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Accurate survival prediction is essential for guiding follow-up strategies in patients with cT1b renal 
cell carcinoma (RCC). Traditional AJCC TNM staging systems provide limited prognostic accuracy. Data 
from the SEER database were used, which included 22,426 patients with cT1b RCC who underwent 
surgical resection. The data were randomized into training and validation sets in a 7:3 ratioen, suring 
comparability using standardized mean differences (SMD < 0.1). A random survival forest (RSF) 
model was developed and compared with support vector machine (SVM) and extreme gradient 
boosting accelerated failure time (XGB-AFT) models. Model performance was assessed using AUC, 
sensitivity, specificity, and calibration, with 1000 bootstrap resamples. Shapley additive explanation 
(SHAP) values were calculated to explore variable importance and enhance interpretability. The 
RSF model achieved the highest discrimination for predicting 5- and 10-year overall survival (AUC: 
0.746 and 0.742), outperforming AJCC TNM (AUC: 0.663 and 0.627), SVM, and XGB-AFT. The model 
demonstrated good calibration and clinical net benefit. SHAP analysis identified age, tumor size, 
grade, and marital status as the top contributors to survival prediction. The RSF model significantly 
improves survival prediction over conventional staging systems and other machine learning methods, 
with enhanced interpretability through SHAP analysis. While the lack of external validation and the 
use of overall survival (including non-cancer deaths) are limitations, the model shows strong potential 
for clinical implementation and may facilitate individualized follow-up planning. Future studies should 
validate the model prospectively and explore integration into clinical decision support systems.
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Renal cell carcinoma (RCC) is the most common renal malignancy, accounting for over 85% of all kidney cancer 
cases1. With the widespread use of imaging techniques, an increasing number of patients are being diagnosed at 
an early stage, particularly in cases of localized renal cancer at the cT1 stage2,3. The recent emergence of targeted 
and immunological therapies has provided new hope for RCC treatment; however, surgery remains the first-line 
approach4–6. Radical nephrectomy (RN) and partial nephrectomy (PN) are widely recognized as the primary 
and effective treatment options for these patients7.

As laparoscopic and robotic surgical techniques continue to mature and clinical experience grows, the 
indications for PN are gradually expanding in clinical practice8,9. Numerous studies have compared the 
prognostic outcomes of these two surgical approaches across different populations. The results suggest that PN 
maximizes renal function preservation while ensuring tumor control in certain patients, thereby improving 
long-term survival10–12. However, most studies have focused on the selection of surgical modality, while research 
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on individual differences in postoperative overall survival and predictive models for patients undergoing surgical 
resection remains limited.

Although most cT1b stage patients who underwent surgery had a better prognosis13, their postoperative 
overall survival (OS) still exhibited significant individual variability, indicating that risk assessment based 
solely on TNM staging may have limitations14,15. In recent years, machine learning, a key branch of artificial 
intelligence, has demonstrated significant potential in medicine, particularly in tumor prognosis prediction16. 
Machine learning has demonstrated strong predictive performance in neuroscience datasets, highlighting its 
potential to extract clinically meaningful patterns from large and heterogeneous sources of data17,18. Within 
urology, ML approaches have been applied to risk stratification and outcome prediction, providing novel tools 
to complement traditional staging systems19. Furthermore, ML has been increasingly utilized in oncology to 
improve prognostic modeling and survival prediction, underscoring its relevance across different cancer types20.

This study focuses on patients with stage cT1b RCC who have undergone surgical resection and develops 
a machine learning model by integrating relevant feature variables from the Surveillance, Epidemiology, and 
End Results (SEER) database. The aim is to predict patients’ overall postoperative survival and identify the best-
performing models for clinical application.

Methods
Study population
We retrieved data from SEER Research Plus Data, 17 Registries, Nov 2023 Sub (2000–2021) using SEER*Stat 
software (Beta 9.0.31). By condition setting, we collected data related to patients with renal cell carcinoma whose 
tumor size was > 40 mm but ≤ 70 mm between 2004 and 2019 (Clinical T staging). Finally, 22,426 patients with 
RCC at stage cT1b were included in this study. We randomly split the dataset into a training set and a validation 
set at a 7:3 ratio. This proportion is commonly used in machine learning applications to ensure sufficient data 
for model training while retaining an adequate portion for performance evaluation and preventing overfitting. 
16 variables were initially included in this study, including age, sex, race, marital status, urban–rural residence, 
household income, laterality, tumor size, type of surgery, pathological grading, pT, pN, pM, histological subtype, 
number of lymph nodes examined, and number of positive lymph nodes. The detailed data extraction and 
processing flow of this study is shown in Fig. 1.

Inclusion criteria were as follows: (1) diagnosis of renal cancer by site code ICD-O-3/WHO 2008 (kidney 
and renal pelvis); (2) Primary Site labeled (C64.9) identifying the lesion as “renal”; (3) A complete RN (codes 
40, 50, 70, 80) or PN (code 30) surgical record is available; (4) Confirmation of positive histology for complete 
pathology; (5) Histologic subtypes consistent with renal cell carcinoma, including clear cell (code 8310), smoky 
cell (codes 8270, 8317), stromal cell (codes 8050, 8260), and not otherwise specified RCC (nosRCC) (codes 8010, 
8140, 8312).

Exclusion criteria were as follows: (1) tumor size non-cT1b or unknown; (2) unclear pathologic grading; 
(3) presence of multiple concurrent tumors that were not of a single primary tumor; (4) unknown pathologic 
staging; (5) histologic subtypes that did not fit into the category of renal cell carcinoma; (6) patients who died 
within 1 month; (7) follow-up data that were incomplete or estimated; (8) age < 18 years; (9) race, marital status, 
laterality, urban–rural residence, and household income were unknown.

Variable consolidation and recoding
Due to the different years of the SEER database, some variables were coded inconsistently. To ensure the rigor 
of the study, we hereby integrate and recode the variables in this study based on previous studies and existing 
clinical experience. First, since our data span the years 2004–2019, three versions of the staging criteria exist. 
Therefore, we recorded 2004–2015 (6th edition) and 2016–2017 (7th edition) to uniformly use the American 
Joint Committee on Cancer(AJCC) 8th edition tumor staging. Second, we used ‘Regional_nodes_positive_1988’ 
to correct NX and N2 to avoid the deletion of available variables due to recording errors. Direct deletion of 
Mx, caused by the limitations of early imaging techniques, may lead to underestimation of true stage IV cases. 
Therefore, we also adjusted for Mx using the CS locus. For N2 and M2, which remain after correction, RCC 
does not include these stages. We therefore regarded them as recording bias and reclassified them as N1 and 
M1. The number of such cases was extremely low (N2: 199 cases, M2: 147 cases, each < 0.1% of the cohort), and 
we therefore believe that this recoding has a negligible influence on the overall findings. Similarly, NA, Tx, Nx, 
and Mx, which remained after correction, we deleted the relevant variables because they were not reliable. In 
cycles 2016–2017, partial clinical staging of N was reported. Based on clinical practice, lymph node dissection 
is generally not required for patients with cT1b RCC. Therefore, we utilized ‘Rx Summ_Scope_Reg_LN_Sur’ 
for identification. A true pN0 was assumed if no lymph node clearance was performed, and a pN0 was also 
confirmed if no positive lymph nodes were present after clearance. In addition, marital and Household income 
were recorded accordingly for integration. Due to limitations of the SEER database, surgical techniques such 
as open, laparoscopic, or robotic-assisted approaches were not distinguishable. Therefore, we analyzed surgical 
type based on partial versus radical nephrectomy only.

Screening of characteristic variables
Spearman’s method was used to analyze the correlation between the 16 variables initially included in the study, 
which is presented in the form of a correlation heat map. A correlation coefficient with an absolute value less than 
0.5 indicates a weak correlation, + 1 indicates a perfect positive correlation, and − 1 indicates a perfect negative 
correlation. For subsequent machine learning model construction, we used the Least Absolute Shrinkage and 
Selection Operator (LASSO) regression analysis, Boruta’s algorithm, and univariate Cox’s analysis to screen the 
feature variables. Lasso regression analysis can assign penalty coefficients to the above variables, which can 
effectively reduce the possibility of overfitting. We used the optimal lambda value (1se), set the number 100, 

Scientific Reports |        2025 15:38366 2| https://doi.org/10.1038/s41598-025-22342-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


and took a tenfold cross-validation. Boruta is based on the Random Forest algorithm, which is evaluated by 
assigning a randomly generated true Z-score to the feature and a corresponding Z-score to the “shadow”; if the 
true Z-score is greater than the maximum Z-score across multiple test samples, then this variable will be filtered 
out. Variables with P < 0.05 were considered to significantly influence the outcome and were screened out in the 
conventional one-way COX analysis. The same variables obtained through the three methods described above 
were included in a multifactor COX analysis to determine the final model. Finally, the screened characteristic 
variables were examined using the multiple covariance screening method.

Description of machine learning algorithms
Machine learning methods have demonstrated remarkable capabilities in handling high-dimensional, nonlinear, 
and heterogeneous data across diverse biomedical fields17,21. These findings highlight the generalizability and 
robustness of DL techniques in complex prediction tasks, thereby supporting their application in prognostic 
modeling for clinical oncology. XGBoost-Accelerated Failure Time (XGB-AFT) Survival is based on the 
combination of the XGBoost framework and the AFT model. XGBoost optimizes the loss function of AFT 

Fig. 1.  Flowchart of the extraction and processing of research data.
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by gradient-boosting trees while using regularization to prevent overfitting22. Support Vector Machine (SVM) 
Survival Analysis is an extension of SVM, modeled by Ranking Loss or survival time quantile regression23. 
Hinge Loss is commonly used to maximize the interval between event times24. Random Forest Survival (RSF) 
is an extension to survival analysis based on RF, where nodes are partitioned by Cox partial likelihood or log-
rank statistics25. Survival curves are generated for each tree, and the results from multiple trees are eventually 
summarized. The risk of overfitting can be reduced by feature subset selection.

Machine learning model construction and validation
The key risk factors affecting the overall survival of patients with cT1b renal cell carcinoma were identified by 
applying the Botuta algorithm, LASSO regression, and the univariate COX, and their 11 intersections were 
selected through a Venn diagram. The screened characteristic variables were tested using the multicollinearity 
screening method. A variance inflation factor (VIF) ≤ 5 was considered to be the absence of multicollinearity 
between variables.

OS was the endpoint of interest in this study. It was calculated from diagnosis to date of all-cause death or 
last follow-up. The number of feature variables included in the machine learning predictive model was 11, and 
the number of positive events in this study was much greater than 10 times the number of feature variables, 
consistent with following the Harrell guidelines26. Three machine learning survival algorithms, XGB-AFT, RSF, 
and SVM, were used to build a prediction model for overall survival. The training set was used to select the 
optimal model, and the test set was used for model testing. The best models were evaluated considering specific 
follow-up 5-year OS and 10-year OS, including time-specific area under the operating curve (AUC), specificity, 
sensitivity, negative predictive value (NPV), and positive predictive value (PPV). Decision Curve Analysis 
(DCA), the Net Reclassification Improvement Index (NRI), and the Integrated Discriminant Improvement 
Index (IDI) were used to assess the clinical benefit and utility of the optimal model compared to tumor staging 
based on AJCC criteria alone.

The metric NRI is more widely used to compare the accuracy of two predictive models, and IDI reflects 
the change in the gap between the predictive probabilities of the two models, with an improvement in NRI or 
IDI > 0 indicating that the new model has improved predictive ability over the old model27,28. The best model 
was compared with risk stratification for tumor staging based on AJCC criteria using the Kaplan–Meier method. 
Thresholds for risk stratification were selected using optimal thresholds.

Statistical analysis
Student t-test or Mann–Whitney U-test was utilized to compare quantitative data, while Fisher’s exact test or 
chi-square test was used to compare qualitative data. Continuous variables are expressed as mean ± standard 
deviation (SD), while categorical variables are expressed as total (n) and percentage (%).To assess baseline 
balance between the training and test sets, we reported not only conventional p-values but also standardised 
mean differences (SMD). SMD < 0.1 was generally considered indicative of good balance29. Statistical analyses 
for this study were performed using Python (version 3.9.12), R software (version 4.4.1)30, and DecisionLnnc1.0 
software31. Statistical significance was determined by two-tailed p-values less than 0.05.

Results
Basic characteristics of the study population
A total of 22,426 cases of cT1b renal cell carcinoma after undergoing surgical resection were enrolled and 
randomized into a training and validation cohort in a 7:3 ratio. It should be noted that age and T stage achieved 
statistical significance. However, the SMD for all variables in both the training and test sets was less than 0.1, 
indicating baseline balance29. Consequently, we consider no significant differences in demographic or clinical 
characteristics to have been observed between the training and test cohorts. Table 1 demonstrates the baseline 
characteristics of this study.

Correlation analysis and variable screening
Correlations between the 16 variables initially included in the study were analyzed using the Spellman method 
(Fig. 2A). Univariate Cox regression analysis revealed 12 variables significantly associated with OS (Table 2). 
In the LASSO regression, a total of 11 variables were identified as significant influences on OS by setting the 
caliper value to − 3.798, a value of λ at which a total of 11 variables were identified as significant influences on OS 
(Fig. 2B, C). Boruta’s algorithm showed the Z-score of each variable, picking out the most relevant features to OS 
(Fig. 2D). The intersection of the 3 methods was taken by plotting a Wayne diagram, resulting in 11 significant 
feature variables (Fig. 2E). Subsequently, we included these variables in a multivariate COX regression analysis 
to observe OS under the influence of follow-up time. The results showed that age, tumor size, marital status, 
household income, type of surgery, pathological grading, T, N, M, histological subtype, and number of positive 
lymph nodes emerged as significant independent risk factors affecting OS after surgical resection of cT1b stage 
RCC patients. To further ensure the stability needed for subsequent modeling, we performed a multicollinearity 
analysis. The results showed that there was no significant multicollinearity among the screened characteristic 
variables (Table 3).

Building and evaluating three machine learning models for survival analysis
We use 11 features identified through screening as independent factors and take three machine learning 
algorithms for survival analysis, SVM, XGB-AFT, and RSF, to fit the model. To select the best model, AUC, 
Best Threshold, Specificity, Sensitivity, NPV, and PPV of the three machine learning algorithm models were 
generated using the 1000 Bootstrap method (Table 4). The results show that SVM has poor metrics and is 
not recommended. The RSF model has the highest AUC (Supplementary Fig.  1), indicating strong overall 
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Variables Overall (n = 22,426) Training set (n = 15,698) Test set (n = 6728) p-value SMD

Age, yearsa 60.73 ± 12.46 60.59 ± 12.48 61.04 ± 12.40 0.013  − 0.04

Tumor size, mma 54.40 ± 8.57 54.40 ± 8.53 54.39 ± 8.67 0.949 0.00

Sex, n (%)* 0.747 0.00

 Male 14,214 (63.38) 9939 (63.31) 4275 (63.54)

 Female 8212 (36.62) 5759 (36.69) 2453 (36.46)

Marital, n (%)a 0.760 0.02

 Married 14,367 (64.06) 10,072 (64.16) 4295 (63.84)

 Single/unmarried 3565 (15.90) 2508 (15.98) 1057 (15.71)

 Separation/divorce 2554 (11.39) 1768 (11.26) 786 (11.68)

 Others 1940 (8.65) 1350 (8.60) 590 (8.77)

Household income, n (%)a 0.919 0.01

 < $54,999 4331 (19.31) 3021 (19.24) 1310 (19.47)

 $55,000–$74,999 10,131 (45.18) 7094 (45.19) 3037 (45.14)

 > $75,000 7964 (35.51) 5583 (35.57) 2381 (35.39)

Type of surgery, n (%)a 0.57 0.01

 PN 4780 (21.31) 3330 (21.21) 1450 (21.55)

 RN 17,646 (78.69) 12,368 (78.79) 5278 (78.45)

Grade, n (%)a 0.474 0.02

 Ⅰ 2109 (9.40) 1508 (9.61) 601 (8.93)

 Ⅱ 11,595 (51.70) 8098 (51.59) 3497 (51.98)

 Ⅲ 7139 (31.83) 4987 (31.77) 2152 (31.99)

 Ⅳ 1583 (7.06) 1105 (7.04) 478 (7.10)

pT, n (%)a 0.025 0.05

 pT1b 17,268 (77) 12,146 (77.37) 5122 (76.13)

 PT3a 3480 (15.52) 2411 (15.36) 1069 (15.89)

 pT3b 1549 (6.91) 1054 (6.71) 495 (7.36)

 pT3c 50 (0.22) 40 (0.25) 10 (0.15)

 pT4 79 (0.35) 47 (0.30) 32 (0.48)

pN, n (%)a 0.914 0.00

 pN0 21,830 (97.34) 15,282 (97.35) 6548 (97.32)

 pN1 596 (2.66) 416 (2.65) 180 (2.68)

pM, n (%)a 0.448 0.01

 pM0 21,317 (95.05) 14,933 (95.13) 6384 (94.89)

 pM1 1,109 (4.95) 765 (4.87) 344 (5.11)

Histological subtypes, n (%)a 0.885 0.01

 ccRCC 15,659 (69.83) 10,982 (69.96) 4677 (69.52)

 pRCC 2396 (10.68) 1663 (10.59) 733 (10.89)

 chRCC 926 (4.13) 650 (4.14) 276 (4.10)

 nosRCC 3445 (15.36) 2403 (15.31) 1042 (15.49)

Regional nodes positive, n (%)a 0.887 0.00

 No 22,015 (98.17) 15,409 (98.16) 6606 (98.19)

 Yes 411 (1.83) 289 (1.84) 122 (1.81)

Race, n (%) 0.978 0.00

 Black 2203 (9.82) 1545 (9.84) 658 (9.78)

 White 18,675 (83.27) 13,067 (83.24) 5608 (83.35)

 Other 1548 (6.90) 1086 (6.92) 462 (6.87)

Urban–rural residence, n (%) 0.295 0.03

 Counties in metropolitan areas of < 250 thousand people 1937 (8.64) 1334 (8.50) 603 (8.96)

 Counties in metropolitan areas of 250,000–1 million people 4912 (21.90) 3439 (21.91) 1473 (21.89)

 Counties in metropolitan areas ≥ 1 million pop 12,396 (55.28) 8654 (55.13) 3742 (55.62)

 Nonmetropolitan counties adjacent to a metropolitan area 1793 (8) 1290 (8.22) 503 (7.48)

 Nonmetropolitan counties not adjacent to a metropolitan area 1388 (6.19) 981 (6.25) 407 (6.05)

Laterality, n (%) 0.979 0.00

 Left side 11,106 (49.52) 7775 (49.53) 3331 (49.51)

 Right side 11,320 (50.48) 7923 (50.47) 3397 (50.49)

Regional node examined, n (p%) 0.169 0.02

Continued
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discriminative ability. NPV was significantly better than other models (0.910 for 5-year OS and 0.856 for 10-year 
OS) and reliably predicted negative results. Specificity and sensitivity were well-balanced (no extreme values). 
Therefore, the RSF model was considered the best model in this study. Subsequently, the calibration curves of 
the RSF model in the validation set (Supplementary Fig. 2) were analyzed and aligned with the vicinity of the 45° 
diagonal, indicating its excellent calibration performance.

Predictive effect and clinical value of the RSF model compared to tumor staging based on 
AJCC criteria
Figure 3 shows the predictive effect of OS assessed by the RSF model and tumor staging based on AJCC criteria 
alone. The results showed that the predictive effect of the RSF model was significantly superior. Changes in NRI 
and IDI were used to compare the accuracy between the RSF model and tumor staging based on AJCC criteria 
alone (Supplementary Table 1). When RSF was used in the training set, the NRI for 5- and 10-year OS was 0.269 
(95% CI = 0.249–0.293) and 0.331 (95% CI = 0.306–0.351), respectively, and the IDI values for 5- and 10-year 
OS were 0.066 (95% CI = 0.058–0.075) and 0.126 (95% CI = 0.115–0.138). These results were validated in the 
validation cohort, suggesting that RSF predicts prognosis more accurately than tumor staging based on AJCC 
criteria.

Fig. 2.  Correlation of feature variables and feature selection process in machine learning survival prediction 
models. (A) Heat map of the Spearman correlation matrix of the characteristic variables. The color shade 
indicates the strength of the correlation. The size of the circle indicates the strength of the correlation. The 
asterisk indicates the significance level of the correlation. (B) LASSO regression paths show the coefficients 
of the variables at different values of the regularization parameter (λ). (C) Cross-validation error map for 
selecting the optimal λ in LASSO. The vertical dashed line indicates the optimal λ for realizing the cross-
validation error. (D) Importance of variables based on Boruta’s algorithm, where attributes are categorized 
as “confirmed” (red) and “rejected” (brown). (E) Venn diagrams compare the variables selected by the three 
different methods, showing the overlap of the selected variables.

 

Variables Overall (n = 22,426) Training set (n = 15,698) Test set (n = 6728) p-value SMD

 No 19,900 (88.74) 13,900 (88.55) 6000 (89.18)

 Yes 2526 (11.26) 1798 (11.45) 728 (10.82)

Table 1.  Demographic and clinical characteristics of the entire cohort according to the training and test 
sets. aCharacterization variables ultimately included. Continuous variables are expressed as mean ± standard 
deviation; categorical variables are expressed as n (%). PN: partial nephrectomy; RN: radical nephrectomy; 
ccRCC: clear cell renal cell carcinoma; pRCC: papillary renal cell carcinoma; chRCC: chromophobe renal cell 
carcinoma; nosRCC: not otherwise specified renal cell carcinoma. All patients were clinically staged as cT1b 
at diagnosis. The distribution of T stage shown here reflects postoperative pathological staging, where some 
patients were upstaged (e.g., to pT3 or pT4).
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Characteristics Number (%) Hazard ratio (HR) Lower_95 Upper_95 P-value

Age* 60.73 (12.46) 1.053 1.05 1.055  < 0.001

Histological_subtypes*

 ccRCC 15,659 (69.8)

 pRCC 2396 (10.7) 0.991 0.912 1.078 0.836

 chRCC 926 (4.1) 0.504 0.429 0.593  < 0.001

 nosRCC 3445 (15.4) 1.218 1.145 1.297  < 0.001

Household_income*

 < $54,999 4331 (19.3)

 $55,000–$74,999 10,131 (45.2) 0.872 0.817 0.93  < 0.001

 > $75,000 7964 (35.5) 0.816 0.762 0.874  < 0.001

Laterality

 Left side 11,106 (49.5)

 Right side 11,320 (50.5) 0.98 0.933 1.03 0.423

pM*

 pM0 21,317 (95.1)

 pM1 1109 (4.9) 7.163 6.660 7.704  < 0.001

Marital*

 Married 14,367 (64.1)

 Single/unmarried 3565 (15.9) 1.025 0.953 1.103 0.508

 Separation/divorce 2554 (11.4) 1.189 1.1 1.286  < 0.001

 Others 1940 (8.7) 1.965 1.824 2.117  < 0.001

pN*

 pN0 21,830 (97.3)

 pN1 596 (2.7) 6.783 6.175 7.451  < 0.001

Grade*

 Ⅰ 2109 (9.4)

 Ⅱ 11,595 (51.7) 1.045 0.951 1.149 0.358

 Ⅲ 7139 (31.8) 1.585 1.44 1.745  < 0.001

 Ⅳ 1583 (7.1) 3.513 3.141 3.928  < 0.001

Race

 Black 2203 (9.8)

 White 18,675 (83.3) 0.959 0.884 1.042 0.323

 Other 1548 (6.9) 0.847 0.746 0.961 0.01

Regional_nodes_examined*

 No 19,900 (88.7)

 Yes 2526 (11.3) 1.602 1.496 1.715  < 0.001

Regional_nodes_positive*

 No 22,015 (98.2)

 Yes 411 (1.8) 6.33 5.652 7.088  < 0.001

Sex*

 Male 14,214 (63.4)

 Female 8212 (36.6) 0.856 0.813 0.902  < 0.001

pT*

 pT1b 17,268 (77.0)

 pT3a 3480 (15.5) 2.006 1.881 2.14  < 0.001

 pT3b 1549 (6.9) 2.611 2.426 2.81  < 0.001

 pT3c 50 (0.2) 3.556 2.468 5.125  < 0.001

 pT4 79 (0.4) 8.346 6.465 10.775  < 0.001

 Tumor_size* 54.40 (8.57) 1.021 1.018 1.024  < 0.001

Types_of_Surgery*

 PN 4780 (21.3)

 RN 17,646 (78.7) 1.846 1.707 1.995  < 0.001

Urban_rural_residence

 Counties in metropolitan areas of < 250 thousand people 1937 (8.6)

 Counties in metropolitan areas of 250,000 ~ 1 million people 4912 (21.9) 0.925 0.838 1.02 0.118

 Counties in metropolitan areas ≥ 1 million pop 12,396 (55.3) 0.907 0.83 0.991 0.032

Continued

Scientific Reports |        2025 15:38366 7| https://doi.org/10.1038/s41598-025-22342-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 4 shows the clinical benefits of RSF and tumor staging alone based on AJCC criteria for assessing OS. 
The results of the DCA curves show (Fig. 4A–D) that RSF outperforms the net gain obtained from tumor staging 
based on AJCC criteria for no treatment regimen as well as for all patient treatment regimens and almost all 
threshold probabilities, for both the training and test sets. Thus, RSF was able to better predict 5-year OS and 10-
year OS after surgical resection in patients with cT1b stage RCC. Furthermore, the visualization results of NRI 
and IDI clearly showed that the RSF model gained a large portion of improvement (Fig. 4E–H).

RSF model and risk stratification for tumor staging based on AJCC criteria
The optimal model RSF, as well as the AJCC criteria-based tumor staging, yielded risk scores regarding their 
respective OS, and we stratified the OS risk scores using the optimal cutoff value to obtain a low-risk group and a 
high-risk group. The Kaplan–Meier curves showed a large differentiation between the two risk groups, exceeding 
the AJCC criteria-based tumor staging’s ability to predict, in both the training and the validation cohorts, the 
OS (Supplementary Fig. 3).

RSF model interpretability
To improve clinical interpretability of the RSF model, we applied Shapley Additive Explanations (SHAP) analysis 
to quantify the contribution of each predictor. The SHAP summary plot (Supplementary Fig. 4) shows that Age, 
pM, pT, and pN had the largest influence on survival prediction, consistent with established clinical knowledge. 
Other factors, such as the type of surgery and household income, also contributed, but to a lesser extent. These 
findings provide additional transparency to the RSF model and reinforce its clinical plausibility.

Indicators (95% CI)

5-year OS 10-year OS

RSF SVM XGB-AFT RSF SVM XGB-AFT

AUC 0.746 (0.735–0.757) 0.507 (0.495–0.519) 0.738 (0.727–0.749) 0.742 (0.733–0.751) 0.507 (0.496–0.517) 0.696 (0.686–0.705)

Best threshold 0.780 (0.676–0.873) 0.693 (0.236–0.789) 0.670 (0.572–0.782) 0.780 (0.704–0.845) 0.691 (0.187–0.836) 0.653 (0.516–0.778)

Specificity 0.676 (0.615–0.805) 0.236 (0.100–0.607) 0.782 (0.733–0.848) 0.704 (0.640–0.790) 0.187 (0.101–0.690) 0.778 (0.748–0.842)

Sensitivity 0.673 (0.541–0.732) 0.789 (0.419–0.928) 0.572 (0.504–0.629) 0.645 (0.556–0.712) 0.836 (0.337–0.923) 0.516 (0.449–0.550)

NPV 0.910 (0.896–0.918) 0.848 (0.840–0.877) 0.900 (0.893–0.907) 0.856 (0.842–0.870) 0.775 (0.759–0.804) 0.828 (0.820–0.834)

PPV 0.297 (0.278–0.364) 0.172 (0.170–0.177) 0.349 (0.320–0.407) 0.420 (0.393–0.473) 0.253 (0.252–0.261) 0.436 (0.417–0.489)

Table 4.  Evaluation metrics for different machine learning models. CI, Confidence interval; AUC, Area under 
the operating curve; NPV, Negative predictive value; PPV, Positive predictive value. Set up 1000 Bootstrap 
sessions to observe the modeled effects of 5- and 10-year OS.

 

Variable name VIF Df VIF^(1/(2*Df))

Age 1.161856 1 1.077894

Sex 1.1285 1 1.062309

Marital 1.26055 3 1.039346

Household_income 1.015113 2 1.003757

Types_of_Surgery 1.07478 1 1.036716

Tumor_size 1.084875 1 1.041573

Pathological_grade_sort 1.186035 3 1.028844

pT 1.299966 4 1.033336

pN 3.332653 1 1.825556

pM 1.360434 1 1.166376

Histological_subtypes 1.078635 3 1.012696

Table 3.  Multicollinearity assessment among independent variables. Variance inflation factor (VIF).

 

Characteristics Number (%) Hazard ratio (HR) Lower_95 Upper_95 P-value

 Nonmetropolitan counties adjacent to a metropolitan area 1793 (8.0) 1.019 0.906 1.146 0.756

 Nonmetropolitan counties not adjacent to a metropolitan area 1388 (6.2) 1.129 0.996 1.279 0.057

Table 2.  Univariate COX regression analysis of overall survival in patients with cT1b renal cancer. PN, 
Partial nephrectomy; RN, Radical nephrectomy; ccRCC, Clear cell renal cell carcinoma; pRCC, Papillary 
renal cell carcinoma; chRCC, Chromophobe renal cell carcinoma; nosRCC, Not otherwise specified renal cell 
carcinoma. *Characterization variables ultimately included.
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Temporal subgroup analysis of the RSF model
To examine whether our model was robust across different TNM staging versions and periods, we performed a 
temporal subgroup analysis by stratifying the cohort into 2004–2015 and 2016–2019 groups. The RSF model was 
retrained within each subgroup using the same 11 selected variables.

As shown in Supplementary Fig. 5, the model yielded comparable predictive performance in both subgroups, 
with AUCs of 0.743 and 0.742 in the earlier group and 0.745 and 0.746 in the later group for predicting 5-year and 
10-year OS, respectively. Although PPV was lower in the 2016–2019 group, this is likely due to the shorter follow-
up and lower event rate. NPV remained high (> 0.95), and overall discrimination was stable (Supplementary 
Table 2). These results support the temporal robustness and generalizability of the RSF model.

Fig. 3.  Model effects of RSF and AJCC criteria-based tumor staging in predicting 5-year OS and 10-year OS 
after surgical resection in patients with cT1b stage RCC. The subject work characteristics (ROC) curves for the 
training and test sets illustrate the discriminative power of the two predictive models and show the area under 
the curve (AUC) values for the ROC curves of the two models (A–D). Calibration curves for the training and 
test sets illustrate the accuracy of the predictive ability of the two models (E–H).
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Discussion
As early detection of renal tumors increases, especially for cT1b stage RCC, surgical resection remains the 
cornerstone of treatment, whether through RN or PN32–34. As highlighted in previous studies, conventional risk 
stratification methods based solely on TNM staging may not fully capture patient-specific variables in RCC35,36. 
Additionally, the prognosis of patients with cT1b RCC after surgical treatment is generally favorable, but highly 
heterogeneous37,38. Previous studies report that the 5-year OS rate for patients with cT1b RCC undergoing 
nephrectomy ranges from 80 to 90%, depending on various clinicopathologic factors, including tumor size, 
grade, histologic subtype, and patient comorbidities39,40. Although PN is increasingly preferred for better renal 
function preservation and comparable oncologic outcomes, several studies suggest that PN may not always 

Fig. 4.  Clinical benefit and model-improving ability of RSF and AJCC criteria-based tumor staging in 
predicting 5-year OS and 10-year OS after surgical resection in patients with cT1b stage RCC. The DCA curves 
show the net benefit of each model at various threshold probabilities, comparing them to the “Treat All” and 
“Treat None” strategies, indicating their potential clinical utility (A–D). The maple leaf plot demonstrates 
the improvement in the predictive power of RSF relative to tumor staging based on AJCC criteria, with red 
representing improvement (E–H).
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lead to better OS in cT1b tumors, particularly in elderly or high-risk patients41–43. These unresolved clinical 
dilemmas highlight the need for better risk stratification tools that go beyond tumor staging to incorporate 
patient-specific factors. Importantly, our study differs from many previous studies that primarily focused on 
comparing surgical approaches (PN vs. RN)44. Instead, we focus on the survival heterogeneity in patients who 
have already undergone surgery and highlight the current clinical need for accurate post-treatment prognostic 
assessment tools.

In this study, we developed and validated machine learning-based models to predict OS after surgical 
resection in patients with cT1b stage RCC using a large population-based dataset. To identify the most critical 
risk factors, univariate Cox regression, LASSO regression, and the Boruta algorithm were applied, with Venn 
diagrams used to obtain common results. The results showed that age, tumor size, marital status, household 
income, type of surgery, pathological grading, T, N, M, histological subtype, and number of positive lymph 
nodes emerged as significant independent risk factors affecting OS after surgical resection of cT1b stage RCC 
patients. These variables reflect not only tumor-related biological behaviors but also social determinants of 
health, emphasizing the complex and multifactorial nature of patients’ postoperative prognosis. It suggests that 
clinicians should take care to document these metrics to comprehensively assess OS after surgical resection in 
patients with cT1b stage RCC. Subsequently, we utilized these characteristic variables to construct predictive 
models using three machine learning algorithms. By comprehensively evaluating the performance of the models, 
we identified RSF as the optimal model. On this basis, we further compared with the AJCC standard tumor 
staging for predicting OS, confirming that our model, constructed by incorporating the above variables, has 
improvement and good clinical decision-making ability, increasing the credibility of the study results.

In the present study, the RSF model yielded an AUC of 0.746 and 0.742 for predicting 5- and 10-year OS, 
respectively. These values indicate moderate discrimination, comparable to previous studies applying machine 
learning for survival prediction in renal cell carcinoma, which typically reported AUC ranging from 0.70 to 0.80 
45–47. Although such performance may appear limited for direct clinical decision-making, our model consistently 
outperformed the AJCC TNM stage across multiple evaluation metrics, including NRI, IDI, and decision curve 
analysis, suggesting added clinical utility in risk stratification. To further enhance predictive accuracy, future 
models could integrate additional clinical variables such as comorbidity indices, laboratory biomarkers, and 
perioperative parameters, which were not available in SEER48. Moreover, ensemble approaches or deep learning 
models may capture nonlinear interactions more effectively49. Finally, external validation using contemporary 
multicenter cohorts and prospective data collection will be crucial for improving generalizability and ensuring 
clinical applicability50,51.

Although the RSF model demonstrates markedly superior discriminatory power compared to traditional 
staging systems, its routine clinical implementation faces several challenges. Firstly, the model’s complex structure 
demands significant computational resources, rendering its deployment impractical in all clinical settings. 
Consequently, its application is best facilitated through user-friendly online calculators or clinical decision 
support tools integrated with electronic health record systems52. Secondly, although we enhanced the model’s 
interpretability through variable importance and SHAP analysis, the “black box” nature of ensemble models 
may still affect clinicians’ acceptance53. Thirdly, the model requires external validation in independent cohorts 
to better support real-world applications. Addressing these issues is crucial for translating RSF’s predictive 
advantages into meaningful clinical value. Beyond traditional clinicopathological features, emerging evidence 
suggests that genomic alterations may also play an important role in the prognosis of urological cancers. For 
example, recent studies have highlighted the relationship between loss of the Y chromosome (LOY) and tumor 
biology in renal, bladder, and prostate cancers, underscoring the potential of molecular markers in refining risk 
stratification 54. While our current RSF model was developed using readily available SEER clinicopathological 
data, integrating such molecular features in future ML frameworks may further enhance predictive accuracy 
and clinical utility.

Our study has several strengths. First, it is based on a large representative cohort of 22,426 patients, 
which enhances the generalizability of our findings55. Second, strong internal validation and bootstrapping 
techniques are used to support the stability and reliability of our models. Third, we apply several evaluation 
metrics to comprehensively assess model performance. In addition to model performance, we also investigated 
interpretability by using SHAP analysis. The SHAP results highlighted Age, pM, pT, and pN as the most 
influential predictors, which is in line with clinical experience. This enhances the transparency of the RSF model 
and may facilitate its potential clinical uptake. Nonetheless, some limitations should be recognized. One major 
limitation is the long enrollment period (2004–2019), during which changes in clinical practice, staging criteria, 
and treatment strategies may have occurred. Our RSF model was only evaluated using internal validation within 
the SEER dataset. Although the training–testing split provides a robust approach to assess model stability, 
the lack of external validation in an independent, contemporary cohort inevitably limits the generalizability 
and clinical applicability of the model. External validation in prospectively collected, multicenter cohorts is 
essential to confirm the reproducibility and robustness of our findings before the model can be adopted in real-
world clinical decision-making. Miscoding (e.g., N2/M2, Nx/Mx, or AJCC edition harmonization) is a known 
issue in SEER and other registry datasets. Although our recoding minimized inconsistencies, some degree of 
misclassification bias cannot be excluded. Given the small number of affected cases, the overall impact is likely 
negligible, but this remains a general limitation of registry-based studies. Future studies using prospectively 
curated, multicenter datasets will be needed to confirm the reproducibility of our results without reliance on 
such data corrections. In addition, the SEER database lacks information about individual surgeons’ experience 
or technical details, making it impossible to directly assess ‘technical proficiency’. Another limitation concerns 
the choice of OS as the endpoint. OS includes both cancer-related and non-cancer-related deaths. Given 
the relatively favorable prognosis of cT1b RCC, competing risks such as cardiovascular mortality may have 
influenced the observed outcomes. Although cancer-specific survival (CSS) or cause-specific survival would 

Scientific Reports |        2025 15:38366 11| https://doi.org/10.1038/s41598-025-22342-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


provide a more precise oncological endpoint, we relied on OS because it is consistently available and less prone 
to misclassification in the SEER database. Nevertheless, future studies incorporating competing risk models or 
validated cause-specific endpoints are warranted to further refine prognostic accuracy. Finally, some potentially 
relevant clinical variables, such as comorbidities, physical status, and molecular markers, were not available in 
the dataset and may have further improved model performance had they been included.

Conclusions
Our study emphasizes the value of applying machine learning methods to enhance OS prediction in postoperative 
cT1b RCC patients. In particular, the RSF model provides greater accuracy and clinical utility compared with 
traditional AJCC staging and holds promise for improving individualized risk stratification and clinical decision-
making. Future studies should focus on external validation and model improvement, as well as other variables 
such as comorbidity indices and genomic data.

Data availability
All data utilized for this analysis were obtained from the SEER database. The analysis code was derived from 
DecisionLinnc 1.0 software with built-in Python and R.
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