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The interplay between pitch
control and top speed in soccer
considering the stamina factor
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In this study, we investigate the interplay between player speed and ball control in soccer. We present
a novel pitch control algorithm that quantifies the probability of a player gaining possession at

any location on the field. Our model accounts for the heterogeneity of player speeds by measuring
performance during matches and assigning each player a specific top speed. We then compare the
pitch control percentages derived from our approach with those from classical models, which assume
uniform top speeds for all players, and analyze the results across different player roles (defenders,
midfielders, and forwards). Our findings reveal a positive correlation between a player’s top speed and
their accumulated pitch control, with certain players benefiting more from this relationship. However,
this positive correlation is constrained by the role of the player in the team, with defenders achieving
the highest accumulated pitch control despite not being the fastest. Furthermore, our methodology
supports team-level analysis, identifying which teams gain the greatest advantage from their players’
top speeds, and extends to comparisons between the first and second halves of matches. Our model
also enables exploration of how changes in top speed may affect pitch control at both the individual
and team levels. To facilitate this, we introduce the stamina factor, a parameter that adjusts a player’s
top speed. We find that the impact of the stamina factor on pitch control follows a logarithmic
function, with the scaling factor quantifying the potential benefits of increased speed. Interestingly,
the influence of the stamina factor varies significantly by player position. Overall, our approach
provides valuable insights into which teams or players could benefit most from improvements in
physical performance.
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One of the applications of complexity sciences is the study of patterns movements of animals, herds, or
humans, aiming to understand the underlying principles governing collective behaviors across species'™>.
This interdisciplinary task has evolved over decades, with significant contributions that have deepened our
understanding of how collective movement arises from the particular dynamics of its agents. In 1971, W.D.
Hamilton introduced the “selfish herd theory; indicating that individuals within a group position themselves
to minimize their predation risk, leading to the emergence of cohesive group formations®*. This foundational
concept highlighted how individual actions could result in complex group dynamics. Building upon this, in
1995, Vicsek et al. developed a model demonstrating how simple behavioral rules could lead to the spontaneous
emergence of collective motion in groups of self-propelled particles®. This model described the significance of
local interactions in the formation of large-scale patterns observed in animal groups. Since this seminal work,
a diversity of studies, covering a variety of disciplines, focused on identifying the laws describing the essential
aspects of collective motion, discussing experiments, mathematical methods, and models for simulations?.
Interestingly, all this literature points to the fact that, despite the multidisciplinary nature of the field, similar laws
describe systems of completely different nature, ranging from macromolecules to groups of animals and people.

In recent years, the principles derived from the study of collective animal behavior have been increasingly
applied to the analysis of human activities, particularly in sports. Team sports, such as soccer, exhibit complex
dynamics where individual and collective movements are crucial for performance®. Understanding these
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dynamics through the lens of complexity science has lead to new perspectives on performance analysis and
strategy development”®. This approach acknowledges the intricate interactions and emergent behaviors that
arise from individual actions within the team context’. Advancements in tracking technologies have enabled
access to detailed data on player/athlete movements. Tracking datasets contain the precise Euclidean location of
players during the different phases of training or competition, which, in turn, can be used to calculate their speed
and acceleration. Sports such as basketball'®!!, rugby!? or soccer'?, have benefited from the analysis of tracking
datasets, extracting information about not only the physical performance of athletes and players but also the
tactical implications of the individual and collective patterns of movement!*1>,

Furthermore, tracking datasets have facilitated analyses that go beyond traditional statistics, allowing for
a deeper understanding of spatial and temporal patterns in player behavior. For instance, in'®, the location of
professional soccer players during the attacking and defensive phases of the match was used to extract their
corresponding speeds. The analysis of the interplay between player speed, movement angles, and distance to the
ball, offered a new (and more complex) perspective on how players move strategically during different phases
of the game. It was shown how the player speed is highly dependent on ball proximity, game phase (attack,
defense), or player role, and how the angles of movement reveal role-specific behaviors that align with tactical
responsibilities'®. In a more general framework, the application of complexity sciences in soccer highlighted the
intricate balance between individual decision-making and emergent group behaviors, reinforcing the idea that
player movement is not just a sum of individual actions but rather an interactive, dynamic process influenced
by teammates, opponents, and contextual factors such as game situations and tactical instructions. For example,
in!7, Marcelino et al. analyzed the correlation of the players’ speeds to show that team coordination during
soccer matches is not a fixed, pre-determined formation but rather an emergent, self-organized process. By
analyzing players’ spatiotemporal trajectories, they demonstrated that players continuously adjust their positions
in response to both teammates and opponents, resulting in dynamically shifting clusters. These collective
movement patterns change in response to different game phases, particularly between offensive and defensive
moments'’. On the other hand, in 2020, network science was used to analyze tracking datasets, and the concept
of tracking networks was first introduced'®. Under this framework, tracking datasets are used to quantify different
kinds of interactions between players, leading to marking networks, coordination networks, or signed proximity
networks. The organization of these complex networks along a match can be tracked and different network
parameters can be computed to better understand the collective movements of soccer teams and players!®1°.

In this paper, we focus on a specific application of the tracking datasets: the estimation of the pitch control
of a soccer team. The idea of quantifying the pitch control was first introduced by Taki and Hasegawa?® with the
concept of dominant regions. Departing from the player location at every moment of a match, Taki and Hasegawa
developed a mechanical model to simulate the movement of players and calculate the probability of controlling
the ball at any future location of the pitch. In their model, the speeds and accelerations of players were included,
going one step beyond the classical analysis using Voronoi partitions (i.e., disregarding the player dynamics) as a
technique to evaluate the amount of the pitch controlled by each team?"?2, Therefore, not only the proximity to
the ball but also the direction of the speed is crucial to determine what player will arrive before to any location
of the pitch to control the ball. Some year laters, Spearman departed from the concept of dominant regions to
develop a tracking-based model of passing performance?’. Players’ speeds, acceleration, reaction times, and
positions on the field were integrated to obtain a Pass Success Probability Function. Combining the ball’s flight
characteristics with the players’ motion capabilities, the Spearman model showed that the probability of a pass
being successful is directly related to the “window” during which the intended teammate can receive the ball
before an opponent can intercept. Furthermore, the predicted pass probabilities aligned well with the observed
success rates from real match data.

One significant limitation of the models presented in?® and? is the lack of heterogeneity in player speeds.
Although these numerical models incorporated actual speed data from tracking systems, they assumed a
uniform top speed for all players, despite evidence that top speeds vary among individuals?®. While such a
simplification may be justifiable in classical pitch control models, its effect on the true dynamics of pitch control
for players and teams remains unclear. To address this gap, we have implemented a pitch control model that
accounts for the actual top speeds of the players under evaluation. Using tracking datasets from 100 professional
soccer matches, we first calculate each player top speed for every match and then integrate these values into our
numerical model, which simulates player movement to determine pitch control. This approach offers several
advantages compared to the classical method. First, it provides a more accurate evaluation of pitch control for
players and teams, allowing us to assess the significance of considering a uniform speed for all players. Second,
it draws conclusions regarding how differences in player top speeds relate to their roles within teams, namely,
goalkeepers, defenders, midfielders, and forwards. As we will see, the impact of player top speed is not uniform
across these positions. Third, our model allows to simulate scenarios in which player top speeds are increased or
decreased as a result of improvements or deteriorations in fitness. To this end, we introduce the stamina factor,
a control parameter that adjusts player top speed and exhibits nonlinear behavior when correlated with pitch
control. In the following sections, we define the numerical model and describe the datasets used to calculate
pitch control. Next, we analyze the effects of top speed on players, teams, phases of the match (attack/defense),
and halves of the match (first/second). Our analysis shows the importance of incorporating player top speed into
pitch control models.

Methodology

Datasets

Pitch control models strongly depend on the data used for their calculation. In our case, data collection was
performed using the Tracab Optical Tracking System, which employs a network of multi-camera units positioned
around the stadium. This system captures the precise location of each player on the field at 25 frames per second,
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with a spatial resolution of up to 10 cm?*. Specifically, the system is based on a stereo multi-camera configuration
comprising three units, each providing a resolution of 1920 x 1080 pixels. These units deliver a panoramic
image that enables the triangulation of the location of the players and the ball. The accuracy of datasets generated
by the Tracab Optical Tracking System has been validated through comparisons with GPS data in previous
studies®®?’. Together with the players’ locations, the information about the team in possession at each frame is
also included in the datasets, with a flag indicating if the ball is in-play. Concerning the players, their roles within
teams are also considered and classified into four categories: goalkeepers, defenders, midfielders, and forwards.
Substitutes have been excluded from the analysis, as their performance is constrained by shorter playing time.
Under this framework, the tracking datasets containing the positional data of players were acquired from 100
matches of the first division of the Spanish National League (LaLiga) during the 2019/2020 season. Importantly,
all matches analyzed were played prior to the outbreak of the COVID-19 pandemic, which led to a three-month
suspension of the competition, affecting players’ physical performance. Finally, the data used in this study has
been previously anonymized and all methods were carried out in accordance with relevant guidelines and
regulations. We obtained the approval from the Ethics Committee of the King Juan Carlos University (Madrid,
Spain) to carry out this research (project PID2023-147827NB-100), which has been carried out following all
guidelines and regulations. The Spanish National Ligue (LaLiga) approved to publish the results in an open
access journal.

The pitch control model

A pitch control model relies equally on the quality of the datasets and the modeling approach used in its design.
The pitch control at a specific location is defined as the probability that a player or team will secure possession if
the ball is sent directly there. Models of pitch control simulate both ball and player dynamics by considering their
current positions and speeds. This means that effective ball control depends not only on proximity but also on
the direction and velocity of the players; those moving swiftly toward the ball are likely to reach it more quickly
than those approaching from a different direction who must first change their course.

To develop the pitch control model, a number of computations are required at each point on the field. These
involve calculating the time needed for the ball to travel from its initial position to the target location, estimating
how long it would take each player to get there, and then determining the overall probability that a team will
gain control once both the ball and a player have arrived. Our approach is akin to the models proposed in?*%.

In our model, the ball is assumed to move at a constant speed of v, = 15 m/s. Consequently, the ball’s arrival
time at any location is given by

Al‘b
Thall = —,
Ub

where Az is the Euclidean distance from the ball’s starting position to the target location. Furthermore, as an
initial assumption, all players are assigned a top speed of Vmaz,p = 5 m/s, which is considered a representative
estimate of the top speed achievable when contesting for ball control. It should be noted that this uniform speed
assumption is standard in classical pitch control models; however, the model will later be adapted to incorporate
player-specific speed variations. To estimate a player’s expected arrival time at a given location, denoted as
Tplayer (T, tr) (with 7 representing the displacement vector from the players starting point to the destination and
t, the reaction time), we use a two-step approximation. First, a reaction time of ¢, = 0.7 seconds is assumed?8;
during this interval, the player is considered to continue along their current trajectory at the same speed,
reaching a position 7react. Once the reaction time elapses, the player is modeled as running directly toward the
ball at their maximum speed Vimaz,p. Finally, the player’s total expected arrival time is computed by combining
these two phases:

F— Freac
Tplayer (75 1r) = tr + M

(1)

Umazx,p

After determining the arrival times for both the ball and the players, the next step is to compute the likelihood
that a player gains control of the ball at the intended target location. To achieve this, we adopt Spearman’s
assumption?’ that ball control is a stochastic process governed by an exponential distribution with a constant
rate \, which is the reciprocal of the mean time needed for a player to secure possession. Consequently, during
any small time interval A¢ in which a player is near the ball, the chance of controlling it is A - At. Consistent
with?, we set A = 4.3 s~ " as our baseline control rate. Moreover, goalkeepers are assigned a higher control rate,
Aax = 12.9 577, to reflect their enhanced ability to claim the ball, especially given their capacity to use their
hands.

To further refine the model, an uncertainty parameter o is introduced into the players’ arrival times to
account for factors not explicitly modeled. Combining these elements, the probability Fine,;(7,¢, 0, ) that
player j intercepts the ball at time ¢ and at location 7 is described by the cumulative distribution function of a
sigmoid:

1
i Gt (2)
1+e VBo/m

Ent,j (’F7 t,o, t'r) =
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Note that this probability requires incorporating the actions or performance of other players on the field.
Therefore, the overall probability that player j controls the ball when moving toward the location specified by
the displacement vector 7, in the presence of other k players, is described by the following differential equation:

dPC;
dt

(t7F7 g, )‘jvtT) =\|1- ZPC}C (taFa g, )‘k) F‘iﬂt’j(tﬁfv g, tT))‘jv (3)
k

where PC'; denotes the potential Pitch Control field for player j and J; is the individual control rate. The term
>  PCr (L, 7, 0, Ar) represents the cumulative pitch control field of all other players k on the pitch at time ¢.

By integrating Eq. 3 over the interval ¢ € [tban, tban + 10] seconds and initializing PC; (t,7, 0, A;) =0
at the start, we obtain the control probability for each player at every point on the pitch. These values are then
aggregated for all teammates to derive the overall pitch control for each team. Note that our model does account
for differences between players due to their top speed (i.e., not all players are equal), in contrast to the model
introduced in%3, where differences between players depended only on the “initial conditions”, i.e., their position
and current speed at the moment of the pitch control calculation.

Speed dependence and the stamina factor

The next step is to consider the heterogeneity of the player speeds in the pitch control. Conventional pitch control
models assign a uniform top speed vmaa,p to all players?®?3, thereby simplifying computations at the expense
of accuracy. To address this limitation, we first computed the probability distribution of each player 4’s speed
during every half of the match and extracted the 95th percentile threshold, denoted as vgs (7). We then replaced
the generic parameter vsmaq,p with these player-specific values vgs (4). This adjustment incorporates individual
running capabilities into the model, allowing each player’s pitch control to reflect their reported top speed. Note
that, since pitch control is effectively a “zero-sum game”, an increase in one player’s control necessarily results in
a decrease in another’s. We call the speed-dependent pitch control model as PC,,.

Moreover, the capacity to run faster does not imply that a player will always utilize their top speed.
Depending on the match context or their physical condition, players may choose to conserve energy rather
than run at full speed. Conversely, over-motivated players may increase their top speed during specific matches.
This observation prompted us to explore the effects on pitch control when a player runs at a different pace than
usual, either faster or slower. To capture this variability, we introduce a “stamina factor” £ into the model, which
multiplies the player’s top speed (i.e., Umaz,p(i) = &£ - Vo5 (%)), increasing it when & > 1 and decreasing it when
& < 1. We selected the 95" percentile as the reference for player top speed, which is commonly used in this type
of analysis. Althou%h other top speed values can also be considered (as long as the same reference is applied to
all players), the 95° percentile velocity, also known as stride velocity 95th centile (SV95C), is a metric derived
from wearable devices that represents the velocity at which a person walks or moves. It specifically identifies the
speed below which 95% of a person’s strides fall, effectively capturing the typical or near-maximal speed while
excluding the fastest 5% of strides. Furthermore, this metric is often used in clinical trials®. Figure 1 shows the
boxplots of vgs, in m/s, classified by playing position. As we can see, forwards exhibit the highest vgs values,
followed by midfielders and then defenders, indicating positional differences in players’ top running speeds. This
visualization highlights the variability and distribution of the vgs speeds across playing positions and, therefore,
suggests that considering the vgs may have consequences on the pitch control of players and teams.
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Fig. 1. Boxplot of ves, in m/s, by position: defenders (left), midfielders (center), and forwards (right). The

vg5 metric represents the 95" percentile of each player’s running speed distribution. In the boxplot, the
central line represents the median, the box boundaries correspond to the interquartile range (IQR), and the
whiskers extend to the smallest and largest values within 1.5 times the IQR from the lower and upper quartiles,
respectively. Individual points beyond the whiskers indicate potential outliers.
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Results

Once the methodology is defined, let us analyze how pitch control is related to the player top speed. Figure
2 shows an example of the classical pitch control calculated over a particular frame of a match. Colors (blue/
red) indicate the team that would control the ball in case it reaches any region of the pitch and color intensity is
proportional to the pitch control of each team. In the figure, we have included a vector indicating the direction
of the speed of players, with a length proportional to the modulus. Players without an arrow are stationary. We
can observe how the direction of the speed increases the probability of controlling the ball in the direction of the
arrow. To elaborate this figure, the player speed is the one recorded at the specific frame of the figure, however,
to simulate the ability of each player to move to other regions of the pitch to control the ball, all players are
considered to run at the same speed, as it is assumed in classical pitch models. In the following sections, we will
analyze the ability of players to move faster/slower than their counterparts.

Player pitch control vs player speed
As mentioned in previous sections, the fact that players’ top speeds change from player to player has unavoidable
consequences on their corresponding pitch control. Faster players are able to reach regions of the pitch than
slower players when departing from similar distances. This fact is accounted for when considering the player’s
top speed vos in a speed-dependent pitch control model PC,. In Fig. 3 we show the percentage of pitch control
accumulated by players in 90 effective minutes of play when their observed top speed is considered. In the
figure, we have classified players into 3 different positions (defenders, midfielders, and forwards) and omitted
the goalkeepers since their pitch control has different implications than the rest of the players. We can observe
how the pitch control of players is positively correlated with their speed for all player positions (see correlations
coeflicients r at the figure). Interestingly, defenders, who are the players accumulating more pitch control, are the
ones with the highest correlation coefficient. However, also note that they are not necessarily the players with
the highest top speeds, indicating that not only the speed but also the role of the player, affects the values of the
pitch control.

Figure 3 also highlights the fact that pitch control depends on more factors beyond the player top speed or the
player position, as indicated by the low to moderate values of the correlation coefficients and the heterogeneity
of the accumulated pitch control of players with similar top speeds.

Team'’s pitch control

The consequences of including the player’s top speed in the pitch control model can be projected into the team
level. The fact that pitch control is a zero-sum game, where the increase of a given team results in the decrease of
its rival, makes the analysis at the team level a useful tool to evaluate what teams are suffering the most from the
physical performance of their players. With this aim, we analyzed how the pitch control of teams in the Spanish
first division was affected by the inclusion of player top speed in the model. The pitch control of a team is defined
as the sum of all team players’ pitch control. Figure 4 shows a comparison of the classical pitch control (PC) with

L 4

—%o
.

Fig. 2. Example of the pitch control (PC) calculated in a given frame of a match. Colors (blue/red) indicate the
team with a higher probability of controlling the ball in case it moves to any region of the pitch. The length of
the arrows assigned to each player is proportional to the speed at this specific frame. The player shape (circles
or squares) indicates the team they belong to.
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Fig. 3. Normalized speed-dependent pitch control PCS° as a function of the player top speed vgs. Each
point corresponds to the pitch control accumulated by a player during 90 minutes. Three player positions are
considered: defenders (circles), midfielders (triangles), and forwards (squares). Note the positive correlation r
(Pearson correlation coefficient) in all positions.
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Fig. 4. Classical pitch control (PC) vs speed-dependent pitch control (PC,) for the Spanish teams at first
division (season 2019/2020). Despite the positive correlation, there are deviations from PC(i) = PC, (%),
which is indicated by the dashed line.
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the speed-dependent pitch control (PC,) for each single team. Both variables are averaged over 10 matches.
Note that teams with values over 0.5 accumulate more pitch control than their rivals.

Teams located above the identity line (PC\ (i) > PC(t)) see their pitch control enhanced when player
speeds are taken into account, while teams below the line experience a reduction in pitch control under the
new model. The interpretation of the increase/decrease of the pitch control is not straightforward. It may reflect
a playing style that emphasizes tactical organization or positional discipline over high-speed transitions, or
simply differences in the physical profiles of the squad. It is important to note that pitch control is only one of
many aspects that contribute to team performance on the field. It is worth noting how teams like Sevilla show
both high pitch control and further improvements when speed is considered, suggesting a strong alignment
between their tactical execution and physical capabilities. Notably, EC. Barcelona ranks highest in both classical
and speed-dependent pitch control, highlighting the consistency of their spatial dominance regardless of the
modeling approach.

The fact that pitch control can be calculated at every frame allows to investigate its evolution. For example, in
Fig. 5 we have split the analysis into the two halves of a match. For each team, we normalized the pitch control
at each half of a match by subtracting the average of all teams APCyz = PCye — PCye, where x denotes the
half. Then, we calculate the average over all matches of a team, (APC)1 2. This way, we are able to analyze what
teams accumulated more pitch control than the others at each half of the matches. Figure 5 shows that, despite
the positive correlation between the pitch control accumulated at both halves, not all teams behave in the same
way. Comparing Fig. 4 and Fig. 5 we can observe how, for example, Getafe and Real Madrid have similar pitch
controls; however, Getafe generates more pitch control in the second half than Real Madrid, whose pitch control
is higher, on average, in the first half of a match. Another interesting case is the one of Atlético de Madrid, whose
pitch control is average in the first half, but decays drastically in the second half.

Stamina factor

The next step is to evaluate what is the influence of increasing/decreasing player speed in the accumulated
pitch control of teams. The stamina factor £ modifies the top speed of each player and the pitch control can be
recalculated with the modified speeds. This way, we can analyze how pitch control would be increased/decreased
when a player can run faster/slower, thus evaluating the tentative impact of improving/worsening its fitness.
Figure 6(a) shows the variation of pitch control A PC), for different values of the stamina factor for one match of
each team. We can observe how all teams have similar behavior, which basically consists of a positive correlation
that fits with a logarithmic function of the form f(x) = A log z + b. Then, we fit this function for the APC,
for each game and obtain the average scaling parameter (\s) for each team. Note that the scaling parameter A,
controls the dependence of the pitch control of a team on the stamina factor. Figure 6(b) shows the ranking of
teams according to its corresponding (\s). As we will discuss later, teams with a lower () are the less affected
by modifications of the player top speed, while teams with the highest values are those which would be benefited
the most if the speed of its players was increased. However, they would also suffer more a decrease on top speed.
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Fig. 5. Pitch control of all teams in the competition depending on the part of the match. The pitch control
accumulated during the first and second halves, (APC, )1 and (APC, )2, respectively, has been normalized
by subtracting the average, PC',; of all teams at each half x. Dashed lines correspond to the averages of all
teams at each half of the match.
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Fig. 6. In (a), pitch control variation in a single match, APC,, as a function of the stamina factor &, for each
team. Each line corresponds to one of the twenty teams playing in the competition. We can observe how they
follow a logarithmic distribution in all cases. In b), we show the average scaling factor (\s) of each team,
ranked according to its value. The distribution indicates what teams would benefit the most from the stamina
factor (i.e., Valencia CF, Alavés, and Real Valladolid). The vertical dashed line is the average of the scaling
factor for the whole competition.
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increment of pitch control when attacking (A PC§*") and defending (APCYS), for multiple values of the
stamina factor £. Points represent the average for each team in the competition, with error bars corresponding
to one standard deviation.

Furthermore, different kinds of analysis can be performed by filtering the states of the match when the
increase of pitch control is calculated. For example, in Fig. 7 we distinguish the impact of the stamina factor
between the attacking state and and defending state of a team. Interestingly, while the impact of the stamina
factor is positive in both cases, i.e., increases pitch control for & > 1 and decreases it when £ < 1 (not shown),
the amount of the impact is not the same. The subtraction APCg' - APC*! yields negative values for £ > 1
and positive values for £ < 1 indicating that A PC'%/ is consistently larger in magnitude than that in APCg*".
Note that for € < 1 both are negative, but APC'J“/ is more negative, indicating a major loss. Similarly, for & > 1
both are positive, but APCZ®/ is larger, indicating a larger benefit.

Finally, it is also possible to translate the analysis of the stamina factor to the level of players. In Fig. 8 we
plot the increase of pitch control as a function of the stamina factor for the three main roles of the players:
defenders, midfielders and forwards. We can observe how the forward players are the most affected by the
positive increments of the stamina factor, followed by midfielders and defenders. However, there exists a certain
degree of asymmetry in the positive/negative increments of the stamina factor. While the forward players are the
ones that, on average, would benefit the most from an increase in their speed, a decrease produces much more
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Fig. 8. Team average speed-dependent pitch control variation (A PC,) vs the stamina factor &, for each role of
a player. For each £ and pair team/game, we only modify the top speed of the players with the given role. Then,
we estimate the variation of the pitch control, A PC’, and normalize it by the number of players per modified
position in that team and game. Lastly, we average the variations over all games played by a team for each role
considered: defenders (circles), midfielders (triangles) and forwards (squares).

moderate differences. Two conclusions can be extracted from this fact. First, the effect of increasing/decreasing
the top speed of players is not linear and, second, the role of the player in the team, probably constraining the
location on the pitch, is strongly related with the effects of the stamina factor on the pitch control.

Discussion

Integrating pitch control models into soccer performance analysis leads to a significant advancement in
understanding both individual player dynamics and team strategies. These models offer a more detailed
perspective on how players influence the available space on the field and shape offensive and defensive actions.
However, player speed is a key determinant of a team’s capacity to create or restrict space, thereby influencing
strategic decisions and match outcomes. In that sense, we have shown that, by accounting for variations in player
top speed, pitch control models yield more precise insights into a player’s contribution to collective movement and
spatial dominance. Incorporating each player’s specific top speed reveals differences in individual performance
with regard to the pitch control accumulated over a match. Interestingly, these differences are influenced by the
player’s role on the team; for example, defenders tend to accumulate higher pitch control (excluding goalkeepers),
even though they are not necessarily the fastest players on the field. This observation underscores the complex
interplay between individual top speed and pitch control. At the collective level, our analysis demonstrates that
incorporating the actual top speed data recorded during matches affects the overall pitch control accumulated by
soccer teams. While there is a positive correlation between the classical pitch control and the one that contains
the player top speed, deviations from this trend emerge. For example, some teams, such as Sevilla EC., Osasuna,
and Atlético de Madrid, exhibit increased pitch control when player-specific top speeds are incorporated,
whereas teams like Real Valladolid or Villarreal experience a decrease. This fact is not good or bad by itself, but
indicates that not considering the player top speed leads to an inaccurate quantification of pitch-control that is
specially significant in certain teams. Our results point to the importance of using actual top speed and suggest
that more sophisticated models that include a “player avatar” (i.e., containing information of each player such
as the top speed, acceleration or strength) could better characterize individual and team performance. It is also
noteworthy that the impact of top speed on pitch control is not uniform throughout a match. This is reported
when examining the effect of player top speed on pitch control separately for each half. Our analysis reveals
that not all teams consistently increase or decrease their pitch control across both halves, indicating that this
phenomenon is complex and phase-dependent. For instance, while FC Barcelona demonstrates above-average
pitch control in both halves, Osasuna shows increased control in the second half. In the case of Granada, the
highest pitch control is in the first half.

The observation that individual top speed influences pitch control opens the possibility of exploring how
voluntary changes in top speed, whether due to motivational factors or improved physical conditioning, might
affect pitch control. We observed that pitch control exhibits a logarithmic dependence on the stamina factor, a
parameter that modulates player top speed. All teams increased (decreased) their accumulated pitch control for
stamina factor values greater (less) than one. However, although the relationship is logarithmic for all teams, the
scaling factor varies, indicating that some teams are more sensitive to changes in player top speed than others.
Notably, teams such as Real Valladolid, Alavés, and Valencia CF would benefit the most from higher top speeds,
whereas FC Barcelona, Sevilla, and Espanyol would experience smaller gains.
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Another finding that highlights the complexity of the analysis is the different impact of the stamina factor
during defensive versus offensive phases. Our results indicate that for positive values of £, the increase in pitch
control is more pronounced during defensive phases than during attacking ones. This suggests that enhancing
players top speed may be particularly beneficial for defensive efforts, a consideration that could be taken into
account when programming the player physical loads during training. Beyond its methodological contribution,
our approach of creating individualized player avatars, including parameters such as top speed, acceleration, and
potential fatigue resistance, could have significant practical applications. For example, fitness monitoring data
could dynamically update player avatars to reflect fatigue during matches, allowing coaches to make tactical
adjustments based on anticipated declines in pitch control. Similarly, scouting and recruitment processes could
use these avatars to identify players whose physical profiles best fit specific tactical systems, while performance
analysts might apply pitch control scaling factors to assess how physical traits influence a team’s spatial
dominance across different phases of play. On that sense, future research should explore these applied uses to
bridge the gap between theoretical models and practical decision-making. Moreover, the impact of the stamina
factor appears to be closely tied to a player’s role on the team. Forwards benefit the most from an increase in
top speed, while defenders experience the smallest improvements in pitch control. This may be attributed to the
distinct positional roles and movement patterns on the field: defenders typically maintain a steady pace, whereas
forwards are more likely to engage in intermittent bursts of acceleration to outmaneuver opponents. Future
research should focus on linking the outcomes of our methodology to the tactical organization of each team,
as interpreting pitch control results requires detailed knowledge of team-specific playing styles and strategic
decisions. Despite our study establishes a framework for assessing the influence of top speed on pitch control, we
do not currently have access to data describing the tactical organization or specific tactical choices of the teams
analyzed. Such information would be essential to explain, for instance, whether a team deliberately reduces pitch
control in advanced areas to maintain defensive stability through a low-block formation. Therefore, applying
our methodology in collaboration with coaching staff, who possess in-depth knowledge of their own tactical
structures, would be crucial for achieving a more precise and meaningful tactical interpretation of the results.
Another limitation of our study concerns the generalization of the results. We did not have access to competitions
in different countries and, therefore, cannot claim that similar results would be obtained in competitions with
different contexts.

In light of these findings, we believe that analyzing player speeds in relation to pitch control is an intriguing
area with applications that extend beyond the scope of this paper. Future work could involve developing
comprehensive player avatars that incorporate detailed information on physical and tactical performance,
technical abilities, and, where feasible, psychological attributes. Such an approach would enable a better
understanding of the complex behavior of soccer players and, more broadly, any team sport where spatiotemporal
interactions between teammates and opponents are crucial. In addition to developing more comprehensive
models for describing player performance, further analyses should focus on identifying the contextual variables
that influence player behavior. On the one hand, the fact that a soccer match progresses through different phases
suggests that a player’s top speed may be related to these phases and affected by factors such as the match score
(or score difference), match intensity, or specific tactical situations that increase or decrease player speed. On
the other hand, contextual variables such as a team’s ranking in the competition, or the importance of certain
matches (due to rivalries or the necessity of winning) could also significantly influence a player’s top speed and,
consequently, a team’s pitch control. As soccer continues to evolve toward data-driven analysis, pitch control
models that consider the complexity of the problem and contain the player specific kinematics will be essential
for advancing performance evaluation, tactical decision-making, and team coordination.

Data availability

The data that support the findings of this study are available from LaLiga but restrictions apply to the availability
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Code availability
The pitch control algorithm utilized to generate these results is accessible at: https://github.com/Markfds01/Tra
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