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Targeting LAG3 to alter the tumor
Immune reactivity of CD8+T cells
Is a potential therapy for skin
cutaneous melanoma

Jin Gong™, Yan Zhao, Shaozhi Gong, Chunyu Deng & Yajie Zhou

CD8*T cells exert a significant effect in immune infiltration, drug resistance and cell survival in cancers,
but the roles and mechanisms in skin cutaneous melanoma (SKCM) remain unclear. In the present
study, prognostic biomarkers associated with CD8* T cell subsets were screened, and the significance of
CD8*T cells in SKCM immunotherapy was explored by integrated single-cell RNA sequencing (scRNA-
seq) and Bulk RNA sequencing (Bulk RNA-seq) analyses. Based on scRNA-seq analysis, CD8 +T cells
were divided into two subgroups: CD8 + LAG3 +T cells and CD8 + LAG3-T cells. Cell-cell communication
analysis revealed that both subsets closely interact with melanoma cells. Differential gene expression
analysis showed that LAG3 was up-regulated in SKCM, and immune infiltration analysis showed that
the survival prognosis was significantly better in the Score-High group than in the Score-Low group.
Assay results demonstrated that both the LAG3 inhibitor ZYF0033 and the monoclonal antibody
Miptenalimab significantly suppressed tumor proliferation and metastasis, while enhancingimmune
cell infiltration in murine models. This study revealed the functional heterogeneity of CD8 +T cells

in SKCM and demonstrated that LAG3 inhibition suppresses tumor proliferation and metastasis.
Moreover, reduced LAG3 expression significantly enhanced CD8 +T cell immune infiltration,
highlighting the regulatory role of LAG3 in CD8 +T cell function within the tumor microenvironment.
These findings provided further evidence that SKCM may be effectively treated by targeting LAG3.
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Skin cutaneous melanoma (SKCM) is a malignant tumor that occurs in skin melanocytes, and its incidence
has been gradually increasing in recent years, making it an additional threat to human health!. Patients are
usually diagnosed with SKCM at an advanced stage, resulting in a poor prognostic overall survival (OS) that
varies widely across regions and ethnicities>*. Due to the aggressive and metastatic features of malignant SKCM,
metastasis of cancer cells cannot be prevented even by total excision. Some reports have shown that genomic
profiles are helpful to identify genetic susceptibility genes for SKCM and that the prognosis of SKCM can be
significantly improved by immunotherapy*.

In recent years, immunotherapy has become an emerging research area in anticancer therapy. Immune
checkpoint inhibitors (ICIs), which have been shown to be effective against a variety of solid tumors, exert its
effect mainly through the infiltration of effector T cells into the tumor microenvironment (TME)*>~7, while the
cytotoxic T cell infiltration has been reported to be correlated with the prognosis of SKCM patients®. Thus,
tumor cells can be cleared by activating T cell response to improve patient survival®. CD8" T cells being classical
tumor-reactive T cells play a prominent role in immune infiltration, drug resistance and survival in cancer.
Activated naive CD8* T cells will be differentiated into mature effector CD8* T cells, which can effectively clear
antigens and inhibit infection'!. Mediated by genetic behaviors such as extracellular metabolites and immune
signaling, CD8" T cells further adapt to the changing immune microenvironment to guarantee CD8* T cell-
mediated immunity'% In addition, several studies have suggested that the extent of CD8 + T cell infiltration
is associated with alterations in gene expression, which may influence the metastatic potential of SKCM!>14,
Therefore, an in-depth study of the effects and mechanisms of CD8" T cells in SKCM is essential for the clinical
outcome of patients.
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In response to sustained tumor antigen stimulation, expression of cytotoxic T lymphocyte antigen-4 (CTLA-
4) and lymphocyte activation gene 3 (LAG3), which have been reported to be associated with the immune
response to SKCM, is elevated on activated CD8" T cells. CTLA-4 (Ipilimumab), a targeted drug earlier approved
by the Food and Drug Administration (FDA) for immunotherapy in SKCM, blocks T cell activation signaling
by competitively binding to CD28'>. Unlike the mechanism of CTLA-4, LAG3 can inhibit T cell activation by
reducing signaling through the T cell receptor (TCR)!®. On activated CD8" T cells, LAG3 expression causes T cell
dysfunction and inhibits the proliferation of activated T cells'’. Although LAG3 (Relatlimab) has been approved
by the FDA as an ICIs for the treatment of malignant SKCM in May 2022, insights into the immunomodulation
of LAG3 on CD8* T cells in SKCM are still of research significance.

A study by Yan Min et al. has revealed the functional heterogeneity of T cells in SKCM using single-cell
RNA sequencing (scRNA-seq). The association of T cell infiltration with prognostic survival was assessed by
constructing tumor-reactive T cell signatures (TRS) to observe the ability of TRS to predict immunotherapy
in SKCM patients'®. In the present study, CD8" T cell subsets with heterogeneity of LAG3 expression in
SKCM were identified, CD8" LAG3™ T cell-related prognostic biomarkers were screened, and immunotherapy
responsiveness were predicted by comprehensive analysis of scRNA-seq and Bulk RNA sequencing (Bulk RNA-
seq) data.

Data and methods

Data sources

The SKCM scRNA-seq data were selected from the GSE215120 dataset in the Gene Expression Omnibus (GEO),
of which three SKCM samples (GSM6622299, GSM 6622300, GSM6622301) were selected for data analysis. The
TCGA-SKCM data from The Cancer Genome Atlas (TCGA) was selected as the training set for Bulk RNA-
seq, and only the samples with OS were retained, totaling 447 cancer samples. 556 normal tissue samples
were obtained from Genotype-Tissue Expression (GTEx). The validation sets were selected from two datasets
GSE54467 and GSE65904 from GEO, including 79 and 210 SKCM samples, respectively.

scRNA-seq

The scRNA-seq dataset of 3 SKCM samples from GSE215120 was preprocessed using the R package Seurat
(v4.1.0). Three samples were merged and batch effect correction was performed using CCA to eliminate invalid
cells and genes. Quality control of the integrated dataset was conducted to retain cells with at least 100 detected
genes and a minimum number of UMIs. Additionally, cells with over 25% mitochondrial gene content were
excluded to ensure data integrity. Highly variable genes (HVGs) between cells were identified and principal
component analysis (PCA) was performed on the normalized data. Based on the first 50 principal components, the
FindNeighbors function was applied to identify neighboring cells, followed by clustering using the FindClusters
function. The resulting cell populations were visualized via UMAP. Cell clusters were annotated according to
the expression profiles of known marker genes. Intercellular communication networks were inferred using the
R package CellChat 1.6.1.

Enrichment analyses

Marker genes of CD8* LAG3™ T cells were selected for gene ontology (GO) term and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses by the R package clusterprofiler, screening GO
terms or KEGG signaling pathways with P < 0.05'9-21,

Differential gene expression analysis

The TCGA-SKCM samples (N=447) and GTEX normal tissue samples (N=556) were subjected to differential
gene expression analysis using the limma-3.54.1 package, with [log,(fold change, FC)| >2, and adj. P<0.05 as the
parameters. The differentially expressed genes (DEGs) distribution was demonstrated by volcano plots drawn
with the R package ggplot2.

Immune infiltration analysis

The immune cell infiltration scores in the TCGA-SKCM and GTEX samples were calculated using the
CIBERSORT algorithm (https://cibersortx.stanford.edu/), with the expression matrix of DEGs as data. According
to the median value of the extracted scores, the TCGA-SKCM samples were categorized into the Score-High and
Score-Low groups. Heatmap of immune infiltration was plotted using R package Pheatmap. Immune infiltration
scoring was performed using the R package ESTIMATE. StromalScore, ImmuneScore, ESTIMATEScore and
tumor purity were calculated using the single-sample gene set enrichment analysis (ssGSEA) algorithm.

Survival analysis

Survival analysis was performed using the R package Survival. Differences in OS and disease-specific survival
(DSS) for different groups of patients were demonstrated using the Kaplan-Meier (KM) curves plotted by the R
package Survminer. Receiver operating characteristic (ROC) curves were plotted using the R package timeROC.

Weighted gene co-expression network analysis (WGCNA)

The gene expression matrix of TCGA-SKCM was selected for WGCNA, and the top 25% genes were retained
according to the obtained median absolute deviation (MAD), with the soft threshold set at 0.8. CD8* T immune
infiltration group (high vs. low), age (>=60 vs. <60), sex (male vs. female), cancer stage (I/II vs. III/IV),
metastasis (M1 vs. M0) and other traits were selected as grouping data. All genes were classified into different
color modules according to their correlation with the traits, and the gene modules with the highest correlation
coeflicients were selected for subsequent analyses.
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Least absolute shrinkage and selection operator (LASSO)

Univariate Cox regression models were established using the Coxph function of the R package Survival, and
the prognosis-related chemokine-related genes were screened according to P<0.05. The regression coefficients
of the variables were compressed using the LASSO algorithm in the R package glmnet, and the signature Score
of the patients was calculated according to the gene expression and their corresponding regression coeflicients:

Score = Z ok ik

Bi: Weight coefficient of each gene; yi: Expression of each gene.
The risk score of each sample was calculated according to the formula, and the samples were assigned to the
High-risk and Low-risk groups by the median value.

Treatment and chemotherapy sensitivity analysis

Similarity of expression profiles between SKCM and immunotherapy patients was measured using Submap.
According to cell line expression data and drug response information from the GDSC2 (http://www.cancerrxg
ene.org) database, combined with TCGA-SKCM expression profiles, the difference between the log, (IC50) of
individual drugs for a variety of cell lines in the GDSC2 database and the High-/Low-risk groups was predicted
using the R package oncoPredict.

Mouse modeling treatment

SPF-grade male C57BL/6 mice of 5-6 weeks were purchased from Jiangsu GemPharmatech Co., Ltd. and B16F10
cells (Procell, CL-0319) were purchased from Procell Co., Ltd. The cells were resuspended in 100 uL PBS and
injected subcutaneously into the right axilla of mice. A total of 12 mice were enrolled in the modeling assay,
and tumor growth was observed twice a week, with a volume of more than 50 mm? considered as successful
modeling. LAG3 inhibitor ZYF0033 (MCE, HY-144088) or monoclonal antibody Miptenalimab (BI-754111,
MCE, 0HY-P99736) was dissolved with DMSO according to the studies by Jingwen Si et al.?> and Markus Zettl
et al.3. Mice were randomly divided into 3 groups on day 11 after cell inoculation, which was redefined as day
0. The ZYF0033 group (N = 4) and the Miptenalimab group (N = 4) were injected intraperitoneally with 10
mg/kg ZYF0033 or Miptenalimab, respectively, and the DMSO group (N = 4) was injected intraperitoneally
with an equal amount of DMSO solution. The drugs were administered once a week for 6 weeks and observed
twice a week. Mice were executed via cervical dislocation at the end of modeling, extracting tumor tissues for
subsequent assays. And the animal experiments were approved by the Animal Ethics Committee of the Yangtze
University. All operating methods were performed in accordance with relevant guidelines and regulations. All
methods reported were in accordance with ARRIVE guidelines.

Xenograft mouse models

B16F10 cells were resuspended in 100 puL PBS and injected into mice by tail vein. On day 11 after cell inoculation,
the mice were randomly divided into 3 groups and treated with ZYF0033, Miptenalimab or DMSO as described
above. Mice were imaged using the VivoVision Systems Lumazone (Mag Biosystems, Tucson, AZ, USA) on day
7 and 14 after injection.

In vivo tumor formation assay in mice

Tumor diameters and lengths were measured every 7 days after successful modeling, repeated 3 times, and the
tumor volume was calculated according to the formula “tumor volume (mm?) = 0.5x(tumor long diameterxtumor
short diameter?)”. Tumor growth curves were calculated based on the tumor weight, which was measured every
2 days.

Hematoxylin-eosin (H&E) staining

The extracted mouse tumor tissues were made into 3-pm-thick paraffin sections and separately stained with
hematoxylin solution and eosin according to the kit protocols. Sealing with clear neutral gum, the sections were
observed using a light microscope for the pathological morphology of the tissue cells.

Immunohistochemical assay

The paraffin sections of SKCM tissues were dehydrated and immersed in citrate buffer for antigen repair. The
sections were washed with PBS and incubated in 3% H,O, for 30 min at room temperature away from light. After
PBS washing, the sections were closed with 3% BSA for 30 min. Ki67 rabbit monoclonal antibody (Beyotime,
AF1738) or other primary antibodies was added to the sections and incubated overnight at 4°C away from
light. After washing, horseradish peroxidase (HRP)-labeled secondary antibody was added and incubated at
room temperature for 1 h. Staining was visualized under a light microscope using the substrate DAB. Primary
antibodies include: LAG3 rabbit monoclonal antibody (abcam, ab209236), SAMD3 rabbit polyclonal antibody
(abcam, ab84177), SAMSNI rabbit polyclonal antibody (ThermoFisher, PA5-82571), TRIM22 rabbit polyclonal
antibody (abcam) ab224059), CTLA4 rabbit monoclonal antibody (abcam, ab237712), CD8 rabbit monoclonal
antibody (abcam, ab217344).

Statistical analysis

Data in the present study were calculated using the GraphPad Prism, with the expression of mean + standard
deviation (SD). Data between multiple groups were analyzed using ANOVA test and differences between two
groups were analyzed using ¢-test. P<0.05 was statistically significant.
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Results

Identification of six immune cell subsets in SKCM

The original dataset comprising three samples was merged, and batch effect correction was performed using
CCA, resulting in 28,812 cells and 22,780 genes (Supplementary Fig. 1A, B). Following quality control filtering,
the dataset retained 27,748 cells and 22,780 genes (Supplementary Fig. 1C, D). Hypervariable genes were
identified and visualized via eigenvariance plots. Principal component analysis (PCA) was then conducted, and
the top 50 principal components were selected for downstream analyses (Supplementary Fig. 1E, 1 F). A total
of 27 distinct cell populations were subsequently visualized using UMAP (Fig. 1A, B). Cells were annotated
according to the expression of the 18 marker genes in different cell clusters, obtaining 7 major identified cell
types: B Cell, Endothelial, Fibro, Melanoma, Monocyte&Macrophage (Mono&Macro), NK Cell (NK), T Cell.
(Fig. 1C, D). Subsequently, the above annotated immune cell types (T Cell, B Cell, NK, Mono&Macro) were
extracted and re-annotated, obtaining 6 cell types: B Cell, CD4* T, CD8" T, cell cycle T, Mono, NK (Fig. 1E, F).

Immunomodulatory effects of LAG3 on CD8* T cells

To further explore the immunomodulatory effects of LAG3 on CD8* T cells in SKCM, CD8" T cell subsets were
further annotated using marker genes such as LAG3, CTLA-4, and so on, obtaining two subsets, CD8* LAG3*
T cells and CD8" LAG3™ T cells (Fig. 2A, B and C). Subsequently, the probability of communication between
each subset was calculated, and the results showed that both CD8" LAG3* T cells and CD8" LAG3™ T cells
interacted with Melanoma cells, and the interaction between the Melanoma subgroup and CD8 + LAG3-T and
CD8+LAG3 + T was comparable (Fig. 2D). Since previous studies have shown that LAG3 inhibitors are effective
against melanoma, we selected a subset of CD8 + LAG3-T cells for subsequent analysis.

Functions and pathway analysis of CD8* LAG3"~ T cell-associated marker genes
GO term or KEGG pathway enrichment analyses of the 2,314 marker genes obtained from CD8* LAG3™ T cells
showed that they were significantly enriched in biological processes (BPs) such as positive regulation of cell

adhesion, regulation of T cell activation, cellular components (CCs) such as melanosome, pigment granule, and
ribosome, and molecular functions (MFs) such as actin binding, cadherin binding, DNA-binding transcription

C celltype

. 8 Col
< . Endothetal
; \ & (S o Fio
.q 4 \ ~ ® Melanoma
& G\ Venoimaco
; o NK
g D o e : " X j o TCal
iley £ 4 Unknown
g i p s e - >
i Hi * - H
JJJJJ X w@i(}’ e:,az\@ﬁv“btﬁ\ & &
¢ s
P

B

orig.ident

CD4 CD8A
Density Density

1 0.08

0y 006 0y

. e
1 | B | BB

o %

UMAP 2
UMAP 2
UMAP 2

-

£

- 3e

E -i0 10 %

[] 10
UMAP 1 UMAP 1
CD3E MS4A1

sl sl
j Density Density
0 oo 0f
v 003 Y 010
® b ]
0o
celltype -101 " -101

. o % W 3
‘ ’. B Cell KLRD1

UMAP 2
UMAP 2
UMAP 2

-

A

&

7o £
UMAP 1

CD4+T

® CD8+T
k cellcycle T
® Mono o
4‘5’ NK

Density
o6

UMAP 2

UMAP_2

UMAP_1

NES

Fig. 1. Identification of different types of cell clusters based on scRNA-seq data. (A) UMAP plot presented
cell clusters in different samples; (B) bubble plots of markers used for cellular annotation; (C) UMAP
presented cellular annotation results; (D) bubble plots of markers used for immune cell subset annotation; (E)
highlighted maps of classic markers of various immune cell subsets; (F) UMAP plot presented immune cell
subset annotation results.
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Fig. 2. Immune cell subset annotation and cellular communication. (A) Bubble plots of marker genes used for
CD8* T cell subset annotation; (B) UMAP plots demonstrated the results of CD8* T cell subset annotation;
(C) highlighted plots of the expression of marker genes used for CD8" T cell subset annotation; (D) plots of
cellular interaction networks.

factor binding (Fig. 3A-C). In addition, the marker genes were also related to signaling pathways such as
Oxidative phosphorylation, PI3K-Akt signaling pathway, and chemokine signaling pathway (Fig. 3D).

CD8*T cell-related gene modules identified by WGCNA

There were 1,313 up-regulated and 3,436 down-regulated genes obtained by differential gene expression analysis,
of which LAG3 expression was up-regulated in tumors (Fig. 4A). Immune cell infiltration in TCGA-SKCM and
GTEX samples was demonstrated via stacked plots (Fig. 4B), and the TCGA-SKCM samples were categorized
into the Score-High and Score-Low groups based on the median scores of CD8* T cell immune infiltration.
The KM curves showed that the prognosis survival of the Score-High group was significantly better (Fig. 4C).
The genes associated with the clinical features were subsequently clustered using WGCNA, and the heatmap
demonstrated the relationship and significance values between each clinical feature and gene module (Fig. 4D).
Of all the gene modules, the one with the highest correlation with CD8* T cells was turquoise, containing 427
genes, shown in supplementary Table 1 for details (Fig. 4E, F).
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Fig. 3. Enrichment analyses of CD8" LAG3™ T cell markers. (A) Top 10 significant BPs; (B) Top 10 significant
CCs; (C) Top 10 significant MFs; (D) Top 10 significant KEGG signaling pathways.

SKCM patients with high risk scores had a poorer prognosis

There were 112 genes obtained by taking the intersection between the 760 marker genes from CD8* LAG3~
T cell subsets and the 427 genes associated with CD8* T cell immune infiltration from turquoise module,
shown in supplementary Table 2 for details (Fig. 5A). They are significantly enriched in GO terms such as
immune system, leukocyte activation, lymphocyte activation and immune response (Fig. 5B). Based on the 112
genes, a prognostic signature model was established using the LASSO algorithm (Fig. 5C), obtaining a formula
“Riskscore=-0.041864381*TRIM22-0.036542873*LAG3-0.024487767*SAMD3-0.052887584*SAMSN1", where
LAG3 was identified as a negative correlate of the model. The risk score of each sample was calculated based on
the formula, and the samples were categorized into the High-risk and Low-risk groups based on the median value
(Fig. 5D). In the TCGA-SKCM training set, the OS was significantly better in the Low-risk group (P<0.001),
and the ROC curves at 1, 3, and 5 years also presented good diagnostic value of the prognostic signature model
(Fig. 5E and F). Subsequently, two datasets, GSE54467 and GSE65904, were selected as validation sets for the
TRS, and their KM curves indicated that the prognosis of the Low-risk group was significantly better than that of
the High-risk group, and the predictive accuracy of the prognostic signature model was verified (Fig. 5G-]). IHC
detection results showed that compared with the control group, the expression of LAG3, SAMD3 and SAMSN1
was higher in the model group, and the expression of TRIM22 was lower in the model group (Fig. 5K, L).

Immune infiltration and immunotherapy analyses in SKCM patients

Compared with the High-risk group, the Low-risk group had significantly higher ESTIMATEScore,
ImmuneScore, StromalScore, and significantly lower TumorPurity (Fig. 6A). The infiltration of 15 types of
immune cells such as B cells memory, Macrophages M2, and T cells CD8 were significantly different between
the High-risk and Low-risk groups (Fig. 6B). The expression of immune checkpoint-related genes revealed that
the vast majority of immune checkpoints were significantly different between the High-risk and Low-risk groups
(Fig. 6C). The immunotherapy sensitivity of patients in the High-risk and Low-risk groups was subsequently
analyzed. The results showed that patients in the High-risk group had a higher similarity in expression patterns
with patients responding to CTLA-4-nOR inhibitors, and patients in the Low-risk group had a higher similarity
in expression patterns with patients responding to PD1-R inhibitors (Fig. 6D). In addition, the differences in log,
(IC50) between the High-risk and Low-risk groups for individual drugs across multiple cell lines in the GDSC2
database were analyzed and the top 6 differential chemotherapeutic agents between the High-risk and Low-risk
groups (Fig. 6E).

Miptenalimab and ZYF0033 inhibited SKCM proliferation and metastasis in mice

After subcutaneous injection of melanoma cells, mice exhibited a significant increase in body weight and tumor
volume (Fig. 7A). From day 24 after Miptenalimab and ZYF0033 treatment, the rate of increase in body weight
and tumor volume of mice was significantly suppressed compared to the DMSO group (Fig. 7B and C). In
addition, the tumor size was found to be significantly smaller in both the Miptenalimab and ZYF0033 groups
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Fig. 4. Differential gene expression analysis and WGCNA. (A) Volcano plot of the differential gene expression
analysis of TCGA-SKCM samples/GTEX normal control samples; (B) stacked plots demonstrated immune cell
infiltration in tumors and normal tissues; (C) KM curves of the OS and DSS in the Score-High and Score-Low
groups; (D) A heatmap of the correlation between gene modules and clinical features, the X-axis represents
different clinical traits, while the Y-axis represents different color blocks, each defined by gene clustering; (E)
Bar graph of significance of color modules related to CD8*T cells; (F) Scatter plot of modular genes, where the
horizontal coordinate is the module membership and the vertical coordinate is the gene significance.

than in the Control group (Fig. 7D, E). In vivo imaging results showed that after treatment with Miptenalimab
and ZYF0033, the tumor spread in mice was reduced (Fig. 7F). H&E staining results indicated that the level of
immune infiltration was lower in the DMSO group, whereas there were more immune cells infiltrated in the
Miptenalimab and ZYF0033 groups (Fig. 7G). The Ki67 results showed that the staining range of cell nuclei
was significantly less in the Miptenalimab and ZYF0033 groups than in the DMSO group, suggesting that
tumor proliferation was slowed down by the drug treatment (Fig. 7H and I). IHC detection results showed
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Fig. 5. The TRS of hub genes. (A) Venn diagram of intersecting genes; (B) GO enrichment analysis results

of intersection genes; (C) LASSO regression analysis exhibited the trajectory of the LASSO regression
independent variables, confidence intervals of Lambda, and LASSO regression coefficients of hub prognostic
genes; (D) Heatmaps of the risk score profiles and prognostic signature expression in TCGA-SKCM training
set; (E) KM curves of the TCGA-SKCM training set; (F) ROC curves of training set TCGA-SKCM; (G) KM
curves of validation set GSE65904; (H) ROC curves of validation set GSE65904; (I) KM curves of validation set
GSE54467; (J) ROC survival curve of validation set GSE54467; (K) Subcutaneously tumor-bearing male BALB/
c-nud mice were used to construct the mouse SKCM model. Tumor tissues and adjacent non-tumorous tissues
were collected, and IHC was performed to assess the expression of key genes. The scale was set to 20 um; (L)
Bar graph of key gene expression, with **** indicating p <0.0001 compared with the control group.

that compared with DMSO group, LAG3 and CTLA-4 expressions were significantly lower in Miptenalimab
group and ZYF0033 group, and CD8 expression was significantly higher (Fig. 7] and K). In addition, although
Miptenalimab and ZYF0033 have similar therapeutic effects on mice tumors, according to quantitative data,
Miptenalimab has a slightly stronger inhibitory effect on the growth of mice tumors than ZYF0033.

Discussion

In the present study, CD8* LAG3* T cells and CD8* LAG3~ T cells were identified by analyzing the three scRNA-
seq datasets in SKCM. The responsiveness of CD8* LAG3™ T cells to SKCM cells was assessed by constructing a
prognostic signature model with CD8" LAG3™ T cell-related genes.

In the TME, increased levels of lymphocyte infiltration were thought to improve the survival of tumor
patients?*. CD8" T cells are important immune cells in the TME that can specifically recognize a wide range
of tumor antigens expressed on tumor cells and exerts cytolytic activity?. Assays by Simone L Park et al. have
demonstrated that after inoculation of CD8* T cells, the melanoma-transplanted mice do not exhibit significant
skin lesions over a long period of time, while CD8" T cell depletion can trigger tumor growth in mice with occult
melanoma?®. This result suggests that the recruitment of activated CD8" T cells in the TME is effective against
SKCM. In the present study, immune infiltration analysis of TCGA-SKCM samples revealed a better prognosis
in the Score-High group, which is consistent with the findings of Veatch JR et al.”’. Subsequently, a prognostic
signature model based on CD8* LAG3~ T cell-related genes was constructed, and the model score was identified
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Fig. 6. Immune infiltration and immunotherapy analyses in SKCM. (A) Box plots of ESTIMATEScore,
ImmuneScore, StromalScore, and TumorPurity between the High/Low-risk groups; (B) box plots of immune
infiltration levels in the high/low-risk groups; (C) heatmap of gene expression of immune checkpoints in the
High/Low-risk groups; (D) submap analysis showed immunotherapy susceptibility of the High/Low-risk
groups; and (E) the top 6 differential chemotherapeutic agents between the High/Low-risk groups.

as an independent prognostic factor for SKCM, with patients with high score values having a significantly worse
prognosis.

Persistent antigenic stimulation can cause CD8* T cell depletion and diminish the ability to fight tumor
cells. Studies have reported that the mechanism of CD8* T cell depletion is associated with the overexpression
of inhibitory receptors. Naturally, finding targeted drugs that can inhibit receptors has been a research focus.
Among the targeted drugs for SKCM, CTLA-4 and PD-1 are often compared, but their mechanisms are distinct.
CTLA-4 inhibitors, the first monoclonal antibodies approved for treating advanced SKCM, exert their antitumor
effects by enhancing T cell activation and facilitating the differentiation of effector T cells*®. For PD-1, it is
significantly expressed on activated CD8" T cells and can modulate the antigen-induced immune response?. By
inhibiting the binding of PD-1 to its ligand, PDL-1, TCR-mediated proliferation and cytokine production can be
increased, thereby improving the prognosis of SKCM tumor patients®’. LAG3 inhibitors are the latest targeted
agents approved for the treatment of SKCM. As an inhibitory factor, LAG3 can regulate immune responses
by modulating immune cell homeostasis, T cell activation, cytokine production, and other functions®*. In
SKCM, LAG3 can suppress the immune microenvironment and thus promote tumor growth®:. Therefore, LAG3
inhibitors have been developed to block the inhibitory effect of LAG3 on the immune system by specifically
binding to LAG3. In this study, CD8 + T cells were characterized by LAG3 and CTLA-4, which may be related
to SKCM outcome, and T cell stress state marker gene HSPB1, and the cells were divided into CD8 + LAG3
+ T cells and CD8 + LAG3-T cells based on the expression of LAG3. Cell-cell communication analysis was
employed to investigate the interactions between two cellular subsets and the melanoma subpopulation. CD8 +
LAG3 + T cells, which exhibited stronger interaction with the melanoma cells, were subsequently selected for
further analysis.

Clinically, CTLA-4 or LAG3 is usually used in combination with PD1/PDL1 for SKCM treatment, which
can provide a better prognosis for patients***>. LAG3 blockade and microwave ablation immunotherapy have
also been studied to reprogram TME for anti-tumor purposes. In the present study, LAG3 inhibitors ZYF0033
and Miptenalimab were used to treat SKCM mice. ZYF0033 is a hematopoietic progenitor kinase 1 (HPK1)
inhibitor that promotes anticancer immune responses. Miptenalimab exerts its anticancer immune effects by
blocking the interaction of LAG3 with its ligand MHC-II. The experimental results showed that both ZYF0033
and Miptenalimab significantly inhibited tumor proliferation and metastasis and increased immune infiltration
levels in SKCM mice. The better outcomes of Miptenalimab than ZYF0033 in treating SKCM implied that
inhibition of LAG3 expression can effectively prevent melanoma progression, and also reflected that blocking
the interaction between LAG3 and its ligands can prevent CD8" T cell depletion, thus promoting the immune
effect. However, unfortunately, the current research on the use of Miptenalimab in the treatment of SKCM is
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Fig. 7. The therapeutic effects of LAG3 inhibitors and monoclonal antibodies on SKCM in mice. (A) Changes
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in different treatment groups, at which time DO is the 11th day of drug administration treatment; (C) changes
in body weight of mice in different treatment groups, at which time DO is the 11th day of drug administration
treatment; (D) tumor sizes and weights in different treatment groups; (E) Tumor weight of mice in different
treatment groups; (F) tumor metastasis in vivo in different treatment groups; (G) HE staining demonstrated
immune cell infiltration in each group; (H) Ki67 immunohistochemistry detected tumor proliferation in mice,
the scale was set to 10 pm; (I) Ki67 quantified histogram of tumor proliferation in mice in each treatment
group; (J) IHC histogram of LAG3, CTLA-4 and CD8 in each treatment group; (K) The expressions of LAG3,
CTLA-4 and CD8 in each treatment group were detected by IHC, the scale was set to 20 pm. “*” indicated

the significant P value of the DMSO and Miptenalimab groups, with * representing P<0.05, ** P<0.01, ***
P<0.001, and **** P<0.0001; and “#” indicated the significant P value of the DMSO and ZYF0033 groups,
with # representing P<0.05, ## P<0.01, and #### P <0.001.

not extensive, and ZYF0033 seems to show better advantages in this regard. In addition, Miptenalimab is a less
mature LAG3 antibody than the FDA-approved LAG3 inhibitor Relatlimab. However, the purpose of selecting
Miptenalimab in this study is to evaluate the therapeutic effect of Miptenalimab on SKCM in mice by comparing
it with LAG3 inhibitor ZYF0033, providing more possibilities for the treatment of SKCM. However, a larger
number of animal samples and more experimental protocols are needed to further evaluate the role and value
of Miptenalimab.

Conclusions
In the present study, highly tumor-responsive CD8* T cell subsets were identified by scRNA-seq, and the tumor
responsiveness of SKCM was developed and validated by integrating Bulk RNA-seq. The tumor responsiveness
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and prognostic survival of SKCM patients were assessed by the constructed prognostic signature model about
CD8*LAG3™ T cell subsets. Subsequent analyses identified LAG3, SAMD3, SAMSNI1, and TRIM22 as prognostic
genes associated with SKCM. Research indicates that high levels of LAG3 can lead to progressive impairment
of T cell function, but LAG3 inhibitors can restore T cell function in advanced melanoma and enhance anti-
tumor immunity’’. Currently, the roles of SAMD3, SAMSN1, and TRIM22 in modulating T cell function
within the context of SKCM remain poorly characterized, with limited relevant literature available. As a result,
meaningful comparisons among these genes are not yet feasible. Future investigations will aim to elucidate their
contributions to the tumor immune microenvironment in SKCM more comprehensively. In addition, the present
study verified the significance of LAG3 on the development of SKCM in mice through in vivo experiments.
Immunotherapeutic responsiveness of SKCM could be promoted by inhibiting LAG3 expression or blocking
the interaction of LAG3 with its ligands. Therefore, LAG3 has the potential to be a therapeutic target for SKCM.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable
request.
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