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Physicians face a significant documentation burden, spending twice as much time on electronic 
health records (EHRs) as on direct patient care. Consultation summary reports from the emergency 
department (ED) are critical for continuity of care and clinical decision-making. This study aims to 
evaluate the quality and utility of automatically generated neurological consultation reports with 
clear recommendations, while reducing neurologists’ documentation burden. We used neurological 
consultation reports (n = 250) from the ED as reference outputs. For each case, we fed the report’s 
constituent components into the large language model (LLM). Using prompt engineering and retrieval-
augmented generation (RAG) to generate auto-summarized reports, which were then compared 
against the original consultation reports. The Recall-Oriented Understudy for Gisting Evaluation 
(ROUGE) and semantic embedding (Clinical-BioBert) were used as performance metrics. The LLM-
generated report exhibited high semantic similarity with the neurologist’s report (0.89 ± 0.03). 
However, significant differences in report length were observed, with LLM-generated reports 
being more concise than those written by attending neurologists (61.56 vs. 94.75 words, p < 0.001). 
Additionally, LLM-generated reports were written in a more straightforward and accessible style 
(FKGL = 11.3 vs. 12.22, p < 0.001). Despite these strengths, the LLM-generated reports exhibited 
substantial divergence in writing style from neurologists’ reports (ROUGE-1 F1 = 0.25, ROUGE-2 
F1 = 0.09, ROUGE-L F1 = 0.19). LLM-generated neurological consultation reports demonstrate strong 
semantic alignment with human-authored reports while offering a more concise and accessible format. 
Notable differences in writing style suggest a standardized approach that, while effective in conveying 
clinical content, may lack the personalization of neurologist-written reports. 
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Neurology is a specialty which is highly susceptible to burnout among physicians1. The growing prevalence of 
chronic neurological diseases2,3, shortage of neurologists4 and lower salaries compared to other medical fields, 
increases the likelihood of burnout among neurologists. Consequently, a substantial proportion of neurologists 
worldwide report experiencing burnout, with prevalence rates ranging from 18.1% up to 94%5. One contributing 
factor to this burnout, which is not exclusive to neurologists, is the significant documentation burden6, 
particularly pronounced in high-intensity settings such as emergency departments (ED)7.

The role of neurologists in the ED is crucial for providing high-quality consultations on neurological cases 
thereby preventing misdiagnosis8,9. Further, a significant portion of the responsibility of the physicians is to 
document patient information for subsequent healthcare providers. Currently, this is accomplished through 
the manual writing of reports in the EHR system. However, this documentation process is known to be time-
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consuming, with estimates indicating physicians devote twice as much time to EHR documentation as they do 
to direct patient care10. Such a task can be regarded as a low mental task, which doesn’t necessary require the 
skills honed by the long training of a physicians. Nevertheless, accuracy in these records is paramount to avoid 
future medical errors. Documentation errors occur at alarming rates, ranging from 13% to 40%11,12, usually due 
to physicians fatigue and cognitive biases13,14. Due to these factors a better solution than manually written notes 
is necessary, to reduce both physician work burden and medical errors.

A suitable solution could be to develop a tool that can assist neurologists by working as either first providing a 
draft followed by physician review, or as a tool which overlook the physician report. While both sound plausible, 
it’s usually safer to allow the human to be the last judgement and not artificial intelligence (AI). The common 
framework for documentation and language tasks typically centers around large language models (LLMs)15. 
While a range of tools that utilize LLMs has been extensively explored in literature for automating medical 
report generation15, most studies focus on broad topics and fail to address the nuanced and complex needs of 
the neurology field. This is especially true in high-intensity emergency room consultations. This study aims to 
investigate whether LLMs can generate consultation reports in the emergency room that not only summarize 
patient information, but also offer tailored recommendations to guide neurologists in determining the most 
appropriate next steps for patient management.

Materials and methods
Standard protocol approvals, registrations, and patient consents
The study was conducted with institutional research board (IRB) approval. Due to the retrospective nature of 
the study, Rambam healthcare campus IRB waived the need of obtaining informed consent. All methods were 
carried out in accordance with relevant guidelines and regulations.

Cohort identification
This retrospective study comprised 250 consecutive cases from the ED at Rambam Healthcare Campus. 
Clinical information was uniformly extracted using an electronic record retrieval system capable of accessing 
all clinical and laboratory results. We identified all patients who underwent neurological consultation in the 
ED from 01/01/2024 to 29/02/2024, with follow-up concluding on 16/08/2024. Inclusion criteria included 
patients above 18 years old with a medical history. Exclusion criteria included lack of complete consultation 
history, lack of follow-up data until 16/08/2024, and erroneous ICD-9 code at discharge in the electronic records. 
All consultation reports were manually translated into English from Hebrew and subsequently reviewed by a 
professional translator to ensure accuracy. This was done to facilitate an evaluation between AI generated report 
and original consultation report.

LLM implementation
The framework is based on an LLM, Gemini 1.5-pro API securely hosted within the Vertex AI platform, 
provided by Google Cloud services. In addition, our engagement with Gemini API is underpinned by stringent 
data management agreements with Google. These agreements guarantee that patient data are strictly confined 
to the intended research objectives and that no training of the Gemini model can occur, thereby maintaining 
confidentiality and integrity throughout the study. The LLM was set temperature = 0 to avoid hallucination 
focusing only on the input data. The LLM inputs are neurological examination, patient medical history, 
radiological findings, and laboratory results extracted from EHRs (Fig. 1). The output was the consultation 
report with recommended next step (admission vs. discharge, refer to different consultation, return to emergency 
department physician). All model inputs were restricted to information time‑stamped on or before the moment 
the neurologist opened the consult note. These inputs comprised (i) demographic details and chief‑complaint 
history recorded by the triage nurse, (ii) an unformatted “Initial Neuro Exam” scratch pad typed by the neurologist 
immediately after bedside assessment, and (iii) laboratory and radiology results that had been done in the EHR 
after the neurological examination. The final structured consult note written only after the neurologist had 
reviewed all subsequent results was withheld from the model to avoid circularity. To enhance the relevance and 
accuracy of the LLM’s output, we employed a retrieval-augmented generation (RAG) technique, presenting five 
analogous cases that illustrate both the input parameters and the resultant neurological consultation reports.The 
RAG is based on a a hybrid similarity search that was built on full historical consult records. For every encounter 
we concatenated: (1) demographic and triage data, (2) nurse‑recorded history and neurological examination, 
(3) laboratory and imaging results, and (4) the neurologist’s final free‑text note. Each composite string was 
embedded with BioClinicalBERT (BioBERT) and stored in a FAISS IndexFlatL2. At runtime the current case 
inputs was embedded with the same model; the five nearest neighbours (highest cosine similarity, patient‑ID 
excluded) were retrieved and appended. This approach aims to mitigate common limitations observed in LLMs, 
such as the lack of empathy, contextual relevance, and tendencies toward verbosity or excessive informality16.

Prompt disclosure and reproducibility
The exact system prompt supplied to the Gemini 1.5‑pro model is reproduced in Supplementary File 1. It 
includes role definition, output schema, length constraints, and an instruction to refuse if insufficient data are 
provided. No patient-specific identifiers were used.

Performance metrics
To rigorously assess the quality and clinical applicability of LLM-generated neurology consult summaries, we 
employed a multi-faceted evaluation framework incorporating semantic similarity, readability indices. The 
primary objective was to ensure that AI-generated summaries preserved critical neurological details while 
enhancing efficiency and reducing documentation burden. Cosine similarity, calculated using Clinical-BioBERT 
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embeddings, provided a quantitative measure of semantic alignment between LLM-generated and physician-
authored summaries, ensuring that generated texts retained meaningful medical context beyond superficial word 
overlap. Additionally, ROUGE scores (ROUGE-1 F1, ROUGE-2 F1, ROUGE-L F1) assessed lexical similarity, 
capturing both unigram and bigram coherence as well as syntactic structure. Readability was evaluated using the 
Flesch-Kincaid Grade Level (FKGL) and Flesch Reading Ease Score (FRES), ensuring that summaries remained 
accessible for clinicians while maintaining necessary medical precision.

Capturing biases for similarity differences
For potential biases we examined the hospitalization status and temporal trends, both of which were external 
to the input data for the language model. Consequently, the model is unaware of these factors, even in the 
context of the physician’s report. The reason for these bias speculations stems from the nature of hospitalized 
case are assumed to be more complex and nuanced suggesting that the LLM might struggle to provide high 
quality consultation report. For time analysis was due the fact that it may reflect human factors such as physician 
fatigue during night shifts (23:00–06:00) or increased patient load during peak hours (09:00–11:00), which could 
compromise report quality. Report timing was determined using EHR timestamps (when physicians finalized 
reports).

Statistical analysis
For comparisons between groups, qualitative variables were analyzed using Fisher’s exact test and chi-square 
test. Continuous variables that followed a parametric distribution were analyzed by Student’s t-test, and 
nonparametric variables were analyzed by the Mann–Whitney U test. The threshold for significance was set at 
p < 0.05.

Ethics approval. We confirm that we have read the Journal’s position on issues involved in ethical publication 
and affirm that this report is consistent with those guidelines.

Consent to participate. Approval for this study was obtained by the Institutional Review Board at the Rambam 
health care campus. All methods were carried out in accordance with relevant guidelines and regulations.

Fig. 1.  Inputs and outputs of the LLM. The model receive patient anamnesis (medical history), findings 
from the neurological examination, patient demographic (age and gender), radiological findings, laboratory 
findings.
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Results
Cohort
We identified 1,368 consecutive cases of patients who underwent neurological consults in the emergency 
department (ED). From this group, 250 consultation reports were selected for comparison with the AI-
generated reports. The rest of the consultation reports retierved from the EHR (n = 1118) lacked input parts 
of the diagnostic components relevant to neurological consultations, including detailed patient histories, 
neurological examinations, radiographic findings, and laboratory results. If we Include incomplete input into 
the LLM this can result in inaccurate comparisons with the human-written notes, as the neurologist had access 
to the missing information during the consulations. Therefore, we exclude incomplete reports to ensure accuracy 
in our analyses.

The most prevalent neurological conditions observed were stroke and cerebrovascular diseases (n = 35, 14%), 
headache disorders (n = 32, 12.8%), and seizure disorders (n = 28, 11.2%). A total of 86 patients (34.4%) were 
hospitalized, with 49 (19.6%) admitted to the neurology department. Among the total, 232 patients (92.8%) had 
blood lab results, 182 (72.8%) underwent computed tomography (CT) scans, 148 (59.2%) had electrocardiograms 
(ECG), and only 12 patients (4.8%) had lumbar punctures performed (Table 1.)

AI generated report similarity performance
Cosine similarity (clinical-BioBERT)
To assess the semantic similarity between AI-generated and true summaries, we employed Clinical-BioBERT 
embeddings. The mean cosine similarity score was 0.89 ± 0.03. These findings indicate a high degree of semantic 
alignment, suggesting that the AI-generated summaries preserved the core clinical meaning of physician-
authored reports. This strong semantic similarity demonstrates the model’s effectiveness in capturing essential 
medical information without considering if the wording and phrasing differ significantly. (also see supplementray 
Fig. 1)

ROUGE scores
While cosine similarity confirmed the semantic alignment, ROUGE F1 evaluation provided insights into textual 
overlap. The mean ROUGE-1 F1 score was 0.28, indicating limited unigram-level similarity, while ROUGE-2 
F1 and ROUGE-L F1 scores were 0.09 and 0.19, respectively. These results suggest that although the generated 
summaries contained key clinical terms, their phrasing and structure varied significantly from physician-
authored reports.

Hospitalization-based differences
The mean cosine similarity score for hospitalized patients was 0.89, compared to 0.88 for non-hospitalized 
patients (p = 0.45), showing no statistically significant difference between these groups. Testing this bias was 
essential to ensure the tool’s reliability across diverse clinical scenarios (Fig. 2.).

Features Total (n = 250)

Age (median, IQR) 56 [35.17–74.17]

Male (n, %) 120 (48%)

Hospitalized 86 (34.4%)

Hospitalized at neurology department 49 (19.6%)

Mortality 23 (9.2%)

Neurological category of consult based on ICD-9 code on release

Stroke and Cerebrovascular disorders 35 (14%)

Seizure Disorders 28 (11.2%)

Headache disorders 32 (12.8%)

Neuromuscular Disorders 12 (4.8%)

Central demyelinating disorders 1 (0.4%)

Infections of the nervous system disorders 2 (0.8%)

Other disorder of CNS 8 (3.2%)

ICD-9 code without diseases of the nervous system and sense organs at release from ED 132 (52.8%)

Imaging Conducted at ED

C.T 182 (72.8%)

MRI 9 (3.6%)

ECG 148 (59.2%)

Laboratory data

Blood test 232 (92.8%)

Lumbar Puncture 36 (14.4%)

Urine test 12 (4.8%)

Table 1.  Baseline demographic and clinical characteristics of patient neurological consultation reports.
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Similarity analysis
To benchmark the 0.88 AI‑to‑reference overlap, we randomly sampled 1 000 unique, unordered pairs within each 
cohort and computed BioClinicalBERT cosine similarity. Human‑to‑human pairs showed a median similarity of 
0.98 (IQR 0.97–0.98), whereas AI‑to‑AI pairs were 0.97 (0.97–0.98); the difference, while statistically significant 
(p < 0.001), is numerically trivial (Δ = 0.01). Further details can be seen on supplementary figure S1.

Hourly trends
Hourly analysis over a 24-hour period (Fig. 3) showed that both attending‐summary (human authored) lengths 
and BioBERT‐based similarity scores (between AI generated report to human authored report) fluctuated in 
ways that did not cleanly align throughout the day. Notably, both metrics rose to their highest levels in the 
mid‐morning (around 09:00–10:00) before dipping sharply at around 11:00. Late‐evening hours (e.g., 23:00) 
also showed relatively lower similarity scores alongside shorter summaries, suggesting that certain time blocks 
whether due to shift fatigue, varying patient loads, or other contextual factors may influence documentation 
patterns. These findings raise the possibility of temporal biases in clinical summary quality, underscoring the 
need for further investigation to clarify the roles of shift schedules, circadian rhythms, and systemic factors in 
shaping how neurology attendings generate their documentation.

Fig. 2.  Comparison of BioBERT-Derived Similarity Scores Between Non-Hospitalized and Hospitalized 
Patients: Box-and-whisker plots illustrating BioBERT similarity scores for non-hospitalized (n = 164, blue) 
and hospitalized (n = 86, red) patients. The central horizontal line within each box denotes the group median, 
with the box boundaries representing the interquartile range. Whiskers extend to the lowest and highest values 
excluding outliers, which are plotted individually. Statistical comparison revealed no significant difference in 
scores between the two groups (p = 0.458).
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Summary length
In comparing the word counts of AI-generated summaries to their clinician‐written counterparts, a clear 
difference in brevity emerged (Fig. 4). The AI‐generated summaries displayed a pronounced left‐shift in their 
distribution, with a mean of 61.57 words versus 94.75 words for the true summaries. This difference was 
significant (p < 0.001). Notably, the high similarity scores from BioBERT suggest that these concise summaries 

Fig. 4.  Distribution of Summary Lengths: Generated vs. True Summaries: Overlaid histograms illustrating the 
word count distributions for AI-generated summaries (purple bars and curve) and actual (human‐authored) 
summaries (green bars and curve). The x‐axis denotes the number of words in each summary, while the y‐axis 
represents the frequency of summaries in each bin. Overall, human‐authored summaries extend to higher 
word counts, whereas AI‐generated summaries tend to cluster at shorter lengths.

 

Fig. 3.  Hourly Trends in Attending Summary Length and BioBERT-Derived Similarity Scores: A dual-axis line 
chart depicting the mean summary length of human authored reports (in word count; green line, right y‐axis) 
and mean BioBERT similarity score (blue line, left y‐axis) at each hour of the day (x‐axis). Data range from 
00:00 to 23:00, illustrating temporal fluctuations in both content length and language‐based similarity scores of 
attending summaries over a 24‐hour period.
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effectively preserve the essential clinical information. This indicates that the model can maintain brevity without 
sacrificing critical content, underscoring its suitability for fast‐paced clinical workflows.

Readability performance
The mean FKGL for the generated summaries was 11.30, compared to 12.22 for the true summaries. There was 
statistically significant difference between the report (p < 0.001), indicating that the generated summaries are 
written at a lower grade level and are therefore easier to comprehend. In contrast, the FRES analysis showed no 
significant difference between the generated and true summaries (p-value = 0.85). This suggests that both sets 
of summaries are comparable in terms of readability ease, but the generated summaries may require slightly 
less advanced literacy for comprehension. The balance of improved readability and retained clinical content 
underscores the potential usability of the AI-generated summaries in high-stress clinical environments.

Next step recommendations
To further provide for neurologists we evaluated the LLM regarding the next step after the consultation. With 
the model being correct 78.8%. Correctness was defined as agreement between the model’s recommendation 
(admit vs. discharge) and the actual patient outcome. When the model erred, it was equally likely to recommend 
admission for patients who were ultimately discharged (18.9%) as to recommend discharge for patients who 
were ultimately admitted (34.1%, p = 0.32). In certain reports, the model suggested referrals to specialists, and 
these recommendations were consistent with actual outcomes, indicating the same specialist. Notably, these 
reports included patients with extensive medical histories specific to this specialization (e.g., oncology).

Discussion
We evaluated an LLM tailored for the ED, designed to function as AI-generated neurologic consultation reports 
to reduce documentation burnout for neurologist consultants. The LLM demonstrates strong performance in 
semantic similarity with mean 0.89 cosine similarity score. The model demonstrated strong performance in 
capturing clinically relevant information, achieving a high semantic similarity score (mean cosine similarity = 
0.89). Notably, the accuracy of AI-generated reports remained consistent across different contexts, including 
night shifts and reports for hospitalized patients, suggesting robustness against contextual biases. Additionally, 
the LLM-generated reports were written in a more accessible style, potentially improving comprehension for 
both patients17 and downstream care providers. The reduced length of the AI-generated report, when juxtaposed 
with its human-authored counterpart, maintains a comparable clinical relevance, as evidenced by a high clinical 
similarity score.We speculate that this has the potential to alleviate cognitive burden by shortening the time spent 
on EHRs, a frequent contributor to cognitive fatigue18,19. However, further research is necessary to evaluate the 
medicolegal implications and billing processes associated with AI-generated reports in comparison to those 
created by human providers. This is particularly crucial in the U.S., where physicians typically spend more time 
on EHRs compared to their counterparts in other countries20. While prior studies have demonstrated the ability 
of LLMs to generate accurate medical reports, it is important to note that only 33% of reports generated by 
GPT-4 were entirely free of errors, highlighting the need for continued validation and refinement of AI-assisted 
documentation tools21. Most reports contained hallucinations and omitted clinically relevant information22. 
This finding is pertinent to our study, where, under optimal conditions, the expected similarity score should 
exceed 0.89, approaching a score of 1. This indicates that either the LLMs are missing vital clinical information or 
that the physicians are neglecting it; however, the latter is less likely, given that only complete and comprehensive 
physician reports were included to the analysis.

This AI tool possess the potential of identifying, notifying and filling the missing crucial components of the 
human written consultation report which seems to be a prevalent need. It is important to recognize that, despite 
the extensive studies on generative reports using AI, such research is rarely conducted in the field of neurology23. 
Most studies tend to focus primarily on diagnostic applications. AI should not be limited to diagnostics; it should 
be integrated throughout the field to enhance patient care and improve the quality of life for neurologists as well. 
It is crucial to recognize that the principal objective of AI generative reports is to streamline documentation 
processes by providing physicians with a structured template. This approach alleviates the necessity for clinicians 
to draft notes from scratch, thereby mitigating cognitive load and work-related stress24,25. Despite initial promises 
of reducing the time physicians spend on documentation as shown in theoretical study26, a subsequent quality 
improvement study assessing AI-generated draft replies to patient messages found no significant reduction 
in the time required to compose responses27. The study identified key challenges with AI-generated drafts, 
including a lack of empathy and personalization essential for patient-centered communication. Physicians also 
frequently criticized the drafts for being excessively long. While these issues raise concerns about the practicality 
of AI-generated reports, they highlight opportunities to refine LLMs for better alignment with clinical needs. 
By leveraging prompt engineering and RAG, we successfully optimized report length and relevance, making the 
AI-generated summaries more concise and clinically useful.

A secondary outcome was to evaluate the alignment of recommendations, revealing a 78.8% concordance 
with neurologist decision. This closely mirrors findings from previous research, which reported a 77.5% 
accuracy rate for ChatGPT-428. These results suggest that LLMs exhibit difficulties in producing reliable 
prediction probabilities29. Traditional machine learning and deep learning architectures, as evidenced by 
various studies, may be more adept at prediction tasks30,31. This notion implies a potential for hybridizing these 
two architectures to leverage the predictive accuracy of machine learning techniques alongside the language 
processing capabilities of LLMs. Such a hybrid approach could enhance tasks such as consultation reports, which 
require both summarization and the provision of specific patient management pathways, including admission, 
discharge, or referrals to other specialists.
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Our study presents several limitations worth noting. Firstly, we operated with a relatively small dataset, 
which can introduce significant variability, particularly affecting specific subgroups within the sample. This often 
results in skewed outcome estimations. Notably, our cohort exhibited a high prevalence of non-neurological 
cases, which could further complicate interpretations. Moreover, our methodological approach lacked a 
systematic manual review of the reports, as we did not implement a formal grading system. Our evaluation 
was solely based on automated text-overlap metrics (ROUGE-1/2/L), which, while providing a convenient and 
reproducible benchmark, fail to adequately assess the clinical utility of a consult note or confabulations of certain 
reccmondetions and diagnosis. That is, these metrics do not evaluate key factors such as clarity, accuracy, and 
the note’s ability to guide the primary care team’s management strategy. Incorporating expert evaluation into 
analysis is thus a critical next step, highlighting a significant limitation of our current study. The retrospective 
nature of the study raises additional concerns regarding the compliance of neurologists in utilizing the AI tool 
within high-pressure environments, such as the emergency room. There remains a gap in understanding how 
physicians interact with AI tools in hospital settings and the extent to which patients adhere to recommendations 
based on AI-generated assessments of medical information.

We encountered a key limitation stemming from our strict inclusion criteria for data completeness. Of the 
1,368 emergency department encounters reviewed, only 246 (18%) had sufficient documentation to allow for 
automated summarization. This required the presence of triage demographics, neurological examinations, 
provisional ICD-9 codes, and at least one finalized laboratory or imaging report. The exclusion of the remaining 
cases primarily reflects challenges in retrieving structured data from the electronic health record. We chose to 
exclude incomplete cases to ensure a fair comparison between the model-generated summaries and comprehensive 
human-written notes, as missing inputs would inherently bias the evaluation in favor of the human reports. As 
a result, our model is currently applicable only when complete data are available—a limitation that highlights a 
broader issue in real-world settings, where incomplete documentation is unfortunately common.

In conclusion, augmented medical report generation can support ER neurologists by generating preliminary 
report drafts, reducing documentation time, and enabling clinicians to focus more on direct patient care and 
personalized communication. By streamlining documentation, these tools have the potential to enhance 
both physician efficiency and the overall patient experience. Future research should prioritize real-world 
implementation and evaluate how AI-driven reporting impacts clinical decision-making, workflow, and patient 
outcomes.
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