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Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by a wide spectrum 
of motor and non-motor symptoms, often leading to delayed or inaccurate diagnosis. Conventional 
diagnostic methods frequently suffer from limited sensitivity, scalability, and interpretability, 
thereby restricting their utility in clinical settings. To address these limitations, this study presents 
a novel AI-driven diagnostic framework that integrates multimodal data fusion, deep learning-
based classification, and generative language modeling to improve diagnostic accuracy and enable 
personalized reporting. The proposed framework leverages the Parkinson’s Progression Marker 
Initiative (PPMI) dataset, incorporating structural Magnetic resonance imaging (MRI), Single-
Photon Emission Computed Tomography (SPECT) imaging, cerebrospinal fluid (CSF) biomarkers, 
and clinical assessments. Statistical analysis was employed to select 14 key biomarkers–including 
dopamine transporter SBR values and CSF protein levels–from a total of 21 features identified 
as clinically relevant. A 1D Convolutional Neural Network (1D-CNN) was developed and trained 
using 121 engineered features, comprising radiomic descriptors and biologically derived metrics. 
Preprocessing and extensive feature engineering were conducted prior to a 70:30 train-test split, 
with data augmentation applied to the training set to enhance model generalization. The classifier 
achieved an accuracy of 93.7%, surpassing baseline approaches and emphasizing the value of domain-
informed feature design. To improve interpretability and clinician usability, a Mini ChatGPT-4.0 Large 
Language Model (LLM) was fine-tuned using approximately 1,000 domain-specific prompt-response 
pairs generated from literature, classifier-derived eXplainable AI (XAI) feature scores, and expert 
annotations. The generated responses were evaluated using a custom scoring metric (0.0-5.0) based on 
their semantic alignment with ground truth completions. This LLM module produces patient-specific 
diagnostic summaries and treatment suggestions. Additionally, a cloud-based interface was developed 
to facilitate real-time MRI uploads, automated inference, and chatbot-driven consultations. Overall, 
the framework demonstrates high diagnostic performance, transparency, and user accessibility, 
offering significant potential for real-world clinical deployment in PD diagnosis and decision support.
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Parkinson’s disease (PD) is a progressive neurological disorder that predominantly affects older adults but can 
also occur in younger individuals. The condition severely impacts motor coordination, cognitive function, and 
overall quality of life. Clinical diagnosis of PD often relies on symptom presentation, neuroimaging findings, 
laboratory evaluations, and response to dopaminergic therapies1. However, the variability in symptom onset and 
progression complicates timely and accurate identification. Although a definitive cure remains elusive, early-
stage detection is critical to initiating targeted interventions and mitigating symptom escalation such as cognitive 
deterioration and motor dysfunction2. In this context, artificial intelligence (AI) and machine learning (ML) 
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technologies are gaining prominence for their potential to extract subtle diagnostic patterns from heterogeneous 
patient data, thereby improving diagnostic sensitivity and reliability.

PD presents a growing global health challenge, affecting approximately 1% of individuals over the age of 50 
and rising to 2.5% among those over 70. The lifetime risk is estimated at 2.0% for men and 1.3% for women, 
with nearly 10% of cases occurring before age 503..In the United States alone, around 60,000 new diagnoses are 
reported annually. The 2019 Global Burden of Disease study highlighted a sharp rise in global PD cases–from 2.5 
million in 1990 to 6.2 million by 2017. This number is projected to reach nearly 9.8 million by 20254.In India, the 
current prevalence is estimated at 0.61 million, with a steep upward trajectory5. These rising numbers, combined 
with evidence of regional variations in biomarker expression and disease progression, underscore the need for 
scalable, population-specific diagnostic solutions. Moreover, a recent survey revealed that 26% of individuals 
received an incorrect diagnosis prior to a confirmed PD identification, indicating substantial gaps in current 
clinical screening methodologies6. The lack of attention to unique genetic and environmental risk factors in 
underrepresented populations further complicates early detection efforts.

Recent advances in AI, particularly in natural language processing (NLP), have led to the emergence of 
powerful tools in healthcare. LLMs like ChatGPT, trained via reinforcement learning from human feedback 
(RLHF), are capable of generating human-like responses and adapting to varied clinical scenarios. These models 
are increasingly applied in diagnostics, decision support, and patient interaction, showing potential to synthesize 
medical knowledge and assist clinicians in real time7,8.However, their integration into clinical workflows remains 
limited. Most LLMs operate independently of domain-specific diagnostic systems and lack access to structured, 
multimodal patient data. This gap restricts their ability to deliver personalized, interpretable outputs–an essential 
requirement for managing complex, heterogeneous diseases like PD.

To address these limitations, this study introduces a novel cloud-based diagnostic framework that combines 
a 1D-CNN with a fine-tuned lightweight LLM to improve PD diagnosis and personalized disease management. 
The system integrates heterogeneous data modalities, including MRI, SPECT, CSF biomarkers, and clinical 
assessments enabling comprehensive patient profiling. To ensure transparency and trust, the framework 
incorporates XAI techniques that highlight the most influential features contributing to classification decisions. 
The core component, a deep learning-based 1D-CNN, processes radiomics features extracted from MRI scans 
and fuses them with multimodal clinical and biological data to classify PD cases with high accuracy. The salient 
features identified during classification are passed to a fine-tuned Mini ChatGPT-4.0 model, which generates 
individualized diagnostic summaries and actionable clinical recommendations. The entire pipeline is deployed 
via a user-friendly cloud interface that supports real-time MRI uploads, rapid inference, and interactive chatbot 
consultations–making it scalable, accessible, and suitable for diverse healthcare settings.

Research questions
This study is guided by the following key research questions, aimed at enhancing early detection, interpretability, 
and user engagement in Parkinson’s disease diagnosis:

RQ1: Which combinations of multimodal inputs—such as MRI-based radiomics, CSF biomarkers, and 
clinical assessment scores—contribute most significantly to accurate PD classification when processed 
through a 1D-CNN architecture?
RQ2: Can a fine-tuned lightweight LLM, guided by XAI outputs such as SHAP and LIME, effectively 
generate patient-specific diagnostic narratives and respond meaningfully to queries from clinicians and 
patients?
RQ3: What is the practical clinical value of deploying this diagnostic framework via a cloud-based 
platform? Specifically, how does it enable real-time data upload, accelerate diagnostic inference, and 
provide an interactive, user-friendly experience across diverse healthcare environments?

Contribution
To address the limitations of traditional PD diagnostic approaches, this study presents a novel AI-driven 
framework that integrates Deep learning (DL), explainable AI, and generative language models. The key 
contributions of this work are summarized as follows: 

	1.	 A 1D-CNN is developed and integrated with explainability techniques such as SHAP and LIME. This ar-
chitecture enhances both diagnostic accuracy and interpretability, offering clinicians insights into the most 
influential features involved in classification.

	2.	 The proposed framework fuses heterogeneous inputs, including clinical scores (e.g., UPDRS, MoCA), neu-
roimaging features (MRI and DaTscan-derived SBR values), and CSF proteins biomarkers. This fusion im-
proves the robustness of the diagnosis and facilitates finer differentiation between PD, prodromal stages, and 
healthy control subjects.

	3.	 A lightweight LLM (ChatGPT-4.0 Mini) is fine-tuned using structured inputs derived from the classification 
model and XAI feature scores. The model generates patient-specific diagnostic narratives and answers con-
textual queries, enabling a human-in-the-loop interaction paradigm in clinical settings.

	4.	 A cloud-accessible platform is implemented, supporting real-time data upload, model inference, and inter-
active chatbot-based consultations. This enhances usability for both clinicians and patients, particularly in 
resource-constrained or remote environments.

	5.	 The framework highlights the diagnostic utility of ratio-based features and multimodal correlations, improv-
ing early-stage detection and subtype differentiation of PD.
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This paper is organized into five sections. Section Related works reviews related works, providing context and 
insights into existing approaches. Section Proposed Method outlines the proposed methodology in detail. 
Section Results presents the results and discusses their implications. Finally, Section Discussion concludes the 
study, highlighting key findings and potential directions for future research.

Related works
Recent advancements in AI have significantly advanced the diagnosis of neurological disorders by integrating 
neuroimaging, biomarkers, and clinical assessments. Despite this progress, the early detection of PD remains 
a major challenge due to its heterogeneous symptoms and highly variable disease progression. Traditional 
diagnostic workflows primarily rely on clinical judgment, observable symptoms, and imaging-based biomarkers. 
While these approaches are effective in later disease stages, they often fall short in identifying subtle prodromal 
signs that are critical for early intervention. This limitation underscores the need for data-driven diagnostic 
frameworks that offer greater sensitivity and reliability, especially during the early, less obvious phases of the 
disease.

A wide range of ML and DL models have been explored for diagnosing PD, particularly in distinguishing PD 
patients from healthy controls. Early studies primarily utilized traditional ML classifiers such as Support Vector 
Machines9, multi-layer perceptron10, logistic regression11 and k-nearest neighbors12, all of which depended on 
handcrafted feature extraction. These approaches, however, often suffered from limited generalizability and 
overlooked subtle diagnostic cues. DL methods addressed this by automatically learning hierarchical features 
from raw data, leading to improved performance. For instance13, used a CNN based on AlexNet to classify PD 
and prodromal cases from MRI scans, achieving 88.9% accuracy. In14,, showed that 3D-CNN models trained 
on multi-source MRI data significantly outperformed both 2D CNNs and traditional ML models, highlighting 
the value of volumetric feature learning. Transformer-based architectures have further advanced medical image 
analysis by modeling long-range dependencies and contextual relationships. In Alzheimer’s Disease research15, 
proposed a Regularized Transformer with an adaptive token fusion strategy to aggregate multi-slice MR images. 
This reduced token redundancy and improved spatial coherence. Additionally, L2-SP regularization was used to 
retain useful pretrained representations and reduce overfitting especially important for small medical datasets. 
These techniques are highly relevant to PD, where spatially localized changes and limited data pose significant 
challenges.

Motivated by this need for robust volumetric analysis16, presented a hybrid deep learning architecture that 
combined a 3D-CNN with an enhanced 3D-ResNet. The model was further optimized through Canonical 
Correlation Analysis (CCA)-based feature fusion and bio-inspired feature selection techniques, ultimately 
achieving an impressive accuracy of 97.2%. This reinforces the value of integrating anatomical and functional 
information across modalities for robust diagnostic performance. In17, a review on DL pipelines for colorectal 
cancer emphasized factors such as dataset quality, annotation consistency, and interpretability–challenges 
that are equally pertinent in PD diagnosis. Similarly18, showcased interpretable CNN models for malaria 
detection using XAI techniques, reinforcing the growing demand for models that are not only accurate but 
also transparent and clinician-trustworthy. Despite the successes of single-modality models, their ability to 
represent the full complexity of PD symptoms remains limited. As emphasized in recent literature, multimodal 
integration–combining imaging, biomarkers, and clinical data–is essential for achieving comprehensive and 
accurate classification of PD.

Recent efforts have expanded the boundaries of multimodal learning by aligning visual and textual domains 
to improve clinical interpretability. In19a dual-branch network was introduced that employed large adaptive 
filters alongside an Aligning Normalized Network (ANNet) to facilitate multi-level alignment between chest 
X-ray images and associated radiology reports. By leveraging textual priors to guide visual features, the model 
achieved improved cross-modal representation and interpretability. This approach is particularly valuable in 
neurodegenerative diagnostics, where integrating neuroimaging with clinical reports or cognitive assessments 
may enhance decision-making. However, diagnostic models based on a single modality often face limitations 
due to incomplete representations of disease characteristics. Recognizing this20, emphasized the importance of 
multimodal data fusion, demonstrating that combining multiple input streams–such as structural MRI, CSF 
biomarkers, and clinical scores–can significantly improve the robustness and generalizability of PD classification 
models. Yet, a persistent barrier to clinical translation remains: the black-box nature of many deep models.

This has led to increased interest in XAI methods, which help demystify model predictions by providing 
transparency21. Techniques such as LIME and SHAP, as applied in the referenced22–24, quantify the influence 
of input features on model outputs and generate interpretable visualizations. These tools empower clinicians 
to understand and validate AI decisions–crucial for complex, high-stakes diagnoses like PD, where trust and 
accountability are paramount.

Reinforcing the value of interpretability25,, proposed a hybrid ensemble approach combining deep networks 
with Extreme Learning Machines (ELMs), augmented with XAI-based visualization modules. This ensemble 
was applied to gastrointestinal disease detection, but the methodological framework holds promise for PD and 
other multifaceted neurological conditions. In a related advancement26, introduced CTBViT, a compact Vision 
Transformer architecture optimized for tuberculosis classification. Despite its lightweight structure–featuring 
modular blocks and randomized classifier heads–the model achieved competitive accuracy on constrained 
datasets, making it a compelling option for deployment in low-resource or edge environments. Such architectures 
are directly relevant to real-time PD diagnostics, where balancing performance with efficiency is critical. Taken 
together, these contributions highlight the emerging consensus: successful clinical AI systems must combine 
multimodal learning with interpretability and deployment readiness. Yet, a fully integrated pipeline that unifies 
these strengths–capable of learning from diverse medical data while remaining transparent and lightweight–
remains an unmet need in the field.
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Transformer-based architectures, especially LLMs, have emerged as pivotal tools in medical AI due to their 
strengths in contextual reasoning, multimodal fusion, and generative capabilities. Models such as GPT-3.5 and 
GPT-4 have shown remarkable proficiency in diverse tasks–ranging from clinical summarization to differential 
diagnosis and interactive patient engagement27. A recent mini-review on ChatGPT28 emphasized its potential 
to synthesize complex clinical information, especially in neurodegenerative contexts, reinforcing its suitability 
for early detection and decision support. Furthermore, domain-adapted LLM variants like ChatGPT-4o Mini29 
offer reduced computational overhead and faster inference, positioning them as ideal candidates for embedded 
or edge-based healthcare solutions.

In biomedical question answering and clinical decision-making, fine-tuned LLMs have demonstrated high 
precision when navigating structured and semi-structured datasets30. The GPT-4 Technical Report31, further 
highlights the model’s multimodal reasoning capacity–capable of processing textual and visual inputs with near-
human comprehension. These features position LLMs as ideal components in diagnostic systems that demand 
explainability, natural language output, and contextual intelligence.

Bridging the gap between vision and language19, presented a cross-modal dual-branch network that aligned 
chest X-ray images with radiology reports using large adaptive filters and normalized embeddings. This design 
showcased the feasibility of tightly coupling clinical language with imaging features for robust performance. Such 
hybrid strategies–blending LLMs with visual cues–offer significant promise for neurodegenerative disorders like 
PD, where multimodal data integration is critical.

On the system level, cloud-based AI infrastructures are increasingly embraced to support scalable and 
distributed diagnostics. The Cloud-MRI framework32 for example, integrates 6G communication, edge 
computing, and blockchain technologies to facilitate secure and real-time MRI data sharing. However, many 
existing cloud-based platforms still lack personalized diagnostic reasoning and natural interaction capabilities, 
which are essential for chronic, complex conditions such as PD. A comparative summary of prior research is 
provided in Table 1, illustrating key methodologies, performance insights, and research gaps. This overview 
consolidates developments across machine learning, deep learning, XAI, and LLM-based methods, and justifies 
the need for a unified, multimodal diagnostic pipeline as proposed in this study.

To address these gaps, the present study proposes a comprehensive, cloud-deployable diagnostic ecosystem 
that synergistically combines deep CNN-based imaging classification, multimodal data fusion, XAI outputs, 
and LLM-driven report generation. Unlike previous approaches that compartmentalize these modules, our 
architecture ensures seamless end-to-end integration. Specifically, it supports: (i) ingestion of heterogeneous 
inputs including radiomics, biomarkers, and clinical scores; (ii) interpretable predictions via LIME/SHAP 
visualizations; (iii) real-time narrative generation through a fine-tuned LLM interface; and (iv) clinician 
interaction and feedback through a secure web-based portal. This unified pipeline marks a significant 
advancement toward scalable, transparent, and context-aware AI for PD diagnosis and beyond.

Proposed method
The proposed framework integrates multimodal data from neuroimaging (MRI, SPECT), CSF biomarkers, and 
clinical assessments to enhance PD diagnosis. A 1D-CNN model is employed for classification. A fine-tuned 
GPT-4o Mini model facilitates medical query analysis, leveraging explainable AI techniques such as LIME 
and SHAP to ensure clinical interpretability. Additionally, a cloud-based diagnostic system enhances real-time 
accessibility, integrating secure AI-driven analytics for personalized patient insights. This approach bridges the 
gap between deep learning, explainability, and interactive AI for scalable and reliable PD diagnostics. Each of the 
modules is discussed in detail in this section.

Ref No Year Method/Approach Advantages Limitations & Motivation for This Study

9–12 2019–2023 Traditional ML (SVM, MLP, LR, k-NN) Simple, fast, interpretable Poor generalization; manual feature engineering → Move to 
DL to capture complex patterns automatically

13 2020 CNN on MRI (AlexNet) Learns features from raw data Lower accuracy (88.9%), no multimodal fusion → Use 
deeper/multimodal models for better performance

15 2025 Regularized Transformer (Alzheimer’s) Adaptive token fusion, L2-SP for 
regularization

Needs domain-specific adaptation for PD → Inspired 
multimodal fusion strategy for PD

16 2024 3D-CNN + 3D-ResNet + CCA + WOA Very high accuracy (97.2%), 
optimized features

No cloud deployment or LLM → Build interpretable cloud 
system integrating LLM

18,22,23 2022–2025 XAI-based CNN (SHAP, LIME) Improves clinician trust and 
interpretability

Limited to image features, no language → Fuse XAI scores 
into report generation via LLM

26 2025 CTBViT (lightweight ViT for TB) Compact, fast, high accuracy Not specialized for neurodegenerative conditions → Shows 
feasibility of lightweight models for deployment

27,28,30,31 2023–2025 GPT-3.5/4, LLMs for medical tasks Contextual reasoning, patient-specific 
output

Lack structured data fusion, no task-specified diagnostics → 
Fine-tuned LLM on structured PD data for real-world use

Proposed Work – 1D-CNN + XAI feature score + fine-
tuned LLM in cloud platform

High accuracy (93.7%), 
interpretability, real-time diagnosis, 
multimodal inputs

Needs broader validation → Unified, interpretable, scalable 
PD diagnostic tool

Table 1.  Comparative summary of existing PD diagnosis methods highlighting key approaches, strengths, 
limitations, and the motivation for developing the proposed unified AI framework.
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Data collection
This study used data from the PPMI, a longitudinal, multinational research initiative focused on identifying 
optimal biomarkers for the early diagnosis of PD. The data were accessed through the PPMI website Dataset link. 
The dataset consists of T1-weighted MRI scans from 150 participants comprising 55 PD patients, 45 prodromal 
subjects, and 50 healthy controls who had undergone both MRI and SPECT imaging during their most recent 
visits. Additionally, clinical data, specific binding ratio (SBR) features of four striatal regions, and CSF protein 
markers were collected from control subjects, individuals with PD, and prodromal cases. ‘The pre-processing 
steps include brain-extracted, registered, and intensity-normalized for MRI data, while clinical scores, SBR, and 
biomarker values were z-score standardized. Data augmentation addressed class imbalance via transformations 
and resampling. A 70:30 train-test split was used, with 5-fold cross-validation to ensure robustness.

Delineation of multimodal data features
This study uses multimodal data features from diverse sources to enhance the accurate classification and analysis 
of PD and its related subtypes.

Neuroimaging data
The neuroimaging data comprised MRI and DaT/SPECT scans. MRI scans were acquired using a SIEMENS 
Prisma 3.0T scanner with both sagittal and axial acquisition. The imaging protocol included a T1-weighted 
3D gradient-echo sequence with parameters: TE = 3.0 ms, TI = 900.0 ms, TR = 2300.0 ms, and a flip angle of 
9◦. The resulting images featured a 1 mm slice thickness, pixel spacing of 1.0 mm in both X and Y dimensions, 
and a matrix size of 256×256×192. SPECT imaging was performed using a SIEMENS NM detector with a 
step-and-shoot acquisition method (3◦ angular steps over a 180◦ scan arc) and a parallel collimator. A DAT 
radiopharmaceutical dose of 185 MBq was administered for the imaging procedure. All neuroimaging data were 
initially provided in DICOM format and subsequently converted to NIfTI format to facilitate 3D analyses across 
axial, sagittal, and coronal planes. This conversion ensured compatibility with advanced neuroimaging tools and 
methodologies, supporting comprehensive evaluations in this study.

SBR Values from SPECT
Dopamine Transporter (DaTscan) imaging was conducted using I-123 Ioflupane to quantify SBR values in key 
striatal regions. These regions, which are central to the pathology of PD, include the right caudate (RC), left 
caudate (LC), right putamen (RP), and left putamen (LP). SBR values provide critical insights into dopaminergic 
activity, serving as a vital biomarker for evaluating motor symptoms and tracking disease progression in PD33.

Biological features (CSF proteins biomarkers)
CSF biomarkers were incorporated into this study to capture the underlying neurochemical changes in PD. 
Four important key markers were used they are α-synuclein (α-syn), which is associated with PD pathology 
and neurodegeneration; Amyloid-β1−42 (Aβ1−42) is a marker of amyloid plaque formation; total Tau (tTau) 
indicates neuronal damage; and Phosphorylated Tau (pTau181), is indicative of tau pathology. These biomarkers 
provide critical information for differentiating PD from related neurodegenerative conditions and understanding 
disease progression34.

Clinical data
The clinical data in this study include detailed assessments of motor and non-motor symptoms using the 
Unified Parkinson’s Disease Rating Scale (UPDRS) and cognitive evaluations through the Montreal Cognitive 
Assessment (MoCA). The UPDRS-1 evaluates non-motor experiences of daily living, including mood, behavior, 
and therapy-related complications, with a range of 0–52. The UPDRS-2 assesses motor experiences of daily living, 
such as speech, swallowing, and handwriting, also ranging from 0–52. UPDRS-3 focuses on motor examinations, 
including rigidity, tremors, bradykinesia, posture, and gait, with a range of 0–132, while UPDRS-4 examines 
motor complications of therapy, with a range of 0–24. Cognitive function was assessed using the MoCA, a 
standardized test evaluating memory, attention, language, and executive functions. These clinical scores provide 
a comprehensive understanding of both motor and non-motor symptoms, aiding in the evaluation of disease 
progression and severity35. Table 2 presents the range of values for each multimodal feature, including clinical, 
neuroimaging, and biomarker data, across control, PD, and prodromal groups, along with demographic details 
such as age, sex, weight, and height. The range of protein biomarker values is also included, highlighting that α-
syn and Aβ1−42 exhibit significantly larger values compared to pTau181 and tTau, underscoring their importance 
in disease characterization.

1D-CNN architecture
The 1D CNN classifier has been utilized to distinguish between three classes: PD, Control, and prodromal 
variants. This model, a type of deep neural network, is specifically designed for processing one-dimensional data, 
such as time series or sequential datasets. In this study, protein biomarkers, SBR, clinical data, and neuroimaging 
features are used as input for the model. As illustrated in Fig. 1, the 1D CNN architecture comprises an input 
layer, followed by three consecutive 1D convolutional layers, and each convolutional layer employs a kernel size 
of 3 and applies the Leaky ReLU activation function, defined as (1), to introduce non-linearity while avoiding 
vanishing gradients problems. Mathematically, a 1D convolution operation for the i-th filter can be expressed 
as in Eq. (2).

	 f(x) = max(0.01x, x)� (1)
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Fig. 1.  Schematic representation of the 1D-CNN architecture for multimodal classification of PD stages.

 

Variable PD Subjects Prodromal Subjects Control Subjects p-value

Clinical Data

Gender (F/M) 25/25 21/29 23/27 >0.05b

Age 67.3 ± 13.09 72.39 ± 14.13 74.2 ± 13.85 >0.05a

History of PD (Yes/No) 5/45 3/47 0/50 >0.05b

Weight 77.8 ± 21.3 75.46 ± 28.22 72.15 ± 18.77 >0.05a

Height 168.1 ± 10.1 169.56 ± 10.02 170.6 ± 11.5 >0.05a

Heart rate (stand) 71.98 ± 15.011 64.7 ± 12.81 61.56 ± 5.88 >0.05a

Heart rate (sit) 80.14 ± 16.91 74 ± 15.504 68.48 ± 5.4 >0.05a

UPDRS-1 28.94 ± 15.09 16.14 ± 3.07 - <0.05a

UPDRS-2 28.7 ± 15.92 18 ± 4.29 - <0.05a

UPDRS-3 65.64 ± 36.37 31.4 ± 7.82 - <0.05a

UPDRS-4 14.6 ± 6.16 8.28 ± 2.29 - <0.05a

Total UPDRS score 118.28 ± 40.62 65.54 ± 11.10 - <0.05a

MOCA score 15.04 ± 2.18 21.28 ± 2.20 28.28 ± 1.249 <0.05a

DaTscan (SBR Features)

Right caudate 1.1 ± 0.39 1.61 ± 0.50 2.10 ± 0.83 <0.05a

Left caudate 1.26 ± 0.48 1.56 ± 0.47 2.00 ± 0.97 <0.05a

Right putamen 0.50 ± 0.21 0.74 ± 0.31 0.92 ± 0.79 >0.05a

Left putamen 0.55 ± 0.24 0.71 ± 0.30 0.91 ± 0.74 >0.05a

Protein Biomarkers

α-synuclein (pg/ml) 1927.56 ± 51.47 1989.79 ± 48.8 1874.76 ± 42.7 <0.05a

Aβ1−42  (pg/ml) 884.5 ± 313.84 1070.7 ± 421.37 964.9 ± 422.6 <0.05a

t-Tau (pg/ml) 17.6 ± 66.25 19.80 ± 66.08 18.7 ± 71.96 <0.05a

p-Tau181 (pg/ml) 14.36 ± 6.31 15.89 ± 5.02 17.27 ± 8.18 <0.05a

Table 2.  Multimodal biomarker profiling across PD, prodromal, and control groups with statistical 
significance analysis. Note:a = ANOVA test, b = Chi-square test. (UPDRS: Unified Parkinson’s Disease Rating 
Scale, MoCA: Montreal Cognitive Assessment, SBR: Specific Binding Ratio, DaTscan: Dopamine Transporter 
Scan).
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y(i)[t] =

K∑
k=1

w
(i)
k · x[t + k − 1] + b(i)� (2)

where y(i)[t] represents the output at position t, w(i)
k  are the filter weights, x[t] is the input signal, and b(i) is 

the bias term. The combination of Leaky ReLU and convolutional operations enhances feature extraction and 
improves the model’s ability to capture complex patterns in sequential data. Max-pooling layers with a pool size 
of 2 and a stride of 2 follow the convolutional layers to downsample the dimensionality of the feature maps while 
retaining the most salient features. Dropout layers with a learning rate of 0.5 are used to reduce overfitting. Two 
additional 1D convolutional layers further refine feature extraction, followed by another pooling layer, dropout 
layer, flattening operation, and a fully connected layer. The output layer, designed for three-class classification, 
employs the SoftMax activation function, and the model is optimized using the categorical cross-entropy loss 
function, defined in Eq. (3).

	
L = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij)� (3)

where N  is the number of samples, C  is the number of classes, yij  is the true label, and ŷij  is the predicted 
probability. ‘To ensure reproducibility of our 1D-CNN implementation, the following hyperparameters were 
used: the model includes five 1D convolutional layers with filter sizes of [32, 64, 128, 64, 32], each using a 
kernel size of 3 and Leaky ReLU activation with α = 0.01. Max pooling was applied after each convolutional 
block using a pool size of 2. Dropout layers with a dropout rate of 0.5 were introduced after the convolutional 
stack to reduce overfitting. A dense fully connected layer with 128 neurons was used prior to the final output 
layer. The model was trained using the Adam optimizer with a learning rate of 0.0005, a batch size of 16, and a 
maximum of 100 epochs. Early stopping was enabled with a patience of 10 epochs. The loss function used was 
categorical cross-entropy, and SoftMax was used for multi-class prediction in the output layer. All experiments 
were conducted in a Python 3.10 environment using PyTorch 1.13.1 with CUDA 11.7. The system configuration 
included a 64-bit Intel(R) Xeon W-2255 CPU @ 3.70 GHz with 128 GB RAM, and these environment settings 
have been detailed for reproducibility.

Fine-tuned large language model for PD analysis
LLM are advanced AI systems designed to understand and generate human-like text, enabling automation of 
tasks such as language comprehension, content creation, and domain-specific problem-solving in fields like 
healthcare. ChatGPT-4o Mini is a compact version of GPT-4, optimized for handling text and image inputs. 
This model leverages the Transformer architecture with self-attention mechanisms and layered Transformer 
blocks to extract meaningful patterns from sequential data. By employing techniques like parameter pruning 
and quantization, this model achieves high efficiency, making it well-suited for environments with limited 
computational resources, such as edge devices. In this study, ChatGPT-4o Mini has been fine-tuned to enhance 
its contextual understanding of tasks related to PD diagnosis. Fine-tuning involves adapting a pre-trained 
model using task-specific datasets to improve its performance, as described by Ouyang36. This process often 
incorporates supervised learning and RLHF, which helps align the model’s responses with user expectations 
while boosting task-specific accuracy. For PD diagnosis, the fine-tuned LLM was trained on multimodal data 
that included patient-specific features, XAI feature scores derived from classification models, and relevant PD 
research. This integration equips the model to extract meaningful insights and generate precise interpretations 
tailored to the needs of PD diagnosis. The fine-tuned LLM creates standardized patient reports that combine 
diagnostic data, extracted features, and their clinical interpretations. It also enables personalized user interactions 
by addressing queries with responses customized to individual health records and XAI insights. As illustrated in 
Fig. 2, this framework aids clinicians in decision-making by leveraging multimodal data analysis and providing 
personalized recommendations for PD diagnosis.

Cloud-based interactive health inquiry system
Cloud-based applications for medical imaging offer more convenience. They incorporate advanced DL tools for 
early diagnosis and provide explainable results, effectively bridging the gap between AI and clinical practice. In37, 
authors demonstrated that cloud-based frameworks have proven highly effective in deploying AI models for 
diagnosing diseases from medical images. Building on this, the proposed cloud-based platform allows patients to 
effortlessly upload MRI scans for detecting PD. This system not only simplifies tracking disease progression but 
also supports proactive management of the condition. By securely storing diagnostic outcomes and treatment 
histories, it ensures personalized care and enhances accessibility. Real-time data collection enhances the system’s 
accuracy, continuously refining its diagnostic capabilities through insights from real-world cases. This dynamic 
approach ensures precise PD mapping and fosters personalized, convenient care for patients.

Results
Statistical analysis
Statistical analysis was performed using SPSS software to evaluate the multimodal data summarized in Table 2. 
Descriptive statistics, such as mean and standard deviation, were calculated for all variables. Categorical data were 
analyzed using chi-square tests, while hypothesis tests like ANOVA were applied to numerical variables to assess 
their significance. A p-value threshold of 0.05 was used to determine statistical significance for each biomarker 
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across the cohorts (PD, prodromal, and control). Features with p-values greater than 0.05 were considered 
statistically insignificant and excluded from further analysis. Out of the 21 features analyzed, 14 were found to 
be statistically significant and selected for the next phase of the study. These included clinical data (e.g., UPDRS 
scores, MoCA scores), DaTscan-derived SBR features, and protein biomarkers (α-synuclein, Aβ1−42, t-tau, 
and p-tau). For example, UPDRS scores and most protein biomarkers showed significant differences between 
cohorts (p < 0.05), whereas features like height and heart rate did not meet the significance threshold. This 
focused approach ensured that only the most relevant features were used for subsequent PD classification and 
analysis. ‘The statistical significance testing in this section supports the feature selection process shown in Table 
2. Additionally, the model performance comparisons in Table 3 were validated using 5-fold cross-validation, 
yielding low variance across folds, thereby reducing the need for additional pairwise significance testing.

Radiomics features from MRI scan
The MRI scans underwent several pre-processing steps, as shown in Fig. 3. A detailed explanation of the process, 
along with the feature extraction, is documented in the previous work38. Radiomics features in neuroimaging 
provide detailed quantitative data from medical images, capturing subtle changes in brain structure and function. 
These features were extracted from the subcortical regions for all three classes: PD, control, and prodromal. A 
total of 107 radiomics features were collected for each of the 150 participants.

Performance evaluation of 1D-CNN classifier
In this study, 121 multimodal features were utilized for classification, including 14 features from SPECT, CSF 
proteins, and clinical data, as well as 107 radiomics features extracted from MRI scans of 150 patients. These 
features underwent pre-processing steps, including min-max normalization, to address variations in feature 
ranges. This normalization technique scaled all feature values to a range of 0 to 1, improving the model’s ability 
to identify relationships and enhancing both accuracy and reliability. The formula for min-max normalization 
is given in Eq. (4):

	
X ′

i = X − Xmin

Xmax − Xmin
� (4)

Feature engineering was applied to create five ratio-based features:

•	 P-tau181/Total-tau
•	 Total-tau/Aβ1−42
•	 P-tau181/Aβ1−42
•	 Right caudate/Left caudate
•	 Right putamen/Left putamen

Fig. 2.  Integration framework of fine-tuned LLM for PD diagnosis and clinical decision support.
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Fig. 3.  MRI Preprocessing and Subcortical Structure Segmentation Pipeline for PD Analysis.

 

S.no Features Split Accuracy (%) Recall (%) Precision (%) F1-score (%)

1 SPECT + CSF proteins + Clinical data

1 88.2 90.6 87.8 91.6

2 89.5 89.8 88.4 90.8

3 90.6 90.2 89.2 89.7

4 89.8 92.4 87.3 91.8

5 90.9 89.3 89.4 90.5

Avg. 89.8 90.4 88.4 90.8

2 MRI data

1 90.2 90.5 90.8 92.3

2 88.4 91.8 92.5 93.2

3 89.9 90.6 91.4 93.8

4 91.8 90.9 89.9 91.7

5 90.7 90.3 92.3 90.6

Avg. 90.2 90.8 91.3 92.3

3 SPECT + CSF proteins + Clinical data + MRI data

1 92.4 92.2 94.5 93.6

2 93.5 91.6 92.8 92.2

3 92.3 90.8 93.9 94.8

4 91.8 89.7 91.8 95.7

5 93.8 92.8 92.5 90.8

Avg. 92.7 91.4 93.1 93.4

4 All + Ratio based features

1 92.9 94.8 94.3 95.1

2 93.2 94.7 95.8 94.4

3 94.4 94.5 96.7 93.6

4 93.6 95.4 95.2 94.8

5 94.8 93.2 95.1 95.9

Avg. 93.7 94.5 95.4 94.7

Table 3.  Comparative Performance of Multimodal Feature Combinations for Multiclass Classification of PD.
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These ratios were derived by comparing high- and low-value features. These derived features highlight significant 
relationships between biomarkers and structural measures, aiding in the early detection of PD and prodromal 
conditions39,40. To address data imbalance, data augmentation was applied to the minority class within the 
training dataset, ensuring balanced representation and improving classification performance. ‘Specifically, a 
70:30 stratified train-test split was performed first, and Synthetic Minority Oversampling Technique (SMOTE) 
was then applied only to the training data. This ensured that the test set remained completely untouched and 
unbiased, preserving the reliability of the model’s performance evaluation. Table 2 reflects the original class 
distribution before augmentation. The multimodal data, after pre-processing and feature engineering, was fed 
into the 1D-CNN classifier. The dataset was split into 70% training data and 30% testing data, with augmentation 
performed only on the training data to generate synthetic samples for the minority class. The architecture of 
the 1D-CNN classifier, as detailed in Section 1.3, processes the multimodal inputs for multiclass classification, 
distinguishing between PD, prodromal, and control groups. The complete workflow of the classification process 
is illustrated in Fig. 4.

Table 3 highlights the performance comparison of various feature combinations for distinguishing between 
control, PD, and prodromal stages in a multiclass classification. The evaluation metrics, including accuracy, 
precision, recall (sensitivity), and F1-Score, are employed to assess the effectiveness of the classification model. 
These metrics provide a comprehensive understanding of the model’s ability to classify instances across all 
classes for accurate diagnosis of PD progression. ‘Combining all features (SPECT, CSF proteins, clinical data, 
and MRI) improved accuracy to 92.7%. The addition of ratio-based features further boosted the performance, 
achieving the highest accuracy of 93.7%, along with enhanced recall, precision, and F1-score. The mathematical 
expressions of the evaluation metrics are discussed below in Eq. (5) to Eq. (8). Here, T P  is true positive, T N  is 
true negative, F P  is false positive, and F N  is false negative.

	
Accuracy = T P + T N

T P + F P + T N + F N
� (5)

	
Precision = T P

T P + F P
� (6)

	
Recall = T P

T P + F N
� (7)

	
F1-score = 2 × Precision × Recall

Precision + Recall
� (8)

Fig. 4.  Overview workflow of the 1D-CNN classifier model for PD classification using multimodal data.

 

Scientific Reports |        (2025) 15:38556 10| https://doi.org/10.1038/s41598-025-22448-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


eXplainable AI (XAI) feature score
The XAI feature scores extracted from the 1D-CNN model quantify the importance of individual features 
across various instances and cohorts. Techniques like SHAP and LIME, provide a transparent view of model’s 
decision-making process. This analysis highlights the most influential features driving predictions, improving 
interpretability, and validating the model’s outcomes. By identifying critical features, XAI facilitates fine-tuning 
and integration into higher-level layers of the LLM. This approach creates a seamless connection between feature-
level insights and contextual predictions, enhancing the reliability and trustworthiness of the model’s outputs. 
XAI strengthens the interpretability of AI-driven diagnostic systems, supporting informed clinical decisions. 
‘A detailed SHAP and LIME-based interpretability analysis was already conducted in our prior study38, where 
top multimodal features were visualized and discussed extensively. To avoid redundancy, we have not repeated 
similar figures in this manuscript. Instead, we utilize the XAI-derived scores as direct inputs to the fine-tuned 
LLM, enabling it to generate personalized diagnostic narratives grounded in interpretable model outputs.

LLM-based diagnosis guidance and query resolution
This study utilized a fine-tuned version of OpenAI’s ChatGPT-4.0 Mini, customized with datasets specific to PD, 
to analyze key features for medical diagnosis prediction. The model aims to empower both patients and clinicians 
by offering informed guidance for initiating or managing treatment options. To enhance the model’s performance 
for PD-specific analysis, a fine-tuning process was undertaken. This involved a comprehensive review of medical 
literature to identify critical diagnostic features, which were curated into a specialized dataset encompassing 
diverse medical cases and data types. The fine-tuning process required configuring an advanced environment, 
including the installation of Python dependencies such as openai, pandas, and matplotlib, and enabling GPU 
acceleration to reduce training time significantly. Multimodal data, PD-related research papers and XAI feature 
scores were utilized. Since feeding raw documents and textbooks into the model was not feasible, a prompt-
completion method was adopted to structure the data effectively. The ScaleXI tool was used to streamline dataset 
extraction and organization, ensuring efficient and accurate data preparation. ‘To generate prompt-completion 
pairs, PD-related content was rewritten into clinical Q&A form, while key numerical features (e.g., MoCA, 
UPDRS, SHAP scores) were embedded as contextual inputs. Each pair was stored in JSONL format following 
OpenAI standards. These steps ensured structured, reproducible fine-tuning of the LLM. Ground truth data 
were obtained from the “Expanded Library for Parkinson’s Disease Prompts” a rich resource offering validated 
tools for monitoring PD, educational materials for patients and caregivers, and insights from leading specialists 
on symptom management and treatment innovations41,42. This library also includes diverse media formats, such 
as books, queries, and videos, aimed at improving the quality of life for individuals with PD.

By integrating the fine-tuned LLM model with meticulously prepared datasets and automated acquisition 
via ScaleXI, the study achieved improved diagnostic accuracy and supported informed healthcare decision-
making. The model helps clinicians and patients understand the severity of PD and provides actionable guidance 
for treatment. It supports multimodal inputs, including text, images, and audio, enabling it to address queries 
comprehensively. Personalized responses are generated by combining user inputs with extracted feature values, 
ensuring tailored and insightful interactions. As demonstrated in Fig. 5, the fine-tuned model effectively processes 
patient scans and segmented MRI images, delivering detailed findings and reasoning related to PD-specific 
features, such as subcortical region intensity and structural anomalies. These personalized responses highlight 
the model’s capability to analyze imaging data and provide valuable insights to aid diagnosis and treatment 
planning. Figure 6 illustrates the model’s ability to integrate radiomic data with DaTscan imaging, significantly 
enhancing diagnostic precision. It identifies patterns of dopaminergic dysfunction and structural brain changes, 
ensuring actionable and context-specific responses to user queries. Additionally, the model maintains relevance 
by filtering unrelated questions; for example, if a user poses a question not related to PD, the model appropriately 
redirects by confirming its focus on PD-related topics. The integration of radiomics data, clinical insights, and 
advanced AI techniques underscores the model’s transformative potential in PD diagnosis and care, offering 
clarity, precision, and actionable recommendations across various scenarios.

LLM-driven personalized medical report generation
Figure 7 displays the AI-generated personalized medical report. The website, from the initial page, gathers 
basic patient details and medical history. Within the user interface of our proposed cloud-based platform, the 
segmented subcortical region is obtained. Subsequently, a description of the image is generated by the fine-
tuned model. Additionally, an LLM model utilizes neuroimaging data and suggests lab tests based on individual 
health conditions. With the integration of clinical data and neuroimaging analysis, the report displays protein 
prediction analysis. Clinical impressions are provided based on predictive biomarkers, clinical data, and 
neuroimaging data. treatment recommendations, including medications and physical activities, are suggested 
by the LLM model.

Integrated cloud-based comprehensive record management
This study introduces a cloud-based comprehensive record management platform designed to archive patients’ 
records, including medication history and progress over time, enabling efficient tracking and facilitating quality 
follow-up recommendations. This data is also utilized to enhance the prediction model’s accuracy with real-
case scenarios periodically. The user interface of the proposed platform is illustrated in Fig. 8. In Fig. 8 (a), a 
protein prediction-based disease classification method is depicted, providing users with quick access to their 
PD status, even without neuro-imaging data like MRI scans. Upon acquiring an MRI scan, users can utilize 
the neuroimaging data analysis tab, as shown in Fig. 8 (b), to upload their scans and obtain status updates. 
Subsequently, users can utilize the Parkinson-GPT tab, as shown in Fig. 8 (c), leveraging a fine-tuned LLM 

Scientific Reports |        (2025) 15:38556 11| https://doi.org/10.1038/s41598-025-22448-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


model to address the users’ queries by integrating MRI scan features and user-provided clinical data. The account 
management tab, as shown in Fig. 8 (d), allows patients to monitor their history and recommendations.

Figure 9 illustrates the outcomes of preprocessing, registration, and image correction processes displayed 
within the user interface during MRI scan uploads in the framework. The framework accepts 3D MRI scan data 
in Neuroimaging Informatics Technology Initiative (NIfTI) file format to execute the classification model and 
derive results.

Discussion
Comparison with models based on multi-modal data
This study integrates 107 radiomics features from MRI, 21 key clinical features, SBR imaging-derived 
measurements, protein biomarkers, and five ratio-based features generated through feature engineering. 
These diverse features were processed and fed into a 1D-CNN architecture for classification. Table 4 presents 
a comparative analysis of our proposed framework with recent state-of-the-art multimodal diagnostic models. 
While most existing studies primarily report accuracy as the key performance metric, accuracy alone may not 
sufficiently reflect the diagnostic capability of a model, particularly under class imbalance conditions. To address 
this, we employed SMOTE-based augmentation to balance the training data and evaluated our model using a 
broader set of metrics. The proposed model achieves an accuracy of 93.7%, with a precision of 97.2%, recall of 
94.4%, and F1-score of 96.5%, all of which outperform most prior works and are more clinically informative 
than accuracy alone. Moreover, unlike prior studies that often focus on binary classification, our framework is 
designed to handle a more clinically realistic multi-class problem making the task more challenging but aligned 
with real-world diagnostic needs. The model also benefits from a richer and more heterogeneous feature set, 
including radiomics, CSF biomarkers, SBR values, clinical scores, and ratio-based features, which enhances its 
generalizability across diverse cohorts. In contrast, many of the compared models rely on unimodal or limited 
feature sets, which may inflate performance in controlled settings but lack robustness in practical deployment 
scenarios. ‘Although our framework achieves strong performance, it is important to acknowledge that the limited 
sample size (150 subjects) may affect generalizability, and larger-scale validation is planned for future work.

Datatypes for finetuning and testing
A total of 1,000 prompt-completion pairs were curated for fine-tuning. This included 250 manually collected 
pairs, 250 from the “Expanded Library for Parkinson’s Disease Prompts”, and 500 generated Q&A pairs using 
this scalexi package are structured prompt-completion datasets created from contextual inputs. Each prompt 
is carefully crafted based on predefined question types (e.g., open-ended, yes/no, demographic, classification) 
to ensure diverse and meaningful responses. The completions are generated using OpenAI’s API, ensuring 
high-quality, contextually relevant answers. The dataset follows a standardized JSON/CSV format, making it 
suitable for AI model fine-tuning and evaluation. The dataset was structured into 915 pairs for fine-tuning and 

Fig. 5.  Interactive Interface and Case-Based Outputs from the Fine-Tuned PD Language Model.
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85 pairs for testing, covering diverse data sources to ensure comprehensive model training and evaluation. Table 
5 provides a detailed breakdown of the dataset distribution across different data types.

Parameter fine-tuning LLM
The fine-tuning of LLMs was conducted to enhance response accuracy and minimize hallucinations in patient 
queries, anchoring the model in curated medical data specific to PD diagnosis. The objective was to refine 
domain specificity, reliability, and precision, ensuring that the model produces trustworthy and clinically 
relevant outputs. For consistency, GPT-4 (1 trillion parameters) was fine-tuned using a standardized custom 
system prompt that instructed the model to function as a concise and accurate medical chatbot for PD-related 
queries. To optimize learning efficiency, three training epochs were applied. Fine-tuning parameters were 
carefully selected to balance computational efficiency and model performance. The input and output lengths were 
capped at 256 tokens each, maintaining a total sequence length of 512 tokens. The model was optimized using 
the token-averaged cross-entropy loss function and Adam optimizer with a learning rate of 0.0005, ensuring 
stable adjustments. A batch size of 16 was used to balance memory usage and training efficiency. ‘Additionally, 
temperature (0.3) and repetition penalty (1.2) were configured to enhance response diversity while maintaining 
factual accuracy. The Scalexi Python library was employed to automate dataset preparation, cost estimation, and 
model evaluation, significantly simplifying the fine-tuning workflow. This streamlined process enabled efficient 
optimization, faster iterations, and improved model performance for PD-related tasks. The fine-tuning API was 
used to handle dataset uploads, initiate fine-tuning jobs, monitor progress, and deploy the fine-tuned model for 
real-world testing. These optimizations resulted in a specialized LLM capable of delivering precise, clinically 
relevant responses for PD diagnosis and patient support.

Evaluation method for finetuned LLM response
After fine-tuning the GPT-4o-mini model on a curated dataset of PD-related medical queries, it was crucial to 
assess its performance in generating accurate and reliable responses. This evaluation was conducted using an 
automated framework that followed a structured three-step process, leveraging GPT-4 as an evaluator (LLM-
based judge).

Fig. 6.  Text-Based User Interactions and Corresponding Responses from the Fine-Tuned PD LLM.
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Structured prompt-completion pairs for evaluation
The evaluation dataset was formatted in a structured JSONL format, where each entry contained a medical 
prompt, a ground truth response, and the model-generated response. This format enabled systematic assessment 
of the semantic and factual correctness of the generated outputs, as shown in Table 6. The “prompt” represents 
the medical user query, the “ground_truth_completion” is the data collected from the PD library and 
verified as the correct response, and the “model_completion” is the response generated by the fine-tuned 
LLM. The accuracy and reliability of the model were determined by comparing the “model_completion” 
against the “ground_truth_completion” using an automated scoring system. The accuracy and 
reliability of the fine-tuned model were evaluated by assessing the model-generated responses in comparison to 
the ground truth responses, using a scoring mechanism implemented in GPT-4.

Evaluating using GPT-4 as a judge
To ensure objective assessment, GPT-4 was employed as an LLM-based evaluator, assigning a quantitative score 
(0.0 - 5.0) to each response, as shown in Table 7. The scoring system evaluated factual correctness, coherence, 
specificity, and relevance. Each evaluation instance followed a structured scoring prompt template, where GPT-4 
was instructed to act as an impartial medical evaluator:

"You are a friendly and brilliant medical chatbot, designed to provide concise and accurate answers with 
regards to all PD-related queries. Given a user prompt, a correct ground truth response, and a generated 
response, assign a score (0.0 to 5.0) based on factual accuracy, coherence, and specificity. Additionally, provide 
a concise justification (≤ 50 words) explaining the score. The output must be in CSV format: {“score”: value, 
“score_reason”: “justification”}."

Three-step automated evaluation process
The evaluation framework followed a structured three-step methodology to assess the accuracy and reliability 
of the fine-tuned model systematically. Step 1: The fine-tuned GPT-4o-mini model was tested on the test data, 
with key generation parameters such as temperature (0.3) and repetition penalty (1.2) optimized for reliability. 
Step 2: The model-generated responses were systematically compared against ground truth answers, ensuring an 
objective assessment of factual correctness and medical relevance. Step 3: GPT-4 was employed as an evaluator, 
analyzing each generated response and assigning a quantitative score (0.0 - 5.0) based on semantic similarity, 
factual correctness, and coherence. The final evaluation results were stored in a CSV format, containing five 

Fig. 7.  AI-Generated PD Report Using the Fine-Tuned LLM in a Standardized Clinical Template.
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essential columns: 1. User prompt 2. Ground truth response 3. Model-generated response 4. Assigned score (0.0 
- 5.0) 5. Brief justification (≤50 words). This format ensures a compact yet comprehensive evaluation of model 
performance.

Limitations and managerial implication
While the proposed AI-driven framework demonstrates promising results in integrating multimodal data 
for PD diagnosis, several limitations warrant consideration. First, the dataset size, although curated with care 
from validated sources like PPMI, remains modest, which may impact generalizability across broader clinical 
populations. External validation on larger, more diverse cohorts is necessary to confirm robustness. Additionally, 
while the 1D-CNN and LLM components were optimized for performance, future comparisons with newer 
transformer-based or lightweight edge-deployable models could provide further insights. From a deployment 
standpoint, integration with hospital information systems poses challenges related to data interoperability, 
privacy regulations (e.g., HIPAA/GDPR), and clinical workflow alignment. Real-time inference via web-based 
interfaces also introduces latency and reliability concerns in resource-constrained settings. Moreover, regulatory 
clearance and ethical approval will be crucial before clinical adoption. Despite these limitations, the framework 
offers substantial value in augmenting diagnostic decisions and providing interpretable, patient-specific insights. 
It lays the groundwork for future AI-assisted platforms in neurology and personalized medicine.

Conclusion
This study presents a comprehensive AI-driven diagnostic framework for PD that integrates multimodal data 
fusion, interpretable deep learning, and personalized LLM-based assistance. The proposed methodology 
combines clinical scores, SPECT-derived SBR values, CSF protein biomarkers, and 107 radiomics features 
extracted from T1-weighted MRI scans. These imaging data were pre-processed through brain extraction, 
registration, and intensity normalisation to ensure consistency. Initially, 21 features spanning clinical, imaging, 
and biological domains were subjected to statistical evaluation, from which 14 significant features were retained. 
These were combined with the 107 radiomics features and 5 ratio-based engineered features, yielding a total of 
126 multimodal inputs. These were used to train a 1D-CNN for multiclass classification. To ensure robustness 
and fairness, a 70:30 stratified train-test split and 5-fold cross-validation were employed. Class imbalance 
was mitigated using SMOTE-based data augmentation. The model achieved 93.7% accuracy, along with high 
precision, recall, and F1-score–surpassing several state-of-the-art baselines.

To enhance interpretability, explainable AI techniques such as SHAP and LIME were used to extract feature 
importance scores. These scores were then integrated into downstream LLM-based narratives, bridging the 

Fig. 8.  Graphical User Interface (GUI) of the Proposed Cloud-Based AI Platform for PD Management. 
The platform integrates multiple modules to streamline clinical and diagnostic workflows: (a) protein level 
prediction using patient-specific clinical inputs, (b) neuroimaging analysis through NiFTI file uploads for 
automated radiomic evaluation, (c) an AI-powered chatbot trained for PD-specific interactions and guidance, 
and (d) a centralized navigation panel enabling access to all analytical and support tools within the system.
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Data Type Q/A Pairs (Fine-tuned Model) Q/A Pairs (Testing)

Clinical data 194 10

Protein data 174 18

MRI data 151 11

SPECT 196 9

XAI feature score 78 13

PD related content 122 24

Total 915 85

Table 5.  Distribution of multimodal data sources used for multiclass classification and evaluation in PD.

 

Reference Year Classification Features Inferences

43 2024 PD vs MCI vs Control SBR + MRI features Accuracy: 86.79%, Sensitivity: 85.5%, Specificity: 89.9%, 
AUC: 92.3

34 2024 PD vs Healthy vs SWEDD SBR and biological features Sensitivity: 96.55%

33 2022 PD vs Healthy MRI + SBR + CSF features Accuracy: 90.48%, Specificity: 86.05%, F1-score: 92.06%, 
Geometric Mean: 89.72%, Sensitivity: 93.55%

35 2024 PD vs Healthy SBR + CSF features AUC: 98%, CI: 0.97–0.99, Sensitivity: 95%, Specificity: 92%
44 2024 PD vs Healthy vs SWEDD Ratio-based features + SBR AUC: 99.3%

Proposed Method – PD vs Healthy vs Prodromal Ratio-based features + MRI 
(radiomics) + SBR + CSF + Clinical

Accuracy: 93.7%, Recall: 94.4%, Precision: 97.2%, F1-
score: 96.5%

Table 4.  Comparative performance analysis of the proposed multimodal diagnostic framework against 
existing state-of-the-art studies.

 

Fig. 9.  MRI processing and radiomics-based prediction workflow in the cloud-based PD platform. The 
interface demonstrates the end-to-end processing pipeline beginning with (i) NiFTI file upload, followed by 
(ii) image visualization, (iii) segmentation, (iv) brain mask generation, (v) image correction, and (vi) MRI 
registration. Subsequently, (vii) radiomic features are extracted and exported as a CSV file, which is then used 
by the integrated machine learning model to predict the presence of PD based on learned feature patterns.
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gap between model prediction and clinical understanding. In parallel, a lightweight ChatGPT-4.0 Mini model 
was fine-tuned using 1,000 structured prompt-completion pairs derived from curated PD literature, clinical 
metrics, and XAI-derived insights. The ScaleXI library was used to automate dataset preparation and fine-tuning 
management. The LLM supports text, image, and audio modalities, enabling personalized diagnostic summaries 
and clinician-patient interactions. The entire system is deployed on a cloud-based platform offering four key 
modules: protein-level prediction, neuroimaging upload and analysis, PD-focused chatbot interaction, and 
centralized patient record management. This setup enables real-time inference, contextual feedback, and long-
term monitoring–particularly beneficial for remote or resource-limited clinical environments.

While the framework demonstrates strong diagnostic performance, its current evaluation is limited to a 
modest dataset of 150 subjects, which may affect generalizability across broader populations. Additionally, the 
LLM module could benefit from more diverse real-world interaction scenarios to further refine its clinical utility. 
These results underscore the framework’s potential for clinical translation. Future work will explore validation on 
larger, more diverse cohorts, incorporation of Retrieval-Augmented Generation (RAG) for improved contextual 
intelligence, and development of agent-based AI modules for adaptive patient engagement and clinical decision 
support. By integrating explainability, scalability, and personalization, this work sets the foundation for next-
generation AI-assisted neurodiagnostics.

Data availability
The training and testing data used in this study is available from the Parkinson’s Progression Markers Initiative 
(PPMI) which is an open-access database.
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