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The explosive growth of multimedia and Internet of Thing (IoT) devices has led to a huge increase in 
data traffic requirements with a reduced power consumption demands in 6G communications. In this 
work, a ground Multiple Radio Access Technology (Multi-RAT) Heterogeneous Network (HetNet) is 
considered, which is assisted by multiple UAVs, each carrying Multi-RAT base stations (i.e., LTE and 
Wi-Fi base stations), to utilize the unlicensed spectrum, and provide an on-demand assistance, more 
capacity, and coverage for diverse ground devices. A Satisfaction to Energy Ratio (SER) is introduced, 
which is a ratio between the users’ satisfaction according to their requirements, and the UAVs’ energy 
consumption. An iterative framework is proposed to maximize the SER by optimizing the UAVs 3D 
location and the users association. The proposed framework uses a modified K-means algorithm for 
initialization, Deep Reinforcement Learning (DRL) to optimize the 3D location of UAVs, and regret 
learning to optimize the user association. Extensive simulations show an improvement percentage 
that reaches 13%, 25%, 67%, 71%, 28%, 45% in satisfaction index, downlink data rate, uplink power 
consumption, outage probability, Jain’s fairness index, and framework iterations, respectively. 
In addition, a comparison between different DRL algorithms, observation scenarios, and training 
approaches is presented to select the best combination of them in the proposed framework.

The next generation of wireless communication networks, 6G, is expected to support a wide range of applications 
with diverse requirements, such as ultra-high-speed data transmission, low-latency communication, and 
massive connectivity. To meet these requirements, Multi-Radio Access Technology (Multi-RAT) Heterogeneous 
Networks (HetNets) have been proposed as a promising solution. HetNets represents base stations with different 
area coverage (i.e., Macro, Micro, and Femto base stations), while Multi-RATs combine different wireless access 
technologies, such as cellular, Wi-Fi, to provide seamless and ubiquitous connectivity to users. However, the 
deployment and operation of HetNets pose significant challenges, particularly in terms of optimizing the 
network coverage, capacity, and Quality of Service (QoS).

Unmanned aerial vehicles (UAVs) have emerged as a promising technology for providing wireless 
communication services in areas with limited or no network coverage1. Due to their flexibility, mobility, UAVs 
can be deployed as aerial base stations to enhance the coverage and capacity of existing wireless networks, 
especially in Multi-RAT HetNets2. Additionally, the high altitude of UAV-carried flying BSs enables Line of Sight 
(LoS) to ground devices (GDs), making them easily distinguishable at different altitudes and elevation angles3,4.

In this paper, a novel approach for optimizing the location and GD association of multiple UAVs in Multi-
RAT HetNets is proposed. Our approach leverages deep reinforcement learning algorithms to dynamically adjust 
the UAVs’ locations and GD associations based on the network conditions and GD demands. The performance 
of our approach is evaluated through extensive simulations that demonstrate its effectiveness in improving 
the different network metrics, and GD experience. By addressing the challenges of deploying multiple UAVs 
in a ground Multi-RAT HetNet environment, our approach can pave the way for the efficient and effective 
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deployment of UAVs in future wireless communication networks. To enhance the readability of the paper, Table 
1 provides a list of the common abbreviations.

Literature review
This section provides classified related works along with the concluded research gap, followed by the contribution 
of this work.

Related work
In this subsection, recent works of UAV base stations that use the licensed band will be presented. Followed by 
works with UAV base stations that exploit the unlicensed band. After that, works that use Deep Reinforcement 
Learning (DRL) algorithms will be presented. In the end, all the related work will be summarized to describe 
the research gap.

Licensed band UAV base stations
In5, the authors considered a Clustered-Non-Orthogonal Multiple Access Technique (C-NOMA) heterogeneous 
air-to-ground integrated network, including one high altitude platform Station (HAPS) for backhaul, and 
multiple UAVs as base stations for access. The aim was to maximize energy efficiency by optimizing the joint 
UAV trajectory plane and resource allocation problem. After decoupling the problem into two subproblems, 
the optimal channel and power strategy are obtained according to the Lagrange dual decomposition method, 
while a near-optimal UAV trajectory and flight speed are obtained based on successive convex approximation 
methods. In6 , the authors proposed an outer approximation algorithm to optimize the phone user’s admission, 
cell association, throughput, and energy efficiency while ensuring users fair association with cells, and their 
minimum rate requirement, in UAV-assisted HetNets. In7 , the authors proposed an outer approximation 
algorithm to maximize the network data rate, subject to the constraints of power and QoS, by optimizing the 
resource allocation of a UAV-assisted HetNet environment.

Unlicensed band UAV base stations
Paper8 proposed heuristic algorithms, including K-means and genetic algorithms, to find the optimal solutions 
of the minimum number of UAVs that can provide Voice over Wi-Fi (VoWiFi) services to GDs, subject to 
coverage, call blocking probability, and QoS constraints. The authors in9 considered a two-layered architecture, 
where access UAVs provide Wi-Fi access to GDs, while distribution UAVs act as Wi-Fi-to-5G relays, to forward 
packets to the core network. They used a metaheuristic Particle Swarm Optimization (PSO) algorithm to find the 
minimum number of UAVs, their type, and their locations, constrained to coverage and minimum voice speech 
quality for VoWiFi services to GDs.

In10 , the authors proposed a power allocation and time allocation scheme to maximize the overall UAV-
assisted Internet of Vehicles (IoVs) system capacity, considering Road Side Units (RSUs) that can properly 
occupy the unlicensed band to mitigate the interference between the UAVs and the RSUs.

In11 , the authors investigated how to deploy UAVs mounted Wi-Fi AP efficiently for maximizing the sum 
throughput and service time of mobile users. A DRL-based chunk selection algorithm was proposed to select 
the optimal subset of chunks in a region as the search space for UAVs, while an energy-aware DRL chunk search 
algorithm was proposed to plan the path for the UAVs to cover the selected chunks.

The authors in12 exploited the New Radio Unlicensed (NRU) technology proposed in 3GPP Release 1613 
in a UAV HetNet environment. They developed a mathematical framework that characterizes the medium 
access and coverage probability of the aerial and terrestrial base stations utilizing the NRU and the licensed 
spectrum. Also, in14 , the user to UAV uplink sum rate was maximized by jointly optimizing the power control 
and subchannel allocation over licensed and unlicensed channels in a terrestrial cellular, Wi-Fi, and UAV base 
stations environment.

Abbreviation Full name Abbreviation Full name

6G Next Generation of Wireless Communication Networks MDP Markov Decision Process

AC Actor-Critic Multi-RAT Multi-Radio Access Technology

CDF Cumulative Distribution Function NOMA Non-Orthogonal Multiple Access

C-NOMA Clustered-Non-Orthogonal Multiple Access Technique QoS Quality of Service

CQI Channel Quality Indicator RTS Request-To-Send

DDPG Deep Deterministic Policy Gradient SER Satisfaction-to-Energy Ratio

DFL Distillation Federated Learning SINR Signal to Interference plus Noise Ratio

DRL Deep Reinforcement Learning SNR Signal to Noise Ratio

FBSs Femto Base Stations TDD Time Division Duplexing

FL Federated Learning UBSs UAV Base Stations

HAPS High Altitude Platform Station UFBSs UAV Femto Base Stations

HetNets Heterogeneous Networks UWAPs UAV Wi-Fi Access Points

MBS Macro Base Station VoWiFi Voice over Wi-Fi

Table 1.  List of common abbreviations.
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Deep reinforcement learning
The authors in15 adopted an Actor-Critic (AC) algorithm that optimizes the UAV’s trajectory to enhance 
the security of the user’s information and their QoS, based on their movement and density, considering a 
heterogeneous UAV-assisted network. In addition, Federated Learning (FL) and Distillation Federated Learning 
(DFL) algorithms are combined with the AC algorithm to improve the users’ QoS and increase the security, 
accuracy, and speed of learning.

Paper16 proposed a combination of DRL and fixed-point iteration techniques for optimizing the UAVs’ 
locations and the channel allocation strategies, in order to maximize the user’s fairness and load balance of the 
aerial base stations in a heterogeneous HAPS-UAV network. The work in17 considered a single UAV-assisted 
heterogeneous network in a disaster area, serving ground cellular users, and sensor users. For users outside 
UAV’s coverage, a multi-hop relay transmission is adopted by selecting the energy-effective relays. For users with 
different requirements inside the UAV’s coverage, a DRL approach is adopted to reduce energy consumption 
and improve QoS satisfaction by adjusting the power level and allocated sub-bands considering a NOMA 
transmission.

In18, the authors considered the deployment of UAV base stations to provide on-demand communications 
to ground users in emergency scenarios. A DRL approach was proposed to maximize a weighted sum of the 
backhaul link rate, the users’ throughput, and the users’ drop rate, by optimizing the UAVs’ 3-D locations. The 
work in19 investigated the use of the Double Deep Q-Network (DDQN) technique, to optimize the UAV height, 
and the resource allocation, with the aim of maximizing the energy efficiency and the total network throughput 
in UAV-assisted terrestrial networks.

To summarize, the works5–7 considered investigating environments where UAVs act as base stations that 
work on the licensed spectrum. Papers8–14 considered exploiting the unlicensed band in UAV communications. 
In addition, the studies15–19 considered using continuous and discrete action space DRL algorithms to optimize 
the UAV’s location or trajectory in various environments. Notably, most of the aforementioned works considered 
objectives like sum rate, uplink power consumption, energy efficiency, and QoS.

From the aforementioned works, a research gap can be noticed, where none of them considered the 
deployment of both LTE and Wi-Fi base stations on each UAV, exploiting the unlicensed band, and increasing 
the system capacity, with almost the same operating cost, which can be called on demand whenever there is a 
sudden surge in traffic, or in case of disasters. Besides, none of them considered the comparison between discrete 
and continuous action space DRL techniques, their observations (i.e., complete or incomplete information), 
and their training approaches (i.e., centralized and decentralized), in such deployment scenario where multiple 
UAVs are considered. Especially, when system models use more practical downlink data rate calculations than 
using the theoretical Shannons equations, which affects the environment structure, and accordingly the better 
technique to be used.

Contribution
In this work we study and investigate the idea of deploying Multi-RAT base stations on each UAV, considering a 
Multi-UAVs assisted Multi-RAT HetNet. Terrestrial base stations are composed of Macro Base stations (MBSs), 
Femto base stations (FBSs), and Wi-Fi access points (WAPs), while multiple UAVs act as aerial base stations, each 
carrying an LTE and Wi-Fi base station. Different ground devices are considered, that have diverse requirements.

Although deploying Multi-RAT base stations on each UAV is cost-effective, and offers a higher degree of 
freedom compared to fixed-ground base stations, it is also challenging to find optimum locations for these 
UAVs that satisfy both LTE and Wi-Fi GDs at the same time3. Besides, it has always been challenging to find the 
optimum GD association considering the movement of UAVs and the diverse GD requirements. In particular, 
the contribution of this work is summarized below. 

	1.	 To the best of our knowledge, the idea of Multi-RAT base stations deployment on each UAV, in a Multi-UAV 
acting as aerial base stations, assisting a Multi-RAT HetNet terrestrial environment has not been investigat-
ed. Therefore, in this work, the effectiveness of deploying LTE and Wi-Fi base stations on each UAV, consid-
ering a Multi-RAT HetNet ground environment is evaluated and investigated, considering different wireless 
network metrics.

	2.	 Since different GDs with diverse requirements are associated with each UAV, a Satisfaction-to-Energy-Ratio 
(SER) is proposed to calculate the associated GDs’ satisfaction with respect to a UAV’s consumed energy. To 
quantify the GDs’ satisfaction, a satisfaction index is introduced to measure the GDs’ satisfaction according 
to their requirements, in terms of achievable downlink data rate, uplink power consumption, downlink Sig-
nal to Interference Noise Ratio (SINR), and uplink Signal to Noise Ratio (SNR), while taking into consider-
ation the dissimilar access techniques (i.e., LTE and Wi-Fi).

	3.	 A framework that combines K-means, multi-agent DRL, and regret learning algorithms, is developed to find 
the initial GDs association and UAVs 3D locations, the optimized UAVs 3D location, and the optimized GDs 
association, respectively. The objective is to maximize the GDs’ satisfaction and minimize the UAVs’ energy 
consumption (i.e., maximize the total SER).

	4.	 Evaluating the adoption of discrete actions deep reinforcement learning algorithm, by comparing it with a 
continuous one, under different observation scenarios and learning approaches, considering multiple UAVs, 
and a more practical system model for LTE and Wi-Fi technologies than the well-known Shanons theory.

The rest of the paper is organized as follows: (System architecture and problem formulation) section describes 
the system architecture and the problem formulation. Followed by modeling the downlink data rate, the uplink 
power consumption, and the UAV’s energy consumption in (System model). After that, the developed framework 
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to solve the optimization problem is presented in (DRL-regret learning framework). Finally, the performance of 
the proposed work is evaluated in (Performance evaluation and discussion).

System architecture and problem formulation
In this section, a detailed description of the proposed system architecture is presented. Followed by formulating 
the optimization problem.

System description
In this paper, multiple Multi-RAT UAVs are exploited to assist a ground Multi-RAT HetNet are considered, such 
that each UAV carries an FBS and a WAP, to offer diverse connectivity (i.e., LTE and Wi-Fi technologies) and 
maximum capacity (i.e., by utilizing the unlicensed spectrum band) for GDs. The ground Multi-RAT HetNet is 
comprised of multiple FBSs and WAPs overlaid by a Macro Base Station (MBS), as shown in Fig. 1.

To ease the readability, Table 2 shows the list of notations. In general, K = {1, 2, . . . , k, . . . , K} denotes 
the set of all available base stations in the system, with cardinality K, such that k = 1 represents the MBS, 
while other base stations can be represented by k = 2, . . . , K . The aerial and ground FBSs can be denoted 
by L = {2, . . . , L}, with cardinality L − 1, such that L ⊂ K . Also, the set W = {L + 1, L + 2, . . . , K} 
denotes the aerial and ground WAPs, with cardinality K − L, where W ⊂ K . Moreover, the UAVs Base 
Stations (UBSs) are denoted by the set U = {L − U + 1, L − U + 2, . . . , L + U}, with cardinality 2U, 

Notation Description Notation Description

K ,L ,W ,U ,G The set of BSs, FBSs, WAPs, UBS, and GDs. X, Y, H The UAVs’ X-axis, Y-axis, and altitude.

K, L, U, N The number of BSs, LTE-BSs, UBSs, and GDs. P w, P u
i,k Wi-Fi card, and average uplink power consumption.

NK , NL
k ,NW

k The number of associated GDs with MBS, FBS, and WAP k. Ru
i , Γu GD’s uplink average traffic generation rate, and target SNR.

Pk (Vk) , Ek UAV’s power consumption and energy consumption. S , A, O Set of the state, joint action, and joint observation spaces.

s(t), a(t), r(t) The state, action, and reward at time t. γ, π, π∗ Discount factor, UAV’s policy, and optimal policy.

θ, θ− Q -network, and target network weights. Q π(s, a) The UAV’s state-action value function.

Mep The number of episodes of the Q-learning algorithm. J The regret-matching game.

Rd
ik, RW P HY

ik , Si
The average downlink data rate, downlink WLAN physical data 
rate, GD’s satisfaction. Dt

i

(
mi, m′

i

)
The payoff for GD i if it had played action mi  instead of m′

i .

T LT E
SC The duration of an LTE subframe. ψt+1

i
(mi) The probability distribution of GD i choosing an action at 

time t.

CLMCS
i,k , CW MCS

i,k The coding rate of LTE BSs and WAPs. z̄t The empirical distribution of joint actions Σ of all GDs until t.

A Association matrix between GDs and base stations. Σ∗ Optimal joint strategies.

Table 2.  Commonly used notations and variables.

 

Fig.  1.  System architecture of Multi-RAT UAVs assisted Multi-RAT HetNet serving diverse GDs.
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where U is the number of UAVs, such that U ⊂ K . The UAVs Femto Base Stations (UFBSs) are those from 
L − U + 1 to L, while those from L + 1 to L + U + 1 are the UAVs Wi-Fi Access Points (UWAPs). A set 
U = {1, 2, . . . , u, . . . , U} denotes the set of UAVs in general, such that UAV u carries FBS L − U + u and 
WBS L + u.

Without loss of generality, Time Division Duplexing (TDD) is considered as the duplexing mode in the LTE 
system, and the distributed coordination function (DCF) mechanism with Request-To-Send (RTS)/Clear-To-
Send (CTS) handshaking is considered as the access mechanism in Wi-Fi. Spare and fully charged UAVs are 
considered to be ready to replace the working UAVs when their energy reaches a predefined critical level. The 
UAVs are assumed to efficiently carry the Multi-RAT base stations. In addition, a robust, secure and reliable 
common control channel is assumed for communication and coordination between UAVs and a common 
control station, that has information about all the UAVs locations and their trajectories. The common control 
station is critical since it supports UAVs with traffic coordination and send alerts to avoid collision, whenever the 
probability of collision between the UAVs increases.

Meanwhile, the set of GDs is denoted by G = {1, 2, . . . , i . . . , N}, with cardinality N, where N is the total 
number of GDs. And, NK , NL

k , and NW
k  denote the number of associated GDs with the MBS, an FBS, and a 

WAP, respectively. Due to the diversity of the GDs in reality, different requirements for GDs are considered. For 
example, sensors, IoT devices, and mobile phones with low batteries require low power consumption, while 
H2H, and mobile phones with data-hungry applications may pay more attention to high data rates, rather than 
power consumption. The GDs are assumed to be capable of connecting via both, LTE, or Wi-Fi.

Problem formulation
In this work, we focus on finding the optimum UAVs’ 3D locations jointly with the optimum GDs’ association, 
to maximize the total SER, which is a ratio between the sum of the GDs’ satisfaction index, and the sum of the 
UAVs’ energy consumption. The UAVs’ X-axis, Y-axis, and altitude location sets are denoted by X, Y, and,H, 
respectively. Also, the ground devices’ association matrix is denoted by A, such that A is an N × M  matrix. The 
problem can then be defined mathematically as follows:

	
OPT : max

A,X,Y,H

∑
i,k

Ai,kSi,k∑
k∈U Ek

� (1)

	

s.t., ∑
k∈K

Ai,k = 1, ∀k ∈ K , i ∈ G , � (2)

	 Ai,k = {0, 1} , ∀k ∈ K , i ∈ G , � (3)

	 SNRik > SINRthr
k , ∀k ∈ K , i ∈ G , � (4)

	 P u
i,k ≤ P u,max

i , ∀k ∈ K , i ∈ G , � (5)

where, Si,k  is the satisfaction index of GD i, and it can be calculated by 

Si = ζR
i

(
1 − e

−
Rd

i,k

κ(Rref )

)
− (1 − ζR

i ) P u
im

P u
i,max

, where ζR
i = [0, 1] represents the weight value of the 

downlink data rate Rd
i,k  for GD i connected to base station k, considering a reference downlink data rate Rref  

the operator would like GDs’ to achieve, and (1 − ζR
i ) is the weight toward its uplink power consumption. This 

implies that the GD’s satisfaction relies on its requirements and considerations, which differ from one GD to 
another and may change with time. Ek  is the energy consumption of UAV k ∈ U . Constraints 2 and 3 ensure 
that a GD i must be associated with only one base station, where the association index Aik = 0 indicates that 
GD i is unassociated with BS k, while Aik = 1 indicates that GD i is associated with BS k. In addition, constraint 
4 ensures that GDs will be provided with at least the minimum SINR value to maintain their connection. In 
this regard, this constraint limits the UAVs movement, to ensure that all GDs associated with UAVs do not lose 
their connection. And, to ensure that GDs associated with ground BSs will not lose their connection due to the 
change in interference caused by the UAVs’ movements. Moreover, constraint 5 ensures that the GD’s uplink 
transmitted power is below the maximum allowed. Notably, the optimization problem OPT is a non-convex 
integer programming optimization problem, which is difficult to be optimally solved in general. Besides, the 
optimal UAV location problem is proved to be an NP-hard problem20.

Figure 2 shows how the satisfaction index increases with the increase in the downlink data rate at different 
uplink power consumption at ζR

i = 0.5 and Rref = 1Mbps. It can be noticed that before 1Mbps the satisfaction 
gains by increasing the data rate are greater compared to after achieving Rref , this is due to the benefits gained 
by the GD when it is striving for increasing the data rate. Also, it can be noticed that the gaps between the curves 
are equal, which indicates the linearity of decreasing the uplink power consumption.

System model
In this section, a detailed modeling of the proposed system architecture is presented.
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Data rate modelling
In this work, radio channels are allocated equally to the GDs associated with any LTE-BS (i.e., MBS, FBSs, 
and FUBSs). In addition, for each LTE-BS, the transmission power is allocated equally to the available radio 
channels, and a frequency reuse factor of 1 is considered. Moreover, the path loss models and the channel gains 
are calculated as21. Therefore, considering interference, the downlink average SINR at GD i ∈ G  served by 
LTE-BS k ∈ L  can be calculated as in22,23, and it can be denoted by SINRik .

For modeling the downlink data rate for GDs, and since different technologies are considered, we adopt the 
same modeling as in22, which considers various RAT parameters rather than using Shannon’s capacity formula 
for the different RATs. Thus, the average downlink data rate achieved by GD i from any LTE-BS k ∈ K \W  can 
be given in bits per seconds by22:

	
Rd

i,k =
NSC

k .Nsym.bLMCS
i,k .CLMCS

i,k

NL
k .T LT E

SC

, ∀k ∈ K \W ,� (6)

where NSC
k  is the number of subcarriers, Nsym is the number of OFDM symbols in one subframe, T LT E

SC  is the 
duration of one subframe and is typically equal to 1ms, bLMCS

i,k  is the number of bits in one symbol, and CLMCS
i,k  

is the coding rate, both obtained from LTE Modulation and Coding Scheme (MCS). In particular, bLMCS
i,k  and 

CLMCS
i,k  are mapped to the Channel Quality Indicator (CQI) index which can be determined from the SINR 

values, representing the radio link quality.
On the other hand, for calculating the WLAN downlink data rate, DCF channel contention is considered, 

and WAPs are considered to grant different non-overlapping channels, hence, interference from other WAPs is 
neglected as in24. Therefore, the downlink average SNR for GD i served by WAP k = W  can be calculated as in 
follows24, and it can be denoted by SNRik. The physical downlink data rate for GD i served by WAP k ∈ W  in 
bits per seconds can then be calculated as follows:

	
RW P HY

i,k =
Nsp

i,k. N
SC

. bW MCS
i,k .CW MCS

i,k

Tsym
, ∀k ∈ W � (7)

where Nsp
i,k  is the number of available spatial streams, NSC  is the total number of data subcarriers, bW MCS

i,k  
is the number of bits in one symbol, CW MCS

i,k  is the coding rate, and Tsym is the OFDM symbol duration. 
Similarly, bW MCS

i,k , and CW MCS
i,k  are mapped to the CQI index which can be determined from the SNR values 

according to Wi-Fi MCS.
In addition, the downlink data rate achieved by GD i from WAP k ∈ W  can be formulated in bits per 

seconds as in22, where the WLAN MAC layer effect on the downlink data rate is considered as follows:

	

Rd
i,k = E(NW

k )(
T +

(
E(NW

k
)

RW P HY
i,k

)) ∀k ∈ W
� (8)

where E(NW
k ) = τ(1 − τ)NW

m D is the average per-GD data transferred in a time slot. τ , and D are the channel 
contention probability, and the maximum allowable packet size, respectively. E(NW

k ) represents the probability 
of successful transmission occurring in a time slot, multiplied by the probability that GD i is transmitting, 

multiplied by D. The denominator in 8 represents the average length of a time slot, where the term E(NW
k

)
RW P HY

k

 is 

Fig. 2.  Satisfaction index with the downlink data rate at different uplink power consumption.
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written in terms RW P HY
i,k  represents the duration of successful data transmission. Also, T can be calculated in 

seconds as in22,23 by:

	 T = (1 − τ)NW
k

+1e +
(

1 − (1 − τ)NW
k

+1
)

(TRT S + TDIF S) +
(
NW

k + 1
)

τ (1 − τ)NW
k (TCT S + TACK + 3TSIF S)� (9)

where e is the duration of an empty slot time; TRT S , TDIF S , TCT S , TACK , and TSIF S  are the durations of 
RTS short frame, DCF Interframe Space, CTS short frame, Acknowledgment short frame, and Short Interframe 
Space, respectively.

Uplink transmitted power
Depending on the GD’s association (i.e., connected to an LTE-BS, or a WAP), the uplink transmit power of GD i 
can be deduced. When GD i is associated with a WAP k ∈ W , the Wi-Fi cards transmit a constant uplink power 
P w . However, due to collision, the uplink power transmitted differs from one GD to another. Considering a 
packet collision probability p(Nc), a packet will be averagely transmitted E (p) = 1−p(Nc)µ+1

1−p(Nc)  times until it is 
successively received by WAP22. Since the probability of dropping a frame after m retransmissions is negligible, 
p(Nc)µ+1 could be ignored. Hence, the uplink transmitted power consumed by GD i connected to WAP k ∈ W  
in watts can be calculated as follows22:

	
P u

i,k = Ru
i P w

RW P HY
i,k (1 − p(NW ))

, ∀k ∈ W � (10)

where Ru
i  is the uplink average traffic generation rate for GD i, and it can be calculated by Ru

i = λiD
T  in bits per 

seconds, where λi,T are the packets generation rate (packets/slot) for GD i, and the backoff average duration 

time (seconds/slot), respectively. And, Ru
i

RW P HY
i,k

(1−p(Nc))  is the ratio of time GD i is in transmission state.

On the other hand, since open loop power control is used by LTE-BSs, we consider a target SNR Γu at the 
LTE-BS for associated GDs. In the uplink, we assume resources are allocated to minimize the uplink interference, 
thus, interference can be neglected. Therefore, the SNR can be represented in dBs as follows22:

	
Γu = P u

i gi,k

Bi,kσ2 , ∀k ∈ K \W � (11)

where P u
i  is the uplink transmitted power for GD i; Bi,k = NSC

k .
fLT E

spac

NL
k

 is the allocated bandwidth to GD i 

by LTE-BS k ∈ K \W , to meet its uplink rate requirement Ru
i,k , and it can be represented by the number of 

allocated subcarriers multiplied by the frequency spacing fLT E
spac  for each subcarrier. Recall that, the uplink rate 

requirement can be calculated in bits per seconds similarly to 6 by:

	
Ru

i,k =
Bi,k . Nsym . bLMCS

i,k . CLMCS
i,k

fLT E
spac . T LT E

SC

, ∀k ∈ K \W � (12)

By substituting Bi,k , the uplink transmitted power by GD i to LTE-BS k ∈ K \W  in watts can be formulated 
as follows:

	
P u

i,k = Γuσ2

gi,k
.

Ru
i,k . fLT E

spac . T LT E
SUB

NSC . BLMCS
i . CLMCS

i

, ∀k ∈ K \W � (13)

UAV energy consumption model
Generally, the energy consumption of a rotary wing UAV can be divided into communication-related energy and 
propulsion energy. In this work, the communication-related power is neglected, since it has a notably smaller 
effect on the total UAV power consumption compared to the propulsion power25. Therefore, the UAV power 
consumption model based on the propulsion power can be calculated in watts as follows25:

	

Pk (Vk) = P0

(
1 + 3V 2

k

U2
ip

)

︸ ︷︷ ︸
blade profile power

+ Pin

(√
1 +

V 4
k

v2
0

− V 2
k

2v2
0

) 1
2

︸ ︷︷ ︸
induced power

− 1
2r0ϱsaV 3

k︸ ︷︷ ︸
parasite power

, ∀k ∈ U
� (14)

where Vk  is the velocity of UAV k, P0 and Pin are the blade profile power and induced power constants in 
the hovering state, respectively, Utip represents the rotor blade tip speed, v0 denotes the mean rotor induced 
velocity in hovering state, r0 is the fuselage drag ratio, ϱ is the air density, s is the rotor solidity, and a denotes 
the rotor disc area. It can be noticed that the UAV propulsion power consumption combines three main power 
components, the blade profile power, induced power, and the parasite power. These powers act differently with 
the increase of Vk , where the blade profile and parasite powers increase quadratically and cubically, respectively, 
while the induced power decreases with the increase of Vk .
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As concluded in25, two UAV speeds are of high interest, the maximum endurance speed Vme, which is the 
optimal UAV speed that minimizes power consumption, and the maximum range speed Vmr , which is the 
optimal UAV speed that maximizes the total travelling distance under any onboard energy. Hence, the energy 
consumption of the rotary wing UAV can be then calculated in joules by:

	
Ek = Pk (Vk) .duav

k

Vk
, ∀k ∈ U� (15)

where duav
k  is the distance traveled by UAV k. Thus, Vmr  is used when traveling to the targeted points determined 

by the proposed algorithms.

DRL-regret learning framework
Since the optimization problem OPT is hard to solve jointly due to the interdependency between the UAVs’ 
locations and the GDs’ association, an iterative framework based on DRL and regret learning techniques is 
proposed, to optimize the UAVs’ locations and GDs’ association, respectively, as shown in Fig. 3. In general, 
several works considered applying multiple algorithms to solve joint optimization problems as in26,27.

In the beginning, a modified K-means algorithm is used to provide suboptimal initial UAVs’ 3D location and 
GDs’ association. The modified K-means algorithm is used in the initialization phase due to its low complexity to 
reduce the number of framework iterations, hence, reducing the complexity of the proposed solution, which has 
been used similarly in20. The modification done on the K-means algorithm is fixing the centroids of the ground 
fixed base stations.

After that, the initial UAVs’ 3D locations and GDs’ associations are fed to a DRL algorithm, to optimize 
the UAVs’ 3D locations. Generally, different DRL algorithms are widely used in optimizing UAVs’ locations 
and trajectory problems, according to the environment and the application used15–19,28–30. Then the total GDs’ 
satisfaction index is checked, if there is an enhancement, the loop continues, and the new UAVs’ locations are 
fed to the regret learning algorithm. If there is no enhancement, the loop exits, the DRL UAVs’ locations output 
is neglected, and the last UAVs’ locations and GDs’ association are obtained to be the final optimized results.

After finding the optimum UAVs’ 3D locations, these locations are passed to a regret learning algorithm to 
optimize the GDs’ association. Due to its distributive nature, and since it is proven that it can reach a correlated 
equilibrium, the regret learning algorithm is widely used in solving GDs’ association problems31–33. After 
finding the optimum GDs’ association, the total GDs’ satisfaction is checked. If there is an enhancement, the 
loop continues, and the optimized GDs’ association solution is passed to the DRL algorithm. If there is no 
enhancement, the framework exits the loop, and the output from the regret learning algorithm is ignored while 
taking the last UAVs’ 3D location and GDs’ association as the optimized final result.

The proposed framework can operate in two modes, static UAVs mode, and mobile UAVs mode. In static 
UAVs mode, UAVs update their locations according to a predefined frequency of running the framework, which 
is more energy efficient34–36. In mobile UAVs mode, DRL algorithm run continuously when the framework 
is in the off periods, thus UAVs will update their locations continuously. Exploiting the full UAVs mobility 
will eventually results in better performance in terms of GDs satisfaction37–39. The frequency of running the 
framework is left as a parameter to the operator, since it depends on the mobility nature of the GDs in that 
specific hotspot area (i.e., frequency of changing their locations), and it depends on the minimum acceptable 
satisfaction index the operator would like to achieve.

The convergence of the proposed framework can be guaranteed by verifying its boundedness and monotonicity. 
Since the constraints (2) and (5) prevent the total sum of the satisfaction index S to grow unrestrictedly, the 
objective value denoted by SER(A, X, Y, H) is bounded. For a fixed association A(j), the objective value 
SER(A(j), X(j+1), Y(j+1), H(j+1)) is not less than SER(A(j), X(j), Y(j), H(j)) in iteration (j + 1) by 
optimizing the UAVs locations. Similarly, by optimizing the GDs association considering the optimized UAVs 
locations, then SER(A(j), X(j+1), Y(j+1), H(j+1)) ≤ SER(A(j+1), X(j+1), Y(j+1), H(j+1)). Therefore, 
SER(A(j), X(j), Y(j), H(j)) ≤ SER(A(j+1), X(j+1), Y(j+1), H(j+1)), and the framework is convergent40–43.

Figure 3.  DRL-regret learning framework.
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Deep reinforcement learning
In this section, we exploit the DRL algorithm, to solve the optimization problem of finding the UAVs’ optimum 
locations to maximize the SER. In the beginning, each UAV is considered to be an agent. Generally, an agent 
in reinforcement learning can learn its optimal policy by interacting with the environment, to maximize the 
expected cumulative reward over time (i.e., to learn the optimal action sequence that leads to the defined goal)44. 
The agent observes its current state, then it takes an action, and an immediate reward is received along with the 
next state. This process is repeated, and it is used by a reinforcement learning algorithm to adjust the agent’s 
policy until it approaches the optimal policy45.

A reinforcement learning agent is typically modeled as a finite Markov Decision Process (MDP) if the state 
and action spaces are finite. For multiple agents with full observability (i.e., an agent can observe its state and 
other agents’ states), MDP can be extended to stochastic games46. For multiple agents with partial observability, 
a Decentralized Partially Observable Markov Decision Process (Dec-POMDP) can be considered46. A Dec-
POMDP is characterized by the tuple (U ,S ,A, ps(t),s(t+1), r(t),O, O ), where U  is the set of agents (i.e., 
UAVs); S  denotes the finite set of the state space, A is the joint action space of the agents concatenated 
byA ≜ A 1 × A 2 × . . . × A U , pstst+1  is the transition probability from state s(t) ∈ S  at time step t to state 
s(t) ∈ S  after taking action a(t) ∈ A , and r(t) denotes the agent’s immediate reward at time step t after 
performing action a(t) ∈ A , O denotes the joint observation space concatenated by the observation of the kth 
agent as O ≜ O1 × O2 × . . . × OU ;O : S × A × O → [0, 1] is the observation function The details of the 
components of the Dec-POMDP are described as follows:

•	 State: the state of the environment at time t is the 3D locations of the UAVs, and it can be expressed as: 

	 s(t) = {x1(t), x2(t), . . . , xU (t), y1(t), y2(t), . . . , yU (t), h1(t), h2(t), . . . , hU (t)}� (16)

•	 Action: the agents’ actions are the movement of the UAVs in the possible directions. The actions of the uth 
UAV can be expressed as 

	 au(t) = {Up, down, right, left, forward, backward, stay}� (17)

•	 Observation: Since we consider agents partial observability, each UAV can only observe its state (i.e., 3D 
location). The UAV’s u observation can be denoted and expressed by ou (t) = {xu (t) , yu (t) , hu(t)}. For 
scenarios where full observability is considered, each UAV can observe its own location, and other UAVs’ 
locations as well.

•	 Reward: Since the objective is to maximize the total GDs’ satisfaction while minimizing the UAVs’ energy 

consumption, the reward function for UAV u is calculated by ru (t) =
∑

i,k
Ai,kSi∑

k∈U Ek

The DQN algorithm utilizes a target network alongside an online network to stabilize the overall network 
performance, which iteratively can find the optimal state action value function Q ∗(s, a) for all state-action 
pairs. The Q-network updates its weights to minimize the loss function defined as47:

	
Lt(θ) = Es(t),a(t),r(t)

[
(yDQN

t − Q π
t (s(t), a(t); θ))2

]
� (18)

Where yDQN
t = r(t) + γ maxa Q π

t

(
s(t + 1), a; θ−)

, such that θ− represents the weights of the 
target network, and it is updated by the online network weights θ every fixed number of steps. Since 
the same samples are used in selecting and evaluating the actions, this more likely leads to selecting 
over-estimated values. Thus, DDQN was introduced to solve this problem by replacing yDQN

t  by 
yDDQN

t = r(t) + γQ π
t (s(t + 1), maxa Q π

t (s(t + 1), a; θ)θ−). This means that θ is used in the online 
network and value estimation in the target network as well, however, θ− is used to evaluate fairly the value of 
this policy.
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Algorithm 1.  DDQN algorithm with experience replay for UAV 3D deployment

Algorithm 1 illustrates the DDQN algorithm for UAVs’ 3D deployment. After initialization, for every episode 
until the maximum number of episodes Mep, and in every step t, action a(t)is selected according to the ϵ-greedy 
policy, which represents the trade-off between exploration and exploitation (lines 1-5). After action execution 
and moving to the new state, the reward is calculated, and the whole experience is stored in the replay memory 
(lines 6-8). Then, random samples are selected from the replay memory to optimize the weights θ. After a 
specified number of steps T −, target network parameters θ− are updated with the online network parameters 
θ (lines 9-12). In the learning phase, the optimal policy is obtained by executing steps until T, however, in the 
testing phase, the optimal state is obtained by executing steps until r(t) = rmax

prev  is repeated Nconv  times, and 
the number of steps is more than T min (lines 13-17).

To express the computation complexity of the DDQN algorithm, the training phase and the testing phase 
should be differentiated. In the training phase, in each time step for each agent, the computation complexity 
can be expressed by O(Nneu

0 Nneu
1 +

∑I

(ι=1) Nneu
ι Nneu

(ι+1))48. Where, I, Nneu
0 , and Nneu

ι  denote the number 
of layers, the size of the input layer, and the size of layer ι. Considering Me

p  number of episodes, T number 
of iterations for each trained model under different number of GDs until convergence, the total computation 

complexity is O
(

UMe
p T

(
Nneu

0 Nneu
1 +

∑I

(ι=1) Nneu
ι Nneu

(ι+1)

))
48–50. It should be noted that the training 

phase is executed offline, due to the high training computation complexity. The computation complexity is 
relaxed in the testing phase so that it can be calculated by O(|S | × |A|)48.

Correlated equilibrium and regret-based learning
To solve the optimization problem of finding the optimal GDs’ association with the available base stations, to 
maximize the satisfaction index, we adopt the widely known regret learning algorithm. This learning algorithm 
is based on the notion of regret matching51. It has been proved that using the procedures in this algorithm 
will result in a popular notion of rationality called the Correlated Equilibrium (CE)51. The notion of CE is a 
generalization of the Nash equilibrium, where it is an optimality concept that has been proven to exist for every 
finite game with its payoffs bounded52. It was introduced by the Nobel prize winner Robert J. Aumann52, in 1977. 
The idea of CE is that the GD’s strategy profile is chosen randomly according to the probability distribution, 
where each GD has no benefit of choosing any other probability distribution, and it’s in his best interest to 
conform with this strategy31.

In this context, the proposed finite game is denoted by J = (G , Σ, Φ), such that G  is the set of GDs, 
Σ = Σ1×, , , ×ΣN  is set of joint strategies for all GDs, while Σi ⊂ K  is the set of finite strategies for GD i, and 
Φ is the set of utility functions for all GDs, which is represented by the satisfaction index each GD, such that 
Φi = Si is the utility function of GD i. A probability distribution ψ is a correlated equilibrium of J , if for every 
player i ∈ G , and a pair of actions mi, m′

i ∈ Σi, it holds that:
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∑
m−i∈Σ−i

ψ(mi, m−i)
(
Φi

(
m′

i, m−i

)
− Φi (mi, m−i)

)
≤ 0� (19)

This implies that for GD i, choosing action m′
i will not produce a better expected payoff compared to action 

mi. Thus, CE models the correlation between GDs’ actions, while in Nash equilibrium, GDs would choose their 
actions independently.

The regret matching algorithm exploits the notion of CE. The main idea of the algorithm is that the probability 
of choosing a strategy should be proportional to the “regret” for not having chosen other strategies. To define the 
probability distribution that yields this probability, we first define the regret of player i for not playing strategy 
mi instead of m′

i at time t is31:

	 ρt
i

(
mi, m′

i

)
≜ max(Dt

i

(
mi, m′

i

)
, 0)� (20)

Where Dt
i (mi, m′

i) represents the payoff for player i if he had played action m′
i instead of mi every time in the 

past, and it can be calculated as follows31:

	
Dt

i

(
mi, m′

i

)
≜ 1

t

∑
T ≤t

(
ΦT

i

(
m′

i, m−i

)
− ΦT

i (mi, m−i)
)

� (21)

Thus, the probability distribution of player i chooses an action at time t is31:

	
ψt+1

i (mi) =

{ 1
µ

ρt
i(mi, mi), mi ̸= mi

1 −
∑

mi∈Σi,mi ̸=mi

ψt+1
i (mi), mi = mi � (22)

Where µ > 2MG is a constant that guarantees ψt+1
i (mi) > 0 at mi = m′

i, and G is the upper bound of |ϕ(mi)| 
for all mi ∈ Σi

31. At t = 1 the initial probability is distributed uniformly over the set of possible actions.
It can be noted that the player’s i probability of choosing actions mi is a linear function of the regrets. It is also 

proven in31 that the empirical distribution z̄t of joint actions m of all players until t:

	
z̄t (m) = 1

t
N(t, m)� (23)

Where N(t, m) denotes the number of periods before t that action m has been chosen, converges almost surely 
(with probability 1) to the set of CE in the regret matching algorithm.

Algorithm 2.  Regret-based learning algorithm for GDs to base stations association

Algorithm 2 shows the regret-based learning algorithm used to find the optimal Σ∗ that can be mapped to 
A∗. In the beginning, the utilities Φi (mi) = Si,k  is calculated, then the regrets ρt

i (mi, m′
i) are updated (lines 

1 to 4). After that, for each GD i, the probability distribution ψt+1
i (mi) is calculated, such that strategy mi is 

selected based on εR-greedy policy (lines 5,6)51. The previous lines are repeated until sup
(
ρt

i (mi, m′
i)

)
< ς , 

where ς  should be properly selected as in51.
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The computation complexity of the regret-based learning algorithm can be expressed by O ( 1√
t
) for regret 

expectations E
[
ρt

i (mi, m′
i)

]
51. In addition, the convergence time is asymptotically bounded by 1

ς2 , such that 

tconv = Ω( 1
ς2 ), which means that to speed up the convergence, ς  should be selected sufficiently small33.

Performance evaluation and discussion
In this section, the performance of the proposed work is evaluated in terms of the proposed framework, system 
architecture, and different system parameters.

Simulation setup
In general, a Multi-RAT HetNet ground environment is considered, where it comprises an MBS with 1000m 
coverage, and two small base stations (i.e., one FBS, and one WAP) deployed to cover a hot spot area of 
150m × 275m. Multiple aerial base stations are considered to serve the hot spot area as well, such that two 
UAVs are considered, each carrying an FBS and a WAP. Except for hovering, and to minimize the UAVs’ power 
consumption, each UAV can move 18m in any direction according to A  at each time step, where the time step is 
considered to be 1 second, considering Vmr = 18m/s. For hovering, UAV’s velocity is 0 m/s, and it stays at its 
location for the 1 second time step. Moreover, for path loss, ηLoS = 3dB and ηNLoS = 23dB for LoS and NLoS 
path loss coefficients are considered, respectively, along with a path loss exponent α = 2. While a = 11.95 and 
b = 0.14 are considered for urban environments20. An additive noise power of −174dBm/Hz is considered 
for GDs22. The rest of the simulation parameters are summarized in Table 3.

Performance evaluation criteria
In the beginning, the performance of the proposed multi-agent DRL algorithm for maximizing the SER by 
optimizing the UAVs’ 3D locations is compared to other benchmark algorithms, considering different training 
and observation techniques. In particular, since the DDQN algorithm performs better than other discrete 
value-based algorithms53, a comparison between the DDQN discrete algorithm and the Deep deterministic 
policy gradient (DDPG) algorithm has been conducted. DDPG algorithm is an off-policy that uses an actor-
critic approach considering a continuous action space to solve continuous problems, and it is widely used 
in optimizing UAVs’ trajectory and location in different applications54–57. In this regard, the action space of 
the DDPG algorithm for each UAV u ∈ U is denoted by A DDP G =

{
χDDP G, ϑDDP G, ϕDDP G

}
, where 

χDDP G ∈ [0, 18], ϑDDP G ∈ [0, 2π], and ϕDDP G ∈ [0, 2π] are the flight distance in meters, the flight angle in 
the X-plane in radians, and the flight angle in the Z-plane in radians, respectively. In every time step, each UBS 
moves with Vmr  to perform its action, then it holds its location until the end of the time step.

Moreover, the DDQN and DDPG algorithms are compared considering centralized control training, 
decentralized coordination training, the agents’ complete information, and incomplete information about the 
actual model. Specifically, for complete information, each agent chooses its action with the knowledge of other 
agents’ actions, locations, and rewards. However, for incomplete information, each agent chooses its action 
without perfect knowledge of other agents’ actions, locations, and rewards. It should be noted that in the testing 
phase, agents collect their experiences individually, i.e., they work with decentralized coordination.

It is worth noting that, DDQN has a critic network composed of an observation path, an action path, and 
a common path. The observation path has an input layer of size 3 for incomplete information and of size 6 for 
complete information to catch the other UAV 3D location, followed by 4 fully connected layers of size 32, a 

WLAN parameters Values LTE parameters Values

Bandwidth 20 MHz LTE bandwidth 20 MHz

fW LAN 2.4 GHz Channel bandwidth 180 kHz

WLAN technology 802.11n Transmit power of MBS 46 dBm

Transmit power of WAP 200 mW Transmit power of FBS 20 dBm

Uplink packets generation rate 0.0004 Packets/slot Target uplink SNR for GDs 10 dB

SINRthr
k  for WUBS 1 dB SINRthr

k  for FUBS −4.46 dB

 Minimum contention window(W) 16 DDQN parameters Values

 Maximum number of re-transmissions (µ) 6 Mep 5000

Slot time 9µs T 200

DIFS 50µs ε 5 × 10−5

SIFS 10µs γ 0.9

D 1500 bytes αL 2 × 10−8

ACK 160 bits Regret learning parameters Values

RTS 208 bits tmax 50

CTS 160 bits εR 0.1

Table 3.  Simulation parameters.
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scaling layer, and a ReLU layer. The action path has an input layer of size 1, 4 fully connected layers of size 32, 
and a ReLU layer. The common path has an addition layer to add the observation and action paths, followed by 
4 fully connected layers of size 32, each of which is followed by a ReLU layer. For DDPG, the critic network has 
the same observation path. The action path has an input layer of size 3, 4 fully connected layers of size 32, and a 
Tanh layer. The common path is the same as in DDQN, but with replacing the ReLU with the Tanh layer. Since 
DDPG has an actor-network as well, this network has the same input layer as the observation layer of the critic 
network, followed by 5 fully connected layers of size 32, each of which is followed by a Tanh layer.

After that, the performance of the proposed work is evaluated in terms of system architecture with previous 
works, where the performance of deploying both a WAP, and an FBS on each UAV is compared by both scenarios 
of deploying only an FBS on each UAV, as in58–60, and deploying only a WAP on each UAV, as in8–10, such that 
they are abbreviated by “LTE-Wi-Fi UAVs”, “LTE UAVs”, and “Wi-Fi UAVs”, respectively, for the rest of the 
discussion. For comparison fairness, in LTE UAVs and Wi-Fi UAVs, a number of WAPs and FBSs equivalent 
to the disseminated WAPs and FBSs from the LTE-Wi-Fi UAVs, respectively, are added to the Multi-RAT 
HetNet ground environment to compensate the deployment of two base stations on each UAV in our proposed 
deployment scenario.

The locations of the added base stations are optimized as in61 to compensate for the degree of freedom offered 
in our proposed scenario. In this comparison, multiple various network performance metrics are considered, 
starting with the GD’s average satisfaction ratio, GD’s average downlink achieved data rate, GD’s average 
uplink power consumption, GD’s Jain’s fairness index, GD’s average outage probability, which is defined as the 
GD’s probability of not achieving the reference downlink rate, and ending with the measuring the number of 
framework iterations.

Eventually, the performance of the proposed work is evaluated at different average GD’s requirement settings, 
where the Cumulative Distribution Function (CDF) of the GD’s average satisfaction index, GD’s uplink power 
consumption, and average GDs’ downlink sum rate.

Fig. 5.  SER for decentralized DDQN and DDPG.

 

Fig. 4.  SER for centralized DDQN and DDPG.
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Results and discussion
At the beginning, the performance of the DDQN algorithm is compared to the DDPG algorithm considering 
centralized and decentralized training approaches, and considering complete and incomplete model information 
as well. In Figs. 4 and 5, DDQN and DDPG algorithms are compared in terms of average SER with complete and 
incomplete information considering centralized training, and decentralized training, respectively. While Figs. 6 
and 7 compare DDQN and DDPG algorithms with centralized and decentralized training considering complete 
information, and incomplete information, respectively.

In general, from these figures, it can be observed that the average SER decreases with the increase in the 
number of GDs. This is due to the decrease in the achieved downlink data rate per GD and the increase in per-
GD uplink power consumption, since the GD’s share of bandwidth decreases in LTE, and contention increases 
in Wi-Fi, leading to a decrease in the satisfaction ratio, decreasing the SER accordingly.

Moreover, it can also be noticed that in a centralized training approach, DDPG outperforms DDQN while 
using complete information, while DDQN surpasses DDPG using incomplete information. This is because the 
DDPG algorithm works with continuous action space, which offers precise control, and when combined with the 
full observability of other agents’ actions, this enables optimal positioning relatively. However, in an incomplete 
information approach, where agents rely on their partial observation of the environment and other agents, the 
DDQN algorithm with its discrete nature, facilitates the exploration encouraged by incomplete information and 
offers simplicity in decision making, which provides robust and adaptable strategies to cope with the uncertainty 
introduced by incomplete information.

In general, the DDQN algorithm shows better results than the DDPG algorithm due to its simplicity in 
decision making, robustness to uncertainty, and better generalization. Besides, the downlink GD data rate and 
the uplink GD power consumption are discretized since MCS schemes are adopted in LTE and Wi-Fi networks, 
which makes the environment tend to fit into discrete action and state space models. Also, the DDPG algorithm 
suffers from less robustness to uncertainty, complex decision making, and difficult exploration in uncertain 

Fig. 7.  SER for incomplete information on DDQN and DDPG.

 

Fig. 6.  SER for complete information on DDQN and DDPG.
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conditions, due to the continuity nature of its action space. However, for complete information approaches and 
a centralized training approach, where the DDPG algorithm excels due to the precise control, leveraged by the 
full observability, and exploiting the high coordination offered by the centralized training, where agents share 
the same critic and policy.

It can also be observed that the DDPG algorithm outperformed the DDQN algorithm considering complete 
information, only in the centralized training approach, while in decentralized training DDQN algorithm 
performed better. This is because centralized training develops highly coordinated strategies by leveraging the 
shared experiences of all agents, which meets the needs of the continuous nature of the DDPG algorithm when a 
complete information approach is considered. In decentralized training, this coordination is not available, which 
encourages individual learning and adaptability, which is fulfilled by the simplicity of the DDQN algorithm.

Furthermore, it can be noticed that in general, incomplete information approach outperform complete 
information approach, regardless of the algorithm used or the training. This is because incomplete information 
encourages broader exploration discovering more effective actions, and prevents falling into suboptimal 
strategies, leading to more robust and generalized strategies. On the other hand, complete information may 
lead to overfitting, where agents learn strategies that rely on perfect knowledge and full observability of the 
environment, which is less robust to unexpected variations or untrained situations during testing. Not to 
mention the fact that complete information is hard to achieve in real-world.

In the end, the DDQN algorithm with incomplete information using a centralized training approach achieves 
the best performance of all others. This is because centralized training allows sharing experiences between 
agents, which excels the exploration in a simpler and discrete environment, to obtain optimal and generalized 
strategies, that are influenced by the uncertainty offered by the incomplete information.

To summarize, these comparisons highlight the importance of selecting the best algorithm, training 
approach, and information availability. Also, they illustrate the complex interplay between the DRL algorithm, 
its training approach, and the information availability, that can be efficiently fit in the proposed environment. 
The optimal combination is the DDQN algorithm combined with an incomplete information that excels in 
centralized training, which provides robust and generalized policies that can cope efficiently with the dynamic 
nature of the proposed environment.

Figures 8, 9, 10, 11, 12, and 13, evaluate and compare the proposed coupled LTE-Wi-Fi UAVs, where the 
framework optimizes the location of coupled LTE and Wi-Fi base stations for each UAV, and the decoupled 
LTE UAVs and Wi-Fi UAVs deployment scenarios, where Wi-Fi base stations and LTE base stations are 
decoupled from UAVs, respectively, and their locations are optimized and fixed on the ground before running 
the framework. Therefore, it is a tradeoff between increasing the degree of freedom at the expense of coupling 
LTE to Wi-Fi base stations on UAVs, and between decoupling LTE and Wi-Fi base stations deployed on UAVs, at 
the expense of optimizing and fixing the location of ground base stations before running the framework. Taking 
into consideration that, LTE-Wi-Fi UAVs are a cost-effective solution compared to other scenarios, where two 
base stations can be deployed on each UAV, thus a smaller number of UAVs can be evoked upon request due 
to sudden traffic congestion, or disaster. It is worth noting that these results were obtained at Rref = 3 Mbps.

In Fig. 8, the average satisfaction index per GD is evaluated between LTE-Wi-Fi UAVs, LTE UAVs, and Wi-Fi 
UAVs, while increasing the total number of GDs in the system. It can be observed that, in general, the average 
satisfaction index per GD decreases by increasing the number of GDs, which was justified in the analysis of 
Fig. 4. Also, it can be noticed that LTE-Wi-Fi UAVs deployment exceeds other deployments. This illustrates the 
effectiveness of increasing the degree of freedom over decoupling the Multi-RAT UAVs in terms of satisfaction 
index, and converting them into single RAT UAVs, while optimally deploying other decoupled RAT base stations 
on the ground. Moreover, LTE UAVs deployment surpasses Wi-Fi UAVs deployment because LTE base stations 
suffer from higher interference, especially from the MBS, so deploying them on UAVs, and optimizing their 
locations according to the changes in the environment will be more effective, compared to deploying Wi-Fi base 
stations on UAVs.

Fig. 8.  Average satisfaction between different deployment scenarios.
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Fig. 11.  Average outage probability between different deployment scenarios.

 

Fig. 10.  Average uplink power consumption between different deployment scenarios.

 

Fig. 9.  Average downlink data rate between different deployment scenarios.
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Figure 9 compares LTE-Wi-Fi UAVs, LTE UAVs, and Wi-Fi UAVs deployments in terms of the average 
downlink data rate per GD while increasing the number of GDs. It can be noticed that LTE-Wi-Fi UAVs 
achieves the best performance, which is a normal reflection of the LTE-Wi-Fi UAVs outperformance in terms of 
satisfaction index. It can be shown that increasing the number of GDs decreases the per-GD downlink data rate, 
despite the used deployment, which is justified by the increase in the network load.

In Fig. 10, LTE-Wi-Fi UAVs, LTE UAVs, and Wi-Fi UAVs deployments are compared in terms of the average 
uplink power consumption per GD while increasing the number of GDs. In this figure, the LTE-Wi-Fi UAVs 
has better performance compared to other deployments. Along with Fig. 10 observations, these observations 
reflect the effectiveness of optimizing the location of coupled LTE and Wi-Fi base stations on each UAV. It can 
also be noticed that Wi-Fi UAVs achieves superior performance compared to LTE UAVs, despite achieving 
worse performance in terms of satisfaction index. This is because the objective function is to maximize GDs’ 
satisfaction in general. In LTE UAVs, location is optimized to exploit reducing the interference, hence increasing 
the downlink data rate, which has higher effects on the satisfaction index, since GDs suffers from higher uplink 
power consumption when connecting to LTE base stations compared to connecting to Wi-Fi base stations in 
general. On the contrary, in Wi-Fi UAVs, the interference in from LTE base stations remains the same, hence, 
Wi-Fi UAVs favors optimizing their locations to achieve better uplink power consumption, where they can 
increase their performance in terms of satisfaction index. The increase in average per-GD power consumption 
with the increase in the number of GDs also can be observed, which is justified by the increase in LTE network 
congestion, and the increase in contention for the Wi-Fi base stations.

Although outage probability is not considered in the proposed objective function, it is used as a performance 
metric to determine which deployment scenario will provide the greater number of GDs with the required 
downlink data rate Rref . It can be observed in Fig. 11 that LTE-Wi-Fi UAVs achieve the lowest outage probability 
compared to other deployments. When these observations are combined with the observations of Fig. 9, where 
LTE UAVs and Wi-Fi UAVs achieve almost the same average downlink data rate per GD, this implies that in 

Fig. 13.  Framework iterations between different deployment scenarios.

 

Fig. 12.  Jain’s fairness index between different deployment scenarios.
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Wi-Fi UAVs deployment, more GDs achieve data rates less than Rref , while other GDs achieve relatively high 
data rates, so that Wi-Fi UAVs deployment can achieve the same average per-GD data rate compared with LTE 
UAVs deployment.

In Fig. 12, Jain’s fairness index performance metric is used to compare the fairness of the different deployments. 
It can be observed that LTE-Wi-Fi UAVs deployment also performs better than other deployments, despite that 
fairness is not considered in the proposed objective function. This implies that the GDs’ downlink data rates are 
relatively close to each other. This comes from the greedy distributed nature of the regret learning algorithm, 
where each GD tries to associate with the best base station that can serve it. Which means that optimizing the 
LTE-Wi-Fi UAVs locations offers better associations compared with optimizing decoupled LTE and Wi-Fi UAVs.

Figure 13 shows the effect of using the different deployments on the average number of framework iterations, 
by increasing the number of GDs. It can be shown that the LTE-Wi-Fi, and LTE UAVs deployments almost 
achieve the same average number of framework iterations, with slightly better performance for the LTE-Wi-Fi 
UAVs. Both scenarios achieve better performances compared with Wi-Fi UAVs. This implies that the LTE-Wi-
Fi, and LTE UAVs deployments almost achieve the same performance in terms of complexity and computational 
cost, and better performance compared to Wi-Fi UAVs.

Figures 14, 15, 16, 17, 18, and 19, compare the performance of the different deployments at different 
reference rate requirements. These results are the average of the values at different numbers of GDs (i.e., from 
40 to 100). It can be noticed that the LTE-Wi-Fi UAVs exceeds LTE UAVs and Wi-Fi UAVs at all the different 
reference rate requirements, considering satisfaction index, downlink data rate, uplink power consumption, 
outage probability, fairness index, and framework iterations. Generally, increasing the reference rate implies 
more stringent requirements. Thus, for all the deployments, this decreases the satisfaction index, increases the 

Fig. 15.  Average downlink data rates per GD at different reference rates.

 

Fig. 14.  Average satisfaction per GD at different reference rates.

 

Scientific Reports |        (2025) 15:39013 18| https://doi.org/10.1038/s41598-025-22610-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 18.  Average Jain’s fairness index at different reference rates.

 

Fig. 17.  Average GDs outage probability at different reference rates.

 

Fig. 16.  Average GDs uplink power consumption at different reference rates.
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downlink data rate, uplink power consumption, outage probability, framework iterations, and decreases the 
Jain’s fairness index.

The increase in the downlink data rate and the uplink power consumption is justified by the effect of 
increasing the reference rate on the rate term in the satisfaction index. The rate term is a concave function with 
respect to the reference rate, where a GD gains more benefit of increasing its data rate at relatively low data 
rate levels significantly, then by increasing the achieved data rate, the benefit gradient gradually decreases until 
there are no significant benefit gains. Therefore, by increasing the reference rate, all the deployments get more 
satisfaction gains by achieving higher data rates, in the expense of increasing the uplink power consumption.

Moreover, it can be noticed that LTE UAVs achieves lower performance compared to Wi-Fi UAVs in terms 
of satisfaction index at 1 Mbps reference rate. This because of the aforementioned characteristics of LTE UAVs, 
where they tend to achieve higher data rates in the expense of power consumptions, due to their ability to 
reduce interference by optimizing their locations. And since their achieved data rates are much higher than the 
reference rate, they gain less satisfaction by increasing their data rates, rather than decreasing their uplink power 
consumption.

It is worth mentioning that, the satisfaction index outperformance percentage does not necessarily imply the 
same percentage of outperformance in data rate or power consumption, which is illustrated in Table 4. This is due 
to the non-linear relation between the satisfaction index and the mixture of data rate and power consumption. 
Since the objective is to maximize the satisfaction index, there might be cases where data rate is chosen to be 
maximized over power consumption, due to its contribution to the satisfaction index, and vice versa.

For example, in Table 4, the LTE-Wi-Fi UAVs outperformance reaches 13% compared to the Wi-Fi UAVs 
at a 5 Mbps reference rate in terms of satisfaction index. However, it has the same reflection on the downlink 
data rate (i.e., 19%), and a slightly better reflection on the uplink power consumption (i.e., 59%), compared to 
the 7% outperformance in terms of satisfaction index at 3 Mbps reference rate (i.e., 19% in the downlink data 
rate, and 58% in the uplink power consumption). This is due to the higher contribution of the downlink data 
rate on the satisfaction index at stringent reference rate requirements, compared to more relaxed reference rate 
requirements conditions.

Performance Metric Scenario

Performance Improvement Percentage

Satisfaction index 
(%) Downlink rate (%)

Uplink power 
(%)

Outage probability 
(%)

Jain’s fairness index 
(%)

Framework 
iterations 
(%)

Rref = 1 Mbps LTE UAVs 1 21 61 N/A 8 8

Rref = 3 Mbps LTE UAVs 5 15 67 56 5 3

Rref = 5 Mbps LTE UAVs 7 16 63 21 4 0

Rref = 1 Mbps Wi-Fi UAVs 1 25 42 N/A 22 45

Rref = 3 Mbps Wi-Fi UAVs 7 19 58 71 26 39

Rref = 5 Mbps Wi-Fi UAVs 13 19 59 31 28 39

Table 4.  Performance improvement percentages.

 

Fig. 19.  Average framework iterations at different reference rates.
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Fig. 22.  CDF for average power consumption at different ζR
i .

 

Fig. 21.  CDF for average sum rate at different ζR
i .

 

Fig. 20.  CDF for satisfaction index at different ζR
i .
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Furthermore, in Table 4, it can be noticed that by increasing the reference rate, the outperformance percentage 
of the LTE-Wi-Fi deployment increases. This reflects the effectiveness of coupling LTE and Wi-Fi base stations 
on each UAV, especially under stringent requirements.

Figures 20, 21, and 22, illustrate the effect of changing the weight parameter ζR
i  on the average satisfaction 

index, average downlink sum rate, and average total uplink power consumption, respectively, by measuring the 
Cumulative Distribution Function (CDF) for each. This reflects the differences between the diverse GDs, where 
some GDs may be rate oriented (i.e.,ζR

i = 1), others may be power-oriented (i.e., ζR
i = 0), and others may be 

oriented to rate and power at the same time (i.e., ζR
i = 0.5). It is worth noting that, ζR

i  can be any value between 
0 and 1, for each GD, which fulfills diverse GDs’ requirements at different times. The values reported in these 
figures are obtained with N = 80 and Rref = 5 Mbps. In Fig. 19, it can be observed that power-oriented GDs 
(i.e., ζR

i = 0) have a higher likelihood of achieving higher values of satisfaction index compared to other types 
of GDs. This implies that higher satisfaction can be achieved by minimizing the power consumption only, this 
is due to the high reference rate Rref  required, which decreases the GDs’ satisfaction from achieving high data 
rates when ζR

i = 0.5 and ζR
i = 1.

In Fig. 22, power-oriented GDs (i.e., ζR
i = 0) have a significantly higher likelihood of achieving lower values 

of the average total uplink power consumption compared to other types of GDs. This is because, when ζR
i = 0, 

the GDs’ objective is converted into minimizing the uplink power consumption. The same can be observed in 
Fig. 21, where rate-oriented GDs (i.e., ζR

i = 1) have a higher likelihood of achieving higher downlink sum-rate 
values compared to other types of GDs. This is because when the weight parameter ζR

i = 1, the GDs’ objective 
is converted into maximizing the downlink data rate.

In order to measure the performance of the proposed framework, DRL algorithm, and regret learning 
algorithm, we compared it with a meta-heuristic algorithm, which is the genetic algorithm. The genetic algorithm 
is adopted as a baseline to solve the GD’s association and UAVs location jointly, under the name ‘Genetic’. It is 
also used to solve the GD’s association only by replacing the regret learning algorithm with it in the framework, 
under the name ‘DDQN & Genetic’. Also, it is used to solve the UAVs location only by replacing the DDQN 
algorithm with it in the framework, under the name ‘Genetic & regret’.

Figure 23 compares between the proposed framework ‘DDQN & regret’, ‘Genetic’, ‘DDQN & Genetic’ and 
‘Genetic & regret’ in terms of satisfaction index, outage probability, and fairness index. In this comparison we 
considered the number of GDs to be 40, ζR

i = 0.5 and Rref = 1Mbps. Also, the maximum number of stall 
generation in genetic algorithms is 800. It can be observed that the proposed framework and the ‘Genetic & 
regret’ achieves better performance compared to others in terms of satisfaction index, outage probability, and 
fairness index. All the approaches achieve almost the same satisfaction index, since the objective is to maximize 
the satisfaction index of the GDs. However, the proposed framework performs better than other approaches in 
the fairness index metric. Not to mention the higher complexity of the genetic algorithm.

The limitations of the proposed work could be the limited capacity of the UAVs’ battery, where each UAV 
has a limited energy budget. We assume that there are spare and fully charged UAVs that are ready to replace 
the working UAVs when their energy reaches a predefined critical level, which, accordingly, will increase the 
operational cost. In addition, the UAVs payload could be considered as another limitation, which will be affected 
by increasing the number of deployed base stations on it (i.e., LTE base station and Wi-Fi access point). We assume 
that the UAVs can efficiently carry the Multi-RAT base stations. Moreover, a robust and reliable common control 
channel for UAVs and control station communication is assumed, which is challenging. Furthermore, a secure 
UAVs’ data and control communication is assumed, where it is limited by their hardware low computational 
cost, restricting complex encryption and authentication. All the aforementioned limitations are open challenges 
that can be studied and investigated in future works.

Fig. 23.  Evaluating the proposed framework compared to genetic algorithm.
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Methods
The performance of the proposed work was evaluated by conducting extensive simulations. Matlab R2022a was 
used to perform these simulations. The GDs locations are randomly distributed using a uniform distribution 
for each point in each simulation run. Adam Optimizer is used for training network parameters with 2 × 10−8 
learning rate, 64 mini batch size, and 0.0001 L2 regularization factor. The DDQN target network update frequency 
is set to 10, and the memory replay is 10,0000. Each episode ends when the target with the highest reward is 
successfully founded or the total number of episodes is reached. The regret learning algorithm iterations end 
after reaching the maximum number of iterations. The proposed framework is terminated whenever there is no 
increase in the SER. The UAVs are assumed to have an infinite energy (i.e., stand-by UAVs, or energy harvesting 
are assumed to be used when UAVs run out of battery).

Data availability
The source files/datasets used and/or analyzed during the current study available from the corresponding author 
on reasonable request.
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