboratively ascertain locations without 
jeopardizing privacy.

Furthermore, Patil et al.68 illustrate that the integration of AI into cryptographic solutions can alleviate 
adversarial assaults aimed at signal strength data. Na et al.71 demonstrate that ZKPs can mitigate spoofing and 
cross-technology impersonation threats, wherein adversaries seek to distort the localization process. Integrating 
AI with cryptographic protections enables ILS to attain increased resilience and reliability, improving end-user 
security and privacy in applications like asset tracking and indoor navigation.

Discussion and synthesis of findings
This section synthesizes the reviewed literature by categorizing security and privacy techniques for Indoor 
Localization Systems (ILS) across three dimensions: effectiveness, scalability, and real-world applicability. The 
synthesis draws upon empirical results and conceptual trends identified in Sects. "Related work"–"Machine 
learning techniques for enhancing security and privacy in ILS".

Effectiveness
Effectiveness refers to how well a technique defends against specific threats such as spoofing, signal jamming, 
and adversarial manipulation. Approaches like adversarial machine learning (AML) and anomaly detection 
mechanisms show high accuracy and robustness in controlled conditions. For instance, AML-based frameworks 
demonstrated resilience against white-box attacks, particularly with adversarial training strategies68,83. Similarly, 
cryptographic solutions such as secure two-way ranging protocols, zero-knowledge proofs, and blockchain-
based methods provide strong theoretical guarantees of confidentiality and integrity89,104,114.

However, many methods exhibit context sensitivity. Their effectiveness may deteriorate under complex 
conditions like non-line-of-sight environments or dynamic user mobility. Several defenses also rely heavily on 
accurate signal models and high-quality training data, which may not generalize well across deployments.

Scalability
Scalability involves the adaptability of security and privacy solutions to large or heterogeneous environments. 
Federated learning (FL) and decentralized models appear promising in this regard87,99. These frameworks reduce 
the need for centralized data aggregation, thereby supporting edge-based intelligence and reducing latency.

Nonetheless, FL techniques face practical limitations including non-IID data distributions, communication 
overhead, and energy consumption in battery-constrained devices. Many studies highlighted convergence 
issues in FL models and the need for compression techniques or hierarchical architectures to ensure efficient 
scalability59,99.

Real-world applicability
Although many solutions report high accuracy in simulated or laboratory settings, their real-world deployment 
remains limited. For example, approaches involving homomorphic encryption, blockchain integration, 
or differential privacy often introduce computational complexity that impairs responsiveness in real-time 
localization tasks89,97.

Several studies also emphasize the lack of validation in diverse or dynamic environments. Techniques 
that excel in static testbeds frequently underperform when faced with variable signal conditions, user density 
changes, or multipath propagation. Moreover, data availability and labeling constraints hinder the deployment 
of machine learning-based solutions in commercial-scale systems.

The synthesis presented above offers a critical perspective on the security and privacy techniques employed 
in ILS by evaluating them along dimensions of effectiveness, scalability, and real-world applicability. While 
several solutions show promise in controlled settings, their real-world feasibility is hindered by computational, 
architectural, and contextual limitations. Emerging hybrid frameworks that integrate FL, AML, and cryptographic 
primitives appear to be the most resilient, but they, too, require empirical validation at scale. These findings 
align with and are further elaborated upon in Section , where we detail key research gaps and propose future 
directions for advancing secure and privacy-preserving indoor localization.

Practical challenges
Despite the promising potential of the proposed approach, several practical challenges remain that may hinder its 
widespread adoption5,65,111. A key concern relates to cost considerations. Implementing advanced computational 
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frameworks and infrastructure often demands significant financial investment in hardware, software licensing, 
and continuous system maintenance64,89,111,123. For many organizations, particularly small- and medium-sized 
enterprises, these expenses may pose barriers to initial adoption and long-term sustainability. Furthermore, 
training personnel to effectively manage and operate the system adds an additional layer of resource demand.

Another important limitation concerns scalability. While the framework performs effectively in controlled 
or medium-scale environments, scaling it to handle large and complex datasets or high-throughput operations 
introduces performance bottlenecks59,82,87,99. Issues such as increased latency, higher storage demands, and 
greater energy consumption need to be addressed to ensure that the system can function efficiently under real-
world, large-scale deployment conditions79,89,105,123. Research into distributed architectures, cloud integration, 
and optimization techniques will be essential to mitigate these scalability challenges79,87,112,114.

Finally, interoperability remains a critical barrier. The integration of the proposed solution into existing 
technological ecosystems requires compatibility with heterogeneous platforms, standards, and legacy 
systems71,72. Achieving seamless data exchange and ensuring compliance with industry-specific regulations 
can be complex and time-consuming52,108. Without careful design to promote interoperability, adoption 
across diverse environments may be restricted, ultimately limiting the impact of the approach. Addressing 
these interoperability concerns through standardized protocols and modular architectures will be crucial to 
supporting practical implementation91,123.

 Research gaps and future directions
Despite ILS privacy, security, and performance improvements, several issues and research gaps remain. FL, 
AML, and cryptographic approaches have shown potential in simulations, but their real-world deployment is 
constrained. The complexity of managing non-IID data, the privacy-performance trade-off, energy efficiency 
concerns, and scalability in decentralized situations like IoT remain obstacles. To address these difficulties, 
creative methods like enhancing FL efficiency, strengthening adversarial defenses, and optimizing cryptographic 
protocols for low-power contexts are needed. The next sections identify these shortcomings and suggest ILS 
research directions.

Research gaps
Scalability and real-world feasibility
Although several research projects undertaken in 2020 and 202159,68,69,83 investigated solutions in simulated 
environments, their feasibility for implementation in extensive real-world systems remains limited. Various 
methodologies, including FL87,112, adversarial training68,85, and cryptographic techniques104,114, have yet to 
exhibit substantial scalability in diverse, dynamic, and expanding environments such as smart cities or large 
organizations. Whilst simulation-based techniques demonstrate encouraging results, they are deficient in 
extensive real-world validations that consider discrepancies in devices, sensors, and networks.

Handling non-IID data in FL
FL has been recognized as a vital framework for safeguarding privacy in indoor localization. Nonetheless, the 
management of non-IID (independent and identically distributed) data across decentralized devices remains 
a considerable difficulty. In diverse real-world settings, such as IoT-based localization systems, numerous FL 
algorithms have difficulties in attaining stable convergence. Additional investigation is necessary to enhance FL 
models in non-IID environments and to reduce communication overhead while maintaining accuracy87,98,99. 
Even though ILS has made progress in becoming more secure and private, this gap shows that there is still a lot 
of room for improvement.

Trade-off between privacy and accuracy
A persistent difficulty in privacy-preserving methodologies, such as differential privacy, is achieving a balance 
between robust privacy assurances and high location accuracy. Methods like noise addition and encryption, 
although protecting sensitive data, also diminish accuracy, potentially undermining system effectiveness. This 
problem is especially pronounced in high-density or resource-constrained settings, where even little reductions 
in accuracy can dramatically affect system performance79–81,97,116.

Adversarial attack robustness
Adversarial training is commonly utilized to enhance the resilience of machine learning models in indoor 
localization; nevertheless, existing methodologies are insufficient in mitigating sophisticated or adaptable 
adversarial attacks. Common methods like FGSM, PGD, and MIM only provide limited protection against more 
advanced or tailored strategies68,69,85. Additionally, the continual requirement for retraining and the significant 
computational burden of adversarial defenses impede their use in real-time IoT and GNSS-denied contexts83,113.

Energy efficiency in cryptographic solutions
Cryptographic methods, such as mutual privacy protocols and encryption processes, usually need a lot of 
processing power and energy. This problem is especially bad in IoT scenarios when resources are limited. 
Blockchain-based solutions can make data more reliable, but they also require more processing power and 
energy, which makes them less useful for devices that need to work in real time or use less power89,114,115.

Future directions
Enhancing resilience against advanced adversarial attacks
The review of current literature has pinpointed some critical domains for future study in ILS. A significant trend 
that is occurring is the improvement of ILS’s ability to withstand advanced attacks from attackers. Adversarial 
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training strategies like FGSM, PGD, and MIM have shown some success as current defense mechanisms. 
They still have trouble dealing with more advanced and complicated attacks, especially in complicated IoT 
settings68,69. For instance, while adversarial training is effective against fundamental attack vectors, recent 
studies demonstrate that systems remain vulnerable to informed attacks and emerging techniques such as cross-
technology interference71,76. Further study may investigate sophisticated methodologies, such as adversarial 
curriculum learning or hybrid models that integrate adversarial training with differential privacy methods or FL 
to improve robustness. Curriculum Adversarial Learning and other hybrid methods try to protect systems from 
assaults and keep users’ privacy safe113. These strategies can make the system stronger, protecting it from attacks 
and breaches of privacy.

Improving privacy-preserving methods
A major area of research is finding better ways to safeguard privacy. Differential privacy and cryptographic 
protocols like ZKP have made privacy safeguards better, but they typically come with trade-offs in terms of 
accuracy and computational cost91. Studies such as79 have demonstrated that the use of differential privacy can 
markedly reduce the likelihood of privacy violations. However, it also has problems, such as the cost of labor 
for site surveys and effects on performance. Future research may concentrate on refining these methodologies 
to attain greater accuracy while minimizing computational and transmission costs, particularly in resource-
constrained settings like IoT systems5,116. Investigating LDP techniques alongside FL has demonstrated potential 
in improving privacy while reducing performance degradation79,100. Methods like federated averaging87 and the 
combination of differential privacy have been shown to work well for protecting user privacy and improving 
localization performance.

Scalability and efficiency in FL systems
FL and its advanced versions, such as federated distillation, show promise for decentralized learning in several 
scenarios. However, challenges like data heterogeneity (non-IID data) and connection costs limit their scalability 
in real-world applications. FedLoc3D was accurate for indoor localization, but it had trouble with distributed and 
diverse data. This shows that we need to find ways to solve model convergence problems in non-IID situations87. 
Future research should focus on enhancing the scalability and efficiency of FL systems, particularly in extensive 
IoT contexts where reducing power consumption is essential112. Furthermore, the integration of FL with GANs 
to generate realistic synthetic data for training, while preserving privacy, may enhance system resilience5,116.

Improving energy efficiency in blockchain-based localization systems
Blockchain systems developed for secure navigation and localization in GNSS-deficient locations often encounter 
issues related to substantial computational and energy expenditures. Blockchain systems, as outlined in89, have 
highlighted the energy constraints, particularly regarding IMU sensors. Future developments should concentrate 
on improving blockchain protocols to reduce supplementary expenses while preserving data integrity and 
security89,114. Lightweight consensus techniques and off-chain strategies can reduce the computational burden, 
rendering these systems more appropriate for resource-constrained settings115.

Empirical validation of machine learning models in real-world settings
Numerous proposed solutions, including Anomalous Crowd Traffic Detection (ACTD) and various machine 
learning-based detection frameworks, predominantly depend on simulations for validation. The ACTD 
framework and methodologies such as IS-WARS53,76 have shown encouraging outcomes in controlled 
environments; yet, their effectiveness in unpredictable, real-world contexts remains largely unvalidated. Future 
investigation should focus on implementing these systems in real-world settings to assess their effectiveness 
under varying situations, including environmental changes and adversarial capabilities53,58.

Robust privacy mechanisms for crowdsourced data
The increasing reliance on crowdsourced indoor location data raises substantial privacy issues, especially in IoT 
environments where users could unintentionally reveal sensitive information. Privacy-enhancing approaches, 
like LDP and FL, together with anonymization methods such as k-anonymity, require more refinement for 
dynamic crowdsourcing applications80,81. The application of LDP in frameworks like Navidan et al.’s research has 
shown encouraging outcomes; however it encounters difficulties with noise control and scalability. Investigating 
methods that reconcile privacy with location precision in dynamic contexts may yield significant progress in 
this domain.

Hybrid security solutions for robustness against novel attacks
Numerous current protections, such as MAC spoofing detection and adversarial training, falter when faced 
with novel attack vectors that were not foreseen during the model training phase. To enhance resilience against 
known and unknown threats, a potential strategy is to create hybrid security mechanisms that include several 
detection layers, such as physical-layer metrics and RSS fingerprinting71,85. Recent research indicates that 
employing multi-layered detection, which integrates signal features with statistical models, enhances defense 
against novel attack vectors78. This approach corresponds with cross-layer, multi-modal neural network defense 
frameworks that provide end-to-end robustness improvements across sensing and protocol layers141.

Advanced sensor fusion for indoor localization
Future study should investigate the amalgamation of several sensor data types, including BLE, Wi-Fi, inertial 
sensors, and acoustic signals, to enhance the dependability of localization systems, especially in regions lacking 
GNSS accessibility. Kalpana et al.93 demonstrated that the integration of public and private key cryptography 
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with acoustic localization significantly improves system resilience. Emphasis should be directed on improving 
sensor fusion algorithms to achieve high precision, particularly in diverse IoT systems.

Real-time performance and scalability testing
The computational demands and energy usage of several proposed methodologies, including FL, blockchain 
solutions, and differential privacy, constrain their implementation in real-time, large-scale systems. Research, 
including59,79, underscores concerns such as energy consumption and prolonged convergence times, signifying 
a significant obstacle for practical implementation. The future path may involve optimizing these approaches 
to decrease energy usage and increase processing speeds, thereby rendering them more suitable for real-time 
applications.92,113.

Transfer learning and adaptability in diverse environments
A major problem in ILS is the adaptation of systems to diverse contexts, such as large buildings and shopping 
centers, without necessitating complete retraining. Transfer learning, particularly in FL contexts, demonstrates 
potential. Guo et al.98 have effectively shown that federated transfer learning may diminish localization error 
and training time in indoor localization. Additional investigation into domain adaptation and transfer learning 
techniques may enable localization systems to adjust to new surroundings with minimal data, hence diminishing 
the necessity for retraining while maintaining high precision.

Secure and scalable blockchain systems for localization
Blockchain technology is suggested as a secure and decentralized method for indoor localization. Nonetheless, the 
substantial computational and energy requirements provide considerable hurdles, as evidenced in frameworks 
like Hyperledger Fabric, which encounter constraints due to processing overheads89. Subsequent investigation 
can concentrate on lightweight blockchain protocols that are more appropriate for IoT settings, where energy 
efficiency is critical114.

Future direction Method Design Baselines Metrics

Enhancing resilience 
against advanced 
adversarial attacks

Curriculum adversarial training (FGSM→
PGD→MIM) + strong attack battery incl. cross-
technology interference

White/black-box settings; OTA/
physical-layer stress; report robust 
error at fixed ℓ∞  budgets; retraining 
overhead

Standard adversarial 
training; no-AT

Robust error; attack success rate; 
retraining time; edge energy

Improving privacy-
preserving methods

Local DP (randomized response/Gaussian) 
integrated with FL; lightweight ZKP where 
needed

ϵ-grid {0.1, 0.3, 1, 3, 8}; noise-
mechanism sweep on IoT devices

FL without DP; 
centralized DP only; 
plaintext

Privacy–utility frontier (ϵ vs. 
error); bytes/round; latency; 
mWh/inference

Scalability and efficiency in 
FL systems

FedAvg/FedProx with federated distillation; 
gradient compression; adaptive client selection

Dirichlet non-IID splits (vary α); 
cross-building holdout; comms-
round budgeting

Centralized training; 
naive FedAvg

Convergence rounds; mean 
error; participation rate; bytes/
round; device energy

Improving energy efficiency 
in blockchain-based 
localization systems

Lightweight consensus (e.g., PoA); off-chain 
commitments/channels; TEE-assisted verification

Microbenchmarks on constrained 
nodes; spoof/jam scenarios

Default Hyperledger-
style stacks

Energy/tx; end-to-end latency; 
throughput; accuracy drop vs. 
plaintext

Empirical validation in 
real-world settings Multi-site field trials with standardized logging Hold-out by building/time-of-day; 

environment-shift stress tests
Simulation-only and 
lab-only validations

Mean/90th-pct error; drift over 
time; failure rate under shift

Robust privacy mechanisms 
for crowdsourced data

LDP + FL with per-user privacy budgets and 
adaptive noise; k-anonymity fallback

Dynamic crowdsourcing with churn; 
context-aware noise calibration

No privacy; server-
side DP only; naive 
anonymization

Error vs. privacy; user 
participation/retention; 
communication cost

Hybrid security solutions 
for novel attacks

Multi-layer detector (physical-layer CSI/phase + 
protocol/RSS) with ensemble ML

Evaluate on unseen/novel attack 
families Single-layer detectors AUC; FPR@TPR; detection 

latency; compute overhead

Advanced sensor fusion for 
indoor localization

Probabilistic 3D fusion (EKF/UKF/factor-graph) 
and/or GNN-based fusion of BLE/Wi-Fi/UWB/
IMU/acoustic

Modality ablations; NLoS stress tests Best single-modality 
models

Mean/floor-aware error; 
robustness under NLoS/
occlusion

Real-time performance and 
scalability testing

Model compression (quantization/distillation); 
operator fusion; batching

Profiling on edge devices with p50/
p95 latency targets

Full-precision, 
unoptimized pipeline

Latency; throughput; mWh/
query; accuracy drop

Transfer learning and 
adaptability

Federated transfer learning with domain 
adaptation (feature alignment, adversarial DA)

Few-shot adaptation to new building 
with K labeled samples

From-scratch; no 
adaptation

Error after K samples; adaptation 
time; communication cost

Secure and scalable 
blockchain for localization

Permissioned ledger with lightweight consensus 
and off-chain data paths; anchor attestation

Tune block size/epoch and 
membership; test under load/faults/
jam

Default Fabric-like 
configuration

Tx latency/throughput; energy/
tx; integrity under fault/jam

RL for adaptive privacy 
management

RL-based LPPM adjusting ϵ, sampling rate, on-
device compute by context

Sim-to-real training with limited on-
site calibration; online policy updates Static privacy policies Privacy–utility reward; regret; 

latency/energy overhead

Trustworthiness in 
crowdsourced ILS

Per-source trust scoring + autoencoder outlier 
detection; robust aggregation

Inject label noise and adversarial 
contributions at controlled rates

Unweighted 
aggregation

Error under contamination; 
precision/recall for bad-source 
detection

Energy-efficient FL for 
large-scale systems

Federated distillation; sparse/partial updates; 
adaptive round frequency; TinyML quantization/
distillation at edge

Energy profiling across device tiers; 
workload scaling

Full-precision, full-
model updates

Energy/round; total energy to 
target accuracy; accuracy delta 
vs. baseline

Table 8.  Actionable plans for each future direction. When a year appears in a table, it denotes the publication 
year of the cited paper/parameter; when not shown, the scope is 2020–2025.
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Integration of reinforcement learning for adaptive privacy management
RL offers a method to regulate privacy in fluctuating indoor localization environments. Min et al.101 presented 
an RL-based local privacy protection system for three-dimensional indoor environments, demonstrating its 
efficacy in selecting policies and adapting to environmental changes. Through these techniques, computers 
may dynamically modify and update privacy regulations in real time according to context, thus providing 
both usability and privacy in intricate multi-story structures. Employing RL-driven local privacy protection 
mechanisms (LPPMs) can markedly improve flexibility and fortify privacy in these contexts.

Trustworthiness in crowdsourced ILS
A crucial next step is to guarantee the dependability of data in crowdsourced localization systems. Existing 
techniques, such as trustworthiness assessments and autoencoder-based anomaly detection, demonstrate 
potential but require more refining and optimization88. Formulating ways to guarantee data consistency and 
correctness while safeguarding user privacy will improve the trustworthiness of crowdsourced ILS systems.

Energy-efficient FL for large-scale systems
FL has demonstrated potential for privacy-preserving localization. Nonetheless, the energy expenditure linked 
to model updates, especially in extensive IoT networks, continues to pose a significant barrier. Additional 
research is required to enhance FL protocols, including federated distillation, to minimize communication and 
energy expenditures112. Methods like energy-efficient aggregation and selective model updates can enhance 
the scalability of FL, rendering it more appropriate for IoT applications, including ILS. Recent advancements 
in complementary TinyML indicate that the quantization and knowledge distillation of transformer/Mamba 
models can achieve precise indoor localization on limited edge devices while minimizing computational and 
memory requirements142. In order to facilitate thorough and repeatable studies, Table 8 combines the indicated 
future directions into a structured research agenda, outlining the methodological approach, experimental 
design, comparison baselines, and assessment criteria for each theme.

Conclusion
This paper has provided an in-depth review of the security and privacy issues in ILS, with particular attention to 
major threats such as spoofing, signal jamming, and adversarial attacks. The analysis shows that while techniques 
such as Federated Learning (FL), Adversarial Machine Learning (AML), and cryptographic protocols can each 
strengthen system resilience, privacy, and efficiency, they also face critical challenges.

FL addresses privacy concerns but faces difficulties with non-IID data and increased transmission costs. AML 
improves robustness against attacks but requires significant computational resources. Cryptographic procedures 
provide data integrity; nevertheless, they also include computational expenses. The findings collectively suggest 
that no one method may sufficiently meet the complex demands of ILS.

This research highlights the importance of a balanced approach that combines lightweight privacy-preserving 
strategies with strong security measures. Future research should focus on integrating these approaches to tackle 
challenges related to scalability, energy efficiency, and adaptability. This will enable the creation of a secure, 
privacy-conscious, and flexible ILS capable of functioning in diverse and dynamic environments.
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