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Because of the rapid acceleration of cloud computing, data transfer security and intrusion detection 
in cloud networks have become emerging areas of concern. All traditional security mechanisms 
have central vulnerabilities, cannot detect real-time threats, and are ineffective against zero-day 
attacks. Signature-based approaches of existing intrusion detection systems (IDS) do not cover the 
dynamically changing nature of cyber threats. Conventional blockchain security methods suffer 
from poor scalability and dynamic threat analysis. Therefore, this research proposes integrating 
Ethereum Blockchain and Deep Learning to construct a well-founded security framework for cloud 
networks with data migration security and real-time intrusion detection. The architecture has five 
distinct methods, each of which deals with particular security issues. Blockchain-Aware Federated 
Learning for Secure Model Training (BAFL SMT) guarantees tamper-proof and decentralized deep 
learning model training, which reduces model poisoning attacks by 98.4%. Graph Neural Networks for 
Adaptive Intrusion Detection (GNN-AID) captures graph structures for real-time anomaly detection 
in networks while reducing false positives to 1.2%. Quantum-inspired Variational Autoencoders (QI 
VAE ZDAD) provide enhanced zero-day attack detection, with an improved detection rate of 92%. 
Self-Supervised Contrastive Learning for Blockchain Security Auditing (SSCL-BSA) detects smart 
contract vulnerabilities automatically, resulting in an 87% reduction in fraud risk. Finally, Hierarchical 
Transformers for Secure Data Migration (HT SDM) enhance the transfer security of large-scale cloud 
data, achieving an attack classification accuracy of 99.1%. Overall, this multi-layer security framework 
will greatly enhance cloud security by preserving data integrity, cutting down the intrusion detection 
time by up to 65%, and enhancing response mechanisms. By marrying the immutable transparency of 
blockchain with superior anomaly detection at deep learning, this research provides a scalable, real-
time, and intelligent approach to strengthening security against the backed-up transfer of data within 
cloud networks.

Keywords  Adaptive intrusion detection, Cloud data transfer, Deep learning, Ethereum blockchain security, 
Quantum autoencoder, Smart contracts

Cloud service transformation relates to how data is stored, processed, and ultimately transferred, thus integrating 
cloud networks into the majority of modern IT infrastructure setups. The advantages of cloud services have 
ironically exposed major security challenges concerning data integrity, confidentiality, and the intrusion 
detection process that have manifested as a result of the increasing reliance on cloud services. Traditional security 
schemes currently in existence include centralized firewalls and rule-based intrusion detection systems (IDS), 
which have proven inadequate in defending against advanced persistent threats (APTs), zero-day vulnerabilities, 
and large-volume distributed Denial of Service (DDoS) attacks. Another problem with existing conventional 
security solutions is that there is little scalability during implementation when securing blockchains. The current 
implementation of conventional Blockchain in security suffers mostly under conditions of waning latency and 
computational inefficiencies in processes. An innovative, adaptive approach is required to secure data transfers 
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in cloud networks and attach real-time anomaly detection and automated threat response sets. The Ethereum 
blockchain technology can be turned to by providing good decentralization, immutability, and security from 
cryptography, hence making data logging tamper-proof and threat responses automatic via smart contracts. 
However, only society was convinced that a blockchain could not include in itself adaptive intelligence capable 
of effective detection of emerging cyber threats. On the other hand, deep learning methodologies-Federated 
Learning (FL), Graph Neural Networks (GNNs), Variational Autoencoders (VAEs), and Transformer-based 
models-have already shown exceptional results for anomaly detection, pattern recognition, and their overall 
intelligent decision-making processes. By merging the Ethereum blockchain with deep learning-based intrusion 
detection systems4–6, it would be possible to form a robust security framework covering both real-time threat 
detection and secure cloud data transfer sets.

While cloud computing has changed paradigms in data storage, processing, and transfer, the same 
transformation has posed challenging security issues that, largely, are not being addressed well by current 
approaches. Emerging threats, like zero-day vulnerabilities, advanced persistent threats (APTs), and large-
scale distributed denial-of-service (DDoS) attacks, require solutions providing a real-time response where data 
integrity will also be safeguarded across decentralized verification during the migration phase. Conventional 
intrusion detection systems (IDSs) still rely heavily on predefined signatures and tend to be centralized; these 
solutions consequently have high false-positive rates and low adaptability to rapidly evolving threat landscapes. 
On the other hand, standard implementations of blockchain in security applications face scalability bottlenecks 
as well as inherent deficiencies in intelligent detection of threats full of dynamics.

To address these concerns, the present work proposed a multi-tier adaptive security framework that 
relies upon the integration of Ethereum blockchain technologies with advanced deep learning methods. The 
framework integrates Blockchain-Aware Federated Learning for Secure Model Training (BAFL SMT), Graph 
Neural Networks for Adaptive Intrusion Detection (GNN-AID), Quantum-Inspired Variational Autoencoders 
for Zero-Day Attack Detection (QI VAE ZDAD), Self-Supervised Contrastive Learning for Blockchain Security 
Auditing (SSCL-BSA), and Hierarchical Transformers for Secure Data Migration (HT SDM). Each of these 
components attacks a specific gap in existing security models, forming an end-to-end solution that improves 
detection accuracy, lowers processing latencies, and enforces security via immutable blockchain verification 
in process. This will render the framework a scalable and proactive defence against the protection of cloud 
networks of high speed.

These methods, implemented in this architecture, not only promise near real-time performance but also 
preserve massive robustness against adversarial interference sets. Clearly articulating how this work links the 
inadequate adaptability of current security systems with decentralized validation through blockchain, and deep-
learning models tailored to this domain affords a logically coherent and technologically sophisticated path from 
problem identification to solution realizations.

Motivation & contribution
With the ever-increasing volume of sensitive data transmitted across cloud networks, data migration must also 
be secure, and intrusion detection must be performed in real-time to that these imperative challenges. The 
existing securities, conventional IDS, and decentralized blockchain logging systems face intrinsic limitations 
such as high false positive rates, a lack of adaptability to new threats, and latency issues in the on-chain consensus 
mechanism. Predefined signatures or static rules are established for traditional security solutions, which make 
them inefficient against sophisticated cyber-attacks such as zero-day vulnerabilities and APTs. Centralized 
security models have single points of failure, which increase their susceptibility to large-scale data breaches. 
The immutability and cryptographic security in a blockchain are, however, not endowed with intelligent 
anomaly detectability that requires complementary AI-driven techniques for proactive security measures. These 
limitations highlight the importance of having a hybrid approach that leverages the trustless architecture of 
blockchain together with the adaptive intelligence of deep learning to create a more secure, decentralized, and 
scalable framework of security for cloud data transfers in process.

This research presents some important contributions to cloud security through the adoption of Ethereum 
Blockchain and Deep Learning to accomplish a holistic security architecture. The upshot is Blockchain-Aware 
Federated Learning (BAFL SMT) to affordably train distributed models without exposing raw data, which 
improves privacy and promotes resistance against poisoning attacks. It comes with Graph Neural Networks 
(GNN-AID) to relate network traffic in the form of real-time detection graph structures of sophisticated 
intrusions-like DDoS and botnet-tracking attacks, by the use of Quantum-Inspired Variational Autoencoders 
(QI VAE ZDAD). These techniques are used to model extremely complicated latent distributions that further 
bolster the detection of a zero-day attack. Self-supervised Contrastive Learning for Blockchain Security 
Auditing (SSCL-BSA) advances the security of the Ethereum contract by identifying fraudulent transactions 
and vulnerabilities with high resolution against the transaction chain. Finally, Hierarchical Transformers for 
Secure Data Migration (HT SDM) optimizes cloud traffic analysis for safe and efficient data in transit. These 
methodologies are expected to bring a lot more in terms of diminishing security risks and producing real-time, 
blockchain-backed threat intelligence with minimal false positives, eventually contributing to a resilient cloud 
computing infrastructure in the making of operations.

A brief synopsis of the fundamental contributions and novel aspects of this work is given as follows:

	1.	 Decentralized Model Integrity Enforcement: Introducing Blockchain-Aware Federated Learning (BAFL 
SMT), which validates gradient updates on the Ethereum blockchain, ensures the accuracy of global model 
integrity of over 99% while converging 50% faster than any conventional federated learning frameworks.
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	2.	 Graph-Based Adaptive Intrusion Detection: GNN-AID has been developed to model network traffic as 
graph structures. It identifies intrusions with an accuracy of 98.7% and a false positive rate of 1.2%, thereby 
surpassing all currently existing deep learning-based IDS by a convincing margin of up to 6%.

	3.	 Quantum Inspired Zero-Day Attack Detection: Quantum-Inspired Variational Autoencoders for Zero-Day 
Attack Detection (QI VAE ZDAD), which uses probabilistic latent modeling and quantum-inspired rep-
resentation of features to significantly enhance their detection rate of zero-day attacks to 92.3% while reduc-
ing false alarms by two-thirds.

	4.	 Automated Smart Contract Fraud Detection: SSCL-BSA, a self-supervised contrastive learning approach on 
Ethereum transaction logs, realized a fraud detection rate of 97.3% without requiring labelled datasets and 
thus enables faster adaptation to evolving fraud patterns.

	5.	 Transformer-Based Secure Data Migration: HT SDM was applied to scenarios of multi-cloud migrations, 
achieving 99.1% secure migration classification accuracy at processing latency of 1.2 s, ensuring both speed 
and accuracy for large-scale data transfers.

The combination of these contributions thus endorses a coherent and intelligent security model, which addresses 
the dual problem of adaptability in real-time as well as decentralized enforcement, a bifurcation left unexplored 
by previous works in the field sets.

Literature review
Such are the happenings of blockchain security and its integration with cloud computing, IoT, and deep learning 
as it stands lately, when put against an exhaustive study of the latest literature as briefed in Table  1. Earlier 
contributions to blockchain security primarily focused on scalability, fraud detection, and authentication 
mechanisms. The Early Fraud Detection (EFD) framework was introduced by Gupta et al. (2024)1, which was 
aimed at improving the security and scalability of optimistic rollups in blockchains by efficiently detecting 
fraudulent transactions from high-speed blockchain environments. That was then followed by Atiewi et 
al.(2024)2, extending blockchain services to smart home applications in the 5G networks introducing a three-
factor authentication mechanism for ensure multi-contract access control. This was the foundation of using 
blockchain in access control systems beyond financial applications. The situation naturally progressed to where 
blockchain concerns beyond financial applications began to address those in patient records and IoT-Integrated 
architectures. C.A. and Basarkod (2024)3 provided an exhaustive survey on how blockchain contributes toward 
EHR Security by virtue of ensuring patient data confidentiality via immutability and decentralized access 
control. On their part, Li et al. (2024)4 initiated development in real-time for sandwich attack detection on 
Ethereum by integrating Geth-anomaly detection algorithms to forestall financial exploits in decentralized 
exchanges. Such are the developments that show an evolution in blockchain security in which the boundaries 
between data security models and financial fraud detection started to converge on a single objective of ensuring 
integrity in decentralized systems. Blockchain applications also find their way into energy trading and smart 
grids. Ramasamy et al. (2024)5 discussed an Ethereum blockchain-based secure energy transaction model 
through which tamper-proof and audit power exchanges for electric vehicles (EVs) could be easily achieved. 
Meanwhile, Al-Matari et al. (2024)6 analyzed blockchain’s role in 6G cognitive radio IoT networks, indicating 
that decentralized mechanisms of security in spectrum access would afford protection for communication 
channels against threats from adversaries.

Phasing in, like the same table in Premkumar et al. (2024), this research also leaped further into the second 
level by incorporating blockchain in fog computing, mainly concentrating on security and load balancing 
optimization. Smart contracts displayed their real traits in distributing distributed resources securely, reducing 
the overhead and latencies of the systems. Actually, just recently, when machine learning and deep learning 
models began to be utilized, blockchain has made a significant penetration into some of the most diversified 
cybersecurity threat detection fields. In this regard, Chen et al. (2023)8 reported having created a security 
Architecture-IoT that was based on blockchain and was completely encrypted end-to-end between devices 
connected with one another for messages. Chain solutions, therefore, began to address privacy-preserving 
encryption techniques and quantum-resistant cryptographic protocols. Digital twin security schemes backed by 
blockchain for encrypting cloud storage as well as guaranteeing good key management were discussed by Huang 
& Yi (2024)14. Based on Porkodi and Kesavaraja (2024)15, machine learning algorithms were devised for fraud 
detection models in a blockchain network by employing CatBoost algorithms to classify between spurious smart 
contracts. This work shall form the cornerstone stones for sets of automatic audits for smart contracts.

Most of the interesting innovations in blockchain are centered around privacy and security model design 
for vehicular networks, smart contracts, and distributed storage systems. Singhal et al. (2024)17 proposed 
POSMETER, a proof-of-stake blockchain, to leverage smart meters to provide better security to data. To 
overcome real-time transaction security with extremely low latencies, Khacef et al. (2023)18 proposed a dynamic 
sharding model for blockchain scalability. Britto Alex and Selvan (2024)19,20 designed security models powered 
by blockchain for healthcare applications, more specifically in the context of elliptic-curve cryptography firefly 
optimization with authentication through EHRs. Naik et al. (2024)21,22 suggested smart contract automation to 
combat fraud applications in ridesharing through blockchain. At the same time, Mahanayak et al. (2023)23 stated 
that quantum-resistant encryption had been proposed for electronic voting based on blockchain so that a secure 
digital democracy could be built. At the same time, Li et al. (2025)24 also addressed edge-computing security, 
thereby building a blockchain file-sharing framework that maintained privacy in a microservice architecture. 
Rajkumar et al. (2025)27 also continued trends of blockchain usage in vehicular networks by supplementing 
models like APCO-blockchain to provide data trust and congestion control capability sets.

Mahmud et al. (2024)28 recognized scalability problems addressed with the help of dual blockchain and IPFS 
approaches during optimization in big data storage paradigms. Gupta et al. (2025)29 introduced a blockchain-

Scientific Reports |        (2025) 15:38711 3| https://doi.org/10.1038/s41598-025-22408-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Reference Method Main Objectives Findings
Accuracy 
(%)

Latency 
(ms) Limitations

1 Gupta et al. (2024) Early Fraud Detection 
(EFD)

Enhancing blockchain 
scalability and fraud detection in 
optimistic rollups

Improved fraud detection rate in 
rollup transactions 94.3 235 High computational overhead 

in high-throughput networks

2 Atiewi et al. (2024)
Three-Factor 
Authentication for 
Ethereum Smart Contracts

Secure multi-contract access 
control in 5G-enabled smart 
home networks

Increased authentication strength 
and reduced unauthorized access 92.2 210.4 Potential increase in latency 

due to multi-factor checks

3 C.A. & Basarkod et 
al. (2024)

Blockchain Security for 
Electronic Health Records

Protection of patient data 
privacy and access control

Enhanced data integrity and 
decentralized EHR access 93.6 185.3 Scalability concerns in large 

Scale hospital networks

4 Li et al. (2024) Geth-Based Real-Time 
Detection System

Prevent sandwich attacks in 
Ethereum transactions

Early detection of financial 
exploitation patterns 92.8 297.5 May not generalize to all 

attack vectors
5 Ramasamy et al. 
(2024)

Blockchain-Based Secure 
Energy Trading

Decentralized and auditable EV 
power transactions

Improved trust and transparency 
in energy exchanges 81 232.2 Limited interoperability with 

existing grid networks
6 Al-Matari et al. 
(2024)

Blockchain for 6G 
Cognitive Radio IoT

Secure spectrum access in next-
gen IoT environments

Reduced unauthorized spectrum 
access attempts 76.2 300.4 High resource demand for 

real-time spectrum analysis

7 Premkumar et al. 
(2024)

Blockchain and Optimizer 
for Load Balancing

Secure load balancing in fog 
computing

Efficient resource allocation and 
reduced latency 95 188.1

Complexity in optimizing 
blockchain consensus 
mechanisms

8 Chen et al. (2023) Blockchain IoT Security 
Architecture

Secure device authentication 
and data integrity

End-to-end encrypted 
communication in IoT networks 75.2 283.3 Overhead in low-powered 

IoT devices

9 Haque et al. (2024) Privacy-Preserving Deep 
Learning with Blockchain

Secure AI-driven storage 
authentication

Increased data privacy with 
blockchain-backed authentication 
layers

71.9 324.1 Increased computational load 
for federated models

10 Aziz et al. (2024) Blockchain for Secure 
Metaverse Museums

Protection of virtual museum 
assets using decentralized 
models

Improved security and 
accessibility of digital heritage 
assets

76.8 314
Limited real-world 
implementation and 
standardization issues

11 Damaševičius et 
al. (2024)

Blockchain IoT Integration 
for Cybersecurity

Secure IoT communication via 
blockchain

Improved resistance to cyber 
threats 86.1 252.6

High transaction costs 
for frequent device 
authentication

12 Umar et al. (2024) Blockchain-Based 
Microgrid Energy Trading

Decentralized energy trading 
optimization

Increased efficiency in local 
energy exchange 90.4 237.5 Real-time adaptability issues 

for grid fluctuations

13 Jin et al. (2024) Blockchain for Digital 
Economic Risk Assessment

Risk evaluation models for 
financial institutions

Increased transparency and 
traceability in economic 
transactions

83.7 255.7 Slow blockchain transaction 
processing speeds

14 Huang & Yi et al. 
(2024)

Blockchain-Based Digital 
Twin Security

Key management for cloud 
storage security

Improved resistance to 
unauthorized access and 
tampering

84.2 259.2
High storage costs for 
maintaining blockchain 
records

15 Porkodi & 
Kesavaraja et al. 
(2024)

CatBoost-Based Scammer 
Detection in Blockchain

Automated fraud detection in 
smart contracts Increased scam detection accuracy 71.7 176.4 Dependency on labeled fraud 

transaction datasets

16 Premkumar & 
Santhosh et al. 
(2024)

Pelican Optimization with 
Blockchain

Secure load balancing in fog 
networks

Efficient workload distribution 
with blockchain validation 71.4 164.6 Latency issues in large Scale 

deployments

17 Singhal et al. 
(2024)

Proof-of Stake Smart Meter 
Data Security

Securing smart meter 
transactions using blockchain

Reduced energy fraud in smart 
grid networks 90.2 295 Limited efficiency in high-

frequency energy transactions
18 Khacef et al. 
(2023)

Dynamic Sharding for 
Blockchain Scalability

Improve blockchain transaction 
processing efficiency

Increased throughput and reduced 
confirmation delays 78.6 234.8 Vulnerabilities in sharding-

based partitioning attacks
19 Britto Alex & 
Selvan et al. (2024)

Firefly-Optimized Elliptic 
Curve Cryptography

Secure healthcare data 
encryption

Improved authentication security 
in healthcare applications 80.5 173.9 High computational cost for 

key management

20 Pise & Patil et al. 
(2024)

KEVM-Based Automated 
Smart Contract Auditing

Real-time detection of 
vulnerabilities in Ethereum 
smart contracts

Early identification of contract 
weaknesses 74.3 218.9

Requires continuous model 
updates to detect new 
vulnerabilities

21 Batta et al. (2024) Blockchain-Based Secure 
IoT Framework

Secure IoT infrastructure using 
blockchain consensus models

Increased IoT device 
authentication reliability 87.3 277.6 Performance degradation in 

resource-constrained devices

22 Naik et al. (2024) Blockchain-Based 
Decentralized Ride Sharing

Smart contract automation in 
ride Sharing applications

Transparent fare management and 
driver verification 96.1 288 High transaction costs for 

micro-payments
23 Mahanayak et al. 
(2023)

Quantum-Resistant 
Blockchain for E Voting Securing digital voting systems Enhanced voter anonymity and 

decentralized authentication 92.6 191.2 Quantum computing 
resistance still theoretical

24 Li et al. (2025) Blockchain and Edge 
Computing Security

Secure data sharing across 
microservices

Increased security in distributed 
cloud environments 81.3 261.1 High energy consumption in 

blockchain-based encryption
25 Kallurkar & 
Chandavarkar et al. 
(2024)

CNN-LSTM for Ethereum 
Fee Forecasting

Predicting Ethereum transaction 
fees post EIP-1559

Improved gas fee estimation 
accuracy 75.7 233.3 Dependence on historical 

data trends

26 Li & Wu et al. 
(2024)

Blockchain & Deep 
Learning for Transaction 
Security

Enhancing transaction integrity 
in e-commerce

Increased fraud detection in 
online financial transactions 87.8 259 High inference cost in real-

time payment processing

27 Rajkumar et al. 
(2025)

APCO-Blockchain for 
Vehicular Networks

Secure congestion control using 
blockchain models

Improved data trust in vehicular 
data exchanges 70.6 252.6 Scalability concerns for large 

Scale transportation networks
28 Mahmud et al. 
(2024)

Dual Blockchain for 
Scalable Infrastructure

Improving blockchain storage 
efficiency

Enhanced performance via IPFS 
integration 86.9 238.7 Interoperability challenges in 

cross-blockchain transfers

29 Gupta et al. (2025) Blockchain Interoperable 
EHR

Secure decentralized healthcare 
records

Improved patient data sharing 
security 94.2 338.7 High blockchain storage costs

Continued
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supported interoperable EHR platform named BIEH that will further enhance decentralized healthcare data 
exchanges. Thus, at an ultra-high pace, it will now become a part of future evolution in blockchain security, 
as well as incorporated into intrusion prevention systems alongside machine learning enhancement, scalable 
methods of concurrence, and lazy resistances to quantum attacks corresponding to any cryptographic model. 
Combined, such successful articles have depicted how revolutionary blockchain can be in cloud computing, 
cybersecurity, and financial risk management. The new technologies are to revolutionize and reshape completely 
how digital ecosystems will protect data from decentralized settings, with priority accorded to federated learning 
of self-supervised AI models and zero-trust blockchain security sets.

With recent developments in cyber defense mechanisms, much attention has been focused on intelligent 
learning algorithms with blockchain technology aimed at reducing vulnerabilities of complex threats in various 
application environments. Thus, Zimba et al.41 showcased detection models that adopt semi-supervised learning 
alongside complex network characteristics to describe the evolution and development of multi-stage Advanced 
Persistent Threats (APTs). Their work brings forth points regarding the significance of giving consideration 
to network structure features and temporal attack patterns in early-stage threat interception. Extending the 
discussion to underline industrial contexts, Anjum et al.42 addressed and informed the diversity of the broad 
scope that industrial big data security resonates, along with emerging challenges and opportunities, in protecting 
such encompassing heterogeneous data environments. Chen et al.43 devised an anomalous pattern-detection 
mechanism in multivariate time series data from high-dimensional datasets and thus leverages high accuracy 
based on the employed hybrid deep convolutional residual autoencoding technique fused with ConvLSTM 
Prediction.

Blockchain as an enabling security agent has been instrumental in several recent studies. Ghadi et al.44 
suggested a hybrid AI–blockchain system for securing smart grids, which showed resistance from data tampering 
and also facilitated transparent energy transactions. The blockchain-based domain certificate authentication 
system called ValidCertify was presented by Kadam et al.45 to fill in the gap left by the drawbacks associated 
with centralized certificate authorities. Further analytical views on the potential and limitations of blockchain 
are provided by Punia et al.46 in their SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis, 
which gives a balanced view on the adoption of blockchain in infrastructures that are critical to security. 
Marouan et al.47 developed a blockchain-backed e-voting system for university elections that used a higher 
degree of visibility in the electoral domain, thereby permitting voter trust. Parallel work in this area included that 
of Gao et al.48, who developed a blockchain-enabled heterogeneous resource configuration for power computing 
networks, thus achieving optimized computational load distribution with data integrity.

Healthcare and IoT ecosystems are emerging as health footprints showing many aspects of leveraging 
blockchain-integrated security architectures. They excel at data confidentiality and availability, with a high impact 
on IoMT systems as imagined in a multi-layered security framework merging dynamic key management with 
decentralized storage and a reliable intrusion detection system proposed by Sharma and Shambharkar49. Smart 
healthcare finds a boost in security by a cloud model endorsed by blockchain, ordered chaotically, as shown 
by Munnangi et al.50, with an accent on lightweight encryption since devices with fewer resources would have 
concerns as to the efficiency of their operation. Alaya et al.51 contributed to developing a taxonomy on federated 

Reference Method Main Objectives Findings
Accuracy 
(%)

Latency 
(ms) Limitations

30 Asem et al. (2024) Biometric CNN-Based 
Blockchain Authentication

Enhancing biometric identity 
verification using blockchain

Improved accuracy in identity 
validation 88 339.8

Computational overhead 
for deep learning model 
execution

31 Wu et al. (2025) Quantum-Resistant 
Blockchain

Securing blockchain 
transactions against quantum 
attacks

Increased cryptographic strength 
in blockchain consensus 71.7 163 High implementation 

complexity

32 Asiamah et al. 
(2025)

Storage-Efficient 
Blockchain Indexing

Enhancing query retrieval in 
blockchain databases

Faster blockchain transaction 
indexing 91.8 344.4 Potential trade-off in real-

time indexing accuracy
33 Archana et al. 
(2025)

Blockchain-Based Medical 
Image Encryption

Secure medical imaging 
transmission via blockchain

Enhanced image security in 
healthcare IoT 91.2 178.9 High encryption computation 

time

34 Chen et al. (2024) DeFi Security & Smart 
Contract Analysis

Detecting security loopholes in 
decentralized finance Improved smart contract auditing 91.1 260.7 Limited to Ethereum-based 

DeFi ecosystems
35 Vishwakarma & 
Das et al. (2024) Blockchain for IoT Security Integrated security system for 

IoT devices
Improved resistance to IoT-based 
cyberattacks 76 161.7 High consensus latency

36 Ebrahimi et al. 
(2024)

Large Scale Analysis of 
Ethereum Proxy Patterns

Identifying security risks in 
Ethereum smart contracts

Reduced attack surfaces in 
contract development 87.4 310.5 Limited to Ethereum 

blockchain architecture
37 Madhuri & 
Vadlamani et al. 
(2024)

Blockchain-Based Cross-
Chain Attack Detection

Secure cross-chain transaction 
verification

Improved fraud detection in 
multi-chain environments 85.7 196.8 Complexity in maintaining 

cross-chain security rules

38 Venkatesan & 
Rahayu et al. (2024)

Hybrid Consensus for 
Blockchain Security

Enhancing blockchain 
consensus efficiency with 
machine learning

Faster validation times with 
reduced security risks 75.6 244.2 Resource Intensive training 

requirements

39 A et al. (2024) DDoS Mitigation with 
Blockchain

Blockchain-based defenses 
against large Scale DDoS attacks

Improved traffic filtering and 
mitigation strategies 88.3 316.3 High network latency in real-

time attack scenarios
40 Mishra & Mehra 
et al. (2025)

Blockchain-Based Diabetes 
Data Management

Secure decentralized storage for 
patient records

Improved patient-centric data 
control 71.9 197.3 Scalability issues in 

blockchain medical records

Table 1.  Methodological comparative review analysis.
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learning and blockchain integration in UAV applications, heralding decentralized AI models for mission-critical 
scenarios. Aboshosha et al.52 reinforced IoT-based healthcare networks through lightweight hashing and have 
bolstered security in data transmission that required minimal computational overhead by the use of blockchain.

The most effective cooperation between federated learning and blockchain is manifested in privacy-sensitive 
sectors. Wang et al.53 illustrated the feathery and sustainable healthcare framework of federated learning with 
blockchain as enabler for clinical IoT devices to interoperate along with patient data privacy assurance. Sharma 
and Shambharkar54 achieved an added value by providing an explainable intrusion detection framework Multi-
attention DeepCRNN to suit IoMT environments, which had been designed in such a way as to produce quality 
interpretability without compromising detection accuracy. An added feature in the e-commerce sector developed 
by Alshareet and Awasthi55 was the design of an integrated blockchain-federated learning neural network 
architecture for security of transaction data while keeping model adaptability in dynamic online marketplaces.

All these studies are indications of how transformative blockchain can be when coupled with sophisticated 
learning algorithms. Likewise, the pieces of literature reviewed have a common trajectory toward the desired 
security frameworks that are decentralized, transparent, and adaptive in form to address general-purpose and 
domain-specific cyber threats. Such advancements not only inform the architectural design of the proposed 
work but also highlight the necessity of harmonizing scalability, computational efficiency, and explainability in 
next-generation security systems.

Proposed design of quantum deep learning-enhanced ethereum blockchain for 
cloud security model analysis
This section elaborates upon the design of an Iterative Secure Cloud Data Transfer and Intrusion Detection using 
the Ethereum Blockchain and Deep Learning Process to address the present inefficiencies and complexities of 
existing methods. The proposed architecture of the Quantum Deep Learning-Enhanced Ethereum Blockchain 
for Cloud Security Model is shown in Fig. 1. The design of the Blockchain-Aware Federated Learning for Secure 
Model Training (BAFL SMT), Graph Neural Networks for Adaptive Intrusion Detection (GNN-AID), and 
Quantum-Inspired Variational Autoencoders for Zero-Day Attack Detection (QI VAE ZDAD) are developed 
in an integrated form to construct an integrated security architecture with decentralized, adaptive, and yet very 
efficient intrusion detection and secure model training. The federated learning (FL), graph-based intrusion 
detection, and quantum-inspired probabilistic modelling principles may synergistically form a robust defense 
mechanism against evolving threats to cybersecurity in cloud environments. Data from multiple cloud nodes can 
be trained by federated learning independently while maintaining the confidentiality of the data by preventing 
its direct exchange. Let wt represent the global model parameters in the t-th training round, and let K denote 
the number of participating cloud nodes. Each node k will train a local model wt’k on its private dataset Dk 

Fig. 1.  Architecture of the quantum deep learning-enhanced ethereum blockchain for cloud security model.
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and update global model parameters using weighted aggregations. The local objective function of each node is 
defined via Eqs. 1,

	
Lk(w) = ( 1

|Dk| )
∑

(xi.yi)∈Dk
l(wT xi, yi)� (1)

Where, ℓ(⋅) represents the loss function, and (xi, yi) are input-output pairs. The global model is updated via 
federated averaging via Eqs. 2,

	
wt+1 =

∑ K

k=1

∑ K

j=1
Dj/Dk ∗ wtk � (2)

Nevertheless, federated learning is subject to adversarial model updates, which require some verification 
through Ethereum blockchain operations. A smart contract will enforce model integrity through the validation 
of gradients prior to the aggregations. The verification operation Φ

(
wtk

)
estimates the Euclidean norm of the 

model updates via Eqs. 3,

	 Φ
(
wtk

)
=

∣∣∣∣wtk − wt
∣∣∣∣2� (3)

Only updates with Φ
(
wtk

)
 < τ (a predetermined threshold) are accepted, which guarantees the protection from 

poisoning attack mechanism. In the case of GNN-AID, a network traffic graph G = (V, E) is built, where V 
denotes devices and E captures their interaction patterns. A graph convolutional network (GCN) updates the 
iterative processing of the node embedding hv via Eq. 4.

	
hv (l + 1) = σ

(∑
(u∈ N(v))

( 1
dudv

)
W ′ (l) hu′ (l)

)
� (4)

Where W’(l) is the weight matrix, dv is the degree of node v, and σ(⋅) is a non-linear activation function that is 
computed using Rectified Linear Unit Activations.

The final graph representation is obtained via readout via Eqs. 5,

	
hG =

∑
(v∈ V )

hv′ (L)� (5)

Intrusions are detected using anomaly scores derived from graph Laplacians via Eqs. 6,

	 S (v) =
∣∣∣∣hv′ (L) − h̄G

∣∣∣∣2� (6)

QIVAEZDAD applies a hybrid quantum-classical scheme to model attack distributions. The encoder maps given 
input features x to a latent distribution qϕ(z|x), parameterized by mean µ and variance σ via Eqs. 7, 8 & 9.

	 z ∼ N
(
µ , σ 2)

� (7)

	 µ = fφ 1 (x) � (8)

	 σ 2 = fφ 2 (x)� (9)

The reparameterization trick ensures differentiability via Eqs. 10 & 11,

	 z = µ + σ · ϵ� (10)

	 ϵ ∼ N (0,1)� (11)

The decoder reconstructs x’ from z, minimizing the evidence lower bound (ELBO) via Eqs. 12,

	 LV AE = E (qφ ( z ∨ x )) [logpθ (x ∨ z)] − DKL (qφ ( z ∨ x) ∨ p(z ))� (12)

Quantum-inspired transformations improve expressivity by modelling probability amplitudes using variational 
wave functions ψ(z), with probability density via Eqs. 13,

	 p (z) = |ψ (z)|2 � (13)

The final anomaly score A(x) is computed using Mahalanobis distance in latent space via Eqs. 14,

	 A (x) = (z − z̄)T Σ (z − z̄)� (14)

Iteratively, as per Fig. 2, the design of Self-Supervised Contrastive Learning for Blockchain Security Auditing 
(SSCL-BSA) and Hierarchical Transformers for Secure Data Migration (HT SDM) is advanced as a crucial 
part of the multi-layered security framework, ensuring robust anomaly detection in blockchain transactions 
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and secure cloud data migration. The self-supervised contrastive learning takes an automated and adaptive 
approach to detecting fraudulent transactions and vulnerabilities in Ethereum smart contracts, whereas the 
hierarchical transformer-based setup allows scalable and real-time security monitoring of data transfers in 
cloud networks. Such methods have been chosen for their ability to process high-dimensional security data 
efficiently, leveraging deep learning’s adaptability with blockchain’s transparency and immutability settings. 
The Self-Supervised Contrastive Learning for Blockchain Security Auditing (SSCL-BSA) is designed to extract 
meaningful representations from unlabeled blockchain logs using a contrastive loss mechanism process. Given a 
dataset of transactions X = {x₁, x₂, …, xₙ}, the encoder network fₓ(⋅) embeds each transaction into an embedding 
set of spaces. Transactions with similar structures are brought closer together, whilst anomalous or fraudulent 
ones are pushed apart. The contrastive loss function is formulated via Eq. 15.

	

Lcontrastive = −
∑

log




exp
( (zi,zj)

τ

)
∑

exp
( (zi,zk)

τ

)


� (15)

Where zi = fx(xi), zⱼ is the positive pair, τ is the temperature parameter, and sim(⋅, ⋅) is the cosine similarity 
function via Eqs. 16,

	
(zi, zj) = zi · zj

||zi|| ||zj || � (16)

A self-supervised contrastive approach eliminates the need for labelled datasets, aimed at exposing unknown 
blockchain fraud patterns. The anomaly score A(x) for a transaction x can be computed based on its distance to 
the nearest cluster center in the learned embedding space via Eqs. 17,

	 A (x) = ||z − µ c||2� (17)

Where, µc represents the centroid of normal transactions in the embedding spaces. A threshold δ is used 
to classify transactions as fraudulent when A(x) > δ in the process. To ensure robustness, the entropy of the 

Fig. 2.  Data flow of the secure cloud data transfer and adaptive intrusion detection using ethereum blockchain 
and deep learning.
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transaction probability distribution is minimized, enhancing discrimination between normal and malicious 
behaviors via Eqs. 18,

	
Lentropy = −

∑
pi ∗ log(pi)� (18)

Where, pi represents the softmax probability of transaction ‘i’ being classified as normal in the process. The 
overall loss function is formulated as a weighted combination of contrastive and entropy-based objectives via 
Eqs. 19,

	 L = λ1Lconstrastive + λ2Lentropy � (19)

Hierarchical Transformers for Secure Data Migration (HT-SDM) addresses the challenge of securing large-scale 
cloud data transfers through a combination of multi-level feature extraction and attention mechanisms. Given 
an input sequence of network packets X = {x₁, x₂, …, xₜ}, the transformer encoder computes self-attention scores 
for token embeddings via Eqs. 20,

	
αij = exp (eij)∑

exp (eik) � (20)

Where, the attention score eiⱼ is computed using the scaled dot-product mechanism via Eqs. 21,

	
eij = (W qxi) · Wkxj

dk
� (21)

Hierarchical token representations are generated by stacking multiple transformer layers, capturing global and 
local migration patterns. The final feature representation is computed via Eqs. 22,

	
hT =

∑
αit (Wvxi)� (22)

Where, Wv projects input tokens into value embeddings. Anomaly detection in migration data is performed 
using a learned anomaly threshold γ, where an attack is flagged if the condition represented via Eq. 23 is satisfied 
in the process,

	 A (xT ) = ||hT − µ T ||2 > γ � (23)

Where, µT is the mean feature representation of normal migration sequences. To enhance robustness, a 
regularization term penalizes overfitting to normal patterns via Eqs. 24,

	
Lreg =

( 1
T

) ∑
||hi − h(i − 1)||2� (24)

Thus,. ensuring smooth latent space representations. The final training objective integrates cross-entropy loss, 
anomaly detection loss, and regularization via Eqs. 25,

	 LHT − SDM = λ1Lcross−entropy + λ2Lanomaly + λ3Lreg � (25)

The final security classification output is derived from the learned token representations, where the probability 
of a secure migration event, Psecure, is computed using the SoftMax function via Eq. 26.

	
P secure = exp (W 0*hT )∑

exp (W 0*hc) � (26)

Where W₀ is the output projection matrix set. Ethereum smart contracts serve as validation for the migration of 
data before the actual operation, thus enforcing security from a blockchain perspective. Such methods guarantee 
a strong and scalable decentralized solution for securing data in the cloud while auditing blockchain security. 
It provides, with little supervision on existing, a highly superior contrastive learning scheme for detecting 
anomalous transactions in the blockchain for the identification of frauds, while implementation of a hierarchical 
transformer model to analyze cloud data transfers ensures the importation of risk management processes. The 
mathematical exposition gives both credence and clear interpretability to these security models, rendering 
them effective for sanitizing cloud environments against the ever-evolving cyber threats. this text continues to 
describe the efficiency of the proposed model, focusing on various metrics, contrasting it with existing methods 
in different scenarios.

Comparative result analysis
This experimental setting aims to evaluate the performance of the multi-layered security framework proposed 
for safeguarding cloud data transfers and network intrusion detection through the combined use of Ethereum 
Blockchain and Deep Learning. Experiments in this study were conducted in a distributed cloud simulation 
environment provided by Google Cloud Platform (GCP) instances, equipped with 32-core CPUs, 128GB RAM, 
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and NVIDIA A100 GPUs for deep learning training and inference. The Ethereum blockchain network is hosted 
via Hyperledger Besu and configured with 10 validator nodes situated in geographically distributed servers 
to guarantee decentralization and fault tolerance. Smart contracts were implemented in Solidity for federated 
learning verification and for blockchain-based intrusion detection and deployed via Infura API for more 
efficient transaction processing. Deep learning model training environments utilize PyTorch and TensorFlow 
2.9; ingestion of real-time network traffic is handled by Apache Kafka. The simulated cloud network generates a 
traffic capacity of 10 Gbps while considering certain attacks. Those attacks include DDoS, Botnets, SQL injections, 
and zero-day exploits, with attack events injected in sporadic incidents at different intensities (low: 100 packets/
sec, medium: 500 packets/sec, high: 3000 packets/sec) to evaluate detection latency and false positive rates. The 
Federated Learning module is trained on CICIDS 2017 and TONIoT datasets, with 50 cloud nodes participating 
in model training, each with 100,000 labelled samples to ensure robust training convergence. The GNN-based 
intrusion detection system processes real-time network traffic logs of 5  million packets extracted from the 
UNSW NB15 dataset, where each packet is presented as a graph with 150 nodes for individual communication 
flows.

Distributed infrastructures of Google Cloud Platform serve as the testbed, with each instance comprising a 
32-core Intel Xeon processor, 128 GB of RAM, and NVIDIA A100 GPUs. The Ethereum blockchain network 
is up and running within Hyperledger Besu nodes with a Proof-of-Authority consensus employed for high 
throughput and connected to Infura for interactions through API in process. Dataset-specific configurations 
include preprocessing pipelines optimized for parallel execution using Apache Spark, so that load balancing can 
be realized across 50 federated learning nodes. Network simulation is performed on a 10 Gbps virtualized testbed, 
while the packet generation scripts are configured for targeted attacks such as DDoS, botnet, SQL injection, and 
ransomware sets. The software stack includes PyTorch 1.13 and TensorFlow 2.9 for model training, Apache 
Kafka for real-time log ingestion, and Solidity 0.8.x for smart contract deployment sets. This will thereby ensure 
that all former comparisons—say, gain of 6% accuracy over baseline models for GNN-AID, or 43% reduction in 
blockchain verification latency via SSCL-BSA—are interpreted against exact hardware, networking conditions, 
and software versions used to enable reproducibility and fair benchmarking against state-of-the-art methods.

The Quantum-Inspired variational autoencoder (QI VAE ZDAD) is then trained on KDD99 and CTU-13 
malware datasets and encodes 50-dimensional latent feature vectors, enabling the detection of emerging threats 
with a probabilistic anomaly scoring process. The datasets used in this research are carefully chosen from well-
established sources to ensure a comprehensive evaluation of the proposed multi-layered security framework. The 
CICIDS 2017 dataset developed by the Canadian Institute for Cybersecurity is used for intrusion detection since 
it possesses realistic network traffic with different types of attacks, including DoS, DDoS, brute force, and botnet 
attacks. This dataset contains 80 network features, which include those that can be extracted from captured 
PCAP files, like flow duration, packet size, and protocol types, that would thus serve as good features for training 
Graph Neural Networks (GNN-AID). The UNSW NB15 dataset, developed by the Australian Centre for Cyber 
Security, is utilized for anomaly detection, containing 2.54 million packets labelled under nine attack categories, 
including exploits, shellcode, and backdoors. It is pre-processed into graph representations containing 150 nodes 
per communication flow, thus enabling structured detection of cyberattacks. The TONIoT dataset was collected 
from real-world IoT and industrial control system (ICS) environments to train the federated learning model 
(BAFL SMT), containing traffic logs from IoT devices, cloud services, and endpoint nodes, all with 45 features in 
order to ensure decentralized learning robustness. KDD99 and CTU-13 malware datasets are used for quantum-
inspired zero-day attack detection (QI VAE ZDAD), where KDD99 offers 4.9  million records on network 
events labelled across 22 attack types, while CTU-13 contains real-world traces of botnet traffic, allowing the 
model to generalize on unseen threats. Additionally, Etherscan API is employed for the collection of 10,000 
Ethereum transactions that include legitimate, phishing, and fraudulent transactions, which are employed for 
self-supervised contrastive learning-based blockchain security auditing (SSCL-BSA). Finally, Amazon AWS 
CloudTrail logs and Google Cloud Audit logs are used to build a dataset for hierarchical transformer-based 
secure data migration (HT SDM), capturing real-world cloud migration sequences for anomaly detection in 
large-scale cloud transfers in process. These datasets ensure that these works have real-world applicability and 
test the robustness of the generalization of the proposed framework across many types of cybersecurity scenarios.

This paper proposes the evaluation of the self-supervised contrastive learning for blockchain security 
auditing (SSCL-BSA) using 10,000 Ethereum smart contract transactions. The main types of transactions, such 
as legitimate, phishing, and fraudulent, have been labeled using historical fraud reports from the etherscan API. 
The contrastive loss model is trained on 80% of the data, with the remainder 20% used for evaluation, which 
ensures robustness in the performance of fraud detection. Hierarchical Transformer for Secure Data Migration 
(HT SDM) is trained on the large-scale cloud migration logs, and the datasets were preprocessed using Amazon 
AWS CloudTrail logs and Google Cloud Audit logs to build multi-head self-attention sequences where each 
migration event was tokenized into 256-dimensional embeddings. The Transformer-based model is trained on 
200,000 migration sequences with incorporated anomaly detection via hierarchical attention mechanisms, thus 
ensuring the attack patterns are correctly classified.

The records hashed intrusion logs in the detected security events about the Ethereum blockchain network 
for any forensic analysis likely to be carried out in the future, thus ensuring auditability. Performance metrics 
considered included precision, recall, F1 Score, AUC-ROC, training convergence, blockchain transaction 
latency, and network throughput, as in Fig.  3. Performance evaluation was extensively carried out based on 
these parameters. The experimental results show that the proposed framework successfully accomplishes 99.1% 
accuracy in data migration security, which is then followed by an almost accurate 98.7% precision in intrusion 
detection, along with a major 65% reduction in zero-day attack detection latency, as found to be significantly 
higher than traditional security models. The applicability of the proposed multi-layered security framework is 
performance evaluated across a host of cybersecurity tasks, including intrusion detection, anomaly detection, 
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zero-day attack, blockchain security auditing, and secure cloud data migration. These are fairly comparative 
results against three baseline methods: RCBDM EVSET5, BB IoTSA8, and HCNNLSTM TFPE25, representing 
state-of-the-art deep learning and blockchain-based security models as shown in Fig. 4. The evaluation includes 
standard classification metrics such as accuracy, precision, recall, F1 Score, false positive rate (FPR), training 
convergence time, and blockchain logging latency sets, including results that indicate significant improvements 
in security and anomaly detection along with data integrity maintenance sets.

The abilities of the Graph Neural Network for Adaptive Intrusion Detection (GNN-AID) are tested on the 
CICIDS 2017 dataset, which comprises different network attack scenarios. The model performance has been 

Fig. 4.  Integrated evaluation of accuracy and performance for the proposed intrusion detection model.

 

Fig. 3.  Integrated heatmap analysis of performance metrics for secure cloud data transfer and adaptive 
Intrusion detection.
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compared in terms of accuracy, precision, recall, and F1 Score against baseline methods. According to the results 
presented in Table 2, GNN-AID outperformed all models in intrusion detection in networks by using the CICIDS 
2017 dataset. For example, a proposed model holds 98.7% accuracy, easily exceeding RCBDM EVSET5 (92.4%), 
BB IoTSA8 (94.1%), or HCNNLSTM TFPE25 (95.8%). A recall score of 98.5% emphasizes the cases where attacks 
would be detected correctly, with fewer false negatives, which is vital for cybersecurity deployments.

The F1 Score value of 98.2% indicates that precision and recall are optimally balanced, thus reducing both 
false alarms and missed attacks. These improvements arise from the ability of the GNN to model the network 
flow structure into graph structures, thereby allowing it to detect subtle and sophisticated attack patterns that 
may be overlooked by traditional methods. This performance improvement is noted mostly against RCBDM 
EVSET5, which employs traditional rule-based anomaly detection, and BB IoTSA8, which uses standard deep 
learning approaches without structured graph representations.

The performance measurement in Fig. 5 illustrates the efficiency of the proposed architecture in terms of 
detection accuracy, false positive rates, latency, and throughput at varying attack loads. Under three different 
loads—low (100 packets/sec), medium (500 packets/sec), and heavy (3000 packets/sec)—the system is tested in 
a 10 Gbps simulated network sets. Under heavy-load conditions, a detection latency of 34 ms is maintained by 
GNN-AID, and anomaly detection latency retained by QI VAE ZDAD is 48 ms, showing minor performance 
degradation in large traffic conditions.

For complexity, the GNN-AID module runs in O(|V| + |E|) complexity for each inference step, where |V| 
stands for nodes in the network graph and |E| for edges. With an average of 150 nodes and 600 edges per 
flow, the per-flow inferencing takes about 2.1 ms on an NVIDIA A100 GPU. The QI VAE ZDAD model has a 
forward-pass complexity of O(d·z) where d is the input dimension (50 features) and z is the latent dimension 
(16), yielding on average an inference time of 4.7 ms. The SSCL-BSA module processes Ethereum transaction 
embeddings in O(n·m) complexity, where n is the number of transactions and m is the embedding size (256), 
allowing blockchain verification in less than 60 ms under heavy input. The HTSDM transformer encoder has 
O(L²·d) complexity per layer, where L is the sequence length (512 tokens) and d is the embedding size (256), 
and is optimized with the hierarchical attention to keep the processing in under 1.2 s for large-scale migration 

Fig. 5.  Integrated Analysis of Attack Detection Efficiency and Zero-Day Attack Detection Performance in the 
Proposed Model.

 

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Proposed GNN-AID 98.7 97.9 98.5 98.2

RCBDM EVSET [5] 92.4 90.5 91.1 90.8

BB IoTSA [8] 94.1 92.3 93.5 92.9

HCNNLSTM TFPE [25] 95.8 94.5 94.9 94.7

Table 2.  Intrusion detection performance on CICIDS 2017 Dataset.
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logs. The complexity-aware design ensures that the architecture remains computationally feasible for real-time 
applications in high-throughput cloud environments.

The analysis reveals the significant superiority of the proposed GNN-AID model over the base models 
in terms of effectiveness in anomaly detection in networks while causing minimal possible false positives, as 
evidenced by its achievement of the accuracy level of 98.7%, which is a 7.2% improvement in recall compared 
to RCBDM EVSET5. The Quantum-Inspired Variational Autoencoder for Zero-Day Attack Detection (QI VAE 
ZDAD) is assessed in Table 3 using the KDD99 database, hence attaining an AUC-ROC performance of 98.0% 
against a detection rate of 92.3% in representing its high efficacy in exposure of novel attack signatures and 
toward previously unseen attack patterns.

This model clearly outperforms two others: RCBDM EVSET5 with an AUC-ROC of 89.7% and BB IoTSA8 
with an AUC-ROC of 91.8%. Like all the other methodologies, the proposed model would reduce the rate of 
false positives to just 1.2% from the quite high 4.5% of RCBDM EVSET5, whose very efficacy was paradoxically 
undermined by high levels of false alarms. Capturing non-linear and high-dimensional dependencies that 
challenge the representational abilities of conventional deep learning models, such as BB IoTSA8 and HCNNLSTM 
TFPE25, the quantum-inspired latent feature extraction technique would improve anomaly detection. With this 
proposed model, zero-day attack detection is further increased, an aspect that adds much value to its use when 
faced with the ever-changing nature of cyber threats, where traditional signature-based defenses perform poorly 
in the process, as depicted in Fig. 5.

A measure of QI VAE ZDAD has been experimentally evaluated on the KDD99 dataset, the standard dataset 
of zero-day and unknown attacks. It analyzes the AUC-ROC score, detection rate, and false positive rate. Table 4 
shows the detection performance of Self Supervised Contrastive Learning for Blockchain Security Auditing 
(SSCL-BSA), measured on 10,000 Ethereum transactions: an accuracy of 97.3% and a precision measure of 
96.2% allude to high certainty in the model being able to distinguish fraudulent from legitimate blockchain 
transactions. The time of 52ms blockchain verification makes an impressive improvement on RCBDM EVSET5 
(91ms) and BB IoTSA8 (78ms), indicating the efficiency of the contrastive learning framework. The recall for 
fraud detection is a whopping 97.1%, giving evidence that the model can capture fraud patterns while at the 
same time detecting malicious transactions. The contrastive learning technique allows the model to learn 
effective representations of transactions unsupervised, reducing reliance on manually labelled fraud datasets and 
improving adaptability to developing fraud techniques. Figure 6 shows the blockchain fraud detection accuracy 
compared to RCBDM EVSET5, BB IoTSA8, and HCNNLSTM TFPE25.

RCBDM EVSET5 gave an AUC-ROC score of up to 4.5%, whereas the QI VAE ZDAD has created a 
significantly improved performance of the AUC-ROC score (98%). The false positive rate has been reduced 
from 4.5% to 1.2%. From this result, it is warranted that the model can really identify unknown and developing 
cyber threats accurately. Evaluated on AWS CloudTrail logs, the Hierarchical Transformer for Secure Data 
Migration (HT SDM) achieved a secure migration accuracy of 99.1% and a threat classification accuracy of 
98.6%, outperforming RCBDM EVSET5 (89.3%) and BB IoTSA8 (91.2%). It processes data in just 1.2 s, which is 
a 65% cut from the slowest baseline (3.4s in RCBDM EVSET5, indicating efficiency brought by the hierarchical 
self-attention mechanism. The effectiveness of the transformer architecture contributes to the modeling of 
multi-scale dependencies in the cloud migration logs for real-time anomaly detection in such large-scale cloud 
environments. This new improvement is critical in the ever-demanding circumstance of cloud transfers, wherein 
traditional models could hardly maintain performance in scalable settings. The Self Supervised Contrastive 
Learning for Blockchain Security Auditing (SSCL-BSA) has thus been compared with 10,000 Ethereum 
transactions from Etherscan; the fraud transaction labels were found based on historical reports.

The present SSCL-BSA model reaches an accuracy of 97.3%, against RCBDM EVSET5 for 8.4% improvement, 
boasting largely reduced blockchain verification latency (52 ms) for improved real-time fraud detection efficiency. 
Concerning the federated learning convergence and security performance of the Blockchain-Aware Federated 
Learning (BAFL SMT) model, Table 5 is conducted on the TONIoT dataset. Accuracy for the global model is 

Method Fraud Detection Accuracy (%) Precision (%) Recall (%) Blockchain Verification Time (ms)

Proposed SSCL-BSA 97.3 96.2 97.1 52

RCBDM EVSET 5 88.9 87.5 88.2 91

BB IoTSA 8 91.4 89.8 90.6 78

HCNNLSTM TFPE 25 93.7 92.5 92.9 65

Table 4.  Blockchain fraud detection performance on etherscan dataset.

 

Method AUC-ROC Score Detection Rate (%) False Positive Rate (%)

Proposed QI VAE ZDAD 98.0 92.3 1.2

RCBDM EVSET 5 89.7 85.1 4.5

BB IoTSA 8 91.8 87.4 3.8

HCNNLSTM TFPE 25 94.2 89.9 2.7

Table 3.  Zero-day attack detection on KDD99 dataset.
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96.8% above that of RCBDM EVSET5 (88.4%) and BB IoTSA8 (90.1%), while 99.2% model integrity ensures that 
the training process is immune to poisoning attacks. The convergence time of just 40 epochs is still considerable 
compared to that obtained by RCBDM EVSET5 (80 epochs) and BB IoTSA8 (65 epochs), providing evidence 
for the efficiency of blockchain-enhanced model validation. As all legitimate, non-malicious model updates 
are aggregated for the global model, this improvement becomes crucial for distributed learning environments, 
where, nevertheless, while keeping data and integrity privacy, it is possible to continue functioning without 
resorting to central authority sets. The Hierarchical Transformer for Secure Data Migration (HT SDM) is tested 
on AWS CloudTrail and Google Cloud Audit logs to classify secure and anomalous migration events.

The HT SDM model manages to achieve a secure migration accuracy of 99.1. It achieved a new record in 
terms of processing time, reducing it to just about 1.2  s. The overall premise of the system is that it proves 
to be more effective in large-scale, cloud migration security management. The results across all datasets 
validate the proposed security framework: superior accuracy, faster processing, lower false positive rates, and 
improved real-time adaptation are all better compared to baseline methods. Table  6 shows the Secure Data 
Migration Detection Performance on AWS CloudTrail Logs. The use of instruments such as high-performance 
computing has now been enhanced with a decentralized option by integrating the Ethereum blockchain with 
deep learning techniques like GNNs, contrastive learning, quantum-inspired autoencoders, and transformers 
toward a stronger cybersecurity solution for modern cloud networks. The performance of the Blockchain-Aware 
Federated Learning (BAFL SMT) model will, however, be evaluated in terms of convergence speed, accuracy, 

Method Secure Migration Accuracy (%) Threat Classification Accuracy (%) Processing Time (s)

Proposed HT SDM 99.1 98.6 1.2

RCBDM EVSET [5] 89.3 88.5 3.4

BB IoTSA [8] 91.2 90.1 2.8

HCNNLSTM TFPE [25] 95.6 94.7 1.9

Table 6.  Secure data migration detection performance on AWS CloudTrail logs.

 

Method Global Model Accuracy (%) Convergence Time (epochs) Model Integrity (%)

Proposed BAFL SMT 96.8 40 99.2

RCBDM EVSET 5 88.4 80 90.3

BB IoTSA 8 90.1 65 93.7

HCNNLSTM TFPE 25 94.3 52 96.1

Table 5.  Federated learning performance on TONIoT dataset.

 

Fig. 6.  Blockchain fraud detection accuracy in the proposed model.
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and integrity of the model against adversarial attacks using samples from the TONIoT dataset. Figure 7 depicts 
the integrated delay analysis. Secure data migration detection performance on AWS CloudTrail Logs, the secure 
migration accuracy is shown in Fig. 8.

The BAFL SMT model is converging the fastest (in 40 epochs) while maintaining the strongest integrity of 
models (99.2%) and showing resistance against poisoning attacks and adversarial manipulations. The experimental 
results validate the efficacy of the multi-layered security framework in securing cloud data transfer and intrusion 
detection. The GNN-AID model enhances intrusion detection capacity by 6.3% from the best baseline. The 
QI VAE ZDAD model detects zero-day attacks at a level of 92.3%, with a 66% lower false positive rate than 
existing models. The SSCL-BSA model reduces the blockchain verification time by 43%, thus enabling real-time 
detection of fraud. Table 5 shows the Federated Learning Performance on the TONIoT Dataset. The migration 

Fig. 8.  Accuracy analysis of secure data migration using AWS cloudTrail logs in the proposed model.

 

Fig. 7.  Blockchain verification time and delay analysis in the proposed model.
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accuracy achieved by HT SDM is 99.1% secure migration accuracy, which is the highest in any migration. The 
BAFL SMT federated learning model boasts an impressive global model integrity of 99.2%, rendering it almost 
impervious to attacks caused through adversarial means in a distributed learning environment. The results show 
that the amalgamation of the two institutions provides a scalable, decentralized, and real-time security solution 
on cloud networks. Then there is an iterative validation use case, which this text presents next. This will help the 
readers gain insight into the whole process. Figure 9 depicts the Federated Learning Performance Metrics of the 
Proposed Model Using the TONIoT Dataset.

Critical analysis
Accordingly, the analysis of the framework also includes critical views on operational reliability, scalability, and 
deployment feasibility. From the operational side, the integration of blockchain validation mechanisms into 
the federated learning pipeline removes single points of failure, providing immutable audit trails. In practice, 
Ethereum runs with ten validator nodes distributed geographically separated data centers to ensure fault 
tolerance and to prevent consensus bottlenecks.

With regard to scalability, the system architecture is defendable under linear horizontal scaling with 
additional federated nodes, and the convergence time grows sub-linearly in the addition of nodes due to gradient 
verification from the blockchain. This is further augmented by Layer-2 transaction batching in Ethereum, which 
has a significant reduction in gas prices and latencies at zero loss of security guarantees. The deep learning 
modules are packaged in Docker and orchestrated in Kubernetes for easy deployment into multi-cloud platforms 
such as AWS, GCP, and Azure.

Implementation trials revealed that real-life deployment on a managed financial services cloud platform 
sustained steady detection confidence of over 95% for all attack types, with peak blockchain transaction 
throughput reaching 250 transactions per second while employing rollup-based optimizations. These trials 
establish the framework’s viability for production-grade environments that have continuous monitoring needs, 
fast remediation, and compliant logging sets.

Validation using an iterative practical use case scenario analysis
Now, to showcase the applicability of the proposed multi-layer security framework, there is a cloud-based financial 
services platform in focus that involves large-scale transactions, manages secure data transfers, and protects 
from various cyber threats like DDoS attacks, data breaches, blockchain fraud, and zero-day vulnerabilities in 
processes. The cloud network renders equally distributed financial nodules where machine learning models 
are installed for intrusion detection, transaction security, and federated learning. It continuously watches over 
network traffic, blockchain transactions, and cloud migration logs for robust security enforcement. The tamper-
proof audit trail is provided by storing on an Ethereum blockchain all verified transactions, security alerts, and 
federated model updates. The following sections will present examples of outputs generated through the five 
core processes of the framework, followed by the final aggregated insights on security. The validation instances 
and samples used in the comparative performance analysis are derived from well-established cybersecurity 
benchmarks to ensure the credibility and reproducibility of the experimental results. The enhanced version 
of the KDD99 dataset, the NSL-KDD dataset, is used to test the efficiency of Quantum-Inspired Variational 

Fig. 9.  Performance evaluation of the proposed federated learning model on the TONIoT dataset.
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Autoencoders (QI VAE ZDAD) in detecting zero-day attacks. It has 125,973 records of network traffic grouped 
into the four major types of attacks, DoS, Probe, U2R (User to Root), and R2L (Remote to Local), making it a 
perfect candidate for validating techniques in anomaly detection.

A secondary validation dataset for Graph Neural Networks for Adaptive Intrusion Detection (GNN-
AID) is the CICIDS 2017 dataset, creating further assurance that the model generalizes well to the realistic 
intrusion attempts outside of just those used as primary training data. To test model robustness concerning 
adversarial model updates, the TONIoT dataset, which consists of machine telemetry, IoT traffic, and cloud 
logs, is employed for federated learning security validation. Validation for blockchain fraud detection is carried 
out using Etherscan transaction logs by analyzing historical phishing and scam-based reports of fraudulent 
Ethereum transactions against real-time smart contract executions. Finally, Amazon AWS CloudTrail logs 
serve as a comparative benchmark for secure data migration analysis using HT SDM, enabling performance 
evaluation on real-world cloud migration events. These validation instances ensure that their performance 
in a wide range of attack vectors and operational conditions is comprehensively evaluated with respect to the 
framework proposed and existing security mechanisms. The BAFL SMT process would guarantee secure and 
decentralized model training via validating updates from multiple cloud nodes. The following table illustrates 
federated learning performance across five cloud nodes in relation to training accuracy, gradient verification, 
adversarial mitigation, and model convergence sets.

The results indicate that Node 4 attempted an adversarial update, which was successfully blocked by the 
Ethereum smart contract verification mechanism, preventing model poisoning. Table 7 shows the blockchain-
aware federated learning performance metrics. The global model achieved 96.8% accuracy, equitably coming 
from the verified nodes in the cloud. The GNN-AID model processes network traffic logs and classifies them into 
benign and attack categories. The table below presents detection accuracy across different attack types.

The GNN-based classifier detects DDoS attacks with 99.1% accuracy, ensuring real-time response mitigation 
within 27ms. False positive rates are maintained at 1.2% overall, reducing unnecessary security alerts. Table 8 
shows the intrusion detection performance on network logs. The QI VAE ZDAD model evaluates zero-day 
attack anomalies by examining embeddings of network traffic latent space. The table below presents anomaly 
detection scores across attack categories.

The proposed model achieves an anomaly detection rate of 92.3%, which is higher than that of traditional 
deep learning methods and ensures high confidence in emerging attack patterns. Table 9 shows the Zero-Day 

Attack Category Anomaly Score Threshold Detection Rate (%) Anomaly Confidence Score

Unknown Botnet 0.85 94.2 0.91

Unknown Malware 0.80 92.1 0.88

New Phishing 0.78 91.3 0.86

Zero-Day Ransomware 0.89 96.0 0.93

Overall 0.83 92.3 0.89

Table 9.  Zero-Day attack detection on latent feature Space.

 

Attack Type Detection Rate (%) False Positive Rate (%) Response Time (ms)

DDoS 99.1 0.8 27

Botnet 97.8 1.2 34

SQL Injection 96.4 2.3 41

Port Scanning 95.1 3.5 39

Ransomware 98.7 1.1 31

Overall 98.7 1.2 34

Table 8.  Intrusion detection performance on network logs.

 

Cloud Node Local Model Accuracy (%)
Gradient Verification 
(Pass/Fail)

Adversarial Updates 
Detected (%)

Global Contribution Weight 
(%)

Convergence 
Time 
(Epochs)

Node 1 92.5 Pass 0.2 25.3 42

Node 2 91.8 Pass 0.0 24.7 40

Node 3 93.1 Pass 0.5 26.0 39

Node 4 89.7 Fail 7.2 0.0 N/A

Node 5 90.2 Pass 0.1 24.0 41

Global Model 96.8 N/A 0.3 100 40

Table 7.  Blockchain-aware federated learning performance metrics.
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Attack Detection on Latent Feature Space. The SSCL-BSA model analyzes blockchain transactions for the 
fraud detection process. The table below presents fraud detection performance on Ethereum smart contract 
transactions in process.

This model gains up to an accuracy level of 94.5% in detecting fraudulent transactions, logging blockchain 
time at an average of 52 milliseconds. Table 10 shows the Blockchain Fraud Detection on Ethereum Transactions. 
The HT SDM model evaluates secure cloud data migration events. Below is a table showing threat classification 
results.

An accurate classification of 99.4% is achieved by the model for encrypted file transfer, wherein, while 
doing so, it processes and appropriately flags anomalous IP-based access. Table 11 shows the secure cloud data 
migration analysis. Aggregated security event insights are summarized in Table 12, which reflects aggregated 
insights from all security detection modules.

The results confirm that the multi-layer security framework effectively secures cloud data transfers, where 
detection confidence rests over 90% for the most significant threats to security. The Ethereum blockchain ensures 
that all detected threats are verifiable and transparently logged, thereby securing cloud financial transactions and 
communications.

Conclusion and future scopes
The proposed layered security architecture based on deep learning and Ethereum Blockchain serves to secure 
data transfer in cloud networks, along with real-time intrusion detection and fraud prevention. The results from 
carefully modeled experimentation on diverse datasets indicate that this proposed method far outperforms 
existing methods. GNN-AID(Graph Neural Network for Adaptive Intrusion Detection) achieves an intrusion 
detection accuracy of 98.7% which makes it at least 3.2% better than the state-of-the-art methods, indicating 
that it is adeptly able to capture structural attack patterns in network traffic. QI VAE ZDAD(Quantum Inspired 
Variational Autoencoder) scored an AUC-ROC of 98.0% at a very low 1.2% false positive rate, which is a 66% 
improvement on conventional false alarm rates for anomaly detection. SSCL-BSA(Self-Supervised Contrastive 
Learning for Blockchain Security Auditing) gives 97.3% fraud detection accuracy and reduces blockchain 
verification latency to 52ms, which is a 43% improvement over the existing models and ensures efficient and 
real-time transaction validation. The HTSDM(Hierarchical Transformer for Secure Data Migration) achieves a 
groundbreaking 99.1% accuracy in secure migration classification with a processing time of 1.2s, which shows 
that it is highly scalable for high-scale cloud settings. The Federated Learning model with Blockchain Awareness 
(BAFL SMT) guarantees the integrity of a global model at 99.2% with respect to its federated training while 
countering 98.4% of adversarial model poisoning attempts and cutting convergence time down to 40 epochs 
at a 50% faster rate when compared to traditional federated learning. These numerical results corroborate the 

Security Event Type Detection Confidence (%) Action Taken

Cloud Intrusion (DDoS) 99.1 Block Traffic

Blockchain Fraud 97.8 Log & Alert

Zero-Day Attack 92.3 Quarantine

Suspicious Migration 85.2 Monitor

Table 12.  Final aggregated security analysis.

 

Migration Event Type Secure Transfer Probability (%) Threat Level Classification Processing Time (s)

Encrypted File Transfer 99.4 Safe 1.1

Unverified API Access 85.2 Suspicious 1.6

Large Data Movement 89.7 Low Threat 1.4

Anomalous IP Access 78.4 High Threat 1.9

Overall 93.2 Secure 1.2

Table 11.  Secure cloud data migration analysis.

 

Transaction Type Fraud Probability (%) Classification Decision Blockchain Logging Time (ms)

Large Unauthorized Transfer 97.8 Fraudulent 48

Repeated Small Transactions 92.1 Fraudulent 53

Smart Contract Exploit 98.5 Fraudulent 47

Suspicious Token Transfer 89.7 Fraudulent 51

Overall 94.5 Accurate Classification 52

Table 10.  Blockchain fraud detection on ethereum transactions.
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validity of the proposed blockchain-enhanced deep learning framework for reinforcing cybersecurity defenses 
while yielding scalable, privacy-preserving, and resilient cloud security architecture processes.

Irrespective of all these advancements made in this study, several avenues for future research and 
optimization remain. First, the scalability of blockchain implementations presents another challenge, where 
Ethereum’s transaction throughput and gas costs may be detrimental to real-time security operations in high-
speed cloud environments. Future work should assess integrating Layer-2 scaling solutions like zk-Rollups to 
enhance blockchain efficiency. In addition, while the QI VAE ZDAD model seems to perform reasonably in 
the detection of zero-day attacks, its latency should be further optimized under extreme traffic conditions by 
exploring quantum computing-inspired tensor processing architectures. Although the solid integrity of the 
global model is ensured by the federated learning framework (BAFL SMT), heterogeneous data distributions 
among cloud nodes may impact its generalization to the global model. Future research should look into adaptive 
federated learning tactics that adjust local learning rates in real-time according to adversarial conditions of the 
network. In addition, although the HT SDM model achieved 99.1% accuracy, adjustments must be made for 
extremely large-scale multi-cloud migrations. Investigating federated transformer architectures and conducting 
migration logs decentrally will improve security in multi-cloud settings. Finally, broadening the contrastive 
learning initiative in SSCL-BSA to encapsulate the detection of complicated smart contract exploits beyond 
simple fraud transactions could provide much-needed momentum in the area of blockchain security auditing 
in furtherance of large-scale decentralized finance (DeFi) ecosystems. These future research avenues will enable 
improvements in security, efficiency, and adaptability to ensure next-gen cloud security solutions capable of 
acting against evolving cyber threats in a proactive manner in the process.

Data availability
The datasets used and/or analyzed during the current study are available publicly and can be accessed with the 
link provided below. ​h​t​t​p​s​:​​​/​​/​r​e​s​e​a​r​c​​h​.​u​n​s​​w​.​e​​​d​u​.​​a​​u​/​p​r​o​j​​e​​c​t​s​/​u​​​n​s​w​-​​​n​b​1​5​-​d​a​t​a​s​e​t.
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