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Tracking control of humanoid
manipulator using sliding
mode with neural network and
disturbance observer

Yina Wang?, Yanjun Yu'*“, Ziteng Wang?, Liyao Ji, Junyou Yang® & Shuoyu Wang?

The nursing robot, equipped with a 6-degree-of-freedom (6-DOF) humanoid manipulator, has been
applied in elderly and disabled care to execute complex and random nursing tasks with its advantages
in automation and intelligence. Especially, when the nursing robot performs daily care tasks such

as serving tea and pouring water, the good trajectory tracking performance of its manipulator is a
crucial capability. However, nonlinear coupling, model uncertainty, joint friction, unknown external
disturbances, and particularly the fact that manipulator does not satisfy Pieper criterion-are the main
challenges, which degrade control performance. Few existing studies have simultaneously addressed
all these issues to improve the control accuracy of the manipulator. Therefore, to achieve the good
tracking performance for manipulator, a robust control method combining sliding mode control (SMC),
radial basis function neural network (RBFNN), and nonlinear disturbance observer (NDO) is proposed.
An improved Jacobian-based gradient descent method solves inverse kinematics, with the improved
gradient descent driven inverse kinematics (IGDIK) module ensuring accuracy; RBFNN compensates for
model uncertainty; NDO handles disturbances and friction. Simulations and experiments demonstrate
enhanced trajectory tracking accuracy and stability, validating its effectiveness for the target
manipulator.

Keywords 6-DOF humanoid manipulator, RBFNN, Sliding mode control, Disturbance observer, Dynamic
model, MATLAB/Simulink, Robot operating system (ROS)

Abbreviations

q Joint angles

T Joint torque vector

d External disturbances

F(q) Joint friction

e Position tracking error

PUL—1 The upper limit of the time gradient

o Learning rate

D Attenuation factor

r Sliding variables

hj(x) The nonlinear activation function of the jth hidden node
b; Base width

cj The center vector of the Gaussian function of the j-th node
M (q) The symmetric positive definite inertia matrix

C(q,G)  The Coriolis matrix

G The gravity force

F(g) The joint friction

p Compound disturbance

m The number of input

k The number of hidden layer nodes
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o(x) The Gaussian function
L(q,q) The gain matrix

The weight of the neural network
Composite interference

Population aging is intensifying elderly care pressure. Nursing robots alleviate this pressure by performing
complex, random tasks—such as feeding and medication delivery—in homes and hospitals. Our laboratory
has developed a specific nursing robot (as shown in Fig. 1), with its 6-DOF humanoid manipulator as the core
for task execution. When performing tasks, the manipulator needs high-precision trajectory tracking. Thus,
designing a high-precision trajectory tracking controller is key to ensuring the robot’s reliable operation.

However, the humanoid manipulator faces multiple challenges in practical applications, directly limiting
improvements in trajectory tracking accuracy. On one hand, its humanoid structure violates the Pieper criterion,
making inverse kinematics difficult to solve and hindering the rapid generation of accurate joint control
commands. On the other hand, issues like dynamic model uncertainty, unknown external disturbances, and
joint friction in nursing scenarios further increase control difficulty. These problems are mutually coupled, and
conventional control methods struggle to address them simultaneously. Therefore, it is necessary to develop
an appropriate controller to simultaneously address all these issues to improve the control accuracy of the
manipulator.

Literature review

For the problem of inverse kinematics solving in manipulators that do not satisfy the Pieper criterion, relevant
research has been conducted. Dereli et al.! employed the Firefly algorithm for 7-DOF manipulators. Bai et al.?
proposed a hybrid FABRIK-ANN method. Zhou et al.* reduced 6-DOF calculation time. Ames et al.* used deep
learning. Gao et al.’ optimized BP neural networks. However, these methods overlook its structural nonlinearity,
limiting practicality. This study thus proposes an improved gradient descent method for such non-Pieper
systems, validated for high accuracy, efficiency, and resistance to local optima.

SMC is valued for its simplicity, strong robustness, and fast response, making it relevant for manipulator
control. For example, Yin et al.® developed an adaptive fuzzy SMC. Tran et al.” integrated RBFNN with SMC
for 3-DOF manipulators. Yin et al.® achieved kinematic control of humanoid upper-body robots via virtual
flexible joint dynamics and a quasi-sliding mode observer. Xiao et al.’ validated SMC on a six-axis BU-RASL
manipulator. Dachang et al.'’ proposed an adaptive back-stepping control and validated it on a planar two-link.
Su et al.'! proposed a non-singular terminal SMC with an integral sliding surface. However, Tran et al.” treated
model uncertainty as a disturbance, failing to address it in practical nursing tasks, highlighting the need for
improved strategies. To address this, Song et al.'> designed a nonsingular fast terminal sliding mode controller
with a new nonlinear disturbance observer to enhance control accuracy and anti-interference ability. Wei et al.!?
introduced a disturbance observer.

Beyond SMC, RBFNN excel in dynamic model approximation for nonlinearities. Liu et al.!* showed RBFNN
outperforms BP networks in generalization. Stoffel et al.'® noted its superiority over FFNN and DCNN. Narayan
et al.'® used RBFNN for uncertain dynamics. Xin et al.'” combined it with fuzzy SMC. Sun et al.'® reduced
chattering via T-S fuzzy switching. Notably, these studies!®!® overlook unforeseen external disturbances,
limiting applicability in care environments.

To address external disturbances, researchers have optimized SMC. Li et al.'” and Nguyen et al.*® optimized
SMC for convergence and robustness. Sun et al?! used full-drive models. Chen et al.?? integrated RBFNN
with disturbance observers for better control. Narayan et al.>* and Liu et al.?* combined RBFNN with fuzzy
control. However, these methods remain unvalidated for 6-DOF humanoid manipulators, which face unique,
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Fig. 1. Seed Noid R7F nursing service robot.
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unaddressed challenges including non-Pieper criterion models, model uncertainty, joint friction, and external
disturbances.

In this paper, a sliding mode robust control strategy integrating RBFNN and ND O, combined with an improved
Jacobian-based gradient descent method, is proposed. Contributions include: (1) An improved Jacobian-based
gradient descent method, effectively solving inverse kinematics for 6-DOF non-Pieper humanoid manipulators
with higher accuracy and smoothness. (2) A novel RBENN+NDO control strategy: RBFNN approximates
the dynamic model with online parameter adjustment via weight adaptive law; NDO compensates composite
disturbances (friction + external disturbances) in real time.

System description

This paper focuses on the 6-DOF humanoid manipulator of the Seed Noid R7F nursing service robot, which is
the core research object. The Seed Noid R7F is a humanoid robot with a life-size structural design, as illustrated
in Fig. 1. It has a height of 141-170 cm (with a prismatic joint in the legs), a weight of approximately 80 kg, and
two identical 6-DOF robotic manipulators. In addition, the Seed Noid R7F robot is equipped with an industrial
motherboard, a Linux system controller based on a mini PC, an Android touchscreen tablet, four omnidirectional
wheels under the base layer, and six ultrasonic sensors (0.02-3 m) on the base layer. Furthermore, it is equipped
with two 3D D435 depth cameras (one on the head and one on the chest), two angle sensors (0.06-4 m,
-120°~120°), two remote control boards for control and communication, and two rechargeable DC 12 V/22Ah
lead batteries, mainly used to drive the motors and operate the circuit board.

Dynamics and properties

The equations of the dynamic model of the robot are obtained using the Lagrange equation. The proposed
control system of the humanoid robotic manipulator considers the effects of joint friction and unknown external
disturbances. Thus, the complete dynamic model® is as follows:

M(q)§ + C(q,4)q + G(q) + F(¢) =7 +d (1)

where, ¢,4,§ € R" are the angle, the angular velocity, and the angular acceleration of the joints,
respectively, M (q) € R"*" is the symmetric positive definite inertia matrix,C (g, ¢) € R"*"is the Coriolis
matrix,G(q) € R" is the gravity force, and F(¢) € R" is the joint friction.d € R"is the external disturbance
with an upper bound ||d|| < dwm, with dy denoting a well-known positive constant, |||| is the standard Euclidean
norm, and 7 € R" represents the joint torque vector. This dynamic model has the following properties®.

Property 1 The inertia matrix M (q) is a symmetric positive definite matrix. There exist positive constants
M in-Mmaxthat satisfy the following inequality holds:

Munin | 2]|* < 2" M(g)& < mumax [l )

Property 2 M(q) — 2C(¢,42) is a skew-symmetric matrix.

xT[M(q) —2C(q,g)]z = 0,Vz € R" (3)

Assumption 1 The mass and length of the target gripped by the humanoid robotic manipulator are limited.
Therefore, the inertia matrixM (g), the Coriolis matrix C(q, ¢) , and the gravity forceG(q) are bounded.

Mm < ||M(q)l| < MM, VgeR"
G < G, Vg € R"

where, M 1,, M \1,Cmand G are some well-known positive constants.

Assumption 2 Treat joint friction F(¢) € R™ and external disturbanced € R™are considered compound dis-
turbancep. It is Assumed that the derivative of the compound disturbance is unknown but in a bounded interval:

p=d—F(q) (5)
By multiplying both sides of Eq. (1) byM ~*(gq) and solving ford, one obtains:
G=M""(q) [r+p - C(a,0)i — G(9)] (6)

For manipulator models with compound disturbances and parametric uncertainties, we propose a sliding-
mode robust controller using RBFNNs. This approach combines global approximation and a NDO to ensure
asymptotic convergence of sliding surfaces and tracking errors to zero. The position tracking error e(t) € R"
represents the difference between the actual joint angle q and the desired joint angle gq (i.e., the deviation
between actual and ideal motion).

€=q—qa (7)
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Given the desired joint positiongy, few studies have addressed trajectory tracking control for multi-degree-
of-freedom (DOF) robotic manipulators. However, their industrial applications have grown rapidly in recent
years. As the deployment of these systems expands, solving trajectory tracking optimization and tracking
error convergence challenges becomes critical. Therefore, developing advanced control strategies to enhance
trajectory-tracking performance is essential.

Adaptive iterative optimization for kinematic solution
The kinematic model of humanoid robotic manipulators is inherently highly nonlinear and coupled. As
illustrated in Fig. 2, these manipulators replicate human physiological structures. Due to their anthropomorphic
design, they often violate the criterion of Pieper, making traditional geometric, algebraic, and iterative algorithms
ineffective for solving inverse kinematics.

To address this, an improved gradient descent method is proposed, with its core iterative formula derived as
follows:

The objective cost function is defined as the difference between the desired and actual poses:

The objective cost function is defined as the difference between the desired and actual poses:

1
F= 7(Xta7‘get - X)T (Xta'rget - X)

\V]

(8)

—_

= 5 (Xearger = f(0))" (Xtarger — f(6))

[\]

where, X;arget and X = f(0) are the desired and actual poses, respectively. The Jacobian matrix represents the
mapping relationship between joint and terminal pose velocity:

X =J(9)d ©)

Based on the target cost function in Eq. (8) and the Jacobian matrix in Eq. (9), the basic iterative formula of
inverse kinematics is derived:

) e 2O
AfO = Oé((Xtarget X) 90 ) (10)
= aJT (0) (Xtarget - X)

The standard gradient descent method exhibits limitations such as tortuous optimization paths, slow convergence
rates, and susceptibility to local minima. To overcome these, a momentum term is introduced into the framework:

A = pv;1 + aJ T ()AX (11)

where, pv;_1 is the upper time gradient,« is the learning rate, and p is the attenuation factor.
To further improve calculation accuracy, a second-order momentum term is introduced:

X0 Xy 4.
00' 70 [for
X1

D, (R

Fig. 2. Seed Noid R7F humanoid robotic manipulator structure.
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re=re+ (37 (0) AX)” (12)

where, 7:is the second-order momentum (exponentially weighted moving average of squared gradients).
Incorporating this into the iterative update rule, the proposed IGDIK control module is formulated as:

a

\/Tt+0'

Among them, o is a small constant to stabilize numerical calculations and avoid division by zero.

A0 = pug_1 + JT(0) AX (13)

IGDIK control module
Equation (13) integrates first-order and second-order momentum terms to optimize the inverse kinematics
solution process, with its core mechanism as follows:

First-order momentum (pv¢—1): This term introduces historical gradient information, forming a weighted
sum of past update directions. As illustrated in Fig. 3, it enables the algorithm to maintain “inertia” during
iteration, overcoming local optima by continuing the search in regions where the objective function value may
decrease, even when trapped in suboptimal points. In areas with consistent historical gradient directions, it
accelerates convergence, reducing the time required for inverse kinematics solving.

Second-order momentum (/7 + ¢): This term quantifies the scale of historical gradient magnitudes,
dynamically adjusting the effective learning rate a. When gradients exhibit high volatility (large r,), the
denominator increases, reducing the step size to facilitate fine-grained exploration of the solution space.
Conversely, when gradients are stable (small 7,), the denominator decreases, increasing the step size to accelerate
convergence toward the global optimum.

The improved gradient descent algorithm flow is shown in Fig. 4. This mechanism ensures the algorithm
balances solution accuracy and convergence speed, effectively addressing the limitations of traditional gradient
descent methods and enabling efficient inverse kinematics solving for non-Pieper humanoid manipulators.

To validate the effectiveness of the improved gradient descent method, it is compared with an advanced
gradient descent method based on gradient normalization?’. Table 1; Fig. 5 present the root mean square error
(RMS) and trajectory error curves of the two methods in the inverse kinematics solution of a 6-DOF humanoid
manipulator.

In Fig. 5a, the trajectory error of the improved gradient descent method remains consistently at the 1071 m
order of magnitude, with a fluctuation range smaller than 3.3799 x 10~ 1°m, demonstrating excellent convergence
stability and no local optimum trap issue. In Fig. 5b, although the gradient normalization method alleviates
gradient oscillation through gradient norm scaling, the absence of a second-order momentum adaptive
mechanism leads to error fluctuations reaching the10~®m order of magnitude.

Design of the control strategy

RBFNN design for SMC

In practical applications, the dynamic model of the humanoid robotic manipulator varies concurrently with
payload variations, which inevitably affects the performance of the control strategy. To surmount this challenge,
this paper employs the RBFNN?® to estimate the parameters of the robotic manipulator model, as depicted in
Fig. 6. Considering the dynamic model in Eq. (1) and the tracking error equation in Eq. (7), the following sliding
variables are defined:

r=¢é+ Ae (14)

where, A= A1 A2 -+ Ag ]T € R™. Its selection needs to satisfy that ST Apo1s™ T4 A s
Hurwitz polynomial (whenr — 0, then,e — 0). From Eq. (14), we obtain:

¢=—7+q¢a+ Ae (15)

Cost function £
A

Local optimal

Gradient similarity position

Global optimal

Fig. 3. Momentum gradient descent method.
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Fig. 4. Gradient descent method flowchart.

Solving algorithm ex(m) ey(m) ez(m)

Improved gradient descent method | 5.1768x1071° | 2.5413x 10710 | 3.3799x 1071°

Advanced gradient descent method | 3.6539x107% | 1.8437x 1078 | 2.3838x 1078

Table 1. Comparison table of RMS of position Error.

and
M7 = M(ja — G + Aé)
= M(Gq + Aé) — Mg
=M(Ga+A)+C¢+G+F+71q—7 (16)
=M(Ga+Aé)—Cr+C(ga+Ae) +G+F+714—7
=—-Cr—7+ f(z) + 714

Among them, f(z) = M(Gs+ Aé)+ C(¢a + Ae) + G+ F is the dynamic model that needs to be
approximated,M,C and G are abbreviations for matrices M(q),C(q, q), and G(q), respectively.

In practical applications, the model uncertainty term f () is unknown, so RBFNN needs to approximate f (x),
and its RBFENN structure is gresented in Fig. 6.

InFig. 7,2 = [eT,¢%, g1, 43 ,dq )" is the neural network input vector, m, and k are the number of input and
hidden layer nodes, respectively. The radial basis function in RBFNN uses the Gaussian basis function, expressed
as follows:

2

X — C4 .

h’](x):exp |:| 2bgjl| :|7.]:172a7k (17)
J

where,h; (x)is the nonlinear activation function of the jth hidden node, bjis the basis width of the jth Gaussian
basis funct1on, c;is the Gaussian basis function center vector of the jth node, and ||z — ¢;||® is the Euclidean
distance between zand c;.

The RBFNN output is defined as follows:

f@) =W () (18)
where, W = W — W, W]l 5 < Wiax.
Then, the designed control law is:
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Fig. 5. Position error comparison analysis. (a) Improved gradient descent method error, (b) advanced gradient

descent method error.

7= f(z) + Kor

where, f(x) is the estimated value of f () using RBFNN.
Inserting the control law in Eq. (19) into Eq. (16) provides:

Mi = —Cr—f—Kyr+ f+74
= (K, +C)r + f+ 14

The Lyapunov function is established as:

L= %TTMT

(20)

1)
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Fig. 7. RBFNN structure diagram.

then,

L=r"Mr+ %TTMT
) i (22)
="K+ irT(M —2C)r + 7" (f + 71a)

Therefore, under the condition that K is a constant value, the stability of the control system depends on the
approximation accuracy of f to fand the size of external disturbancer,. Since the external disturbance 74 is
uncertain, the control law must be further improved to ensure the stability of the system.

RBFNN design for sliding mode robust control
This section proposes a robust sliding mode controller that operates without requiring precise model knowledge.
The ideal RBFNN output is defined as:

f@)=Wo(z) +e (23)

where, WTis the weight of the neural network, ¢(x) is the Gaussian function.
For the dynamic model in Eq. (1), the control law is designed as:

7= f(z)+ Kor —v

AT (24)
=W o¢(x)+ Kyr —v
where,v = —(en + ba) sign(r) isarobust term used to overcome approximation errors in neural networks?*32.
Placing the control law of Eq. (24) into Eq. (16), we have:
M’f‘:—(KU+C)T+WT@($)+(E+T¢1)+U (25)

= (Ko +CO)r+ G
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where, (1 = WP (z) + (e 4+ 74) + v.
Define Lyapunov function:

L= %T’TMT + %tr(WTFAVV) (26)

where, tr(.) is the trace of the matrix. The trace of a matrix is the sum of its eigenvalues, by seeking differentiation,
we can obtain:

L=r"Mr +%7‘TMT + tr(WTFflV;V) (27)
By substituting Eq. (25) into the above equation, we can obtain:
L=-—r"K,r+ %TT(M —2C)r +tr WH(F™! VNVJrgorT) +r7(e+71a +0) (28)

According to Eq. (28) above, in order to make the control system asymptotically stable (V' < 0), it is necessary
to take:

~

WT _ —F(p?“T (29)
The adaptive law for updating weights in RBFNN is:
v(;T = ForT (30)
We can obtain
L= —TTKuT-FTT(&-‘er-‘rU) (31)
By substituting the robust term v = —(en + ba)sign(r) into Eq. (31), we can obtain:
L=r"(c+ra+v)=r"(c+7a)+r"v=)r"(e+74) — ||r||(ex + ba) <O (32)

Among them, ||| < ex,||7a|| < Tan.Therefore, if 1 < 0 can be ensured, the control system will gradually
stabilize. Equation (25) infers that the model uncertainty term f(x) can be described as:

f(z) = M(q)G1(t) + C(g, )¢2(t) + G(g) + F(q) (33)

where, £1(t) = Ga + Aé, &2(t) = da + Ae.
RBFNN can be used to approximate and calculate the terms in f(x) separately:

M(q) = Wirem(g)
Cla.9) = Wipv(a,d) (34)
G(q) = Wawal(q)
F(q) = Wrer ()
then,
YM
Fa) =[ wWia® wiew wi wi ]| oY (35)
VF
oM
where, po(z) = :‘gz S WT = [ WL WE Wi ]
The adaptive | fs'defined as:
Wy = FMQOMI‘T —kmFwm | Wu
W, =F.our" —kF, |r| W,
(36)

Wea = FanGrT —kaFa | r| Wq
WF = FFQDFI‘T — kFFF H r || WF
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where, knvi > 0, kv > 0,kg > 0, kr > 0.
Considering the adaptive law, the Lyapunov function is redefined as:

1 1, .« ~ | 5
L= irTM’" + Etr(vv}ﬂn;lva) + Etr(W‘T/F;1Wv)

L (37)
+§tr(WGFG We)
then,
L=+"Mr+ rTMr + tr(WMFMleVM) + tT(VV‘T/F‘;lVLVV) 38)
+tr(WGFG WG) + tr(WEFEIVVF)
Placing the control law of Eq. (24) in Eq. (38) provides:
L=—TK,r+ %TT(M —2C)r 4+ 1" (e+71a) + 70
W (i Wit + our™) + e WE (F "Wy + ovrT) (39)

TrWE(FL "We + par”) + ttWh(Fr "Wr + oprT)

Considering the characteristics of the humanoid robotic manipulator and substituting the adaptive law of
Eq. (36) into Eq. (39), we get:

L=—r"Ko+r (e+7a)+r v

+hyt || 7 || ttWiap (Wt — Wiy)
+ky || 7| tr W (Wy — Wv) (40)
+ka || 7|l trWT(WG — G)
+kp |7 | tr WE (Wr — W)
Because of
tr W (W = W) = (W, W)r — W[5 < [[W]| 1wl — [[W]] (41)
Considering the robust termv = —(en + ba)sign(s), we get:
L < K ppin 71 + R ] Wt (Wammax = [ W[ )
ko 7l [ W | o (Wyvmax — [|Wvl],)
tha 7l [|[We [, (Wamax — [Wal|,)
= —|I7ll [ mnin lI7Il + kMHWMHF(HWMHF — Wumax) (42)
v W W ]~ W)
+ha|[Wel|,(|Wel|, — Wamax)
O R R
Because of
W], - W) -
W, - Winae/2) W
ForL < 0, we need
el > EvW Rmmax /4 + kvw%/maxI/?Jr koW émax /4 + ke W tmax /4 (44)
vmin

or [ W[, > Wimax,

WVHF > WVmaxandHWGHF > Wemax.

When faced with unknown dynamics and compound model uncertainties, RBENN is employed to
approximate uncertain system dynamics. Leveraging SMC principles, this paper proposes a robust controller
that operates independently of precise model information. The SMC law is designed to compensate for both
approximation errors and external disturbances through adaptive control gains, ensuring closed-loop stability
under Lyapunov analysis.
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Nonlinear disturbance observer

The control system of the Seed Noid R7F humanoid robotic manipulator must consider unknown external
disturbances and the effect of joint friction, which, according to Eq. (5), are regarded as compound disturbances.
By using a NDO* to estimate compound disturbances, the calculated values are fed back to the input to adjust
the control torque, reducing the impact of compound disturbances on the humanoid robotic manipulator
control system and demonstrating anti-disturbance solid performance. The kinetic equation for the compound
disturbance p is described as follows:

M(q)¢+C(q,4)4+ G(g) =T+ p (45)

According to Assumption 2 in Sect. 2, the compound disturbance Eq. (5) is bounded, and thus, the NDO
equation is written as:

p=L(q,9) (p—p)

: o\ A (46)
= L(g, ) M(9)§ + C(q,9)g + G(q) — 7] = L(q,9)p

where, pis the estimated compound disturbance from the NDO and L(g, ¢)is the gain matrix. Since it is

challenging to obtain the joint angular acceleration signal in practical applications, this signal should not be

used when designing a NDO and the auxiliary parameter vector must be defined as:

z = /3 - p(q7 q) (47)

where, p(g, ¢) is the function vector that must be designed. Then,p(q, ¢) and L(q, ¢) must satisfy the following
conditions:

dp (g, 4)

LD 1(q,4) M(@)i (49)

Since M(q) is a positive definite matrix, the matrix L(g, ¢) can be made positive definite by designing an
appropriatep(q, ¢). Taking the derivative of z provides:

z=p—pa, q)
= G(q
M1+ Clavd) + Glo) = )
(q )p L(g, )M(Q)q
To sum up, the NDO is written as:
L(q,9)[C(q, ) + G(q) — 7 — p(g, 9)] — L(q,9)= (50)
p=z+plqq)
then, the general control equation of the humanoid robotic manipulator system can be written as follows:
T:f($)+K1)T—V—ﬁ (51)

Let the estimation error of the NDO be e = p — j. Assuming that the change of the compound disturbance is
slow, i.e., p = 0, we have:

ép=p—p=—p=—L(gde, (52)
The Lyapunov function is defined asVp, = %63 €p, and thus:
vV, = eEé = —eEL(q, g)ep (53)

Since L(q, §) isa positive definite matrix,V, < 0,and the observation error of the NDO converges asymptotically.
A NDO is designed to estimate and attenuate unknown external disturbances in the dynamic model of a
nursing robot, specifically addressing nonlinear joint friction effects. By integrating the NDO output with the
SMC input, a closed-loop control architecture is constructed to compensate for both parametric uncertainties
and external perturbations, thereby ensuring robust tracking performance under Lyapunov stability theory.
This study presents an integrated control framework combining RBFNN, sliding-mode robust control, and
NDO. The RBFNN provides global approximation of parametric uncertainties for adaptive parameter estimation,
while sliding-mode control ensures robustness through sliding variable design. The NDO compensates for
external disturbances and unmodeled dynamics, guaranteeing closed-loop stability under Lyapunov analysis.
This synergetic architecture effectively addresses dynamic variations in 6-DOF humanoid manipulators
operating in complex environments, offering a robust control solution for trajectory tracking applications.
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Table 2. D-H parameter table for seed noid R7F

J | Mass (kg) | Inertia (kgem?) | Length (m)
110242 0.000263 0.05978

2 | 0.744 0.000623 0.028046

3 10.574 0.000214 0.2895

4 10711 0.000178 0.035
510.132 0.0007 0.2655

6 | 0.005 0.0001 0

Table 3. Physical parameters of seed noid R7EF

Simulation and result analysis

An evaluation of the proposed sliding-mode robust control strategy, which integrates a RBFNN with global
approximation capabilities and a NDO, is conducted on a 6-DOF humanoid robotic manipulator, specifically the
Seed Noid R7F nursing service robot. This robotic manipulator consists of six rotating joints, offering a greater
number of joint configurations during movement, thereby enhancing its flexibility and trajectory diversity.

In this study, the right arm of the robot is selected as the modeling object. The D-H parameters are presented
in Table 2, and the comprehensive physical parameters of the humanoid robotic manipulator are listed in Table 3.

The control strategy for the humanoid robotic manipulator system is developed in MATLAB/Simulink.
Spiral trajectories are used as the reference paths for the robot in Cartesian space. The pose angle of the robot is
represented by Euler angles following the Z-Y-X sequence, which correspond to the rotation angles about the Z,
Y, and X axes, respectively.

The spiral lines are x; = 0.02cos(nt) +0.1, y, = 0.02sin(nt) + 0.1, z; = 0.05t +0.1. The pose angle is a constant
value, where roll, pitch, and yaw are 45 °, 60 °, and 30 °, respectively. The sliding mode surface parameter
isA = 15. The basis function centerisc=[-1-0.8 — 0.6 — 0.4 — 0.2 0 0.2 0.4 0.6 0.8 1] and the basis function
width is b=20. For the weight adaptive law coefficient matrix,F M, ' C,and F'_ G are assigned a value of
100. In response to the influence of unknown external disturbances and joint friction in the control system of
the 6-DOF humanoid robotic manipulator, this study considers the unknown external disturbances and joint
friction as composite disturbances. Simulated experiment applying composite interference. Joint friction is the
sum of Coulomb friction and viscous friction F(¢) = 2sign(¢) + 0.84. The external disturbance is given to six
joints 7¢ = 0.8 sin(¢), respectively.

The robust parameters of this article are selected as 0.5, 1.5, 2.1, and 3, and the position error comparison
chart is shown in Fig. 8.

The number of hidden layer neurons in RBENN directly impacts dynamic model robustness. We evaluated 5,
8, 11, and 14 hidden units for robustness analysis, with results presented in Fig. 9.

The design parameters of the nonlinear disturbance observer are p(q, ¢) = cc[q1, 42,43, 44, gs, gs]”
and L(q, ¢) = ccM ™1, where ccis selected as 10, 20, 60, 100, and 120. The disturbance errors under different
parameters are compared, as shown in Fig. 10.

Finally, the design parameters of the NDO are: p(q, ) = 60[d1, 2, 43, 44, ds, ¢s] " andL(q, ) = 60M .
The RBEFNN involves 11 hidden layer nodes.ey = 2 and bq = 0.1 in robust term.

The inverse kinematics solution maps Cartesian space coordinates to joint space, generating desired joint
angle trajectories. The proposed control strategy is then applied to achieve trajectory tracking in joint space.
Finally, forward kinematics computations reconstruct the Cartesian space trajectory from the tracked joint
angles.

Digital simulation results
Figures 11 and 12 present Cartesian space trajectory tracking results of the proposed RBENN- SMC strategy,
demonstrating high-precision convergence between actual and desired trajectories.

The inverse kinematics solution maps Cartesian space trajectories to joint space, generating expected joint
angle trajectories. Figure 13 presents attitude angle results in Cartesian space, while Figs. 14 and 15 illustrate
joint position and velocity profiles in joint space. These results demonstrate that the proposed control strategy
achieves high-precision tracking of spiral trajectories, validating its reliability for complex trajectory tasks.

The fitting results of RBFNN based on the overall approximation of the model are illustrated in Fig. 16.
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Fig. 9. Comparison of dynamic model fitting results with different numbers of hidden neurons.

Take the uncertain terms of the model assM = M + 0.5M; C' = C + 0.5C; G = G + 0.5G. With
the introduction of model uncertainty, the RBFNN-based approximation converges to the actual dynamics,
demonstrating robust control performance under parametric variations. Figure 17 compares the dynamic model
fitting results before and after uncertainty injection, verifying the effectiveness of the RBFNN in approximating
uncertain system dynamics.

Figure 18 shows the joint torque diagram, indicating that after effectively handling the uncertain influencing
factors of the control system, the torque jitter phenomenon is significantly reduced.

The composite interference results are estimated using a disturbance observer, as depicted in Fig. 19. It reveals
that after the response, the matrix norm of the fitted model fn () is almost identical to the actual modelf(x),
and the error is within an acceptable range.

At ¢ — 2, a step interference signal with amplitude of 10 N is applied to the end effector. As depicted in
Fig. 20, the NDO demonstrates the ability to precisely estimate step interference signals.

RBFNN have demonstrated superior performance in dynamic modeling applications. Specifically, RBFNN
exhibits robust fitting capabilities for nonlinear system dynamics, accurately capturing complex model
characteristics. Under parametric uncertainty, RBFNN-based approximations asymptotically converge to true
system dynamics, preserving control robustness and ensuring stable operation in uncertain environments.
When subjected to composite disturbances, the RBFNN-identified model maintains close approximation to
actual dynamics, showcasing excellent disturbance rejection properties. Furthermore, the proposed framework
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Fig. 10. Comparison of interference error fitting results with different interference observer parameters.
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Fig. 11. Cartesian space high precision trajectory tracking results.

demonstrates favorable control performance under step disturbances, effectively mitigating perturbations and
validating system robustness.

Comparative analysis of the results

Comparative analysis between the proposed control framework and alternative strategies is presented in Figs. 21
and 22. For the 6-DOF humanoid manipulator trajectory tracking task, Cartesian space position errors are
compared between actual and target trajectories. Quantitative results demonstrate statistically significant
improvements in tracking performance through adaptive parameter tuning. Specifically, Figs. 21 and 22 reveal
that the RBF + NDO and FA-SMC strategies outperform other methods in both control accuracy and disturbance
rejection. While FA-SMC exhibits larger Z-axis errors at initial transient phases, PD+NDO demonstrates
lower tracking accuracy, and SMC + NDO experiences error oscillations under uncertainty, indicating reduced
robustness. Key performance metrics are summarized in Table 4, including RMSE and maximum deviation
values.

2
E= Ln@i (54)
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Fig. 13. Attitude angle tracking.

As manifested in Table 4, the devised sliding mode robust control strategy, which employs the RBFNN
predicated on model global approximation and a NDO, demonstrates excellent performance in the trajectory
tracking control of the humanoid robotic manipulator. In contrast to conventional control strategies, this control
approach attains enhanced anti-interference capabilities and superior control accuracy.
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Fig. 14. Joint position tracking.

Virtual simulation results

The Linux/Ubuntu20.04 system uses the Noetic version of the ROS simulation platform, which is combined
with the Moveit library for the experiments. First, one must obtain the URDF file officially provided by the
robot and then import the Seed Noid R7F humanoid robotic manipulator into the system for trajectory tracking
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Fig. 15. Joint velocity tracking.

experiments. The path trajectories are automatically generated by Moveit, and the tracking experiments are
carried out through the employment of the robust RBFNN-SMC founded on global approximation. With the
initial position of the box being (0, 3, -0.2, 0, 0.775), the robotic manipulator is set to transition from its initial
state to the initial position of the crate and subsequently to the target position of the box, which is (0, 5, -0.4, 1,
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Fig. 18. Controller output torque.

1.055). The manner in which the robotic manipulator is moved from the initial state to the initial position of
the box is illustrated in Fig. 23. The movement state of the trajectory of the robotic manipulator from the initial
point of the box to its target point is portrayed in Fig. 24. The final state of the robotic manipulator is presented
in Fig. 25.

Figures 24 and 25 demonstrate smooth, stable, and precise target object grasping at desired positions using
the proposed RBFNN-SMC strategy. Figures 26, 27 and 28, and 29 reveal that the robot can smoothly, stably,
and accurately grasp the target object at the desired position in the ROS simulation platform using the proposed
control strategy. During experiments, extensive sensor data were collected for key parameters including joint

Scientific Reports |

(2025) 15:38980 | https://doi.org/10.1038/s41598-025-22825-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

—— compound disturb
- - = estimate disturb

Disturbance (N*m)
o
1

time(s)

Fig. 19. Composite interference and estimation.

20

----- estimate disturb
15 - === compound disturb

Dsturbance(N*m)
=

0 1 2 3 4
time(s)

Fig. 20. Composite interference and estimation.

030 desire trajectory
SMC+NDO
- SMC(sign)
02 PD+NDO
RBFNN-+NDO

Fig. 21. Control strategy comparison.

angles, accelerations, torques, and end-effector trajectory states. Data analysis reveals that the control strategy
maintains excellent tracking performance and robust disturbance rejection under compound uncertainties
(model uncertainty, external unknown disturbances, and joint friction), ensuring closed-loop stability and
precision control.

Experimental process and result analysis

The experiment uses the Seed Noid R7F robot manipulator with six rotary joints. The maximum load capacity
of the manipulator is 2 kg, the loaded manipulator contains three fingers, and the maximum holding force is
150 N, capable of performing various complex movements. The robot is controlled in real-time on the PC side
of the ROS operating system.

The experimental platform uses the KDL (Kinematics and Dynamics Library) solver. The target object is a
box of milk. Upon the generation of the trajectory via KDL, the trajectory tracking experiment is carried out by
employing the sliding mode robust control strategy, which incorporates the RBFNN founded on the proposed
global approximation and NDO.
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Controller | x(m) y(m) z(m)

RBF+NDO |5.01x107° | 445x107° | 1.39x107°
SMC+NDO | 1.71x107* | 2.45x 107 | 2.38x107°
SMC(sign) 2.46x107° | 3.88x107° | 1.93x 107*
PD+NDO 2.84x107* | 1.18x107* | 1.71x 107*

Table 4. Mean square deviation comparison. Subsequently, by computing the mean square error (MSE), a
quantitative metric is established to further assess the performance of the tracking control strategy. The MSE is
defined as follows:

Fig. 23. Initial state of the Seed Noid R7F robot.

Figure 30 presents the experimental status of the Seed Noid R7F robot. In the phases illustrated by (a)-(d),
the robot executes a displacement from the initial pose to the pose of the box. Subsequently, during the intervals
depicted in (e)-(h), the robot undertakes the task of grasping the box and transporting it to the target pose.

It is a long process for the Seed Noid R7F robot to perform the above gripping tasks and requires much
computing time. Therefore, due to the substantial computational overhead of the trajectory tracking and the
complex trajectories, the execution time is extended. Nevertheless, the experimental outcomes indicate that the
Seed Noid R7F robot is capable of accomplishing the grasping action successfully with the employment of the
proposed controller. Although friction interference and hardware circuit response delay the grasping process of
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Fig. 25. Seed Noid R7F robot final state.

Joint Angles Over Time

Joint Angle (rad)

T T T T

4 6 8 10
time(s)

o
N A

Fig. 26. Six joint angles of the robot.

the robotic manipulator, the grasping trajectory action is accurate, as illustrated in Fig. 31. This control strategy
has good control performance and strong anti-interference ability.

Conclusion

The present paper tackles the problems concerning model uncertainty, joint friction, and unknown external
disturbances that are associated with the 6-DOF humanoid robotic manipulator. Specifically, this study
proposes a sliding mode robust control strategy with the RBFNN based on model global approximation and
NDO by using the RBFNN to approximate the whole dynamic model and applying the weight adaptive law to
adjust the dynamic model parameters online. The developed strategy can effectively reconstruct the dynamic
model. Additionally, the NDO conducts real-time monitoring of the unknown external disturbances and
joint friction, and further compensates within the control strategy to mitigate the influence exerted by these
factors. Simulation and experimental results in MATLAB/Simulink and ROS environments demonstrate that
compared with control approaches such as SMC+NDO and PD+NDO, the proposed controller exhibits
remarkably smaller fluctuations across all axes, maintaining closer adherence to the ideal trajectory. Mean
square deviation data further reveals that the RBF + NDO controller achieves the minimum values for the x, y,
and z axes-5.01 x 107°m, 4.45x 10~°m, and 1.39 x 10~>m, respectively. Notably, the x-axis value is merely 29.3%
of the SMC + NDO method (1.71 x 10~°m). These quantitative comparisons and trajectory analyses collectively
validate the prominent advantages of the RBF + NDO method in trajectory tracking accuracy and stability.
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Fig. 30. Seed Noid R7F robot experimental status.
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Fig. 31. Robot end trajectory in the experiment.

Nevertheless, in practical implementation, the 6-DOF humanoid robotic manipulator is expected to
accommodate various scenarios. Owing to the structural constraints of the robotic manipulator, the current
study was confined to conducting trajectory tracking control under a fixed attitude. Future research efforts
should be directed towards trajectory tracking control investigations that involve dynamically adjusting the
attitude angles in accordance with task demands.
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