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The growing use of indoor localization systems (ILS) in essential applications, including healthcare,
smart buildings, and logistics, has created serious security and privacy concerns. This paper thoroughly
analyzes the existing security and privacy concerns in ILS, emphasizing risks such as spoofing,

signal jamming, and adversarial attacks. We explore defense strategies, such as federated learning,
adversarial machine learning, and cryptographic protocols, emphasizing their efficacy and constraints.
The study examines the trade-offs among privacy, accuracy, and efficiency in ILS while tackling
significant difficulties such as non-Independent and Identically Distributed (non-1ID) data, energy
efficiency, and scalability in practical applications. This review provides a comprehensive overview

of the state of the art in protecting ILS against growing adversarial threats by integrating major
trends and approaches from the last five years. This survey paper will help researchers and industry
professionals gain a deeper understanding of privacy and security concerns in ILS.
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GAN Generative adversarial network
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GNSS Global navigation satellite system
GPS Global positioning system

ILS Indoor localization systems
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IoT Internet of Things

KNN K-nearest neighbor

LBS Location-based services

LDP Local differential privacy
LIDAR Light detection and ranging
LoS Line-of-sight

MAC Media access control

MIM Momentum iterative method
ML Machine learning

NEC Near-field communication
NLoS Non-line-of-sight

ODE Ordinary differential equation
PGD Projected gradient descent
PST Probability suffix trees

RF Radio frequency

RFID Radio-frequency identification
RL Reinforcement learning
RNNs Recurrent neural networks
RSS Received signal strength

RSSI Received signal strength indicator
SNR Signal-to-noise ratio

SVM Support vector machine
TDoA Time difference of arrival
ToA Time of arrival

UWB Ultra-wideband

ZKP Zero-knowledge proof

ZUPT Zero-velocity update

Location-based services (LBS) are applications that deliver location-specific information regarding a user or
device via mobile devices or communication networks. Recent years have seen an increase in demand due to
their broad range of applications, which include navigation, mapping, social networking, targeted advertising,
virtual reality, healthcare, transportation, smart cities, and gaming'. While outdoor localization largely depends
on global navigation satellite systems (GNSS), many emerging services require accurate positioning indoors,
where GNSS is unreliable. Indoor Localization Systems (ILS) fulfill this requirement by utilizing several
technologies, including frequency modulation (FM), amplitude modulation (AM), Bluetooth, global system for
mobile communications (GSM), Wi-Fi, and long-term evolution (LTE)?3.

Localization fundamentally involves determining the position of an object or individual in relation to
reference points (RP) within a specified indoor environment?, as depicted in Fig. 1, which emphasizes the
difference between indoor and outdoor methodologies. The increasing dependence on ILS in essential
sectors, such as healthcare, smart infrastructure, logistics, and emergency response, highlights the necessity
for dependable, secure, and privacy-respecting systems. Indoor locations present distinct issues, including
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Fig. 1. Indoor versus outdoor localization systems.
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signal blockage, multipath effects, and vulnerability to malicious interference. Security threats such as signal
spoofing and jamming, along with privacy risks like unauthorized tracking, can result in significant real-world
repercussions. It is therefore essential to understand and address these threats, which highlight the importance
of a comprehensive review of existing vulnerabilities, defense mechanisms, and future research directions in this
evolving field.

The study distinguishes itself from others®”’ by providing a comprehensive examination of security and
privacy concerns in ILS, something that is frequently overlooked in previous research. Numerous present
assessments concentrate on security concerns or privacy troubles, although seldom do they examine the
combination of both. Our analysis underscores the imperative for a dual approach, particularly in response
to rising threats such as signal spoofing, jamming, and data privacy violations. This report highlights recent
trends and offers a current view of the growing environment of ILS, including developments in FL and AML as
defensive strategies. Unlike prior studies that narrow their scope to specific technologies, our paper broadens the
scope by analyzing the latest developments across diverse ILS applications, providing insights into both attack
prevention and defense mechanisms, and identifying gaps in the literature. The main contributions of this study
are summarized as follows:

o Comprehensive literature synthesis We provide a structured and up-to-date review of recent developments
(2020-2025) in ILS security and privacy, emphasizing the interplay between threats such as spoofing, jam-
ming, and data breaches, which are often treated separately in prior surveys.

o Methodological integration of defense paradigms This study uniquely integrates discussions on federated learn-
ing (FL), adversarial machine learning (AML), and cryptographic protocols, offering a comparative analysis
of their effectiveness and limitations across varied ILS scenarios.

o Evaluation of privacy-utility trade-offs We critically examine the trade-offs between privacy, accuracy, and
computational efficiency in decentralized ILS architectures, offering insights into real-world applicability and
constraints that are often overlooked in more theoretical studies.

o Identification of open challenges and research Ddrections The study highlights unresolved issues such as non-
IID data handling, scalability limitations, and energy efficiency bottlenecks. Based on these, we propose con-
crete future research directions to support the design of more secure and privacy-preserving ILS frameworks.

While several prior reviews have discussed either security or privacy in indoor localization systems, few
studies have offered an integrated perspective that systematically addresses both concerns in tandem. This gap
is particularly significant given the increasing interdependence between privacy-preserving mechanisms and
security defenses in real-world ILS deployments. Existing literature has tended to focus on isolated technical
challenges-such as specific attack types, encryption techniques, or signal interference-but has often lacked
a comprehensive view that maps these threats to emerging defensive strategies like federated learning and
adversarial machine learning. In response, this study presents a structured and up-to-date synthesis of both
vulnerabilities and countermeasures in ILS, covering technological trends from 2020 to 2025. Methodologically,
this review differs from past works by bridging siloed research areas and offering a comparative analysis of
ILS privacy and security solutions across a range of practical application scenarios. By doing so, it not only
identifies unresolved challenges but also outlines future research directions to guide the development of robust
and privacy-aware indoor localization architectures.

To conduct this comprehensive review, we systematically searched leading academic databases, including
IEEE Xplore, Scopus, and Web of Science, for peer-reviewed journal and conference papers published between
2020 and 2025. Keywords such as indoor localization, privacy, security, federated learning, and adversarial
machine learning guided our search. We included articles that specifically addressed either security or privacy
concerns or both within the context of Indoor Localization Systems (ILS). Studies that focused exclusively on
hardware-level improvements or unrelated positioning technologies were excluded. We restrict the time window
to 2020-2025 to capture the rapid shift toward FL/AML and cryptographic defenses during these years, provide
a coherent and up-to-date scope, and complement-rather than duplicate-pre-2020 surveys. For the detailed
eligibility rules and screening workflow, see “earch Strategy and Eligibility Criteria”Section.

As a survey paper, this study aims to synthesize and evaluate existing research, without proposing new
algorithms or experiments. Selected articles were analyzed and categorized based on attack types, defense
mechanisms, and system architectures, as illustrated in Fig. 3, to support a structured exploration of current
trends and open challenges in the field.

Unlike prior surveys, this work integrates recent advances and organizes threats and solutions using a
taxonomy aligned with Al-driven and cryptographic methodologies, offering a novel perspective on the dual
challenge of privacy and security in ILS.

Search strategy and eligibility criteria

To enhance transparency and reproducibility, we specify the eligibility rules governing study selection and

outline the screening workflow used to assemble the final corpus. A concise summary appears in Table 1.
Inclusion criteria (all must be satisfied).

1. Peer-reviewed journal or conference papers published during 2020-2025.

2. English-language publications.

3. Full text available.

4. Studies focused on ILS that analyze security and/or privacy (e.g., threats, defenses, trade-offs).
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Category | Rule

Include Peer-reviewed journal or conference paper (2020-2025), English, full text available

Include | Focus on ILS with analysis of security and/or privacy (threats/defenses/trade-offs)

Include | Empirical, simulation, algorithm/framework, or survey with substantive ILS security/privacy content

Exclude | Hardware-only improvements without ILS security/privacy analysis

Exclude | Outdoor-only localization or unrelated positioning technologies

Exclude | Non-peer-reviewed items; abstracts only; non-English

Table 1. Eligibility criteria (summary).

5. Study designs including empirical evaluations, simulations, algorithmic/framework proposals, or surveys
that substantively address ILS security or privacy.Exclusion criteria (any single criterion is sufficient for
exclusion)

Works focused exclusively on hardware-level improvements with no ILS security/privacy analysis.

Studies on outdoor-only localization or otherwise unrelated positioning technologies.

3. Non-peer-reviewed items (e.g., theses, patents, white papers), abstracts without full text, or non-English
publications.Screening workflow Records aggregated from the selected bibliographic sources were first dedu-
plicated. We then conducted title/abstract screening against the eligibility rules above, followed by a full-text
assessment of the remaining candidates. For transparency, reasons for exclusion were documented at the
full-text stage. The subsequent taxonomy and synthesis consider only studies meeting the inclusion criteria.

N =

The remainder of the paper is organized as follows: Section "Fundamentals of indoor localization systems" covers
the basics of ILS, including their kinds, range methods, and localization algorithms. Section "Related work"
summarizes current ILS security and privacy assessments and research. Section "Comparative study of privacy
and security approaches in ILS" examines the strengths, weaknesses, and current trends of ILS security solutions
and highlights key issues. Section "Security and privacy concerns in ILS" discusses ILS security and privacy
issues, including spoofing and jamming attacks and their consequences. Section "Machine learning techniques
for enhancing security and privacy in ILS" discusses the AI techniques that can be used for enhancing ILS
privacy and security. Section "Discussion and synthesis of findings" synthesizes the findings from the previous
sections by categorizing security and privacy techniques along the dimensions of effectiveness, scalability, and
real-world applicability. Finally, sect. "Research gaps and future directions” provides a comprehensive discussion
of gaps and future directions in the ILS study. Finally, sect. "Conclusion” concludes the paper by summarizing
the findings and suggesting future research directions to improve ILS security and privacy. For a complete
structure of this paper, refer to Fig. 2.

Fundamentals of indoor localization systems

Before delvinginto privacyand security challenges related to ILS, let us brieflylook into these systems. ILS estimates
the position of a target continuously in an indoor environment by first applying a distance estimation algorithm
using different ranging techniques, followed by a localization algorithm®. To offer a structured understanding of
the security and privacy landscape in ILS, Fig. 3 presents a taxonomy that categorizes the common threat types,
corresponding defense mechanisms (e.g., federated learning, adversarial training, cryptographic solutions), and
deployment models. This taxonomy serves as a conceptual anchor for the techniques reviewed in subsequent
sections.

Types of indoor localization

Indoor environments are diverse, and each indoor environment requires ILS tailored to its needs in terms of
accuracy and coverage. For example, ambient assisted living applications require room-level coverage with an
accuracy of less than one meter, while law enforcement requires urban or rural coverage with an accuracy of a
few meters. Because of these diverse needs, there is no single solution to indoor localization; different localization
techniques coexist. Indoor localization can broadly be divided into two categories: active localization and passive
localization. A more detailed sub-classification of active and passive localization techniques is shown in a flow
chart in Fig. 4.

Active localization

Active localization is ideal for application that require high accuracy like asset tracking, robot navigation, etc., but
demands users to carry a tag or device like a mobile phone, smartwatch, etc. Some of the techniques used for active
detection include computer vision (CV)?, light detection and ranging (LIDAR)!%-12, ultrasound'®, acoustic'*'>,
geometric fingerprinting'®, wireless or radio frequency (RF)', visible light'®, and aroma fingerprinting!*2°.

Passive localization

Unlike active localization, passive localization suitable for scenarios like occupancy detection, with limitations
in precision is due to the lack of active tags. Some of the applications of passive detection are intrusion detection,
fall detection, remote monitoring, emergency evacuation, business analytics, accessibility aids for the visually
impaired?!, etc. The techniques used in passive localization include camera- or vision-based localization?2%,
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Ranging techniques in ILS are different methods used to measure the distance between devices, such as beacons,
sensors, or access points (AP), and a target object that could be a mobile device or person. These techniques are
essential for determining the location of a target in an indoor environment. Different ranging techniques are
used for ILS in the literature (Fig. 5); some of the common ones include the following:

Phase of arrival (PoA)
PoA is a ranging technique in which the phase difference of a signal that is received at multiple antennas or
from multiple transmitters is measured. The phase information in PoA is used to estimate the target location.
Although PoA can provide high accuracy, especially in environments with limited multipath path effects, it is
challenging because it requires precise measurement and is sensitive to environmental factors and frequency
offset>*>1,

The PoA is estimated by evaluating the phase difference of the signal received at various antennas.
Mathematically, the phase difference A¢ between the two antenna positioned at a distance d is represented as

_ 2mdcosf

Ap= T2,

(1)
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Fig. 3. Taxonomy of security and privacy mechanisms for indoor localization systems (ILS), classified by
attack type, mitigation approach, and system architecture.

where, 0 is the angle of arrival of the signal, A represents the wavelength of the signal, and d denotes the distance
between the antennas. The angle of arrival, 6, can be approximated using the measured phase difference A¢:

i (Agea
6 = cos (27rd .

2)

The approximated phase can then be used to determine the target’s position in either a two or three dimensional
space. The effectiveness of this method depends upon the accurate measurements and careful calibration, which
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Fig. 4. Types of indoor localization.

help mitigate influences such as frequency offset and environmental noise. Although PoA provides high accuracy
in controlled settings, its susceptibility to noise, frequency offsets, and calibration issues limits its practicality in
dynamic or large-scale applications.

Angle of arrival (AoA)

Angle of arrival (AoA) is a method that measures the direction from which a signal reaches the receiver. This
method triangulates the target location by combining multiple AoAs from different receiver locations. AoA
provides high accuracy, especially when directional antennas are used. However, it requires specialized hardware
and can be affected by multipath interference®2. In practice, the AoA technique determines the angle 6 of the
incoming signal at each receiver, which can be calculated using the coordinates of the transmitter (¢, y:) and
the receiver (xr, yr ).

6 = tan™* (u) . (3)

Tt — Ty
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Several receivers with known positions are employed to determine the transmitter’s location through
triangulation. Using the AoA information 0; at receiver ¢, the lines of bearing (LoB) can be described as

Y — Y, = tan(0;) - (x — ), (4)

(zr;,yr;) denotes the coordinates of the i-th receiver. The intersection of these LoBs from various receivers
yields the estimated location of the transmitter (¢, ¥:). In actual situations, noise and multipath effects can
distort AoA readings, requiring error minimization strategies to enhance the accuracy of the estimated position.

Although AoA is highly accurate, it is especially susceptible to multipath effects. Additionally, the requirement
for specialized directional antennas and noise reduction techniques can make its deployment in real-world
situations more complex.

Signal propagation time

In the signal propagation time technique, the distance between the target and a reference point (RP) with a
known location is estimated by measuring the time it takes for a signal to arrive between them. Based on this
principle, two common techniques are used, namely time of arrival (ToA) and time difference of arrival (TDoA).
ToA provides high accuracy in line of sight (LOS) environments but its performance decreases in no line of sight
(NLOS) scenarios due to the multi-path effect and signal reflection®. A major challenge in ToA is the need for
accurate time synchronization between the transmitter and receiver, which TDoA addresses. However, TDoA
requires multiple receivers and the use of complex algorithms to estimate the target location, which introduces
its own difficulties.

In the ToA method, the distance d between the transmitter and receiver is calculated as

d=c-t, (5)

where c is the speed of light (or more generally, the signal propagation velocity in a medium), and ¢ represents the
measured signal propagation duration. This equation presumes that the signal propagates on a linear trajectory
without considerable delays caused by obstructions.

The TDoA technique uses the time difference of arrival (At) between two receivers at known locations to
calculate the difference in distances (Ad) from the target to these receivers, expressed as Ad = ¢ - At. Here, At
represents the time difference between the signals reaching the two receivers, defined as At = to — t1, where t1
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and t2 denote the arrival times at the first and second receivers, respectively. The target’s location is determined
by integrating several measurements through trilateration or other geometric methods.

ToA and TDoA perform well under ideal line-of-sight conditions, but their accuracy decreases in non-line-
of-sight environments. Beyond classical multilateration, a recent approach couples propagation modeling with
a genetic algorithm to efficiently explore the position space and improve indoor localization under multipath
constraints*,

Received signal strength indicator (RSSI)
RSSI, as the name suggest, is a measure of the real signal power received by the receiver. It is calculated in decibel
milliwatts (dBm) or milliwatts (mW)3°. The RSSI technique estimates the distance between the transmitter and
receiver based on the strength of the received signal. As the distance between the devices increases, the signal
strength decreases, which is used to approximate the distance between them.

The received signal strength (RSS) is represented by the path loss equation:

P.(d) = P, —10 - n - log,(d) + Xy, (6)

where P.(d) represents the received power at a distance d (in dBm), P: denotes the transmitted power (in
dBm), n signifies the path loss exponent (typically ranging from 2 to 4 in indoor environments), d indicates
the distance between the transmitter and receiver (in meters), and X refers to the Gaussian noise that accounts
for environmental factors (e.g., obstacles and interference). The estimated distance d can be computed using the
following equation:

Py —Pr(d)+Xg4

d=10 T0n . (7)

RSSI based localization is easy to implement without requiring complex hardware or calculations. Another
advantage of RSSI is that they are inexpensive and are widely supported by existing wireless technologies like Wi-
Fi and Bluetooth. Accuracy of RSSI is directly influenced by environmental factors like obstacles, interference,
and multi-path propagation®. Compared to other techniques RSSI is generally less accurate, especially in
complex indoor environments.

RSSI provides ease of use and cost benefits; however, it faces challenges with accuracy in areas with many
obstacles or interference, which reduces its reliability for accurate indoor localization.

Frequency modulated continuous wave (FMCW)
FMCW is a technique in which a continuous waveform is transmitted along with its frequency modulation over
time. The transmitted signal can be represented as

sex(t) = Acos (27Tf0t + 7Tk:t2) , (8)

where A denotes the amplitude of the signal, fo represents the initial frequency, and k = £ represents the chirp
rate, with B indicating the bandwidth and T the duration of the chirp. This signal reflects off an object and is
received by the system. The received signal, delayed by the duration 7, is expressed as

srx(t) = Acos (27Tf0(t — 1)+ 7wk(t — 7)2) . )

The system estimates the frequency shift fa, defined as the difference between the transmitted and received
signals. The frequency shift is expressed as

fa =k = 2B (10)

C

where 7 = 2% denotes the round-trip time delay, R represents the distance from the transmitter to the object,
and c signifies the speed of light. Hence, the distance R to the item can be calculated using the formula:

s
R = o (11)

FMCW is a versatile technique that supports both short- and long-range sensing, making it suitable for a wide
range of indoor applications®”’. While it offers high accuracy, its performance is sensitive to environmental factors
and relies on advanced signal processing and sophisticated hardware. These requirements increase system cost
and complexity, limiting its feasibility for large-scale or cost-sensitive deployments’®.

Chanpnel state information (CSI)
CSI is an advanced technique for measuring distance in ILS. CSI holds detailed data about the propagation
characteristics of a wireless communication channel like Wi-Fi. It includes information regarding the variations
in signal as it passes through an environment, which can be affected by factors like walls, furniture, and people
moving around?®. CSI provides more precise data compared to traditional RSSI data which allows for a more
accurate localization, device tracking, and environment sensing.

The CSI captures the frequency response of the channel, mathematically expressed as
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H(f) = [H(f)]e’*D, (12)

where H (f) denotes the complex channel frequency response at frequency f, |H(f)| represents the amplitude
response, and ¢( f) indicates the phase response. The received signal can be expressed with the CSI as follows:

Y (f)=H(f) - X(f)+N(f), (13)

In the frequency domain, Y (f) denotes the received signal, X ( f) signifies the broadcast signal, H (f) represents
the CSI, and N (f) indicates noise. In a multipath environment, where signals arrive at the receiver via multiple
routes, the CSI is generally represented as

L
H(f) = e 20T, (14)
=1

where L denotes the number of propagation paths, «; signifies the amplitude attenuation of the ¢-th path, and
7; indicates the propagation delay of the i-th path.

CSI provides exceptional accuracy and depth in localization data through its comprehensive channel
measurements. However, its substantial computational demands and sensitivity to environmental changes pose
considerable challenges for real-time and resource-limited applications.

Localization algorithms
Indoor localization algorithms are used to determine the position of a target object based on factors like RSSI,
CSI, ToA, etc. These algorithms are broadly classified as follows:

Proximity-based algorithms

Proximity-based localization algorithms determine the location of a device by measuring its closeness to some
known fixed point*’. Bluetooth beacons are a common proximity-based approach that measures device closeness
by measuring the strength of the signals from the beacons set at known locations. This method is commonly
implemented in indoor environments. Near-field communication (NFC) is another example of a proximity-
based algorithm in which the location of the device is determined by directly interacting with NFC tags that are
embedded in the area of interest.

Triangulation-based algorithms

Triangulation-based algorithms utilize the geometric relationship between the known RP or anchor. It includes
methods like lateration!®, which determines the target distance from multiple anchors to calculate its location.
TDoA and ToA are examples of lateration, which improves localization accuracy using signal travel times.
Angulation (or AoA) is another triangulation-based algorithm that estimates the target location using the
measure of the angle of the signal arriving from multiple anchors. Both lateration and angulation are widely
used methods, and they balance accuracy and computational requirements based on the indoor environment
and infrastructure.

Dead reckoning

Dead reckoning, though a navigation method, can be used for indoor localization. It estimates the current
position of the target using previously known locations, along with its velocity measurement and direction of
movement. Dead reckoning is sensitive to error accumulation over time*!; hence, it is often combined with other
localization techniques to improve its accuracy.

Trilateration/multilateration

Trilateration and multilateration are techniques that find an unknown node by using three (in the case of
trilateration) or more (in the case of multilateration) reference nodes. In trilateration, the position of the target
node is determined by finding the intersection of three imaginary circles that are centered at the reference
nodes*2.

Magnetic field-based localization

In the magnetic field-based localization algorithm, distortions in the earth’s magnetic field are used to pinpoint
locations®®. This distortion in the magnetic field is caused by the structural elements of the buildings. Magnetic
field-based localization involves creating detailed maps of the indoor environment’s magnetic field, which are
then used as references in indoor localization.

Range-free

Range-free localization algorithms are methods that do not rely on distance or angle measurements to predict the
position of the target and are used in wireless sensor networks (WSNs). Range-free localization algorithms use,
instead, the connectivity information to infer the relative position of nodes in a network. Common range-free
algorithms include distance vector-hop (DV-Hop)*, centroid localization, approximate point-in-triangulation
(APIT), and multidimensional scaling mapping (MDS-MAP).
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Localization

Algorithms

Machine learning (ML)-based algorithms

ML-based algorithms use methods like neural networks, like deep neural networks (DNNs), convolutional
neural networks (CNNs), and recurrent neural networks (RNNs), to improve localization accuracy by learning
from a large dataset®. These neural networks effortlessly model complex relationships between the signal
features and specific location coordinates. Support vector machines (SVMs) are another ML algorithm used
for localization problems due to their robust classification capabilities. SVMs efficiently determine the position
based on different signal attributes.

Fingerprinting

Fingerprinting in indoor localization is the process of creating a radio map (database) of signal characteristics
like RSSI and CSI at multiple locations in the area of interest*®. This radio map is used as a reference to match
the current signal measurements with those in the database and predict the location based on this comparison.
The most popular method, Wi-Fi fingerprinting, uses RSSI data from many APs to estimate the device location.
Another method of fingerprinting is RFID fingerprinting, which builds complex signal maps using RFID tags
and readers, allowing for more accurate localization (Fig. 6).

Related work
ILS security and privacy surveys and case studies are reviewed in this section, highlighting key findings and
limitations. It includes case studies and real-world applications in indoor localization from 2020 to 2025.
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Fig. 6. Localization algorithms.
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Existing surveys and reviews

Recent surveys on ILS have explored various aspects of security and privacy, yet gaps remain in their coverage
and depth. Early reviews, such as?®, provided a foundational categorization of privacy concerns-device,
transmission, and server-level-but their relevance is limited due to outdated datasets. More recent works have
examined the intersection of machine learning and IoT security?’, as well as the broader landscape of indoor/
outdoor localization in IoT*2 Studies focusing on specific technologies, like BLE in wearable devices$, and
deep learning-based approaches using Wi-Fi, Bluetooth, and UWB¥, highlight ongoing challenges such as
multipath interference, data scarcity, and environmental noise. While these surveys contribute valuable insights,
particularly on hybrid techniques and device-free localization, standardization and efficiency remain critical
concerns. More recent efforts” have introduced structured classifications based on collaboration and security
principles but offer limited treatment of privacy-preserving methods. Privacy-specific surveys> have begun
to explore novel attack models and protection strategies in location fingerprinting, though their scope is often
narrow and lacks comprehensive analysis. Overall, existing literature reveals a fragmented approach to privacy
in ILS, underscoring the need for more integrative and up-to-date reviews. For a cutting-edge 2025 synthesis of
Al-cybersecurity fusion trends-spanning FL, AML, privacy mechanisms, and policy directions-see®!, which
complements our ILS-focused review. Given that several pre-2020 surveys are limited or outdated with respect
to modern datasets and techniques, our review focuses on 2020-2025 to provide an up-to-date synthesis that
complements these earlier works.

Evolution of security and privacy techniques in indoor localization

2020

Several studies have explored privacy and security concerns in indoor positioning systems (IPS), particularly the
handling of sensitive user data and resilience against adversarial behavior. Barsocchi et al.>? propose a GDPR-
compliant, privacy-by-design framework for location-based services, demonstrated through a Telegram-based
proximity marketing application. While the architecture supports regulatory compliance, it remains limited in
scope and reveals ongoing vulnerabilities in data protection. Addressing malicious data manipulation, Li et al.>
introduce the ACTD framework, which employs machine learning and outlier detection to identify anomalous
RSS fingerprint submissions. Although effective in simulations, the lack of real-world validation limits its
practical reliability. To counter fraudulent check-ins, Li et al.>* present an AP subset selection strategy that
optimizes positioning accuracy and robustness; however, the method is sensitive to environmental variation,
computationally demanding, and may struggle with emerging threats. Expanding on this, Li et al.* propose a
boundary-based defense using fingerprint refinement and level-set methods to improve localization security.
Despite promising simulated results, its effectiveness remains constrained by untested assumptions and partial
mitigation of attack vectors.

Building on these efforts to strengthen IPS resilience, Yang et al.>® focus on secure state estimation under
sensor attacks, where measurements can be manipulated even with protected communication channels. Their
map-based localization algorithm ensures robust estimation against such threats, though practical deployment
under diverse attack scenarios remains unexplored. To address localization in large, multi-floor environments
with limited labeled data, Li et al.’” propose a decentralized federated learning (FL) approach combined with
pseudo-labeling. Their centralized indoor localization method using the Pseudo-label(CRNP) method enhances
accuracy while preserving privacy and reducing network costs, yet challenges persist with data heterogeneity,
privacy sensitivity, and the computational burden of distributed training. In parallel, Ko et al.”® introduce RFBSA,
a random forest-based filter designed to mitigate localization errors caused by MAC spoofing. The technique
proves effective against attacker-generated noise, outperforming traditional filters and deep learning models,
but maintaining robustness against increasingly sophisticated spoofing remains a concern. Ciftler et al.” further
explore privacy-preserving localization by applying FL to crowdsourced RSS fingerprint data. While achieving
notable accuracy gains and safeguarding user privacy, their approach is constrained by scalability issues, slower
convergence on non-IID data, and the performance limitations of low-power devices in real-time scenarios.

Further contributions focus on enhancing privacy and spoofing resistance in localization systems. Zhang et
al.® propose a lightweight privacy-preserving solution (LW P?) for Wi-Fi fingerprinting, utilizing the Paillier
cryptosystem to perform secure computations in the encrypted domain. Although it improves localization
accuracy and privacy, the method incurs higher processing and communication overhead and offers limited
protection for the localization server itself. Shubina et al.%! explore the privacy-accuracy trade-off in wearable
networks, introducing metrics that allow users to manage location obfuscation. Their findings are informative for
dense environments but may not generalize to sparse settings and highlight the ongoing challenge of balancing
privacy with utility in location-based services. To detect physical-layer spoofing, Yan et al.®* develop PHY-
IDS, an RSSI-based system that performs well against both naive and informed attackers. However, its scope
is limited to wearable devices and does not address broader security threats. Similarly, Madani et al.5® present
a randomized moving target defense (RMTD) for detecting MAC spoofing in IoT systems. By dynamically
altering network parameters, RMTD improves spoofing resistance but depends heavily on accurate modeling of
advanced adversarial behavior, which may not always be feasible.

Privacy-preserving and three-dimensional localization techniques have also received notable attention.
Nieminen et al.** propose a secure two-party computation method for indoor localization, integrating Wi-
Fi fingerprinting with privacy models. While their Android-based proof-of-concept demonstrates feasibility
with reasonable retrieval times, scalability is hindered by computational and communication overhead. Kordi
et al.% offer a broad review of wireless IoT-based indoor localization methods, covering proximity, lateration,
fingerprinting, and hybrid techniques. Although the study provides a useful taxonomy and highlights the
potential of machine learning for optimization, it lacks empirical performance evaluations and real-world
deployment considerations. Addressing the limitations of 2D systems, Alhammadi et al.®® present a 3D Bayesian

Scientific Reports |

(2025) 15:44625 | https://doi.org/10.1038/s41598-025-22204-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

graphical model (3D-BGM) that reduces reference point requirements while achieving competitive accuracy.
Despite outperforming several baseline models, the system’s reliance on static environments and challenges
in scaling to multi-story buildings limit its generalizability. A related approach by the same authors®’ extends
3D-BGM with RF fingerprinting, leveraging existing Wi-Fi infrastructure to improve localization accuracy and
efficiency. However, the system still requires frequent radio map updates and does not fully address scalability,
security, or privacy in dynamic IoT environments.

2021

Adversarial robustness and cross-technology attacks have emerged as critical challenges in indoor localization
and activity recognition systems. Patil et al.%® explore the vulnerability of RSSI-based systems to adversarial
inputs, demonstrating that their deep learning model (DMLP) outperforms traditional methods and benefits
from adversarial training. However, the model remains limited by its focus on white-box attacks, susceptibility
to dynamic environments, and dependency on high-quality RSSI data. Similarly, Ambalkar et al.% investigate
adversarial attacks on Wi-Fi CSI-based human activity recognition systems, proposing a defense framework
using Projected Gradient Descent (PGD) and Momentum Iterative Method (MIM) techniques. While the
framework enhances resilience, it shares limitations with Patil et al., including an exclusive focus on white-box
scenarios, sensitivity to data quality, and lack of real-world validation. Addressing secure indoor localization at
scale, Wang et al.”® present RMBMFL, a multi-task collaborative learning approach achieving high accuracy in
large building environments. Despite its strong performance, the method’s generalizability is uncertain due to
evaluation on a single, fixed site. In a related threat landscape, Na et al.”! introduce Wi-attack, a cross-technology
impersonation attack exploiting BLE advertising via Wi-Fi. Although their detection method based on power
consumption variance shows promise, the approach suffers from high localization errors, low packet reception
rates, and reliance on cross-technology interaction, limiting practical deployment.

Comparative evaluations of indoor localization technologies have revealed both performance differences and
persistent security challenges. Dervicsouglu et al.”? assess UWB and BLE systems, showing that UWB achieves
superior accuracy (0.43 m vs. BLE’s 1.54 m), but note that variations in standards and distance estimation
methods introduce unpredictable security vulnerabilities, with BLE being less reliable for precise positioning.
Expanding on BLE-based solutions, Sun et al.”®> propose a crowdsourced localization framework using dual
BERT models-BERT-AD for adversarial sample detection and BERT-LOC for localization refinement. While the
system improves robustness and accuracy, its reliance on BLE alone, environmental sensitivity, and scalability
issues limit broader applicability. In parallel, Madani et al.” introduce an LSTM autoencoder-based method
for detecting MAC-layer spoofing in IoT networks using RSSI data. The model handles real-time detection and
adapts to signal volatility, but its applicability is constrained to specific topologies, lacks multi-node coordination,
and depends on manual data labeling. Addressing data scarcity, Njima et al.”> employ GAN-based augmentation
with semi-supervised learning to improve RSSI-based localization. Their approach enhances accuracy on both
simulated and real datasets, yet still falls short of optimal performance and faces limitations related to training
data requirements and potential inaccuracies in synthetic samples.

Security vulnerabilities in Wi-Fi-based activity recognition and location privacy remain pressing concerns.
Huang et al.”® introduce IS-WARS, a stealthy adversarial attack that manipulates wireless interference from
protocols like ZigBee and Bluetooth to mislead Wi-Fi-based recognition systems without detection. Their
results expose the vulnerability of such systems to cross-protocol interference, which is often overlooked,
compromising reliability in real-world environments. To address location privacy, Min et al.”” propose a 3D
geo-indistinguishability (3D-GI) mechanism that perturbs user coordinates while maintaining service quality.
Although the method effectively adapts 2D privacy models to 3D settings, it remains simulation-based and
lacks real-world validation, limiting its practical impact. Beko et al.”® focus on secure localization in randomly
deployed networks, combining clustering, weighted central mass, and a bisection-based GTRS approach to
detect spoofing and improve localization accuracy. While outperforming existing methods in simulations, the
frameworK’s dependence on specific network assumptions may hinder its adaptability to dynamic, real-world
scenarios.

2022

Privacy-preserving indoor localization continues to evolve through edge computing, federated learning,
and anonymization frameworks. Zhang et al.”” introduce Adp-FSELM, a federated stacked extreme learning
model integrated with differential privacy within an edge computing framework. The system achieves robust
e—-differential privacy and low localization error while minimizing calibration effort. However, fingerprint
collection remains labor-intensive, and scalability is limited. Similarly, Navidan et al.*® propose a local differential
privacy (LDP)-based framework for population frequency estimation in indoor spaces. Though effective under
moderate privacy settings, its performance degrades with increased noise and varies across datasets, limiting
generalizability. Fathalizadeh et al.®! address location privacy using a k-anonymity and I-diversity model
combined with Dijkstra’s algorithm, allowing secure data sharing while maintaining utility. Still, the method
overlooks more sophisticated threats like poisoning and collusion and incurs computational overhead, reducing
its adaptability to dynamic or sparsely covered environments. In a related study, Boora et al.3? focus on adversarial
robustness in large MIMO localization using DCNNs and neural ODEs. While adversarial training enhances
resilience, models remain sensitive to noise and hyperparameters, and suffer from high computational costs,
limiting scalability in real-world, evolving environments.

Adversarial training and federated learning continue to play a central role in enhancing the robustness
of indoor localization and activity recognition systems. Yang et al.33 propose SecureSense, which employs
techniques like label smoothing and virtual adversarial training to improve defense against both black-box and
white-box attacks in device-free human activity recognition. While it strengthens DNN resilience, challenges
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such as training instability, hyperparameter sensitivity, and limited real-world validation restrict its deployment
in dynamic or resource-constrained environments. In a similar direction, Ye et al.3* introduce SE-Loc, a semi-
supervised method that effectively combines labeled and unlabeled data for secure indoor localization. Despite
high robustness under adversarial conditions, its accuracy is still affected by the presence of numerous malicious
APs. Addressing adversarial threats in RSSI-based systems, Wang et al.®*> develop AdvLoc using DCNNs with
adversarial training, demonstrating strong performance against first-order attacks. However, the method lacks
evaluation against more advanced attacks and across diverse environments. Han et al.% present a CNN and
ResNet-based defense for device-free localization that effectively detects spoofed signals and sensor faults,
though it remains vulnerable to physical damage and tampering. Finally, Gao et al.*” propose FedLoc3D, a
federated learning framework for cross-building 3D localization. Their approach, combining CNN-based
classification and regression models, shows improved accuracy and privacy preservation but faces challenges
related to network unreliability, data heterogeneity, and scaling in 3D environments.

2023

Recent efforts have focused on enhancing the reliability, security, and privacy of indoor localization systems
through trust modeling, blockchain, and decentralized authentication. Peterseil et al.®® propose a trustworthiness
score integrated with autoencoder neural networks and weighted non-linear least squares to reduce UWB
localization errors by up to 50% in dynamic environments. While effective in controlled settings, the approach
relies heavily on high-quality training data and requires calibration for varied deployments, limiting scalability
and robustness under non-line-of-sight conditions. Shakerian et al.%? introduce a blockchain-supported indoor
navigation system combining dual IMU sensors and the ZUPT algorithm, achieving reliable navigation with
a mean root mean square error (RMSE) of 1.2 m. Despite secure data handling through Hyperledger Fabric,
challenges include limited energy capacity, dependence on Wi-Fi, and untested performance under complex
movements or large-scale deployments. Addressing adversarial threats, Mitchell et al.”° assess the vulnerability
of learning-based localization models, showing that omniscient attacks significantly degrade accuracy. While
adversarial training and outlier detection improve resilience, broader threat models and infrastructure-level
vulnerabilities remain unexplored. Casanova et al.”! propose a decentralized attribute-based authentication
(ABA) protocol using BLE and zero-knowledge proofs to secure collaborative indoor positioning systems.
The protocol improves privacy, untraceability, and unlinkability, offering a practical alternative to centralized
schemes, though it highlights the limitations of existing CIPS protocols in safeguarding user identity.

Privacy, energy efficiency, and threat detection remain key themes in recent indoor localization research.
Mohsen et al.”? present PassiFi, a privacy-preserving system using passive Wi-Fi TDoA and deep learning
regression to achieve sub-meter accuracy, outperforming traditional multilateration. However, its scalability
and performance degrade under environmental changes, and privacy trade-offs—such as reliance on trusted
entities and vulnerability to spatio-temporal attacks-remain unresolved. Focusing on secure 3D localization,
Kalpana et al.?* propose a hybrid method combining acoustic and distance-based approaches with cryptographic
safeguards. Their solution reduces localization error and energy use while identifying Sybil and malicious
nodes. Yet, computational overhead, sensitivity to RSSI fluctuations, and reliance on beacon nodes limit its
real-time applicability. In a related effort, Gebremariam et al.”* develop a hybrid machine learning framework
for detecting routing threats in WSNs, achieving high localization precision and perfect threat detection in
simulations. Nevertheless, the model’s processing demands, dependency on accurate training data, and lack
of validation in dynamic environments raise concerns about scalability and practical deployment. Addressing
spoofing attacks, Chen et al.®> introduce UnSpoof, a UWB-based system leveraging passive anchors and secure
two-way ranging to detect and locate spoofed tags. While effective at distinguishing spoofed from genuine tags,
its accuracy declines when devices fall outside the anchor-defined area, and its adaptability to diverse spoofing
techniques remains uncertain.

Adversarial robustness, privacy, and federated learning continue to shape the advancement of indoor
localization systems. Xiao et al.”® propose FooLoc, an over-the-air adversarial attack that generates subtle
yet effective perturbations to mislead Wi-Fi-based DNN localization models, achieving up to 90% success in
untargeted attacks. Despite its efficiency, the method relies on downlink CSI and faces challenges in practical
implementation due to the limitations of additive perturbation on CSI measurements. Addressing privacy,
Fathalizadeh et al.%” introduce Geolnd, a differential privacy-based framework that adds Gaussian noise to
RSS data for geo-indistinguishability without relying on third parties. While effective in simulations, its lack of
real-world deployment and limited scope raise concerns about broader applicability. In the realm of federated
learning, Guo et al.”® present FedPos, a federated transfer learning system that reuses feature extractors across
domains to reduce training data needs by 65% and achieve a mean localization error of 42.18 cm. However,
its performance may be insufficient for precision-critical applications and remains validated only in limited
indoor environments. Gufran et al.”® further advance this field with FedHIL, a heterogeneous FL framework
incorporating stacked autoencoders and communication-efficient strategies to enhance accuracy while reducing
latency. Though it outperforms existing models, its sensitivity to device heterogeneity, environmental noise, and
generalization issues limits its scalability and robustness in dynamic settings.

Privacy-preserving indoor localization techniques have increasingly incorporated differential privacy,
reinforcement learning, and federated learning. Xu et al.'®’ utilize Wi-Fi fingerprints and extreme learning
machines with local differential privacy (LDP) to reduce data exposure during model training, demonstrating
improved privacy with lower data quality degradation than centralized approaches. However, their method still
suffers from up to 7.2% data loss and potential performance trade-offs compared to established techniques.
Addressing semantic location privacy, Min et al.!°! propose SALPPM, a reinforcement learning-based framework
using modified geolocation data and semantic tags in 3D indoor environments. By leveraging D3QN and A3C
algorithms, the system refines perturbation strategies and policy selection. Yet, its scope is limited to specific
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RL methods, excluding alternative algorithms or continuous action spaces, which may hinder adaptability.
Similarly, Kumar et al.'%? present f-ILC, a federated learning-based Wi-Fi fingerprinting framework combining
CNN-LSTM to enhance localization accuracy and preserve user anonymity. The system performs well across
IID and non-IID settings but faces challenges in hierarchical space modeling, resource demands, and real-
time deployment feasibility. Finally, Shahbazian et al.!®® provide a broader examination of machine learning
applications in IoT localization, highlighting both current limitations and future opportunities, though lacking
specific experimental validations or frameworks.

Security and privacy remain central to recent innovations in indoor localization. Chen et al.'* propose
UnSpoof-Passive Ranging, a hybrid active-passive system that achieves 30 cm accuracy for legitimate tags and
sub-meter precision for spoofed tags using ToF and TDoA measurements. While effective at detecting distance
manipulation attacks even beyond the anchor convex hull, its performance is sensitive to anchor geometry, non-
line-of-sight conditions, and multi-antenna spoofing. Additional limitations include high energy consumption,
computational overhead, and limited scalability in multi-client deployments. In a parallel effort, Wang et al.!%
introduce a privacy-preserving localization method based on two-party computation and Paillier encryption,
offering enhanced RSS protection and reduced communication costs. However, the computational complexity
of encryption may hinder real-time performance, and the reliance on a two-party model restricts applicability
in decentralized systems. Addressing access point vulnerabilities, Tiku and Pasricha!® develop S-CNNLOC,
a secure CNN-based framework that improves robustness against AP-level attacks, achieving up to 10 times
greater resilience than conventional models. Despite its strong accuracy and security gains, challenges remain in
scaling the framework and adapting it to diverse and dynamic network environments.

Recent advancements in indoor localization continue to address challenges related to security, privacy,
and performance under dynamic conditions. Ma et al.'%” propose LENSER, a CSI-based system for detecting
unauthorized devices, which improves localization accuracy by 86.1% and reduces time overhead by 58.2%
compared to existing methods. Despite these gains, the system remains sensitive to environmental fluctuations,
indicating a need for enhanced robustness. Brachmann et al.!®® examine privacy risks in XR localization
using the LINDDUN framework, identifying threats such as identifiability and linkability in XR glasses and
suggesting targeted mitigation strategies. However, the framework’s reliance on static threat categories may
limit its adaptability in evolving XR scenarios. To strengthen privacy in LBS, Yan et al.!?” introduce LDPORR,
a local differential privacy method that applies Hilbert encoding and spatial decomposition to enhance both
privacy and efficiency. While effective on real-world datasets, its processing complexity may hinder scalability in
dynamic environments. Pandey and Patel'!? develop SLABLDA, a secure fingerprinting algorithm that models
AP location diversity and compensates for RSSI variability, yielding improved accuracy in complex indoor
environments. Nonetheless, reliance on offline evaluations may restrict responsiveness in rapidly changing
conditions. Lastly, Billa et al.'!! offer a comprehensive review of indoor localization technologies for IoT systems,
highlighting the trade-offs between cost and accuracy, particularly in hybrid and high-precision systems like
UWB and VLC. Their work underscores the need for adaptable and cost-effective solutions that balance
performance and practical deployment constraints.

2024
Recent research in 2024 has focused on enhancing indoor localization systems through federated learning,
adversarial resilience, and cryptographic privacy-preserving techniques. Etiabi et al.!'? propose a federated
distillation (FD) approach that reduces communication overhead in IoT networks by 98% while maintaining
localization accuracy and improving energy efficiency. However, its applicability to regression-based tasks like
localization remains limited, and transmission energy savings come at the cost of increased computational
demand. Gufran et al!'® introduce CALLOC, a lightweight, adversarial-resilient framework leveraging
curriculum learning to improve localization robustness across devices and settings. Although it significantly
reduces localization error, its performance depends heavily on curriculum design and has yet to be validated
in dynamic real-world environments. Additionally, the computational load from attention mechanisms and
adversarial training may hinder deployment on low-power devices. Eshun et al.!!* present a cryptographic
localization framework that ensures mutual privacy between users and service providers by offloading encrypted
computation to a third-party cloud server. While it achieves up to 99% cost reduction, the system’s resilience
against active adversaries remains unexplored. Huang et al.!!> examine vulnerabilities in off-device wireless
positioning systems and demonstrate practical attacks using homomorphic encryption and oblivious transfer.
Although defenses are proposed, the study is confined to specific wireless environments, and inherent privacy
concerns in off-device architectures present challenges for secure deployment in future networks.
Privacy-preserving indoor localization systems in 2024 have increasingly leveraged generative models,
differential privacy, and adversarial threat analysis. Moghtada et al.!'® propose DPGANSs, a framework
combining generative adversarial networks with differential privacy to protect user data while generating realistic
synthetic fingerprints. While effective at preserving accuracy under moderate privacy constraints, performance
degrades at higher privacy levels, and the reliance on a single generator-discriminator pair limits scalability and
adaptability to complex environments. Fathalizadeh et al.> provide a comprehensive review of privacy-preserving
fingerprinting techniques, offering a novel classification framework for adversary models, vulnerabilities, and
evaluation metrics. The study highlights critical research gaps and encourages future exploration into unified
privacy frameworks. Examining attack impacts, Machaj et al.!” analyze Wi-Fi AP spoofing using KNN and the
UJIIndoorLoc dataset, showing significant degradation in localization accuracy tied to the number of spoofed
APs and reference points. However, the study’s focus on a single method and dataset limits generalizability
to broader contexts and techniques. Addressing task privacy in mobile crowdsensing, Hemkumar et al.!'®
introduce a geo-obfuscation strategy combining local differential privacy, geo-indistinguishability, and k-means
clustering to defend against inference attacks. Despite outperforming existing methods like Eclipse and PIVE,
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its effectiveness depends on environmental conditions, clustering parameters, and AP density, and it lacks
evaluation against more advanced or emerging attack models.

Emerging 2024 studies continue to explore privacy threats and adversarial defenses in indoor localization. Li et
al.'"® propose RFTrack, a stealthy tracking attack that leverages RSSI time sequences and reinforcement learning
to infer device locations using passive Wi-Fi sniffing. While it achieves high precision in structured environments,
its effectiveness is limited by RSSI instability, bootstrap inaccuracies, and challenges in differentiating similar
trajectories, particularly in open or dynamic settings. Pettorru et al.® offer a comprehensive review of IoT
localization strategies, examining vulnerabilities and the potential of AI, blockchain, and quantum computing
for improving security. Despite identifying key advancements, the study notes issues such as hybrid system
complexity, high energy demands, and a lack of empirical validation across many proposed solutions. Addressing
robustness in noisy environments, Yang et al.'?® introduce TRAIL, a three-phase adversarial architecture that
combines transfer learning and adversarial interaction to improve accuracy in low SNR conditions. Though
it outperforms existing methods, the model struggles with environmental variability and balancing offline-
online data alignment during training. Lastly, Wang et al.!*! present a privacy-preserving scheme using inner
product encryption to secure location data from untrusted cloud services. While it maintains accuracy with low
computational overhead, its scalability and adaptability to real-time, large-scale deployments remain untested,
particularly under frequent data updates.

Privacy-preserving and trustworthy localization frameworks have continued to evolve through encryption,
blockchain, and probabilistic modeling. Wang et al.!?? propose a secure indoor localization framework using inner
product encryption (IPE) and ranging transformation to protect user and anchor data in cloud-based systems.
While it maintains localization accuracy with low overhead, its scalability in real-time, dynamic environments
remains a concern. Zocca and Hasan'? introduce a blockchain-based localization scheme using Hyperledger
Fabric to ensure trust, data integrity, and privacy. The system shows strong security performance and leverages
UWB for improved accuracy, but its reliance on centralized storage and blockchain transaction overhead may
hinder scalability in large IoT networks. Verma et al.!?* highlight privacy risks from unauthorized geo-tracking
using device sensors, presenting an attack model with 98% accuracy without GPS and recommending mitigation
strategies for Android platforms. However, the approach lacks real-world deployment and generalization
beyond Android ecosystems. Addressing physical-layer privacy, Li and Mitra!?® propose the DAIS method,
which obfuscates delay and angle information to mislead eavesdroppers while preserving authorized
localization accuracy. Though resilient to precoder leakage and effective under high SNR, its reliance on secure
communication may be vulnerable in dynamic or adversarial conditions. Finally, Alhammadi et al.!* present a
3D Bayesian graphical model that reduces localization error to 1.8 meters using Wi-Fi fingerprints and adaptive
probabilistic reasoning. While it demonstrates scalability and efficiency, limitations include dependence on
static access points, lack of built-in security features, and computational intensity during sampling in resource-
constrained settings.

2025

Recent studies in 2025 have emphasized privacy, efficiency, and robustness in Wi-Fi and BLE-based localization
and sensing systems. Abuhoureyah et al.'” provide a comprehensive review of CSI-based human activity
recognition (HAR), highlighting CSI's advantages in mitigating signal distortion for location-independent
sensing. However, transmission and reception noise remain key limitations, especially in constrained
environments. David et al.!?® explore privacy vulnerabilities in BLE beacons and propose a quasi-periodic
randomized scheduling method to counter battery insertion attacks. While effective at obfuscating initialization
timestamps, the study does not fully address power trade-offs or large-scale deployment feasibility. Enhancing
secure location queries, Li et al.'? introduce ROLQ-TEE, a TEE-based framework that supports privacy-
preserving and revocable location queries via cryptographic RNN techniques. Despite improved performance
over traditional schemes, TEE-related processing overhead raises concerns for scalability in larger systems.
Boudlal et al.!*® present a low-cost, non-intrusive HAR system using existing Wi-Fi CSI and deep learning
to detect activities without wearables or cameras. While demonstrating strong performance, the system faces
challenges related to hardware variability, environmental sensitivity, and computational demand. Finally, Nie
et al.1*! propose MS.Id, a mobile single-station identification method leveraging spatiotemporal data and MAC
de-randomization to improve user identification. Achieving 95.24% accuracy and reduced localization error,
the system offers scalable, infrastructure-light deployment but may encounter issues in dynamic environments,
device heterogeneity, and potential privacy concerns from MAC-level data handling.

As shown in Table 2, security and privacy solutions in ILS vary widely in trade-offs between robustness,
scalability, and efficiency. Cryptographic methods ensure strong confidentiality but often introduce significant
latency and overhead, limiting real-time deployment®*!!4. Federated learning enhances data privacy in
decentralized settings, yet remains vulnerable to poisoning and struggles with non-IID data®#. Differential
privacy offers theoretical guarantees but often degrades localization accuracy in dense environments [77], [114].
Adversarial training and GAN-based defenses improve resilience against spoofing but lack generalizability
and are resource-intensive’>!!6. Blockchain solutions add transparency but suffer from scalability and energy
constraints®!123, Lightweight approaches like MAC de-randomization and TEE-assisted queries are promising
for real-time IoT deployments, though they trade off latency and coverage!*’-13!. Overall, no single approach
offers a balanced solution across privacy, accuracy, and computational efficiency-highlighting the need for
hybrid, adaptive frameworks.

To provide a clearer overview of the existing research landscape, Table 3 presents a comparative summary
of key studies in the domain of ILS security and privacy. It highlights the respective threat models, techniques,
datasets or environments, main results, and known limitations, enabling readers to identify major trends and
remaining gaps in the field.
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Study Attack type Defense method Dataset Accuracy Privacy Performance
Ciftler et al.”® Privacy breach Federated learning Real 1.8 m v Strong i(s):;vegcalability
Ko etal.®® MAC spoofing Random forest filtering Real Improved vs baseline X Medium
Lietal> Malicious check-ins Fingerprinting + AP subset Simulated + Real | High X Medium
Lietal>* Fraudulent check-ins Optimal boundary + LSM Simulated High X Medium
Nieminen et al.% Privacy breach Secure two-party computation Real 2.2 s query time v Moderate | High
Shubina et al.*! g’rai(\i/:i:(})l‘%/s Accuracy Obfuscation control Real Moderate v Moderate | Medium
Yan et al.% Physical-layer spoofing RSSI-based detection Real 99.8% X Medium
High
Zhang et al.® Privacy exposure Paillier encryption Simulated Efficient (no exact error) v Moderate Elgl;%cessing
Ambalkar et al.% Adversarial ML PGD + MIM + Defense Simulated Good (exact N/A) X High
Beko etal.”® Spoofing WCM + GTRS bisection Simulated Improved X Low
Dervicsouglu et al.”? Security comparison UWB vs BLE Real UWRB: 0.43 m, BLE: 1.54m | X Medium
Min etal.”’ Privacy leak 3D geo-indistinguishability Simulated Good (no error given) v Strong Medium
Naetal”! Cross-tech impersonation | Detection by power variance Real >20 m error X Low
Njima et al.” Data scarcity GAN + Semi-supervised Sim + Real 21.7%/15.3% T X Medium
Patil et al.® Adversarial ML Adversarial training + DNN Simulated 84.18% X High
Wang et al.”® General security Multi-task learning Real <2m X Medium
Boora et al.*? Adversarial ML Neural ODE + Adversarial defense | Simulated High X High
Fathalizadeh et al.! Anonymization k-Anonymity + Dijkstra Sim + Real Moderate v Moderate | High
Gao etal.¥ Data privacy FL (FedLoc3D) Real Improved v Strong Medium
Han et al.3 Spoofing/Faulty Sensors | CNN/ResNet filter Real High X Medium
Wang et al.®® First-order adversarial AdvLoc (DCNN) Simulated <lm v Moderate | Medium
Yang et al.% Adversarial ML SecureSense Simulated High (not exact) X High
Ye et al.3 Adversarial APs SE-loc semi-supervised Simulated 89m v Weak Medium
Zhang et al.”’ Privacy leakage FL + DP (Adp-FSELM) Real 2.22% MAE v Strong Low
Casanova et al.%! Tracking Zero-knowledge ABA Real Secure Auth (no loc error) | / Strong Medium
Chen et al. %5104 Spoofing UnSpoof (UWB + ToA) Real 30 cm v Strong Medium
Kalpana et al.”® Node attacks 3D DV-Hop + Cryptography Simulated <2m v Strong High
Mitchell et al.” Adversarial ML dAi\éil;?g;ial training + Outlier Simulated Improved vs baseline X High
Mohsen et al.” Privacy leakage PassiFi (DL + TDoA) Real Sub-meter v Strong Medium
Peterseil et al.% Signal tampering Autoencoder + Trust score Real 50% RMSE reduction X Medium
Shakerian et al.% Privacy, Tampering Blockchain + IMU + ZUPT Real 1.2m v Strong High
Xiao et al.”® OTA adversarial FooLoc perturbations Real 70-90% attack success X High
Eshun et al.'* Data leakage Cloud Offload + Crypto Real Good v Strong Medium
Etiabi et al.!!? Communication privacy | Federated distillation Simulated Good (no value) v/ Moderate | Low
Fathalizadeh et al.® Privacy Survey + Framework N/A N/A v Strong N/A
Gufran et al.'® Adversarial ML CALLOC + Curriculum FL Simulated 6 Error Reduction / Strong Medium
Hemkumar et al.!8 Geo-inference LDP + Clustering Real Good (empirical) v Strong Medium
Lietal'? Tracking RFTrack + RL agent Simulated Improved X Medium
Machaj et al.'” AP spoofing KNN accuracy degradation Real Impacted X Low
Moghtada et al.!'¢ Privacy leakage DPGAN Simulated Balanced V/ Strong Medium
Boudlal et al.!*® Passive tracking Wi-Fi CSI + DL Real 26.4 cm v Moderate | Medium
David et al.!? BLE beacon privacy Randomized ID timing Real Tracked avoidance v/ Moderate | Low
Nie et al.!*! User identification MAC de-randomization + DR.LIE | Real 1.15m X Medium
Abuhoureyah etal.'?’ | Signal distortion CSI-enhanced HAR analysis Literature review | Not specified X Medium
Lietal.!® Location query privacy TEE + RNN + Key revocation Real <lm v Strong Medium

Table 2. Comparative analysis of indoor localization studies (2020-2025). The accuracy values are presented
exactly as reported in the original studies. As different works adopt diverse metrics-such as horizontal

or vertical error (in meters), relative improvements, percentages, or qualitative descriptions— no post-
standardization was applied in order to preserve the fidelity of the original results. Readers should interpret the
values in the context of each study’s methodology and evaluation criteria.
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Reference Threat model Technique used Dataset/ Environment | Results Limitations
Basrzs occhi et Privacy leakage in indoor navigation | GDPR-compliant access control Telegram-based . nghllghted security/privacy | Specific to one use-case;
al.?, proximity marketing issues in current frameworks | lacks broader validation
Random Forest-based filtering - Improved filtering accuracy Vulnerable to advanced
58 - -
Ko et al.’®, MAC spoofing attacks (RFBSA) Real-world Wi-Fi data over baselines spoofing tactics
Ciftler et . . . Crowdsourced RSS Improved privacy with modest | Scalability and convergence
al.”?, Data leakage in federated learning Federated Learning (FL) fingerprint dataset accuracy trade-off challenges with non-IID data
Patil et al.68 Adversarial RSSI perturbations Deep learning with adversarial | Simulated/real RSSI Enhanced robustness over Limited to white-box attacks;
C training data traditional ML environment-sensitive
7 Cross-technology impersonation . . BLE advertising + Wi-Fi | Detected impersonation via High localization error; low
71
Naetal.”, (BLE-Wi-Fi) Power variance-based detection interference power consumption packet reception rates
Zhang et . Differentially private FL (Adp- | Edge computing Achieved e-privacy with low | High fingerprinting cost;
al.”?, Data leakage in FL FSELM) testbeds error limited scalability
Yang et al.#, Black-box and white-box adversarial | Virtual adver‘sanal training + Device-free HAR Strengthened DNN resilience Instability and o
attacks label smoothing datasets hyperparameter sensitivity
Peterseil et UWB signal manipulation Trust score + autoencoder Real-world UWB 50% error reduction in Heavy reliance on training
al.%¢, & P models datasets dynamic settings data quality

Casanova et Privacy/identity leaks in CIPS

Decentralized attribute-based

BLE + zero-knowledge

Improved untraceability and

Scalability and deployment

al’l, authentication (ABA) proofs unlinkability complexity
Et‘f}?‘ et High communication overhead in FL | Federated distillation (FD) IoT networks Reduced comm. cost by 98% lelteq support for
al.l12) regression tasks
Moghtada et . A Differentially private GANs Wi-Fi fingerprint Preserved privacy with Degraded performance
al.lle, Data leakage in fingerprinting (DPGANS) datasets synthetic fingerprints under strict privacy budgets
Lietall??, Passive Wi-Fi sniffing attacks Reinforcement learning Controlled Wi-Fi Accurate stealthy tracking Limited in dynamic/open
(RFTrack) environments spaces
D%d et BLE beacon battery insertion attacks Quasypgrmdlc randomized BLE beacon testbed Qbfuscated initialization Power trade-offs; scaling
al.'?%, scheduling timestamps issues
Li et al12 Privacy leakage in location queries ROLQ-TEE (TEE + Simulated query Secure + revocable queries TEE overhead hinders
T Y 8 q cryptographic RNN) workloads with efficiency gains scalability
- o ; - T :
Nieetal®!, | MAC address de-randomization MS.Id (spatiotemporal + Mobile Wi-Fi devices 95.24% ID accuracy; reduced | Privacy risks; heterogeneity
MAC-level) error challenges

Table 3. Summary of key ILS security and privacy studies (2020-2025).

Privacy-accuracy trade-offs with case examples

A recurring theme in ILS research is the tension between preserving user privacy and maintaining localization
accuracy. While theoretical discussions highlight this balance, concrete case studies illustrate the trade-offs more
vividly.

For example, healthcare applications often require strict privacy guarantees when handling patient movement
data. Zhang et al.”® demonstrate that integrating differential privacy into federated edge learning frameworks
substantially reduces the risk of individual data leakage. However, they also report up to a 7-10% decline in
localization accuracy in dense hospital environments, underscoring the performance cost of strong e—privacy
guarantees. Similarly, Moghtadaiee et al.!'® show that differentially private GANs (DPGANS) can protect patient
location traces, but accuracy deteriorates sharply as the privacy budget tightens.

In the financial services sector, federated learning has been explored for collaborative location-based
authentication without centralizing sensitive user trajectories. Ciftler et al.>® and Gao et al.¥” both show that
federated models achieve comparable accuracy to centralized methods under controlled conditions. However,
when different institutions contribute heterogeneous datasets, it is common for their performance to drastically
deteriorate in non-IID data scenarios. This points to an important trade-off in which statistical differences across
sites can be reduced accuracy, while at the same time privacy is enhanced by keeping the data decentralized.

Real-time IoT applications provide practical examples of these challenges. David et al. ' show that
stochastical scheduling of BLE beacons can improve privacy by obscuring timestamps to reduce the risk of
tracking attacks. However, in large-scale deployments, this approach often comes at a cost of reduced coverage
and increased latency. Similarly, Li et al. 12 employed trusted execution environments (TEEs) to protect location
queries. While their method offers strong security guarantees, the added processing overhead limits its scalability
for real-world applications.

Taken all together, these findings point to a clear pattern in which privacy-preserving solutions almost
always come with a cost. Common challenges include higher latency, limited scalability, and reduced accuracy.
This highlights the need for adaptable hybrid frameworks that can dynamically balance accuracy, privacy and
efficiency to address the requirements of different applications.

Comparative study of privacy and security approaches in ILS

Security threats in ILS

From 2020 to 2025, ILS security and privacy measures progressed from encryption approaches and GDPR-
compliant access controls to sophisticated methods such as FL and adversarial training. Initial techniques, such
as the Paillier cryptosystem and fast gradient sign method (FGSM), facilitated the development of contemporary
methods such as GAN-based data augmentation and LD for safeguarding privacy. Primary priorities encompass
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precision, confidentiality, practical applicability, and energy efficiency. CNN-based and UWB systems have
enhanced accuracy of over 90%; however privacy-preserving solutions frequently compromise accuracy for
security. Energy efliciency and communication overhead continue to pose issues, especially for federated
learning and IoT systems™82:8%112,

In 2025, ILS privacy and security research expanded to wireless sensing, BLE beacon tracking, and privacy-
preserving location queries. Key advancements include CSI-based human activity recognition'?’, BLE beacon
privacy enhancements'?®, TEE-based location queries'?®, Wi-Fi CSI-based indoor activity detection'*, and
mobile Wi-Fi user identification'®. These developments highlight emerging privacy challenges, emphasizing
the need for improved obfuscation, efficiency, and scalability.

To orient the reader, Table 2 synthesizes prominent ILS papers by threat/attack type, countermeasure, data
setting, and utility trade-offs, providing a quick map of the security landscape before deeper discussion.

Highlighting trends over the years

Indoor localization research from 2020 to 2025 shows a clear evolution from privacy preservation to advanced
machine learning integration. In 2020, emphasis was placed on privacy and federated learning (FL)*, with
growing interest in encryption (Paillier cryptosystem®) and GDPR-compliant access control®’. By 2021,
adversarial training methods (FGSM, PGD, MIM®) gained traction, complemented by GAN-based data
augmentation’”> and BERT for adversarial recognition’”. In 2022, noise-based privacy (LDP%’), adversarial
robustness®?, and differential privacy techniques’ were consolidated. The year 2023 advanced deep learning with
CNNs!% and FL%, while blockchain® and UWB systems®® emerged for secure localization. In 2024, adversarial
learning and FD dominated privacy-preserving localization!!?, reinforced by cryptographic protocols''* and
GAN-driven synthetic data'!®. Finally, 2025 studies furthered privacy and security with CSI-based sensing for
HAR'?, BLE beacon analysis'?%, TEE-based queries'?®, Wi-Fi CSI activity detection'*’, and mobile station Wi-Fi
user identification'®!.

Overall, the field has progressively integrated FL, adversarial training, privacy-preserving mechanisms,
GANs, cryptographic protocols, and deep learning. Each methodology offers unique strengths and trade-offs,
shaping the trajectory of modern indoor positioning systems. Table 4 concisely summarizes these developments
from 2020-2025.

Privacy issues in ILS

Comparisons of existing solutions

An analysis of current privacy and security solutions for ILS shows various methods, each with unique
advantages and disadvantages depending on particular use cases and system needs. FL provides a decentralized
approach to preserving privacy by not sharing sensitive data during the training process®”>*”. This method
improves scalability and minimizes data-sharing risks, making it appropriate for dynamic settings such as
crowdsourced localization and smart cities. However, it encounters challenges related to the scalability of large
datasets, significant communication overhead, and vulnerability to model poisoning®”*°. Conversely, differential
privacy (DP) methods”” safeguard privacy by introducing noise to data, which helps keep individual location
traces anonymous. Although differential privacy ensures robust privacy protection, finding the right balance
between added noise and the accuracy of the system is a considerable challenge!'®. Cryptographic techniques
like homomorphic encryption®®1?? ensure strong data confidentiality and are resistant to unauthorized access.
Nonetheless, their significant computational cost and communication overhead restrict their use in real-time
systems and large-scale environments®*!!4,

Blockchain offers a reliable and transparent solution for location data due to its immutable ledger
capabilitie389’123. This ensures the authentication and verification of location-based transactions, making
it suitable for systems that need clear data integrity, like IoT-based localization and supply chain tracking.
Blockchain faces challenges related to scalability, significant energy consumption in its consensus mechanisms,
and difficulties with integration®. Adversarial training®*** improves model robustness by protecting against
data manipulation. However, it comes with high computational costs and can result in overfitting when trained
on adversarial examples. This approach is especially beneficial in applications where security is crucial, such as
autonomous vehicles and Al-based navigation systems.

Year Key focus Methodology highlights Privacy/Security techniques Key trends /Development
20207253,59:59,60 Privacy preservation FL, Encryption (Paillier), GDPR Access Control | Pseudonymization, Dummy Locations Efgﬁ?&:mh encryption
2021068697L73.75 Adversarial attacks Sﬁ\ﬁ-based Augmentation, BERT, FGSM, PGD, |  4crarial Learning, Anonymization é\;it\;ersarial attacks, GANs for
202279808283 Robustness in adversarial |\, 1) Networks, LDP, Differential Privacy Adversarial Training, Noise Addition Adversarial defenses,
scenarios Differential privacy

202389-91.98.100 Advanced ML for security | CNNs, Blockchain, UWB, FL Cryptographic Protocols, ZKP ML models, UWB, FL

_ Do Adversarial Training, Cryptographic | Privacy-focused cryptography,

112-114,116

2024 FL & Cryptography FD, GANSs, Cryptographic Privacy Protocols Efficient FD
2025127131 Wireless sensing & Privacy | CSI, TEE, BLE Privacy Analysis, Wi-Fi-based MAC De-randomization, Key Refresh, | Privacy in BLE, CSI-based

in BLE

HAR, RNN Queries Quasi-periodic Randomization Sensing, TEE for Secure Queries

Table 4. Trends over the years in ILS.
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Recent research in 2025 has further advanced privacy-preserving solutions for ILS. CSI-based sensing has
been explored for human activity recognition (HAR) in wireless sensing, where Abuhoureyah et al.'? highlight
the potential of Wi-Fi-based CSI for improving signal processing accuracy while recognizing challenges such
as noise interference. Similarly, Boudlal et al.'** propose a cost-effective, privacy-preserving Wi-Fi CSI-based
activity detection system, eliminating the need for wearable sensors or visual monitoring, making it a viable
solution for smart environments.

Privacy concerns with BLE beacon tracking have been critically examined by David et al.'?%, who demonstrate
the Battery Insertion Attack on BLE beacon randomization and propose quasi-periodic randomized scheduling
as a countermeasure. However, their solution may introduce trade-offs in power consumption. In privacy-
preserving location queries, Li et al.'? introduce ROLQ-TEE, a TEE-based framework for securely handling
outsourced location queries, ensuring location confidentiality while allowing for revocable query authorization.
Nonetheless, TEE-based computations impo higher server-side processing costs, which may limit large-scale
applicability.

se Efforts in Wi-Fi-based indoor localization have also been expanded by Nie et al.!*!, who propose MS.1d, a
mobile single-station user identification approach leveraging IE-based MAC de-randomization. Their findings
indicate improved accuracy over multi-station techniques while reducing infrastructure overhead, though
potential privacy concerns regarding MAC de-randomization remain.

Privacy-preserving frameworks that integrate methods such as FL, cryptography, and anonymization (for
example, k-anonymity) provide thorough protection®!!6. These frameworks keep location data secure while
maintaining system performance.

Each solution offers distinct advantages and limitations within the ILS context. While FL, DP, and
cryptographic methods ensure privacy, they face scalability and real-time application challenges. Blockchain
enhances transparency but struggles with energy efficiency and integration. Adversarial training improves
robustness but increases computational costs. Recent 2025 advancements—CSI-based sensing, BLE beacon
privacy, TEE-secured location queries, and MAC de-randomization for user identification-broaden privacy-
preserving options in ILS, each with distinct benefits and challenges. The summary of current trends, their
advantages, disadvantages, and suitability in ILS is presented in Table 5.

Defense mechanisms in ILS

Strengths and limitations of various approaches

Upon conducting a thorough examination of the present methodologies, it becomes evident that there are
several strengths and limits. Significant advancements have been made in adapting privacy-preserving and
adversarial-attack-resistant models for real-world applications, especially in the fields of IoT, GNSS-denied
environments, and indoor localization employing UWB systems®. FL and its advanced variations, such as FD,
show great potential in facilitating safe and decentralized learning while avoiding privacy vulnerabilities!!2.
Furthermore, there have been consistent advancements in localization accuracy, especially in the presence of
noise and adversarial conditions®2. These advancements have been particularly notable in solutions that utilize
CNN-based and blockchain-based technologies”>#858 Moreover, cryptographic protocols have been used to
ensure security in collaborative localization tasks®!.

Nevertheless, there are significant constraints. Methods such as adversarial trainingﬁs, GAN data
generation”®, and cryptographic protocols®® often impose computational overhead, necessitating substantial
processing capacity. Consequently, their implementation becomes challenging in situations with limited
resources. Scalability is still a problem, as solutions that work well in simulations or small real-world settings
may not adequately handle large systems®*1%4, FL, models, in particular, have difficulty converging when
dealing with non-IID data®”%. Privacy-preserving strategies, such as differential privacy®’, include a trade-off
between privacy and accuracy. Increasing privacy levels can sometimes result in decreased localization accuracy,
a challenge that remains unresolved”®. Table 6 summarizes the strengths and limitations of various approaches.
However, challenges related to scalability and adaptability in dynamic environments persist. Combining location
fingerprinting with anonymization techniques effectively protects user privacy!!”. However, it is susceptible
to attacks such as Wi-Fi AP spoofing, which can undermine security.In conclusion, UWB-based systems for
detecting spoofing attacks®>!%* achieve high accuracy but face challenges in real-time detection and scalability
in large networks.

Key parameters

The publications have identified accuracy, privacy, real-world feasibility, and energy efficiency as the main
parameters. Accuracy remains the paramount factor, with the majority of approaches striving for a success
rate of above 90%, namely in UWB-based and CNN-based positioning systems®>’%82, These systems attempt
to enhance performance in both challenging and real-life situations. Privacy is a critical aspect, and differential
privacy and encryption methods have a substantial impact®>%?. Techniques such as adding noise to data®’
and employing cryptographic methods®!!* were extensively investigated to improve privacy safeguards. The
emphasis on real-world viability increased as research transitioned from solely simulated environments in 2020-
20215398 to tangible applications by 2024, particularly in the fields of IoT and ILS!!2. Finally, the issue of energy
efficiency has become a significant problem, specifically in the context of blockchain-based and FL systems®*11°.
By 2024, the primary goal is to minimize communication overhead and increase energy consumption!!2.

In 2025, research continued to refine privacy-preserving techniques, especially in BLE beacon-based
tracking and Wi-Fi CSI-based activity recognition. David et al.'?® demonstrated vulnerabilities in BLE beacons,
highlighting the need for improved temporal obfuscation mechanisms. Similarly, Li et al.!? introduced ROLQ-
TEE, leveraging Trusted Execution Environments (TEEs) to safeguard location-based queries while minimizing
computational costs. Meanwhile, Wi-Fi CSI-based sensing gained traction as an energy-efficient and privacy-
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learning.

sharing risks.

for training.

improve accuracy and reduce
communication overhead.

model.

Limitations and Adversarial risks Addressed practical
Solution Approach Strengths challenges Key findings addressed applications
. Protects privacy Challenges with FL enha_nces privacy- . Vulnerable to model | Crowdsourced
Federated learning b . preserving localization while o L
. y not sharing large dataset . poisoning and data | localization, smart
. for decentralized o e ensuring data accuracy and RO "
Federated learning L sensitive data, scalability, high . poisoning attacks cities, healthcare,
. model training . A robustness across multiple . AR
(FL) for privacy and AORER : improves communication . where adversaries multi-building
-+ 57,50.79,67,98,99,112,113 with differential e devices. FL frameworks e . .o
security>/>*7%8798.9% g ivacy or transfer scalability, and overhead, and like FedLoc3D and FedPos can inject false indoor navigation
p 4 reduces data- limited labeled data data to corrupt the | systems, location-

based services.

Differential privacy

Uses differential
privacy to add

Strong privacy
protection,
maintains system

Balancing privacy
and accuracy,
especially when

DP ensures privacy in
localization systems by
using noise addition (e.g.,
Gaussian noise, local DP)

Attacks targeting
the noise
mechanism, such

Indoor
location-based
services, mobile
crowdsensing,

attackers can exploit

(DP) for privacy noise to da'ta' and unh.t 4 with noise dealing Wlth high to mask user data. It allows as reconstructing geospatial data
C  79.97.100,116,116,118 ensure individual addition, widely levels of noise. e o1 e . .
preservation’®--100:116.116, ] . . - - geo-indistinguishability for individual data from | privacy, privacy-
privacy during applicable in Computational . . . .
L - location privacy without aggregate outputs, preserving query
localization. decentralized cost for large-scale L S -
significant degradation in can reduce privacy. | systems, and
systems. systems. .. ¥ 4
query precision. healthcare.
Cryptographic
techniques High level of High computational | Secure cryptographic Vulnerable to side- | S€ure wireless
(e.g., Paillier confidentiality cost and methods like homomorphic channel attacks and | Positioning,
cryptosystem, and security communication encryption and Paillier ensure cryptanalysis, where IoT-based
Cryptographic techniques for homomorphic protects against overhead, especially | confidentiality and prevent P YSIS, localization, secure

Adversarial training and
robustness®283:85.90.120

training to improve
system robustness
by defending
against attacks that
manipulate sensor
data or mislead

robustness,
enhances
resilience to
adversarial
attacks, and
improves data

High computational
cost, potential
overfitting on
adversarial
examples, and
scalability in real-

techniques like label
smoothing and feature
squeezing improve the
model’s resistance to
adversarial inputs, even under
low signal-to-noise ratio

Adversarial risks
include adversarial
examples designed
to evade detection
and fool the model,
potentially causing

secure localization®%6+114115121.122 | encryption) for unauthorized for large-scale unauthorized access to : mobile networks,
: . - : computational .
securing location access or systems. May not sensitive location data. They L cryptographically
. ; . or transmission ;
data during manipulation of be scalable for real- | can protect both user and weaknesses protected location-
transmission and data. time applications. service provider privacy. : based services.
processing.
. Scalability issues Blockchain solutions o
Blockchain (e.g., ; . : o Secure navigation,
Immutable ledger, | in large-scale ensure trust and security Susceptible to 51% .
Hyperledger . . . . o supply chain
X increased trust environments, high | in localization systems by attacks, where K
Fabric) for 1 ; 5 . - tracking, transparent
. 1 and accountability, | energy consumption | providing decentralized adversaries control .
Blockchain for trust and providing - ) o - L location-based data
. 89,123 ! and provides in consensus verification of location data. the majority of the .
security®» immutable ledgers . - transactions, IoT,
- transparency mechanisms, The use of permissioned network and can . o
to authenticate and | . . . 5 . . and data integrity in
. : in location data and integration blockchain (e.g., Hyperledger | manipulate the - )
verify location data . AR . - . mobile and indoor
) transactions. complexity with Fabric) addresses privacy blockchain. L
transactions. L localization systems.
existing systems. concerns.
Adversarial Improves model Adversarial training Robust indoor and

outdoor localization,
autonomous vehicles,
security in Al-driven
navigation, and
defense against data
manipulation attacks

systems.

models. integrity. time systems conditions. mislocalization. in wireless networks.
Frameworks Privacy-preserving Vulnerable to
combinin, Comprehensive Trade-off between frameworks that combine . Indoor localization,
s P attacks targetin,
cryptography, protection against | privacy, accuracy, multiple techniques (e.g., anon mizagtiong mobile applications,
. . anonymization unauthorized and system k-anonymity, federated 4 location-based
Privacy-preserving . . . . . algorithms (e.g., .
(e.g., k-anonymity, | access, combines performance; learning, and differential X . . services, and
frameworks>81-116 > . ; o . . re-identification ) .
I-diversity), and multiple privacy- | scalability privacy) ensure that location attacks) and data privacy in
federated learning | preserving in dynamic data remains secure without federated learnin: crowdsensing and
for privacy techniques. environments. compromising system oisonin 8 ToT systems.
protection. performance. P &
Uses locgtlgn Protects user Vulnerable to . . -
fingerprinting . . - Location fingerprinting Indoor navigation,
. . privacy by attacks like Wi-Fi . D
combined with A can be enhanced with Spoofing attacks can | Wi-Fi-based
A anonymizing AP spoofing that o . . . g,
. L anonymization K . anonymization techniques, mislead fingerprint | positioning systems,
Location fingerprinting and . location can disrupt the . . .
A T techniques to . I such as k-anonymity, to matching and and secure location
anonymization . fingerprints, fingerprinting i . . AP
protect user privacy ; mitigate risks of tracking or reduce system fingerprinting in
: preventing accuracy and o L T R s - >
in vulnerable tracking or compromise re-identification in Wi-Fi- reliability. public and private
fingerprint-based acking or P! based systems. spaces.
reidentification. security.

Spoofing attack detection and
prevention®>10*

Detection of
spoofed tags

using UWB-based
systems and time-
of-arrival (ToA) or
time-difference-

High accuracy in
detecting spoofed
tags with sub-
meter precision
prevents malicious
manipulation of

Limited to specific
technologies (e.g.,
UWRB), real-time
detection may be
challenging, and
scalability for large

Spoofing detection systems
using ToA and TDoA
methods provide sub-meter
localization accuracy and
help mitigate the impact of

Vulnerable to
advanced spoofing
techniques that
manipulate time-
of-arrival or signal-
to-noise ratios,

High-precision
localization in IoT
systems, security in
navigation systems,
anti-spoofing

for UWB-based
location systems,

of-arrival (TDoA) || = = data networks is difficult. | SPoofing attacks. potentially evading | secure positioning
methods. ’ ’ detection. in military or asset
tracking applications.
Continued
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Limitations and Adversarial risks Addressed practical
Solution Approach Strengths challenges Key findings addressed applications
Focus on Reduces energy Computational and | Energy-efficient techniques . Energy gfﬁaent
. . consumption, o o) - . Attacks that drain positioning
improving the . communication can significantly improve .
- improves system . e energy resources systems, smart grid
. s energy efficiency . overheads may still | system scalability, though . A
Energy efficiency and scalability - efficiency, ; ; : or exploit system applications, low-
o7 ~ 8790394 and scalability of hinder real-time challenges in real- ) L
solutions®7>> . . and addresses . ; - inefficiencies can power IoT networks,
privacy-preserving | L R es performance in time computation and cause service and real-time
localization : Y large-scale, dynamic | communication efficiency . - R
in dynamic A . disruptions. localization in large-
systems. K environments. remain. .
environments. scale environments.

sensing and BLE security
(2025)]277131

Privacy-preserving wireless

CSI-based sensing
for human activity
recognition (HAR),
BLE beacon
privacy protection,
TEE-based privacy-
preserving location
queries, and MAC
de-randomization
for single-station
user identification.

Leverages existing
Wi-Fi and BLE
infrastructure,
enhances privacy
without requiring
additional
hardware,
enables privacy-
preserving
location queries
with revocability.

CSI-based sensing
may suffer from
noise interference,
BLE beacon security
solutions may
introduce power
consumption trade-
offs, and TEE-based
queries require
higher server-side
processing costs.

Wi-Fi CSI can improve
signal processing precision
in HAR applications. BLE
beacons require improved
randomization techniques
to avoid tracking risks. TEE-
based solutions can securely
handle location queries while
maintaining revocability.
Mobile single-station
identification techniques
reduce infrastructure
requirements while
improving accuracy.

Privacy concerns

in CSI-based

HAR, BLE

beacon tracking
vulnerabilities,
security challenges
in outsourced
location queries,
and MAC de-
randomization risks.

Smart environments,
privacy-preserving
BLE-based tracking,
secure location-
based services,
privacy-aware
IoT-based indoor
positioning, and
non-intrusive human
activity recognition.

Table 5. Existing privacy and security solutions in

ILS (Part 1).

Aspect Strengths Limitations

Privacy solutions Strong privacy protection (encryption, differential privacy)>”*?! Higher privacy levels may reduce accuracy (trade-off)”*®’
Adversarial defenses | Advanced defenses via GANs, CNNG, adversarial learning®>$6:116 High computational overhead and energy consumption®®8>115

FL Decentralized and privacy-preserving®%112 Challenges in handling non-1ID data, higher convergence time®*!!2

Real-world feasibility

Tested in real-world (IoT, GNSS-denied, large-scale systems)

88,89,93

Some solutions remain simulation-based, scalability concerns

82,104,113

Table 6. Strengths and limitations of various approaches.

Parameter

Importance

Key techniques

Real-world feasibility

Accuracy

55,57,68-70,82,86,87,98,100

Essential for localization

Neural Networks, FL, CNNs

Achieved up to 99% accuracy across years

Privacy preservation
5,52,60,79-81,89,91,97,100,114

Key in IoT and Localization

Protocols

Differential Privacy, Cryptographic

Cryptographic techniques proved feasible in IoT
systems

Real-world feasibility

Increasing focus over years

Blockchain-based localization, UWB,

Tested in real-world environments, especially IoT

52,53,55,68,88,89,95,112

Adversarial training and GNSS-denied scenarios

EHCI’gY eﬂﬁciency 98,112-114,116

Focus in resource-limited devices FD, Cryptographic Techniques Optimized for low-power environments like IoT

Scalability 8995112

Crucial for applicability across different
sizes and complexities of environments

Decentralized architectures (e.g.,
Blockchain), Federated Learning

Verified with large-scale deployments, capable of
adapting to various building sizes and user densities

Security robustness *7:6870:88

Essential for protecting against spoofing,
jamming, and other cyberattacks

Adversarial Training, Blockchain,
Cryptographic Protocols

Proven to mitigate common threats, effectiveness
depends on network size and attack sophistication

Latency and responsiveness
55,69,100

Important for real-time applications such as
augmented reality and emergency response

Edge Computing, Low-latency
Communication Protocols (e.g., 5G)

Achieved low latency through edge computing,
suitable for time-sensitive applications

Temporal privacy and obfuscation
128-130

Critical for preventing tracking based on
timing patterns in BLE and Wi-Fi-based
localization

Quasi-periodic randomized scheduling,
TEE-based encryption, CSI-based
obfuscation

Demonstrated effectiveness but requires
optimization for scalability and power consumption

Table 7. Key parameters in ILS.

conscious alternative for indoor activity recognition'*’. Furthermore, Nie et al.'*! proposed MS.Id, a mobile
single-station Wi-Fi-based user identification approach that achieves high accuracy while reducing reliance
on extensive infrastructure deployment. These developments underscore the growing intersection of accuracy,
privacy, and feasibility in ILS research. Table 7 summarizes the key parameters in ILS.

Security and privacy concerns in ILS

ILS are becoming increasingly crucial in numerous applications; however, they have multiple weaknesses that
might jeopardize the accuracy and reliability of location data. An important weakness is the proneness to signal
interference and spoofing. Many ILS systems, dependent on RF signals like Wi-Fi, Bluetooth, or RFID, are
vulnerable to disruption from other devices and ambient conditions. This vulnerability allows malicious attackers
to launch adversarial assaults. These attacks can result in substantial inaccuracies in position monitoring or
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unlawful entry into restricted areas, creating security risks, particularly in sensitive settings such as hospitals,
military installations, or financial organizations.

The risk associated with ILS increased with the emergence of wearable technology. Wearable devices, such
as smartwatches, fitness trackers, and AR glasses, frequently come with sensors and networking features that
can be integrated with ILS. Although these devices improve the user experience by offering customized LBS,
they also bring new opportunities for attacks. Attackers can exploit weaknesses in wearable devices to carry out
side-channel assaults, or they can use them as entry points to compromise the entire localization system. For
instance, attackers can intercept or alter information from wearable devices, leading to inaccurate location data,
privacy violations, or even potential threats to physical security if they exploit the compromised data to gain
unlawful entry!32.

Overview of threats

ILS are essential for accurately identifying the location of objects or humans within buildings, but they are
susceptible to several forms of malicious attacks. Spoofing and signal jamming are two prominent attacks in this
context, both of which affect the RSSI data and undermine localization accuracy, as illustrated in Fig. 7.

Spoofing attacks

As categorized under ’Spoofing Attacks’ in the taxonomy in Fig. 3 these attacks involve the intentional
transmission of counterfeit signals by a perpetrator, with the aim of making them undetectable from authentic
signals to the ILS. Typically, the perpetrator transmits the faked signals with modified parameters like adjusted
RSSI values, timestamps, or even variations in frequency. Attackers can change the apparent distance between
a transmitter and receiver by faking the RSSI values!*. This manipulation causes the device to look as if it is
located at a different location than it actually is'3*. Figure 8 shows a spoofing attack.

Technically speaking, the majority of ILS utilize trilateration, a method that calculates the position of a device
by estimating its distance from several predetermined reference points. In Wi-Fi fingerprinting-based ILS, the
distance is estimated based on the RSSI values, which decrease proportionally to the square of the distance from
the signal source. If an assailant transmits a forged signal with a strong RSSI from a considerable distance, the
ILS may incorrectly perceive it as a signal emanating from nearby. Conversely, the ILS may misinterpret a faintly
modified signal originating from a short distance as emanating from a far place. Information distortion can
cause significant localization errors, leading to inaccurate monitoring of resources or individuals. As a result,
there may be significant security vulnerabilities or operational inefficiencies.

Signal jamming

Signal jamming transpires when an attacker employs identical frequency channels as the ILS to transmit
undesirable or disruptive messages, so obscuring genuine communications. This may diminish the signal-to-
noise ratio (SNR), complicating the ILS’s ability to detect and assess genuine signals. Jammer attacks diminish
the accuracy of RSSI measurements by introducing random fluctuations, complicating the localization of
objects. The modifications render the calculated distances less dependable, hence diminishing the accuracy of
the trilateration process. Interference can hinder the ILS system’s ability to maintain consistent RSSI data. If
an attacker continuously alters the signal strength, disrupting the ILS, it may impede the system’s ability to
effectively counteract the interference, potentially resulting in inaccurate location predictions. Intense jamming
signals can saturate the receiver’s analog-to-digital converters (ADCs), resulting in further distortion of signal
measurements. Significant interference may necessitate the ILS to employ alternative methods or cease operation
entirely, hence diminishing its efficacy. Figure 9 shows how the signal jamming attack works in the ILS.

Recent real-world incidents reinforce the practical impact of these threats on deployed Indoor Localization
Systems (ILS). For example, the UWBAD attack demonstrated how commercially available ultra-wideband
(UWB) hardware could be used to selectively jam ranging signals, effectively disrupting Apple’s AirTag devices
and automotive keyless entry systems in operational environments'*. This incident drew responses from major
vendors, including Volkswagen and Audi, who acknowledged the system-level vulnerability. Similarly, an extensive
BLE spoofing campaign was analyzed in Taipei Main Station, where attackers used cloned iBeacons to confuse
indoor navigation services used by over 300,000 daily commuters. The study showed that without encrypted,
time-varying identifiers, location services were easily deceived!*. Furthermore, adversarial perturbations to
Wi-Fi signal strength have been shown to trick deep learning models used in fingerprinting-based systems,
causing significant localization errors even with imperceptible input changes®. These examples clearly illustrate
the operational risks of spoofing, jamming, and adversarial attacks in real-world ILS deployments.

Impact of security breaches

ILS breaches have significant consequences, including user privacy, operational integrity, and safety in critical
applications. A compromised ILS may permit unauthorized individuals to monitor and track users within a
building, thus intruding upon their privacy. The violation of privacy may disclose personal information,
including medical records in healthcare institutions or the movements of individuals in secure locations. The
risk of data theft, corporate espionage, and stalking is greatly increased by unauthorized tracking. Therefore,
security and privacy are the primary objectives in the context of ILS.

Attacks like spoofing and jamming are a big threat to the proper functioning of ILS. In retail transportation
services, spoofing and jamming assaults can lead to wrong asset tracking, bad inventory management, and
broken customer navigation systems. This can cause big problems with operations and cost a lot of money.
Companies who need reliable indoor monitoring to run their businesses may have big problems because of these
breaches. Moreover, security breaches can lead to incidents that jeopardize human life in sectors that are largely
reliant on safety, such as industrial automation, emergency response, and healthcare. In industrial contexts, ILS
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Fig. 7. End-to-end indoor localization workflow: from RSSI-based location estimation to spoofing and
jamming detection.

may provide patients, emergency personnel, or machinery with inaccurate location data, potentially leading
to errors or fatalities. For localization technology to work well and reliably in these settings, ILS integrity and
security are very important.

Machine learning techniques for enhancing security and privacy in ILS

ML approaches significantly improve the security and privacy of ILS. As ILS systems spread into more sensitive
domains like healthcare, smart buildings, and industrial installations, the necessity of protecting them from
risks such as signal spoofing, jamming, and unauthorized access grows. This section looks at various Al-based
technologies that have been proved to have the capacity to increase the levels of both security and privacy in ILS.
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Fig. 9. Signal jamming attack.

Adversarial machine learning

AML aims to make ILS better at standing up against adversarial attacks. In such systems, adversarial attacks
introduce deliberate modification to the input data that misguides the learning model, causing it to degrade the
localization accuracy to a large extent.

Adversarial Training Techniques Adversarial training is a robust defense method aimed at enhancing the
resilience of ILS against adversarial attacks. This process includes training models with adversarial examples,
which are specifically designed inputs that increase the model’s prediction error. This subsection describes three
important adversarial training methods: FGSM, PGD, and MIM, including their mathematical formulations.

o FGSM FGSM creates adversarial examples by applying perturbations to the input, following the direction of
the gradient of the loss function. The adversarial example is calculated as follows:

Xadv = X + € - sign(VxJ (0, %,9)), (15)

where x is the original input, € is the perturbation magnitude, J (6, x, y) is the loss function, V.J is the gradient
of the loss with respect to x, 8 is the model parameters, and y is the true label.
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o PGD PGD builds on FGSM by repeatedly applying gradient steps and projecting the adversarial example back
onto the e-ball surrounding the original input. The iterative update is expressed as follows:

(t+1) _

ade | = Proj g (az(t) + « - sign(VzJ (0, xéz)v, Y))), (16)

T adv

. Iffcfvis the adversarial example at iteration ¢, o the step size, and Projg_ is the projection onto the e-ball.

o MIM MIM enhances PGD by adding a momentum term that stabilizes the direction of the gradient updates.
The gradient update with momentum is:

¢
t+1) _ () V. J (0,2 y)
Ve (0, 2oy, 9l
x;iltl) = Projg, (m;td)v +ao- sign(g(t“)))7 (18)

where g is the accumulated gradient at step ¢ and  is the decay factor for momentum.Real-world attack
scenarios and implications The theoretical construction of adversarial scenarios is significant, although their
practical implications are of greater importance to assess. Minor disturbances to input signals can substantially
interfere with ILS, resulting in mislocalization. An attacker can add carefully crafted noise in the RSSI
measurements, causing the system to misplace a user’s location. For example, showing them on the wrong floor
of the hospital. Mistakes like these can have serious consequences, from delaying medical staff to hindering
emergency response. Similarly, interference with Wi-Fi CSI data leads to inaccurate activity recognition, putting
applications like elderly care monitoring and surveillance at risk. In smart buildings attackers can carry out
spoofing attacks that copy and mimic real signals, potentially granting unauthorized access or hindering indoor
navigation. These examples highlight that adversarial attacks on ILS are not just theoretical but pose a real threat
to safety, security, and privacy.
To reduce these risks, ILS needs to be designed with strong resilience. Adversarial training methods like FGSM,
PGD, and MIM provide protection by exposing models to realistic adversarial examples during training. This
allows the models to learn how to recognize and adapt to signal disruptions that could otherwise reduce their
accuracy and reliability. The training process follows a strict cycle as demonstrated by Fig. 10. It starts with clean
data, then generates adversarial examples, followed by adding these adversarial examples to the training set and
retraining the models. By repeating this cycle, the system gradually becomes more resilient against adversarial
examples generated by attackers.

Anomaly detection Machine learning-based systems detect unusual patterns in signal behavior that could
indicate security breaches. These systems analyze real-time data for violations of established signal standards,
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Fig. 10. Adversarial training workflow illustrating how iterative inclusion of adversarial samples strengthens
ILS models against real-world attack scenarios such as signal spoofing, floor misclassification, and adversarial
noise injection.
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facilitating the early detection of threats such as signal manipulation and unauthorized localization. Anomaly
detection can be formulated as a problem of identifying deviations J between real-time observations X;ca1 and
the expected behavior Xexpected:

0= HXreal - Xexpected||p7 (19)

where || - ||, denotes the p-norm (e.g., Euclidean distance for p = 2) used to quantify the deviation. An anomaly
is flagged if § > 7, where 7 is a predefined threshold.

Integrating AML techniques into ILS can greatly strengthen their defense against complex attacks. For
example, Patil et al.®® demonstrates that using adversarial training with FGSM and PGD improves both floor
classifications and localization accuracy under attack. This is especially critical in environments like hospitals,
where a misclassification could delay emergency response. Ambalkar et al.®* demonstrated that the use of MIM
and PGD to Wi-Fi CSI data improved resistance against adversarial interference in human activity recognition,
therefore diminishing the likelihood of false alarms in surveillance and assisted living contexts. Li et al.>*
presented the Abnormal Crowd Traffic Detection (ACTD) system to detect abnormalities in crowdsourced
positioning data, demonstrating that real-time anomaly detection can thwart extensive manipulation of indoor
mobility data in public spaces.

Furthermore, anomaly detection is essential for recognizing unusual trends in signal behavior that suggest
adversary manipulation, including signal spoofing and jamming attempts. Li et al.>* created the Abnormal
Crowd Traffic Detection (ACTD) system, utilizing machine learning methods, including probability suffix trees
(PST), to identify anomalies in crowdsourced indoor positioning data. Extending this form of anomaly detection
for monitoring real-time RSSI and CSI signals in ILS could allow prompt detection of signal modifications that
adversarial attacks depend upon. Ko et al.>® developed a random forest-based filter (RFBSA) to eliminate noise
resulting from MAC spoofing. This makes localization more accurate in systems that are vulnerable to spoofing
attacks. Incorporating these anomaly detection methods will provide dynamic, real-time ILS defenses, ensuring
system stability under hostile conditions.

Federated learning

In alignment with the mitigation strategies outlined in Fig. 3, FL is a decentralized machine learning methodology
that addresses privacy concerns by ensuring that sensitive user information, such as location, remains on the
local device. A central server receives model updates, thereby maintaining data privacy and improving model
training efficacy. For an overview of FL schematics, refer to Fig. 11.

+ Local Model Updates: Within the framework of ILS, FL enhances privacy by retaining location data on the
user’s device. This method is particularly advantageous in multi-building configurations where data privacy
is paramount. FL models integrate data from several devices while preserving the privacy of individual users.
The local updates at device k is computed as
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Fig. 11. Overview of FL in ILS*.
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witt = wh — nVLi(w}), (20)

where w}, represents the local model weights at device k during iteration ¢, 7 is the learning rate, and V Ly (w},)
is the gradient of the loss function Ly on the local data of device k.

« Managing Non-IID Data: In practical FL systems, addressing non-IID (independent and identically distrib-
uted) data is a considerable problem. Numerous advanced FL methodologies have been established to tackle
these challenges, notably FD, which reduces communication overhead while maintaining high model accura-
cy. The global model aggregation in FL is given as

K
1
t+1 t+1
w = ?kZWk , (21)
=1

where w'*! is the updated global model, K is the total number of participating devices, and w}," " are the
updated weights from each device. This ensures that the global model benefits from diverse device data without
transferring raw data.

To provide a clearer understanding of the overall FL workflow in indoor localization, we present the Algorithm 1

outlining the process.

Require: Initial global model My, number of communication rounds 7', set of devices {D1,Da,...,Dy}
Ensure: Final global model My

1: Initialize global model M

2: fort=1to T do

3: Broadcast current global model M; to all devices

4 for all devices D; in parallel do

5: Train model locally: M; < Train(M,,data;)

6: Send updated model M; to the server

7 end for

8: Aggregate local models at server: M, + Aggregate({M;})
9: end for

10: return Final global model M7

Algorithm 1. Federated learning for privacy-preserving Indoor localization!®”

FL has shown great promise in improving privacy-preserving ILS solutions. A significant use is its capacity
to preserve location data on local devices, guaranteeing that sensitive user information remains on the user’s
device. Ciftler et al.* came up with an FL strategy for crowdsourcing RSS fingerprint-based localization that
protects user privacy while still ensuring accurate localization. This method aggregates model updates from
several devices, enabling collaborative learning while protecting individual user data. Li et al.’” examined FL in
ILS inside multi-building and multi-floor environments, employing pseudo-label-driven training to augment
labeled data and address the challenge of insufficient labeled data in these scenarios. The decentralized nature
of FL facilitates data aggregation across various locations or systems while complying with privacy regulations,
as illustrated by Barsocchi et al’s privacy-by-design framework for indoor navigation systems in alignment
with GDPR standards®. Additionally, Gao et al.®” established a FL framework tailored for extensive indoor
localization, appropriate for multi-floor and multi-building settings, therefore augmenting the relevance of FL in
strengthening privacy preservation. This decentralized method also tackles issues related to the administration
of non-IID data, frequently encountered in varied localization contexts, and is alleviated using sophisticated
techniques such as FD''?, which reduces communication overhead while maintaining model accuracy. The
ability of FL to disseminate knowledge across devices while preserving privacy, as demonstrated by these
instances, underscores its increasing significance in safe and efficient ILS.

While several advanced techniques have been proposed to mitigate security risks in ILS, their deployment
in real-world systems presents significant challenges. FL, for instance, enables decentralized training without
sharing raw data but suffers from non-IID data across clients. This heterogeneity can impair model convergence
and degrade accuracy. To address this, SimDeep introduced similarity-aware aggregation strategies that improved
accuracy to 92.9% despite client diversity *%. Similarly, adversarial defenses such as CALLOC apply curriculum
learning and lightweight attention mechanisms to resist adversarial examples, but still require retraining
and computational resources that may not be feasible for constrained IoT environments . Cryptographic
approaches like TESLA and privacy-preserving schemes such as Sillcom '*° show promise in securing location
information through authentication and secret sharing. However, these methods often increase communication
overhead, introduce latency, and complicate synchronization-factors that can limit their scalability in dense
or time-sensitive ILS applications. Therefore, while effective solutions exist in principle, translating them into
robust, deployable systems remains an ongoing challenge.
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Deep learning for attack detection and localization

Deep learning models, especially CNNs and RNNS, are increasingly used in ILS for precise localization and
attack detection. These models have demonstrated a robust capacity to learn intricate spatial and temporal
patterns from signal data, including Wi-Fi and Bluetooth signals.

o CNNs for Localization: ILS has employed CNNs to analyze RSSI or CSI data for accurate location prediction.
These algorithms have effectively identified signal anomalies that may indicate an attack, including spoofing
attempts or interference.

o RNNs for Temporal Data: RNNs are highly proficient at modeling sequential data, including movement
patterns inside indoor environments. Through the analysis of these temporal sequences, RNNs can identify
anomalies that signify security vulnerabilities, enabling them to predict attacks such as signal jamming.

CNNs and RNNs are deep learning models that have demonstrated significant potential in enhancing ILS
performance regarding security improvements and localization precision. CNNs have effectively predicted user
locations by examining signal strength data, such RSSI or CSL. This method, illustrated by Ko et al.*8, utilizes
a random forest-based filter to detect and remove fraudulent signals that compromise localization accuracy.
Likewise, Yang et al.*® devised a CNN-based map localization method to facilitate the assessment of a secure
condition during hostile assaults. This illustrates the identification and resolution of signal difficulties with deep
learning techniques.

The capability of RNNs to identify sequential movement patterns in temporal data enables real-time detection
of anomalies such as signal jamming or movement disparities. Li et al.>® utilized machine learning approaches,
such as probability suffix trees, to detect anomalous crowd traffic by analyzing temporal trends in signal data.
RNNs may boost this by enhancing the prediction of temporal sequences within the signal data. Furthermore,
Madani et al.% illustrated the application of deep learning for the detection of MAC layer spoofing. This approach
could be enhanced by employing RNNs to identify anomalous temporal patterns in wireless signals, so aiding
in the prediction of possible attacks. These pictures exemplify how deep learning models can be customized to
tackle both temporal and spatial difficulties in ILS.

Generative models for data privacy and augmentation

ILS use generative models, namely GANs, shown in Fig. 12, to produce synthetic data that improves the system’s
privacy and resilience. GANs improve model training by producing realistic data samples while safeguarding
the privacy of genuine user information. In ILS, GAN are utilized to generate synthetic training datasets that
replicate various signal environments, including potential attack scenarios. This allows models to get insights
from a larger dataset while protecting user privacy. Furthermore, GANs have been utilized to augment model
resilience against adversarial attacks by producing adversarial samples for training purposes.

A GAN includes two neural networks: a generator G and a discriminator D, which compete against each
other in a zero-sum game. The generator accepts random noise z drawn from a prior distribution p.(z) and
produces synthetic data G(z). The discriminator analyzes whether the data is authentic (z ~ paata(x)) or
fabricated (G(z)). The objective function for GANSs can be defined as follows:

mcin max V(G,D) =FEympy,,. () log D(x)]

(22)
+ Esp. (n[log(l — D(G(2)))]-
Within this paradigm, the discriminator attempts to optimize the likelihood of accurately distinguishing
between real and synthetic data. The generator seeks to reduce the likelihood of the discriminator differentiating
between generated data and real data. The application of GANs in ILS may improve privacy, robustness, and
overall efficacy of these systems. In the field of crowdsourced location systems, as noted by Li et al.>3, GANs can
produce synthetic RSS signatures that replicate authentic data. This approach can improve the system’s resilience
to anomalous traffic detection and spoofing assaults while safeguarding user privacy. GANSs, by generating
authentic synthetic data, can augment datasets for ILS and reduce dependence on user-provided data, hence
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Fig. 12. GAN schematics'!°.
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diminishing the danger of privacy violations. Ciftler et al.>® showed that FL may be integrated with GANSs to
enhance the privacy of indoor localization, enabling several devices to train on a common dataset without the
necessity of revealing the raw data. In this context, GANs can generate synthetic training data that local models
employ to improve system performance when labeled data is unavailable. Recent work shows that differentially
private GANs can synthesize realistic indoor location fingerprints with formal privacy guarantees, enabling data
sharing and model training without exposing raw trajectories'*.

Furthermore, GANSs can enhance defenses against adversarial attacks. Patil et al.® investigate the vulnerability
of deep learning models to attacks that modify signal strength data, hence reducing localization precision. GANs
can generate adversarial instances during model training, enabling ILS to identify and counteract such attacks in
practical applications. GANs enhance model training resilience by generating adversarial samples, safeguarding
against deceptive inputs intended to compromise localization accuracy. Njima et al.”> noted that employing
GANs to provide authentic adversarial inputs in RSSI vector augmentation markedly enhances the models
accuracy and security, particularly in settings with less labeled data. In conclusion, the application of GANs in
ILS, whether for privacy-preserving data production or adversarial defense, might significantly enhance both
the security and efficiency of ILS.

Differential privacy

Differential privacy is a method that protects individual users’ privacy even when their data is being used for
system training or decision-making. It accomplishes this by introducing noise (Figure 13) into the data in a way
that preserves broad patterns while safeguarding individual items. ILS employs differential privacy techniques
to introduce appropriately calibrated noise to user location data, therefore obstructing the identification of
individual movements linked to a specific user. This approach is highly effective in scenarios requiring significant
amounts of location data, such as smart buildings or retail environments.

Differential privacy guarantees that noise is incorporated according to a defined process, such as the Laplace
mechanism or the Gaussian mechanism. For instance, in the Laplace mechanism. noise is sampled from the
Laplace distribution as

Noise ~ Laplace (0, Aj) , (23)
where A f denotes the sensitivity of the query (i.e., the greatest extent to which a single individual’s data can
influence the output), and € represents the privacy budget, governing the balance between privacy and accuracy.

The output characterized by noise then becomes f(z) = f(z) + Noise. Similarly, in the Gaussian mechanism,
noise is sampled from a Gaussian (normal) distribution as

Noise ~ A (0, 02) , (24)

where o is the standard deviation of the noise, calibrated based on ¢ and ¢ (a parameter for approximate
differential privacy).

Incorporating noise into the data safeguards privacy by guaranteeing that the presence or absence of an
individual’s data in the dataset does not substantially influence the analysis results. For instance, with carefully
adjusted noise, two datasets that differ solely by one individual’s data yield statistically indistinguishable
outcomes. This makes it almost impossible for attackers to derive sensitive information on particular individuals
while still enabling the dataset to yield accurate aggregate insights. The noise conceals individual contributions,
preventing identification while preserving the overall data’s utility.

ILS can effectively integrate differential privacy by introducing noise to location data, so obscuring individual
movements while maintaining the overall value of the data. This methodology has been implemented in various
contexts, including smart buildings and retail environments, where substantial location data is essential for
operations yet requires meticulous control of privacy concerns. Navidan et al.® introduced a privacy-focused
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Fig. 13. Differential privacy process.
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architecture utilizing LDP to safeguard users’ indoor location data. Their method breaks down the indoor
environment into distinct zones and monitors user presence within each zone, employing binary noise to
protect individual privacy while preserving the precision of aggregate data. Zhang et al.” investigated a cloud-
based collaborative localization framework that integrates FSELM and differential privacy methodologies. This
guarantees the confidentiality of users’ raw location data throughout the training process, especially relevant in
crowdsourcing systems that aggregate vast datasets from users. Utilizing differential privacy, such systems can
provide accurate geolocation while mitigating the danger of disclosing sensitive personal movements. Moreover,
Fathalizadeh et al.¥! introduced anonymization methods employing differential privacy to preserve the utility
of location data while protecting individual identities. This method is especially beneficial in settings requiring
enhanced security and privacy, such as hospitals or corporate campuses, as it restricts the use of location data
for illicit surveillance of persons. These examples demonstrate the adaptation of differential privacy for various
indoor localization contexts, seeking to balance privacy concerns with the practical requirements of systems.

Reinforcement learning for dynamic security

Reinforcement learning (RL) offers a dynamic approach to improve ILS by enabling systems to adapt over time
to changing surroundings and security threats. Rather than depending solely on established rules, RL models
acquire knowledge through ongoing contact with their environment and adjust their behavior based on previous
results. As seen in Fig. 14, reinforcement learning can improve real-time dynamic security in indoor localization
systems.

In the presence of threats like jamming or spoofing, RL algorithms can dynamically adjust system parameters,
thereby enhancing the resilience of localization models in uncertain or adversarial environments. Through
real-time modifications, RL significantly enhances the robustness of integrated logistics systems. It can identify
anomalous patterns in RSSI or atypical user movements, thereby detecting suspicious activities and preventing
fraudulent check-ins. This methodology corresponds with the research conducted by Li et al.>*, who employed
algorithmic strategies to identify aberrant behaviors.

In addition to accuracy and security, RL also facilitates privacy preservation. Barsocchi et al.>?> demonstrate
that privacy-by-design frameworks can be improved when RL dynamically reconciles accuracy with data
protection requirements, modifying privacy policies in response to the intensity of the threat. In FL contexts,
RL can direct distributed models to enhance their learning techniques by utilizing inputs from many clients, as
suggested by Ciftler et al.>.

Yan et al.®? have emphasized the significance of RL in interpreting RSS fluctuations and alleviating the
effects of physical-layer attacks, thus enhancing the security and reliability of localization. Collectively, these
attributes highlight RL as a promising approach for enhancing the precision, adaptability, and security of indoor
localization systems.

Hybrid cryptographic-Al approaches

The integration of Al with cryptographic techniques is attracting considerable interest for the enhancement of
ILS. These methodologies offer robust safeguarding of sensitive information, thus guaranteeing both privacy and
security during the localization process.

Define Security Problem
for Indoor Localization
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Localization Error,
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Data Isolation, Signal
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Fig. 14. RL for real-time dynamic security in ILS.
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« Homomorphic Encryption with AI: Homomorphic encryption safeguards user location data by allowing
computations to be executed directly on encrypted information. This technology, when combined with AI
methodologies like FL, facilitates secure and privacy-preserving localization without compromising system
speed.

o Zero-Knowledge Proofs: Al-enhanced applications of zero-knowledge proofs (ZKPs) facilitate safe device
connectivity while preserving confidential information. These methods are especially efficient in collaborative
indoor localization contexts, where numerous users must collaborate without revealing their raw data.

ILS can leverage hybrid frameworks that combine AI with cryptographic mechanisms such as ZKPs and
homomorphic encryption to enhance privacy and security. Homomorphic encryption enables the processing
of sensitive location data without decryption, so it maintains confidentiality while facilitating rapid computing.
Ciftler et al.>® emphasize this concept in FL, wherein data resides on the local device while aiding in the
development of a collective global model.

In ILS, Al-augmented ZKP procedures facilitate secure verification and communication. Casanova et a
proposed a BLE-based collaborative positioning method that safeguards user anonymity, particularly beneficial
when various stakeholders (e.g., users and service providers) need to collaboratively ascertain locations without
jeopardizing privacy.

Furthermore, Patil et al.°® illustrate that the integration of Al into cryptographic solutions can alleviate
adversarial assaults aimed at signal strength data. Na et al.”! demonstrate that ZKPs can mitigate spoofing and
cross-technology impersonation threats, wherein adversaries seek to distort the localization process. Integrating
AT with cryptographic protections enables ILS to attain increased resilience and reliability, improving end-user
security and privacy in applications like asset tracking and indoor navigation.

1'91

1.68

Discussion and synthesis of findings

This section synthesizes the reviewed literature by categorizing security and privacy techniques for Indoor
Localization Systems (ILS) across three dimensions: effectiveness, scalability, and real-world applicability. The
synthesis draws upon empirical results and conceptual trends identified in Sects. "Related work"-"Machine
learning techniques for enhancing security and privacy in ILS".

Effectiveness
Effectiveness refers to how well a technique defends against specific threats such as spoofing, signal jamming,
and adversarial manipulation. Approaches like adversarial machine learning (AML) and anomaly detection
mechanisms show high accuracy and robustness in controlled conditions. For instance, AML-based frameworks
demonstrated resilience against white-box attacks, particularly with adversarial training strategies®®%3. Similarly,
cryptographic solutions such as secure two-way ranging protocols, zero-knowledge proofs, and blockchain-
based methods provide strong theoretical guarantees of confidentiality and integrity®!04114,

However, many methods exhibit context sensitivity. Their effectiveness may deteriorate under complex
conditions like non-line-of-sight environments or dynamic user mobility. Several defenses also rely heavily on
accurate signal models and high-quality training data, which may not generalize well across deployments.

Scalability
Scalability involves the adaptability of security and privacy solutions to large or heterogeneous environments.
Federated learning (FL) and decentralized models appear promising in this regard®”**. These frameworks reduce
the need for centralized data aggregation, thereby supporting edge-based intelligence and reducing latency.
Nonetheless, FL techniques face practical limitations including non-IID data distributions, communication
overhead, and energy consumption in battery-constrained devices. Many studies highlighted convergence
issues in FL models and the need for compression techniques or hierarchical architectures to ensure efficient
scalability®>%.

Real-world applicability

Although many solutions report high accuracy in simulated or laboratory settings, their real-world deployment
remains limited. For example, approaches involving homomorphic encryption, blockchain integration,
or differential privacy often introduce computational complexity that impairs responsiveness in real-time
localization tasks®»*”.

Several studies also emphasize the lack of validation in diverse or dynamic environments. Techniques
that excel in static testbeds frequently underperform when faced with variable signal conditions, user density
changes, or multipath propagation. Moreover, data availability and labeling constraints hinder the deployment
of machine learning-based solutions in commercial-scale systems.

The synthesis presented above offers a critical perspective on the security and privacy techniques employed
in ILS by evaluating them along dimensions of effectiveness, scalability, and real-world applicability. While
several solutions show promise in controlled settings, their real-world feasibility is hindered by computational,
architectural, and contextual limitations. Emerging hybrid frameworks that integrate FL, AML, and cryptographic
primitives appear to be the most resilient, but they, too, require empirical validation at scale. These findings
align with and are further elaborated upon in Section , where we detail key research gaps and propose future
directions for advancing secure and privacy-preserving indoor localization.

Practical challenges
Despite the promising potential of the proposed approach, several practical challenges remain that may hinder its
widespread adoption>®>!!!. A key concern relates to cost considerations. Implementing advanced computational
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frameworks and infrastructure often demands significant financial investment in hardware, software licensing,
and continuous system maintenance®*3111123, For many organizations, particularly small- and medium-sized
enterprises, these expenses may pose barriers to initial adoption and long-term sustainability. Furthermore,
training personnel to effectively manage and operate the system adds an additional layer of resource demand.

Another important limitation concerns scalability. While the framework performs effectively in controlled
or medium-scale environments, scaling it to handle large and complex datasets or high-throughput operations
introduces performance bottlenecks®#287%, Issues such as increased latency, higher storage demands, and
greater energy consumption need to be addressed to ensure that the system can function efliciently under real-
world, large-scale deployment conditions”>#19%123, Research into distributed architectures, cloud integration,
and optimization techniques will be essential to mitigate these scalability challenges’®87112114,

Finally, interoperability remains a critical barrier. The integration of the proposed solution into existing
technological ecosystems requires compatibility with heterogeneous platforms, standards, and legacy
systems’!72. Achieving seamless data exchange and ensuring compliance with industry-specific regulations
can be complex and time-consuming®>!%. Without careful design to promote interoperability, adoption
across diverse environments may be restricted, ultimately limiting the impact of the approach. Addressing
these interoperability concerns through standardized protocols and modular architectures will be crucial to
supporting practical implementation®!123.

Research gaps and future directions

Despite ILS privacy, security, and performance improvements, several issues and research gaps remain. FL,
AML, and cryptographic approaches have shown potential in simulations, but their real-world deployment is
constrained. The complexity of managing non-IID data, the privacy-performance trade-off, energy efficiency
concerns, and scalability in decentralized situations like IoT remain obstacles. To address these difficulties,
creative methods like enhancing FL efficiency, strengthening adversarial defenses, and optimizing cryptographic
protocols for low-power contexts are needed. The next sections identify these shortcomings and suggest ILS
research directions.

Research gaps

Scalability and real-world feasibility

Although several research projects undertaken in 2020 and 2021°%686%83 jnvestigated solutions in simulated
environments, their feasibility for implementation in extensive real-world systems remains limited. Various
methodologies, including FL%”!!2, adversarial training®®®®, and cryptographic techniques!®*!1, have yet to
exhibit substantial scalability in diverse, dynamic, and expanding environments such as smart cities or large
organizations. Whilst simulation-based techniques demonstrate encouraging results, they are deficient in
extensive real-world validations that consider discrepancies in devices, sensors, and networks.

Handling non-IID data in FL

FL has been recognized as a vital framework for safeguarding privacy in indoor localization. Nonetheless, the
management of non-IID (independent and identically distributed) data across decentralized devices remains
a considerable difficulty. In diverse real-world settings, such as IoT-based localization systems, numerous FL
algorithms have difficulties in attaining stable convergence. Additional investigation is necessary to enhance FL
models in non-IID environments and to reduce communication overhead while maintaining accuracy®”%%%.
Even though ILS has made progress in becoming more secure and private, this gap shows that there is still a lot
of room for improvement.

Trade-off between privacy and accuracy

A persistent difficulty in privacy-preserving methodologies, such as differential privacy, is achieving a balance
between robust privacy assurances and high location accuracy. Methods like noise addition and encryption,
although protecting sensitive data, also diminish accuracy, potentially undermining system effectiveness. This
problem is especially pronounced in high-density or resource-constrained settings, where even little reductions
in accuracy can dramatically affect system performance’®-81:9%:116,

Adbversarial attack robustness

Adversarial training is commonly utilized to enhance the resilience of machine learning models in indoor
localization; nevertheless, existing methodologies are insufficient in mitigating sophisticated or adaptable
adversarial attacks. Common methods like FGSM, PGD, and MIM only provide limited protection against more
advanced or tailored strategies®®%*#>. Additionally, the continual requirement for retraining and the significant
computational burden of adversarial defenses impede their use in real-time IoT and GNSS-denied contexts®>113.,

Energy efficiency in cryptographic solutions

Cryptographic methods, such as mutual privacy protocols and encryption processes, usually need a lot of
processing power and energy. This problem is especially bad in IoT scenarios when resources are limited.
Blockchain-based solutions can make data more reliable, but they also require more processing power and
energy, which makes them less useful for devices that need to work in real time or use less power®114115,

Future directions

Enhancing resilience against advanced adversarial attacks

The review of current literature has pinpointed some critical domains for future study in ILS. A significant trend
that is occurring is the improvement of ILS’s ability to withstand advanced attacks from attackers. Adversarial
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training strategies like FGSM, PGD, and MIM have shown some success as current defense mechanisms.
They still have trouble dealing with more advanced and complicated attacks, especially in complicated IoT
settings®®®. For instance, while adversarial training is effective against fundamental attack vectors, recent
studies demonstrate that systems remain vulnerable to informed attacks and emerging techniques such as cross-
technology interference’"’®. Further study may investigate sophisticated methodologies, such as adversarial
curriculum learning or hybrid models that integrate adversarial training with differential privacy methods or FL
to improve robustness. Curriculum Adversarial Learning and other hybrid methods try to protect systems from
assaults and keep users’ privacy safe!!3. These strategies can make the system stronger, protecting it from attacks
and breaches of privacy.

Improving privacy-preserving methods

A major area of research is finding better ways to safeguard privacy. Differential privacy and cryptographic
protocols like ZKP have made privacy safeguards better, but they typically come with trade-offs in terms of
accuracy and computational cost®!. Studies such as’® have demonstrated that the use of differential privacy can
markedly reduce the likelihood of privacy violations. However, it also has problems, such as the cost of labor
for site surveys and effects on performance. Future research may concentrate on refining these methodologies
to attain greater accuracy while minimizing computational and transmission costs, particularly in resource-
constrained settings like IoT systems™!1°. Investigating LDP techniques alongside FL has demonstrated potential
in improving privacy while reducing performance degradation’*1%. Methods like federated averaging®” and the
combination of differential privacy have been shown to work well for protecting user privacy and improving
localization performance.

Scalability and efficiency in FL systems

FL and its advanced versions, such as federated distillation, show promise for decentralized learning in several
scenarios. However, challenges like data heterogeneity (non-IID data) and connection costs limit their scalability
in real-world applications. FedLoc3D was accurate for indoor localization, but it had trouble with distributed and
diverse data. This shows that we need to find ways to solve model convergence problems in non-IID situations®’.
Future research should focus on enhancing the scalability and efficiency of FL systems, particularly in extensive
IoT contexts where reducing power consumption is essential'!2. Furthermore, the integration of FL with GANs
to generate realistic synthetic data for training, while preserving privacy, may enhance system resilience™!*°.

Improving energy efficiency in blockchain-based localization systems

Blockchain systems developed for secure navigation and localization in GNSS-deficient locations often encounter
issues related to substantial computational and energy expenditures. Blockchain systems, as outlined in®, have
highlighted the energy constraints, particularly regarding IMU sensors. Future developments should concentrate
on improving blockchain protocols to reduce supplementary expenses while preserving data integrity and
security®®114, Lightweight consensus techniques and off-chain strategies can reduce the computational burden,

rendering these systems more appropriate for resource-constrained settings!'®.

Empirical validation of machine learning models in real-world settings

Numerous proposed solutions, including Anomalous Crowd Traffic Detection (ACTD) and various machine
learning-based detection frameworks, predominantly depend on simulations for validation. The ACTD
framework and methodologies such as IS-WARS>7¢ have shown encouraging outcomes in controlled
environments; yet, their effectiveness in unpredictable, real-world contexts remains largely unvalidated. Future
investigation should focus on implementing these systems in real-world settings to assess their effectiveness
under varying situations, including environmental changes and adversarial capabilities®>>®.

Robust privacy mechanisms for crowdsourced data

The increasing reliance on crowdsourced indoor location data raises substantial privacy issues, especially in IoT
environments where users could unintentionally reveal sensitive information. Privacy-enhancing approaches,
like LDP and FL, together with anonymization methods such as k-anonymity, require more refinement for
dynamic crowdsourcing applications®®8!. The application of LDP in frameworks like Navidan et al’s research has
shown encouraging outcomes; however it encounters difficulties with noise control and scalability. Investigating
methods that reconcile privacy with location precision in dynamic contexts may yield significant progress in
this domain.

Hybrid security solutions for robustness against novel attacks

Numerous current protections, such as MAC spoofing detection and adversarial training, falter when faced
with novel attack vectors that were not foreseen during the model training phase. To enhance resilience against
known and unknown threats, a potential strategy is to create hybrid security mechanisms that include several
detection layers, such as physical-layer metrics and RSS fingerprinting”""%. Recent research indicates that
employing multi-layered detection, which integrates signal features with statistical models, enhances defense
against novel attack vectors’®. This approach corresponds with cross-layer, multi-modal neural network defense
frameworks that provide end-to-end robustness improvements across sensing and protocol layers!*!.

Advanced sensor fusion for indoor localization

Future study should investigate the amalgamation of several sensor data types, including BLE, Wi-Fi, inertial
sensors, and acoustic signals, to enhance the dependability of localization systems, especially in regions lacking
GNSS accessibility. Kalpana et al.”® demonstrated that the integration of public and private key cryptography
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Future direction

Method

Design

Baselines

Metrics

Enhancing resilience
against advanced
adversarial attacks

Curriculum adversarial training (FGSM—
PGD— MIM) + strong attack battery incl. cross-
technology interference

White/black-box settings; OTA/
physical-layer stress; report robust
error at fixed £ budgets; retraining
overhead

Standard adversarial
training; no-AT

Robust error; attack success rate;
retraining time; edge energy

Improving privacy-
preserving methods

Local DP (randomized response/Gaussian)
integrated with FL; lightweight ZKP where
needed

e-grid {0.1, 0.3, 1, 3, 8}; noise-
mechanism sweep on IoT devices

FL without DP;
centralized DP only;
plaintext

Privacy-utility frontier (e vs.
error); bytes/round; latency;
mWh/inference

Scalability and efficiency in

FedAvg/FedProx with federated distillation;

Dirichlet non-IID splits (vary «);
cross-building holdout; comms-

Centralized training;

Convergence rounds; mean
error; participation rate; bytes/

localization systems

FL systems gradient compression; adaptive client selection round budgeting naive FedAvg round; device energy

Improving energy efficiency Lightweight consensus (e.g., PoA); off-chain Microbenchmarks on constrained Default Hyperledger- Energy/ts; end-to-end latency;

in blockchain-based . . : o i . . throughput; accuracy drop vs.
commitments/channels; TEE-assisted verification | nodes; spoof/jam scenarios style stacks

plaintext

Empirical validation in
real-world settings

Multi-site field trials with standardized logging

Hold-out by building/time-of-day;
environment-shift stress tests

Simulation-only and
lab-only validations

Mean/90th-pct error; drift over
time; failure rate under shift

Robust privacy mechanisms
for crowdsourced data

LDP + FL with per-user privacy budgets and
adaptive noise; k-anonymity fallback

Dynamic crowdsourcing with churn;
context-aware noise calibration

No privacy; server-
side DP only; naive
anonymization

Error vs. privacy; user
participation/retention;
communication cost

Hybrid security solutions
for novel attacks

Multi-layer detector (physical-layer CSI/phase +
protocol/RSS) with ensemble ML

Evaluate on unseen/novel attack
families

Single-layer detectors

AUG; FPR@TPR; detection
latency; compute overhead

Advanced sensor fusion for
indoor localization

Probabilistic 3D fusion (EKF/UKF/factor-graph)
and/or GNN-based fusion of BLE/Wi-Fi/UWB/
IMU/acoustic

Modality ablations; NLoS stress tests

Best single-modality
models

Mean/floor-aware error;
robustness under NLoS/
occlusion

Real-time performance and
scalability testing

Model compression (quantization/distillation);
operator fusion; batching

Profiling on edge devices with p50/
p95 latency targets

Full-precision,
unoptimized pipeline

Latency; throughput; mWh/
query; accuracy drop

Transfer learning and
adaptability

Federated transfer learning with domain
adaptation (feature alignment, adversarial DA)

Few-shot adaptation to new building
with K labeled samples

From-scratch; no
adaptation

Error after K samples; adaptation
time; communication cost

Secure and scalable
blockchain for localization

Permissioned ledger with lightweight consensus
and off-chain data paths; anchor attestation

Tune block size/epoch and
membership; test under load/faults/
jam

Default Fabric-like
configuration

Tx latency/throughput; energy/
tx; integrity under fault/jam

RL for adaptive privacy
management

RL-based LPPM adjusting €, sampling rate, on-
device compute by context

Sim-to-real training with limited on-
site calibration; online policy updates

Static privacy policies

Privacy-utility reward; regret;
latency/energy overhead

Trustworthiness in
crowdsourced ILS

Per-source trust scoring + autoencoder outlier
detection; robust aggregation

Inject label noise and adversarial
contributions at controlled rates

Unweighted
aggregation

Error under contamination;
precision/recall for bad-source
detection

Energy-efficient FL for
large-scale systems

Federated distillation; sparse/partial updates;
adaptive round frequency; TinyML quantization/
distillation at edge

Energy profiling across device tiers;
workload scaling

Full-precision, full-
model updates

Energy/round; total energy to
target accuracy; accuracy delta
vs. baseline

Table 8. Actionable plans for each future direction. When a year appears in a table, it denotes the publication
year of the cited paper/parameter; when not shown, the scope is 2020-2025.

with acoustic localization significantly improves system resilience. Emphasis should be directed on improving
sensor fusion algorithms to achieve high precision, particularly in diverse IoT systems.

Real-time performance and scalability testing

The computational demands and energy usage of several proposed methodologies, including FL, blockchain
solutions, and differential privacy, constrain their implementation in real-time, large-scale systems. Research,
including®”?, underscores concerns such as energy consumption and prolonged convergence times, signifying
a significant obstacle for practical implementation. The future path may involve optimizing these approaches
to decrease energy usage and increase processing speeds, thereby rendering them more suitable for real-time
applications.”>113,

Transfer learning and adaptability in diverse environments

A major problem in ILS is the adaptation of systems to diverse contexts, such as large buildings and shopping
centers, without necessitating complete retraining. Transfer learning, particularly in FL contexts, demonstrates
potential. Guo et al.® have effectively shown that federated transfer learning may diminish localization error
and training time in indoor localization. Additional investigation into domain adaptation and transfer learning
techniques may enable localization systems to adjust to new surroundings with minimal data, hence diminishing
the necessity for retraining while maintaining high precision.

Secure and scalable blockchain systems for localization

Blockchain technology is suggested as a secure and decentralized method for indoor localization. Nonetheless, the
substantial computational and energy requirements provide considerable hurdles, as evidenced in frameworks
like Hyperledger Fabric, which encounter constraints due to processing overheads®. Subsequent investigation
can concentrate on lightweight blockchain protocols that are more appropriate for IoT settings, where energy
efficiency is critical''%.
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Integration of reinforcement learning for adaptive privacy management

RL offers a method to regulate privacy in fluctuating indoor localization environments. Min et al.'%! presented
an RL-based local privacy protection system for three-dimensional indoor environments, demonstrating its
efficacy in selecting policies and adapting to environmental changes. Through these techniques, computers
may dynamically modify and update privacy regulations in real time according to context, thus providing
both usability and privacy in intricate multi-story structures. Employing RL-driven local privacy protection
mechanisms (LPPMs) can markedly improve flexibility and fortify privacy in these contexts.

Trustworthiness in crowdsourced ILS

A crucial next step is to guarantee the dependability of data in crowdsourced localization systems. Existing
techniques, such as trustworthiness assessments and autoencoder-based anomaly detection, demonstrate
potential but require more refining and optimization®. Formulating ways to guarantee data consistency and
correctness while safeguarding user privacy will improve the trustworthiness of crowdsourced ILS systems.

Energy-efficient FL for large-scale systems

FL has demonstrated potential for privacy-preserving localization. Nonetheless, the energy expenditure linked
to model updates, especially in extensive IoT networks, continues to pose a significant barrier. Additional
research is required to enhance FL protocols, including federated distillation, to minimize communication and
energy expenditures!!2. Methods like energy-efficient aggregation and selective model updates can enhance
the scalability of FL, rendering it more appropriate for IoT applications, including ILS. Recent advancements
in complementary TinyML indicate that the quantization and knowledge distillation of transformer/Mamba
models can achieve precise indoor localization on limited edge devices while minimizing computational and
memory requirements!*2. In order to facilitate thorough and repeatable studies, Table 8 combines the indicated
future directions into a structured research agenda, outlining the methodological approach, experimental
design, comparison baselines, and assessment criteria for each theme.

Conclusion

This paper has provided an in-depth review of the security and privacy issues in ILS, with particular attention to
major threats such as spoofing, signal jamming, and adversarial attacks. The analysis shows that while techniques
such as Federated Learning (FL), Adversarial Machine Learning (AML), and cryptographic protocols can each
strengthen system resilience, privacy, and efficiency, they also face critical challenges.

FL addresses privacy concerns but faces difficulties with non-IID data and increased transmission costs. AML
improves robustness against attacks but requires significant computational resources. Cryptographic procedures
provide data integrity; nevertheless, they also include computational expenses. The findings collectively suggest
that no one method may sufficiently meet the complex demands of ILS.

This research highlights the importance of a balanced approach that combines lightweight privacy-preserving
strategies with strong security measures. Future research should focus on integrating these approaches to tackle
challenges related to scalability, energy efficiency, and adaptability. This will enable the creation of a secure,
privacy-conscious, and flexible ILS capable of functioning in diverse and dynamic environments.
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