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Accurate survival prediction is essential for guiding follow-up strategies in patients with cT1b renal
cell carcinoma (RCC). Traditional AJCCTNM staging systems provide limited prognostic accuracy. Data
from the SEER database were used, which included 22,426 patients with cT1b RCC who underwent
surgical resection. The data were randomized into training and validation sets in a 7:3 ratioen, suring
comparability using standardized mean differences (SMD <0.1). A random survival forest (RSF)

model was developed and compared with support vector machine (SVM) and extreme gradient
boosting accelerated failure time (XGB-AFT) models. Model performance was assessed using AUC,
sensitivity, specificity, and calibration, with 1000 bootstrap resamples. Shapley additive explanation
(SHAP) values were calculated to explore variable importance and enhance interpretability. The

RSF model achieved the highest discrimination for predicting 5- and 10-year overall survival (AUC:
0.746 and 0.742), outperforming AJCCTNM (AUC: 0.663 and 0.627), SVM, and XGB-AFT. The model
demonstrated good calibration and clinical net benefit. SHAP analysis identified age, tumor size,
grade, and marital status as the top contributors to survival prediction. The RSF model significantly
improves survival prediction over conventional staging systems and other machine learning methods,
with enhanced interpretability through SHAP analysis. While the lack of external validation and the
use of overall survival (including non-cancer deaths) are limitations, the model shows strong potential
for clinical implementation and may facilitate individualized follow-up planning. Future studies should
validate the model prospectively and explore integration into clinical decision support systems.
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Renal cell carcinoma (RCC) is the most common renal malignancy, accounting for over 85% of all kidney cancer
cases'. With the widespread use of imaging techniques, an increasing number of patients are being diagnosed at
an early stage, particularly in cases of localized renal cancer at the cT1 stage®>. The recent emergence of targeted
and immunological therapies has provided new hope for RCC treatment; however, surgery remains the first-line
approach*. Radical nephrectomy (RN) and partial nephrectomy (PN) are widely recognized as the primary
and effective treatment options for these patients’.

As laparoscopic and robotic surgical techniques continue to mature and clinical experience grows, the
indications for PN are gradually expanding in clinical practice®®. Numerous studies have compared the
prognostic outcomes of these two surgical approaches across different populations. The results suggest that PN
maximizes renal function preservation while ensuring tumor control in certain patients, thereby improving
long-term survival'®-!2. However, most studies have focused on the selection of surgical modality, while research
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on individual differences in postoperative overall survival and predictive models for patients undergoing surgical
resection remains limited.

Although most cT1b stage patients who underwent surgery had a better prognosis'®, their postoperative
overall survival (OS) still exhibited significant individual variability, indicating that risk assessment based
solely on TNM staging may have limitations'*!°. In recent years, machine learning, a key branch of artificial
intelligence, has demonstrated significant potential in medicine, particularly in tumor prognosis prediction'.
Machine learning has demonstrated strong predictive performance in neuroscience datasets, highlighting its
potential to extract clinically meaningful patterns from large and heterogeneous sources of data!”!®. Within
urology, ML approaches have been applied to risk stratification and outcome prediction, providing novel tools
to complement traditional staging systems!®. Furthermore, ML has been increasingly utilized in oncology to
improve prognostic modeling and survival prediction, underscoring its relevance across different cancer types?.

This study focuses on patients with stage cT1b RCC who have undergone surgical resection and develops
a machine learning model by integrating relevant feature variables from the Surveillance, Epidemiology, and
End Results (SEER) database. The aim is to predict patients’ overall postoperative survival and identify the best-
performing models for clinical application.

Methods

Study population

We retrieved data from SEER Research Plus Data, 17 Registries, Nov 2023 Sub (2000-2021) using SEER*Stat
software (Beta 9.0.31). By condition setting, we collected data related to patients with renal cell carcinoma whose
tumor size was >40 mm but <70 mm between 2004 and 2019 (Clinical T staging). Finally, 22,426 patients with
RCC at stage cT1b were included in this study. We randomly split the dataset into a training set and a validation
set at a 7:3 ratio. This proportion is commonly used in machine learning applications to ensure sufficient data
for model training while retaining an adequate portion for performance evaluation and preventing overfitting.
16 variables were initially included in this study, including age, sex, race, marital status, urban-rural residence,
household income, laterality, tumor size, type of surgery, pathological grading, pT, pN, pM, histological subtype,
number of lymph nodes examined, and number of positive lymph nodes. The detailed data extraction and
processing flow of this study is shown in Fig. 1.

Inclusion criteria were as follows: (1) diagnosis of renal cancer by site code ICD-O-3/WHO 2008 (kidney
and renal pelvis); (2) Primary Site labeled (C64.9) identifying the lesion as “renal”; (3) A complete RN (codes
40, 50, 70, 80) or PN (code 30) surgical record is available; (4) Confirmation of positive histology for complete
pathology; (5) Histologic subtypes consistent with renal cell carcinoma, including clear cell (code 8310), smoky
cell (codes 8270, 8317), stromal cell (codes 8050, 8260), and not otherwise specified RCC (nosRCC) (codes 8010,
8140, 8312).

Exclusion criteria were as follows: (1) tumor size non-cT1b or unknown; (2) unclear pathologic grading;
(3) presence of multiple concurrent tumors that were not of a single primary tumor; (4) unknown pathologic
staging; (5) histologic subtypes that did not fit into the category of renal cell carcinoma; (6) patients who died
within 1 month; (7) follow-up data that were incomplete or estimated; (8) age < 18 years; (9) race, marital status,
laterality, urban-rural residence, and household income were unknown.

Variable consolidation and recoding

Due to the different years of the SEER database, some variables were coded inconsistently. To ensure the rigor
of the study, we hereby integrate and recode the variables in this study based on previous studies and existing
clinical experience. First, since our data span the years 2004-2019, three versions of the staging criteria exist.
Therefore, we recorded 2004-2015 (6th edition) and 2016-2017 (7th edition) to uniformly use the American
Joint Committee on Cancer(AJCC) 8th edition tumor staging. Second, we used ‘Regional_nodes_positive_1988
to correct NX and N2 to avoid the deletion of available variables due to recording errors. Direct deletion of
Mx, caused by the limitations of early imaging techniques, may lead to underestimation of true stage IV cases.
Therefore, we also adjusted for Mx using the CS locus. For N2 and M2, which remain after correction, RCC
does not include these stages. We therefore regarded them as recording bias and reclassified them as N1 and
MI. The number of such cases was extremely low (N2: 199 cases, M2: 147 cases, each <0.1% of the cohort), and
we therefore believe that this recoding has a negligible influence on the overall findings. Similarly, NA, Tx, Nx,
and Mx, which remained after correction, we deleted the relevant variables because they were not reliable. In
cycles 2016-2017, partial clinical staging of N was reported. Based on clinical practice, lymph node dissection
is generally not required for patients with ¢T1b RCC. Therefore, we utilized ‘Rx Summ_Scope_Reg_LN_Sur’
for identification. A true pNO was assumed if no lymph node clearance was performed, and a pNO was also
confirmed if no positive lymph nodes were present after clearance. In addition, marital and Household income
were recorded accordingly for integration. Due to limitations of the SEER database, surgical techniques such
as open, laparoscopic, or robotic-assisted approaches were not distinguishable. Therefore, we analyzed surgical
type based on partial versus radical nephrectomy only.

Screening of characteristic variables

Spearman’s method was used to analyze the correlation between the 16 variables initially included in the study,
which is presented in the form of a correlation heat map. A correlation coefficient with an absolute value less than
0.5 indicates a weak correlation, + 1 indicates a perfect positive correlation, and -1 indicates a perfect negative
correlation. For subsequent machine learning model construction, we used the Least Absolute Shrinkage and
Selection Operator (LASSO) regression analysis, Boruta’s algorithm, and univariate Cox’s analysis to screen the
feature variables. Lasso regression analysis can assign penalty coefficients to the above variables, which can
effectively reduce the possibility of overfitting. We used the optimal lambda value (1se), set the number 100,
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g. 1. Flowchart of the extraction and processing of research data.

and took a tenfold cross-validation. Boruta is based on the Random Forest algorithm, which is evaluated by
assigning a randomly generated true Z-score to the feature and a corresponding Z-score to the “shadow”; if the
true Z-score is greater than the maximum Z-score across multiple test samples, then this variable will be filtered
out. Variables with P <0.05 were considered to significantly influence the outcome and were screened out in the
conventional one-way COX analysis. The same variables obtained through the three methods described above
were included in a multifactor COX analysis to determine the final model. Finally, the screened characteristic
variables were examined using the multiple covariance screening method.

Description of machine learning algorithms

Machine learning methods have demonstrated remarkable capabilities in handling high-dimensional, nonlinear,
and heterogeneous data across diverse biomedical fields!”?!. These findings highlight the generalizability and
robustness of DL techniques in complex prediction tasks, thereby supporting their application in prognostic
modeling for clinical oncology. XGBoost-Accelerated Failure Time (XGB-AFT) Survival is based on the
combination of the XGBoost framework and the AFT model. XGBoost optimizes the loss function of AFT
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by gradient-boosting trees while using regularization to prevent overfitting?2. Support Vector Machine (SVM)
Survival Analysis is an extension of SVM, modeled by Ranking Loss or survival time quantile regression?.
Hinge Loss is commonly used to maximize the interval between event times?*. Random Forest Survival (RSF)
is an extension to survival analysis based on RE where nodes are partitioned by Cox partial likelihood or log-
rank statistics®®. Survival curves are generated for each tree, and the results from multiple trees are eventually
summarized. The risk of overfitting can be reduced by feature subset selection.

Machine learning model construction and validation

The key risk factors affecting the overall survival of patients with cT1b renal cell carcinoma were identified by
applying the Botuta algorithm, LASSO regression, and the univariate COX, and their 11 intersections were
selected through a Venn diagram. The screened characteristic variables were tested using the multicollinearity
screening method. A variance inflation factor (VIF) <5 was considered to be the absence of multicollinearity
between variables.

OS was the endpoint of interest in this study. It was calculated from diagnosis to date of all-cause death or
last follow-up. The number of feature variables included in the machine learning predictive model was 11, and
the number of positive events in this study was much greater than 10 times the number of feature variables,
consistent with following the Harrell guidelines?. Three machine learning survival algorithms, XGB-AFT, RSE,
and SVM, were used to build a prediction model for overall survival. The training set was used to select the
optimal model, and the test set was used for model testing. The best models were evaluated considering specific
follow-up 5-year OS and 10-year OS, including time-specific area under the operating curve (AUC), specificity,
sensitivity, negative predictive value (NPV), and positive predictive value (PPV). Decision Curve Analysis
(DCA), the Net Reclassification Improvement Index (NRI), and the Integrated Discriminant Improvement
Index (IDI) were used to assess the clinical benefit and utility of the optimal model compared to tumor staging
based on AJCC criteria alone.

The metric NRI is more widely used to compare the accuracy of two predictive models, and IDI reflects
the change in the gap between the predictive probabilities of the two models, with an improvement in NRI or
IDI>0 indicating that the new model has improved predictive ability over the old model?”?%. The best model
was compared with risk stratification for tumor staging based on AJCC criteria using the Kaplan-Meier method.
Thresholds for risk stratification were selected using optimal thresholds.

Statistical analysis

Student t-test or Mann-Whitney U-test was utilized to compare quantitative data, while Fisher’s exact test or
chi-square test was used to compare qualitative data. Continuous variables are expressed as mean + standard
deviation (SD), while categorical variables are expressed as total (n) and percentage (%).To assess baseline
balance between the training and test sets, we reported not only conventional p-values but also standardised
mean differences (SMD). SMD <0.1 was generally considered indicative of good balance?. Statistical analyses
for this study were performed using Python (version 3.9.12), R software (version 4.4.1)*, and DecisionLnncl.0
software®!. Statistical significance was determined by two-tailed p-values less than 0.05.

Results

Basic characteristics of the study population

A total of 22,426 cases of cT1b renal cell carcinoma after undergoing surgical resection were enrolled and
randomized into a training and validation cohort in a 7:3 ratio. It should be noted that age and T stage achieved
statistical significance. However, the SMD for all variables in both the training and test sets was less than 0.1,
indicating baseline balance?. Consequently, we consider no significant differences in demographic or clinical
characteristics to have been observed between the training and test cohorts. Table 1 demonstrates the baseline
characteristics of this study.

Correlation analysis and variable screening

Correlations between the 16 variables initially included in the study were analyzed using the Spellman method
(Fig. 2A). Univariate Cox regression analysis revealed 12 variables significantly associated with OS (Table 2).
In the LASSO regression, a total of 11 variables were identified as significant influences on OS by setting the
caliper value to—3.798, a value of A at which a total of 11 variables were identified as significant influences on OS
(Fig. 2B, C). Boruta’s algorithm showed the Z-score of each variable, picking out the most relevant features to OS
(Fig. 2D). The intersection of the 3 methods was taken by plotting a Wayne diagram, resulting in 11 significant
feature variables (Fig. 2E). Subsequently, we included these variables in a multivariate COX regression analysis
to observe OS under the influence of follow-up time. The results showed that age, tumor size, marital status,
household income, type of surgery, pathological grading, T, N, M, histological subtype, and number of positive
lymph nodes emerged as significant independent risk factors affecting OS after surgical resection of cT1b stage
RCC patients. To further ensure the stability needed for subsequent modeling, we performed a multicollinearity
analysis. The results showed that there was no significant multicollinearity among the screened characteristic
variables (Table 3).

Building and evaluating three machine learning models for survival analysis

We use 11 features identified through screening as independent factors and take three machine learning
algorithms for survival analysis, SVM, XGB-AFT, and RSE, to fit the model. To select the best model, AUC,
Best Threshold, Specificity, Sensitivity, NPV, and PPV of the three machine learning algorithm models were
generated using the 1000 Bootstrap method (Table 4). The results show that SVM has poor metrics and is
not recommended. The RSF model has the highest AUC (Supplementary Fig. 1), indicating strong overall
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Variables Overall (n=22,426) | Training set (n=15,698) | Test set (n=6728) | p-value | SMD
Age, years® 60.73+£12.46 60.59+12.48 61.04+12.40 0.013 -0.04
Tumor size, mm* 54.40+8.57 54.40+8.53 54.39+8.67 0.949 0.00
Sex, n (%)* 0.747 0.00
Male 14,214 (63.38) 9939 (63.31) 4275 (63.54)
Female 8212 (36.62) 5759 (36.69) 2453 (36.46)
Marital, n (%)? 0.760 0.02
Married 14,367 (64.06) 10,072 (64.16) 4295 (63.84)
Single/unmarried 3565 (15.90) 2508 (15.98) 1057 (15.71)
Separation/divorce 2554 (11.39) 1768 (11.26) 786 (11.68)
Others 1940 (8.65) 1350 (8.60) 590 (8.77)
Household income, n (%)? 0.919 0.01
<$54,999 4331 (19.31) 3021 (19.24) 1310 (19.47)
$55,000-$74,999 10,131 (45.18) 7094 (45.19) 3037 (45.14)
>$75,000 7964 (35.51) 5583 (35.57) 2381 (35.39)
Type of surgery, n (%)* 0.57 0.01
PN 4780 (21.31) 3330 (21.21) 1450 (21.55)
RN 17,646 (78.69) 12,368 (78.79) 5278 (78.45)
Grade, n (%)?* 0.474 0.02
I 2109 (9.40) 1508 (9.61) 601 (8.93)
I 11,595 (51.70) 8098 (51.59) 3497 (51.98)
il 7139 (31.83) 4987 (31.77) 2152 (31.99)
v 1583 (7.06) 1105 (7.04) 478 (7.10)
pT, n (%)* 0.025 0.05
pT1b 17,268 (77) 12,146 (77.37) 5122 (76.13)
PT3a 3480 (15.52) 2411 (15.36) 1069 (15.89)
pT3b 1549 (6.91) 1054 (6.71) 495 (7.36)
pT3c 50 (0.22) 40 (0.25) 10 (0.15)
pT4 79 (0.35) 47 (0.30) 32(0.48)
pN, n (%)? 0.914 0.00
pNO 21,830 (97.34) 15,282 (97.35) 6548 (97.32)
pN1 596 (2.66) 416 (2.65) 180 (2.68)
pM, n (%)? 0.448 0.01
pMO 21,317 (95.05) 14,933 (95.13) 6384 (94.89)
pM1 1,109 (4.95) 765 (4.87) 344 (5.11)
Histological subtypes, n (%)* 0.885 0.01
ccRCC 15,659 (69.83) 10,982 (69.96) 4677 (69.52)
pRCC 2396 (10.68) 1663 (10.59) 733 (10.89)
chRCC 926 (4.13) 650 (4.14) 276 (4.10)
nosRCC 3445 (15.36) 2403 (15.31) 1042 (15.49)
Regional nodes positive, n (%)* 0.887 0.00
No 22,015 (98.17) 15,409 (98.16) 6606 (98.19)
Yes 411 (1.83) 289 (1.84) 122 (1.81)
Race, n (%) 0.978 0.00
Black 2203 (9.82) 1545 (9.84) 658 (9.78)
White 18,675 (83.27) 13,067 (83.24) 5608 (83.35)
Other 1548 (6.90) 1086 (6.92) 462 (6.87)
Urban-rural residence, n (%) 0.295 0.03
Counties in metropolitan areas of < 250 thousand people 1937 (8.64) 1334 (8.50) 603 (8.96)
Counties in metropolitan areas of 250,000-1 million people 4912 (21.90) 3439 (21.91) 1473 (21.89)
Counties in metropolitan areas > 1 million pop 12,396 (55.28) 8654 (55.13) 3742 (55.62)
Nonmetropolitan counties adjacent to a metropolitan area 1793 (8) 1290 (8.22) 503 (7.48)
Nonmetropolitan counties not adjacent to a metropolitan area | 1388 (6.19) 981 (6.25) 407 (6.05)
Laterality, n (%) 0.979 0.00
Left side 11,106 (49.52) 7775 (49.53) 3331 (49.51)
Right side 11,320 (50.48) 7923 (50.47) 3397 (50.49)
Regional node examined, n (p%) 0.169 0.02
Continued
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Variables

Overall (n=22,426) | Training set (n=15,698) | Test set (n=6728) | p-value | SMD

No

19,900 (88.74) 13,900 (88.55) 6000 (89.18)

Yes

2526 (11.26) 1798 (11.45) 728 (10.82)

Table 1. Demographic and clinical characteristics of the entire cohort according to the training and test

sets. *Characterization variables ultimately included. Continuous variables are expressed as mean + standard
deviation; categorical variables are expressed as n (%). PN: partial nephrectomy; RN: radical nephrectomy;
ccRCC: clear cell renal cell carcinoma; pRCC: papillary renal cell carcinoma; chRCC: chromophobe renal cell
carcinoma; nosRCC: not otherwise specified renal cell carcinoma. All patients were clinically staged as cT1b
at diagnosis. The distribution of T stage shown here reflects postoperative pathological staging, where some
patients were upstaged (e.g., to pT3 or pT4).

R B Lasso Regression Lambda and Coefficients Plot

LogLambda_min=-6.03 LogLambda_tse=-3.708 I

Fig. 2. Correlation of feature variables and feature selection process in machine learning survival prediction
models. (A) Heat map of the Spearman correlation matrix of the characteristic variables. The color shade
indicates the strength of the correlation. The size of the circle indicates the strength of the correlation. The
asterisk indicates the significance level of the correlation. (B) LASSO regression paths show the coeflicients
of the variables at different values of the regularization parameter (\). (C) Cross-validation error map for
selecting the optimal A in LASSO. The vertical dashed line indicates the optimal A for realizing the cross-
validation error. (D) Importance of variables based on Boruta’s algorithm, where attributes are categorized
as “confirmed” (red) and “rejected” (brown). (E) Venn diagrams compare the variables selected by the three
different methods, showing the overlap of the selected variables.

discriminative ability. NPV was significantly better than other models (0.910 for 5-year OS and 0.856 for 10-year
OS) and reliably predicted negative results. Specificity and sensitivity were well-balanced (no extreme values).
Therefore, the RSF model was considered the best model in this study. Subsequently, the calibration curves of
the RSF model in the validation set (Supplementary Fig. 2) were analyzed and aligned with the vicinity of the 45°
diagonal, indicating its excellent calibration performance.

Predictive effect and clinical value of the RSF model compared to tumor staging based on
AJCCcriteria

Figure 3 shows the predictive effect of OS assessed by the RSF model and tumor staging based on AJCC criteria
alone. The results showed that the predictive effect of the RSF model was significantly superior. Changes in NRI
and IDI were used to compare the accuracy between the RSF model and tumor staging based on AJCC criteria
alone (Supplementary Table 1). When RSF was used in the training set, the NRI for 5- and 10-year OS was 0.269
(95% CI=0.249-0.293) and 0.331 (95% CI=0.306-0.351), respectively, and the IDI values for 5- and 10-year
OS were 0.066 (95% CI=0.058-0.075) and 0.126 (95% CI=0.115-0.138). These results were validated in the
validation cohort, suggesting that RSF predicts prognosis more accurately than tumor staging based on AJCC
criteria.
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Characteristics Number (%) | Hazard ratio (HR) | Lower_95 | Upper_95 | P-value
Age* 60.73 (12.46) | 1.053 1.05 1.055 <0.001
Histological_subtypes*

ccRCC 15,659 (69.8)

pRCC 2396 (10.7) 0.991 0.912 1.078 0.836
chRCC 926 (4.1) 0.504 0.429 0.593 <0.001
nosRCC 3445 (15.4) 1.218 1.145 1.297 <0.001
Household_income*

<$54,999 4331 (19.3)

$55,000-$74,999 10,131 (45.2) | 0.872 0.817 0.93 <0.001
>$75,000 7964 (35.5) 0.816 0.762 0.874 <0.001
Laterality

Left side 11,106 (49.5)

Right side 11,320 (50.5) | 0.98 0.933 1.03 0.423
pM*

pMO 21,317 (95.1)

pM1 1109 (4.9) 7.163 6.660 7.704 <0.001
Marital*

Married 14,367 (64.1)

Single/unmarried 3565 (15.9) 1.025 0.953 1.103 0.508
Separation/divorce 2554 (11.4) 1.189 1.1 1.286 <0.001
Others 1940 (8.7) 1.965 1.824 2.117 <0.001
pN*

pNO 21,830 (97.3)

pN1 596 (2.7) 6.783 6.175 7.451 <0.001
Grade*

I 2109 (9.4)

I 11,595 (51.7) | 1.045 0.951 1.149 0.358
I 7139 (31.8) 1.585 1.44 1.745 <0.001
v 1583 (7.1) 3.513 3.141 3.928 <0.001
Race

Black 2203 (9.8)

White 18,675 (83.3) | 0.959 0.884 1.042 0.323
Other 1548 (6.9) 0.847 0.746 0.961 0.01
Regional_nodes_examined*

No 19,900 (88.7)

Yes 2526 (11.3) 1.602 1.496 1.715 <0.001
Regional_nodes_positive*

No 22,015 (98.2)

Yes 411 (1.8) 6.33 5.652 7.088 <0.001
Sex*

Male 14,214 (63.4)

Female 8212 (36.6) 0.856 0.813 0.902 <0.001
pT*

pTlb 17,268 (77.0)

pT3a 3480 (15.5) 2.006 1.881 2.14 <0.001
pT3b 1549 (6.9) 2.611 2.426 2.81 <0.001
pT3c 50 (0.2) 3.556 2.468 5.125 <0.001
pT4 79 (0.4) 8.346 6.465 10.775 <0.001
Tumor_size* 54.40 (8.57) | 1.021 1.018 1.024 <0.001
Types_of_Surgery*

PN 4780 (21.3)

RN 17,646 (78.7) | 1.846 1.707 1.995 <0.001
Urban_rural_residence

Counties in metropolitan areas of < 250 thousand people 1937 (8.6)

Counties in metropolitan areas of 250,000 ~ 1 million people | 4912 (21.9) | 0.925 0.838 1.02 0.118
Counties in metropolitan areas> 1 million pop 12,396 (55.3) | 0.907 0.83 0.991 0.032
Continued
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Characteristics Number (%) | Hazard ratio (HR) | Lower_95 | Upper_95 | P-value
Nonmetropolitan counties adjacent to a metropolitan area 1793 (8.0) 1.019 0.906 1.146 0.756
Nonmetropolitan counties not adjacent to a metropolitan area | 1388 (6.2) 1.129 0.996 1.279 0.057

Table 2. Univariate COX regression analysis of overall survival in patients with cT1b renal cancer. PN,
Partial nephrectomy; RN, Radical nephrectomy; ccRCC, Clear cell renal cell carcinoma; pRCC, Papillary
renal cell carcinoma; chRCC, Chromophobe renal cell carcinoma; nosRCC, Not otherwise specified renal cell
carcinoma. *Characterization variables ultimately included.

Variable name VIF Df | VIFA(1/(2*Df))
Age 1.161856 | 1 1.077894
Sex 1.1285 1 1.062309
Marital 1.26055 |3 1.039346
Household_income 1.015113 | 2 | 1.003757
Types_of_Surgery 1.07478 |1 | 1.036716
Tumor_size 1.084875 | 1 1.041573
Pathological_grade_sort | 1.186035 | 3 1.028844
pT 1.299966 | 4 1.033336
pN 3.332653 | 1 1.825556
PM 1.360434 | 1 1.166376
Histological_subtypes 1.078635 | 3 | 1.012696

Table 3. Multicollinearity assessment among independent variables. Variance inflation factor (VIF).

5-year OS 10-year OS
Indicators (95% CI) | RSF SVM XGB-AFT RSF SVM XGB-AFT
AUC 0.746 (0.735-0.757) | 0.507 (0.495-0.519) | 0.738 (0.727-0.749) | 0.742 (0.733-0.751) | 0.507 (0.496-0.517) | 0.696 (0.686-0.705)
Best threshold 0.780 (0.676-0.873) | 0.693 (0.236-0.789) | 0.670 (0.572-0.782) | 0.780 (0.704-0.845) | 0.691 (0.187-0.836) | 0.653 (0.516-0.778)
Specificity 0.676 (0.615-0.805) | 0.236 (0.100-0.607) | 0.782 (0.733-0.848) | 0.704 (0.640-0.790) | 0.187 (0.101-0.690) | 0.778 (0.748-0.842)

Sensitivity

0.673 (0.541-0.732) | 0.789 (0.419-0.928) 0.645 (0.556-0.712) | 0.836 (0.337-0.923) | 0.516 (0.449-0.550)

NPV

0.910 (0.896-0.918) | 0.848 (0.840-0.877) | 0.900 (0.893-0.907) | 0.856 (0.842-0.870) | 0.775 (0.759-0.804) | 0.828 (0.820-0.834)
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0.297 (0.278-0.364) | 0.172 (0.170-0.177) | 0.349 (0.320-0.407) | 0.420 (0.393-0.473) | 0.253 (0.252-0.261) | 0.436 (0.417-0.489)

Table 4. Evaluation metrics for different machine learning models. CI, Confidence interval; AUC, Area under
the operating curve; NPV, Negative predictive value; PPV, Positive predictive value. Set up 1000 Bootstrap
sessions to observe the modeled effects of 5- and 10-year OS.

Figure 4 shows the clinical benefits of RSF and tumor staging alone based on AJCC criteria for assessing OS.
The results of the DCA curves show (Fig. 4A-D) that RSF outperforms the net gain obtained from tumor staging
based on AJCC criteria for no treatment regimen as well as for all patient treatment regimens and almost all
threshold probabilities, for both the training and test sets. Thus, RSF was able to better predict 5-year OS and 10-
year OS after surgical resection in patients with cT1b stage RCC. Furthermore, the visualization results of NRI
and IDI clearly showed that the RSF model gained a large portion of improvement (Fig. 4E-H).

RSF model and risk stratification for tumor staging based on AJCC criteria

The optimal model RSE, as well as the AJCC criteria-based tumor staging, yielded risk scores regarding their
respective OS, and we stratified the OS risk scores using the optimal cutoff value to obtain a low-risk group and a
high-risk group. The Kaplan-Meier curves showed a large differentiation between the two risk groups, exceeding
the AJCC criteria-based tumor staging’s ability to predict, in both the training and the validation cohorts, the
OS (Supplementary Fig. 3).

RSF model interpretability

To improve clinical interpretability of the RSF model, we applied Shapley Additive Explanations (SHAP) analysis
to quantify the contribution of each predictor. The SHAP summary plot (Supplementary Fig. 4) shows that Age,
pPM, pT, and pN had the largest influence on survival prediction, consistent with established clinical knowledge.
Other factors, such as the type of surgery and household income, also contributed, but to a lesser extent. These
findings provide additional transparency to the RSF model and reinforce its clinical plausibility.
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Fig. 3. Model effects of RSF and AJCC criteria-based tumor staging in predicting 5-year OS and 10-year OS
after surgical resection in patients with cT1b stage RCC. The subject work characteristics (ROC) curves for the
training and test sets illustrate the discriminative power of the two predictive models and show the area under
the curve (AUC) values for the ROC curves of the two models (A-D). Calibration curves for the training and
test sets illustrate the accuracy of the predictive ability of the two models (E-H).

Temporal subgroup analysis of the RSF model

To examine whether our model was robust across different TNM staging versions and periods, we performed a
temporal subgroup analysis by stratifying the cohort into 2004-2015 and 2016-2019 groups. The RSF model was
retrained within each subgroup using the same 11 selected variables.

As shown in Supplementary Fig. 5, the model yielded comparable predictive performance in both subgroups,
with AUCs of 0.743 and 0.742 in the earlier group and 0.745 and 0.746 in the later group for predicting 5-year and
10-year OS, respectively. Although PPV was lower in the 2016-2019 group, this is likely due to the shorter follow-
up and lower event rate. NPV remained high (>0.95), and overall discrimination was stable (Supplementary
Table 2). These results support the temporal robustness and generalizability of the RSF model.
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Fig. 4. Clinical benefit and model-improving ability of RSF and AJCC criteria-based tumor staging in
predicting 5-year OS and 10-year OS after surgical resection in patients with cT1b stage RCC. The DCA curves
show the net benefit of each model at various threshold probabilities, comparing them to the “Treat All” and
“Treat None” strategies, indicating their potential clinical utility (A-D). The maple leaf plot demonstrates

the improvement in the predictive power of RSF relative to tumor staging based on AJCC criteria, with red
representing improvement (E-H).

Discussion

As early detection of renal tumors increases, especially for cT1b stage RCC, surgical resection remains the
cornerstone of treatment, whether through RN or PN32-%%, As highlighted in previous studies, conventional risk
stratification methods based solely on TNM staging may not fully capture patient-specific variables in RCC3>%.
Additionally, the prognosis of patients with cT1b RCC after surgical treatment is generally favorable, but highly
heterogeneous®*®. Previous studies report that the 5-year OS rate for patients with cT1b RCC undergoing
nephrectomy ranges from 80 to 90%, depending on various clinicopathologic factors, including tumor size,
grade, histologic subtype, and patient comorbidities***?. Although PN is increasingly preferred for better renal
function preservation and comparable oncologic outcomes, several studies suggest that PN may not always
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lead to better OS in cT1b tumors, particularly in elderly or high-risk patients?!=*3. These unresolved clinical
dilemmas highlight the need for better risk stratification tools that go beyond tumor staging to incorporate
patient-specific factors. Importantly, our study differs from many previous studies that primarily focused on
comparing surgical approaches (PN vs. RN)*. Instead, we focus on the survival heterogeneity in patients who
have already undergone surgery and highlight the current clinical need for accurate post-treatment prognostic
assessment tools.

In this study, we developed and validated machine learning-based models to predict OS after surgical
resection in patients with cT1b stage RCC using a large population-based dataset. To identify the most critical
risk factors, univariate Cox regression, LASSO regression, and the Boruta algorithm were applied, with Venn
diagrams used to obtain common results. The results showed that age, tumor size, marital status, household
income, type of surgery, pathological grading, T, N, M, histological subtype, and number of positive lymph
nodes emerged as significant independent risk factors affecting OS after surgical resection of cT1b stage RCC
patients. These variables reflect not only tumor-related biological behaviors but also social determinants of
health, emphasizing the complex and multifactorial nature of patients’ postoperative prognosis. It suggests that
clinicians should take care to document these metrics to comprehensively assess OS after surgical resection in
patients with cT1b stage RCC. Subsequently, we utilized these characteristic variables to construct predictive
models using three machine learning algorithms. By comprehensively evaluating the performance of the models,
we identified RSF as the optimal model. On this basis, we further compared with the AJCC standard tumor
staging for predicting OS, confirming that our model, constructed by incorporating the above variables, has
improvement and good clinical decision-making ability, increasing the credibility of the study results.

In the present study, the RSF model yielded an AUC of 0.746 and 0.742 for predicting 5- and 10-year OS,
respectively. These values indicate moderate discrimination, comparable to previous studies applying machine
learning for survival prediction in renal cell carcinoma, which typically reported AUC ranging from 0.70 to 0.80
45-47_ Although such performance may appear limited for direct clinical decision-making, our model consistently
outperformed the AJCC TNM stage across multiple evaluation metrics, including NRI, IDI, and decision curve
analysis, suggesting added clinical utility in risk stratification. To further enhance predictive accuracy, future
models could integrate additional clinical variables such as comorbidity indices, laboratory biomarkers, and
perioperative parameters, which were not available in SEER*®. Moreover, ensemble approaches or deep learning
models may capture nonlinear interactions more effectively®. Finally, external validation using contemporary
multicenter cohorts and prospective data collection will be crucial for improving generalizability and ensuring
clinical applicability>®>!.

Although the RSF model demonstrates markedly superior discriminatory power compared to traditional
staging systems, its routine clinical implementation faces several challenges. Firstly, the model’s complex structure
demands significant computational resources, rendering its deployment impractical in all clinical settings.
Consequently, its application is best facilitated through user-friendly online calculators or clinical decision
support tools integrated with electronic health record systems®2. Secondly, although we enhanced the model’s
interpretability through variable importance and SHAP analysis, the “black box” nature of ensemble models
may still affect clinicians’ acceptance®. Thirdly, the model requires external validation in independent cohorts
to better support real-world applications. Addressing these issues is crucial for translating RSF’s predictive
advantages into meaningful clinical value. Beyond traditional clinicopathological features, emerging evidence
suggests that genomic alterations may also play an important role in the prognosis of urological cancers. For
example, recent studies have highlighted the relationship between loss of the Y chromosome (LOY) and tumor
biology in renal, bladder, and prostate cancers, underscoring the potential of molecular markers in refining risk
stratification **. While our current RSF model was developed using readily available SEER clinicopathological
data, integrating such molecular features in future ML frameworks may further enhance predictive accuracy
and clinical utility.

Our study has several strengths. First, it is based on a large representative cohort of 22,426 patients,
which enhances the generalizability of our findings®. Second, strong internal validation and bootstrapping
techniques are used to support the stability and reliability of our models. Third, we apply several evaluation
metrics to comprehensively assess model performance. In addition to model performance, we also investigated
interpretability by using SHAP analysis. The SHAP results highlighted Age, pM, pT, and pN as the most
influential predictors, which is in line with clinical experience. This enhances the transparency of the RSF model
and may facilitate its potential clinical uptake. Nonetheless, some limitations should be recognized. One major
limitation is the long enrollment period (2004-2019), during which changes in clinical practice, staging criteria,
and treatment strategies may have occurred. Our RSF model was only evaluated using internal validation within
the SEER dataset. Although the training-testing split provides a robust approach to assess model stability,
the lack of external validation in an independent, contemporary cohort inevitably limits the generalizability
and clinical applicability of the model. External validation in prospectively collected, multicenter cohorts is
essential to confirm the reproducibility and robustness of our findings before the model can be adopted in real-
world clinical decision-making. Miscoding (e.g., N2/M2, Nx/Mx, or AJCC edition harmonization) is a known
issue in SEER and other registry datasets. Although our recoding minimized inconsistencies, some degree of
misclassification bias cannot be excluded. Given the small number of affected cases, the overall impact is likely
negligible, but this remains a general limitation of registry-based studies. Future studies using prospectively
curated, multicenter datasets will be needed to confirm the reproducibility of our results without reliance on
such data corrections. In addition, the SEER database lacks information about individual surgeons’ experience
or technical details, making it impossible to directly assess ‘technical proficiency’. Another limitation concerns
the choice of OS as the endpoint. OS includes both cancer-related and non-cancer-related deaths. Given
the relatively favorable prognosis of cT1b RCC, competing risks such as cardiovascular mortality may have
influenced the observed outcomes. Although cancer-specific survival (CSS) or cause-specific survival would
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provide a more precise oncological endpoint, we relied on OS because it is consistently available and less prone
to misclassification in the SEER database. Nevertheless, future studies incorporating competing risk models or
validated cause-specific endpoints are warranted to further refine prognostic accuracy. Finally, some potentially
relevant clinical variables, such as comorbidities, physical status, and molecular markers, were not available in
the dataset and may have further improved model performance had they been included.

Conclusions

Our study emphasizes the value of applying machine learning methods to enhance OS prediction in postoperative
cT1b RCC patients. In particular, the RSF model provides greater accuracy and clinical utility compared with
traditional AJCC staging and holds promise for improving individualized risk stratification and clinical decision-
making. Future studies should focus on external validation and model improvement, as well as other variables
such as comorbidity indices and genomic data.

Data availability
All data utilized for this analysis were obtained from the SEER database. The analysis code was derived from
DecisionLinnc 1.0 software with built-in Python and R.
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