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This study presents a numerical investigation of entropy generation in a magnetohydrodynamic 
(MHD) flow of a Maxwell dusty nanofluid over an inclined stretching sheet, with a focused analysis 
on the previously overlooked parameters of nanoparticle radius and inter-particle spacing. The model 
incorporates the effects of viscous dissipation and thermal buoyancy on the flow dynamics. The 
governing partial differential equations are transformed into a system of nonlinear ordinary differential 
equations via similarity transformations and solved computationally using MATLAB’s bvp4c solver, 
with validation against published results confirming high accuracy. The findings quantitatively show 
that nanoscale particle geometry is a key factor influencing thermal performance and irreversibility. 
A reduction in the nanoparticle radius from 3.6 nm to 1.6 nm under standard conditions (hp = 0.5, 
β = 0.5, M = 3.0) suppresses total entropy generation by approximately 20%. Conversely, 
increasing the nanoparticle radius beyond 2.5 nm enhances both the fluid and dust phase velocities 
by nearly 18%, which is beneficial for flow applications, but concurrently reduces the effective 
thermal conductivity by almost 12% due to a diminished surface-area-to-volume ratio. Furthermore, 
the analysis shows that increasing inter-particle spacing decreases entropy generation by reducing 
particle clustering. This study bridges a crucial research gap in the literature by quantifying the role 
of nanoparticle microstructure. It provides an operational framework for developing high-efficiency, 
low-irreversible thermal control systems in industries such as advanced manufacturing and energy 
production.

Keywords  Heat transfer, Dusty fluid, Inclined stretching surface, Nanoparticle radius variation, Entropy 
generation, MHD

Nomenclature
µnf 	� Nanofluid dynamic viscosity (Pa s)
K = 6πµr	� Stokes’ drag constant (kg s−1)
σnf 	� Nanofluid electrical conductivity (S m−1)
Cp	� Fluid specific heat at constant pressure (J kg−1·K−1)
θ(η)	� Dimensionless fluid temperature
up	� Dust particle velocity in x-direction (m s−1)
hp	� Inter-particle spacing (m)
Ec	� Eckert number (dimensionless)
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vp	� Dust particle velocity in y-direction (m s−1)
T∞	� Ambient temperature (K)
N	� Number density of dust particles (m−3)
M	� Magnetic parameter (dimensionless)
βt	� Thermal dusty interaction parameter (dimensionless)
f ′(η)	� Dimensionless fluid velocity
Rex	� Reynolds number (dimensionless)
Cfx 	� Skin friction coefficient (dimensionless)
Ns	� Entropy generation number (dimensionless)
ρnf 	� Nanofluid density (kg m−3)
B0	� Uniform magnetic field (T)
τT 	� Thermal equilibrium time (s)
cm	� Dust particle specific heat (J kg−1·K−1)
θp(η)	� Dimensionless dust temperature
u	� Fluid velocity in x-direction (m s−1)
dp	� Nanoparticle radius (m)
β	� Maxwell parameter (dimensionless)
v	� Fluid velocity in y-direction (m s−1)
m	� Dust particle mass (kg)
λ	� Thermal conductivity (W m−1·K−1)
Pr	� Prandtl number (dimensionless)
γt	� Specific heat ratio (dimensionless)
fp(η)	� Dimensionless dust velocity
uw 	� Stretching velocity of sheet (m s−1)
Nux	� Nusselt number (dimensionless)
Be	� Bejan number (dimensionless)

Literature review
Entropy generation, as a measure of irreversibility and disorder in thermodynamic systems, is a key factor in 
energy transfer efficiency. It has been extensively investigated in various applications, including electronics, solar 
systems, and heat exchangers. Bejan1–3 introduced the idea of entropy optimization in the context of mass and 
heat transfer phenomena. Razaq et al.4 examined entropy optimization in Reiner-Rivlin nanomaterial fluid flow 
caused by a stretchable cylinder underlying MHD and chemical reactions. Sahoo and Nandkeolyar5 studied 
MHD flow of Casson nanofluid with entropy, chemical reactions, activation energy, and Hall current over a 
stretchable surface in porous media. Khan et al.6 scrutinized a thermally conductive nanofluid flow across a 
curved stretchable sheet with the Darcy-Forchheimer relation.

The dusty fluid flow occurs when solid particles are distributed in the fluid. The dusty fluid flow is utilized 
in paint spraying, gas-freezing systems, nuclear reactor cooling, and dust collection. Saffman7 presented the 
basic concept of dusty fluids and derived constitutive equations based on Stokes’ law of drag forces. His research 
demonstrated that the thermal transmission rate is enhanced by suspending dusty particles. Ezzat et al.8 
investigated free-convective thermal transfer in a dusty fluid flow caused by a vertically positioned plate in a 
permeable medium under an applied magnetic field. Abbas et al.9 provided analytical and numerical solutions for 
a magnetized dusty fluid flow across a stretched permeable sheet, considering slip conditions. Dey and Chutia10 
studied the bioconvective dusty nanofluid flow over a vertically stretched flat surface. Sharif et al.11 employed a 
numerical method, bvp4c, to probe a dusty trihybrid Ellis nanofluid flow across an expanding Riga plate.

Alfvén12, a Nobel laureate, investigated the magnetic properties of electrically conducting fluids in the 
presence of a steady magnetic field. He demonstrated how fluid movement induces an electromotive force, 
generating an electric current. Given their potential uses in cosmology, astronomy, medicine, engineering, 
and industry, MHD fluids have garnered special scientific attention. Hayat et al.13 investigated the MHD flow 
and heat transfer characteristics of permeable stretched sheets, taking into account slip effects. Kumar et al.14 
investigated numerically the MHD dusty fluid flow across an stretched sheet using fluid-particle suspension. 
MHD dusty Casson fluid flow over a stretching sheet has been demonstrated by Gireesha et al.15 by applying 
Fourier law along with Cattaneo-Christov heat flux law. Ali et al.16 investigated incompressible MHD dusty 
Casson nanofluid flow between two plates using the perturbation method.

Choi and Eastman17 introduced the concept of dispersing nanoparticles in a base fluid. Nanofluids have 
better thermal performance than traditional fluids18. Common base fluids include water, oil, and biofluids, while 
nanoparticles can be metals, oxides, or carbides. Nanofluids are used in a wide range of industries, including 
biomedical fields like drug delivery, cancer hyperthermia, monitoring heart function, and blood temperature 
control19; industrial processes like lubrication, chemical processing, and MHD pumping; energy systems 
including solar collectors, nuclear reactors, and geothermal reservoirs for improved heat extraction; electronics 
cooling for microprocessors, sensors, and power devices; and automobile engines for enhanced efficiency20. 
Studies on nanofluid convection using the lattice Boltzmann method include Alinejad and Esfahani21 in D3Q19 
enclosures, Araban et al.22 for CuO-water nanofluids, and Sahebi et al.23 on nanofluid flow over cylinders.

Many theoretical calculations and experiments have been conducted to determine the mechanisms that 
enhance the thermal conductivity of nanofluids. This enhancement is attributed to the characteristics of the 
base fluid and the nanoparticles. Key characteristics of nanofluids include nanoparticle radius, friction factor, 
and nanoparticle concentration. Timofeeva et al.24 highlighted nanoparticle radius as one of the most critical 
factors in improving heat transmission. Nanoparticle radius variation alters the inherent magnetic properties, 
impacting fluid behavior. Specifically, superparamagnetic behavior changes with a change in nanoparticle radius. 
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The effect of particle size variation on oil transmission in pipelines using the D2Q9 lattice Boltzmann method 
was reported by Madani et al.25. Hussain et al.26 emphasized the significance of nanoparticle radius variation in 
nanofluid flow past a stretched surface.

Significance of the study
Understanding entropy generation in dusty fluid and nanofluid flows is vital for increasing energy efficiency and 
thermal control in engineering systems. Nanoparticles enhance heat conductivity, while dust particles facilitate 
heat and momentum exchange, making dusty nanofluids attractive for applications such as electronic cooling, 
heat exchangers, and energy storage. When combined with magnetohydrodynamics (MHD), their relevance 
extends to metallurgical processes, nuclear reactors, and biological systems, where efficient heat transfer with 
minimal irreversibility is vital.

Research gap
Despite extensive progress, most studies have investigated entropy either in MHD dusty flows or traditional 
nanofluids. The influence of essential factors, nanoparticle radius and inter-particle spacing, which directly 
control thermal conductivity, dustâ€“fluid interaction, and entropy production, has received little attention. 
Table 1 summarizes existing contributions and highlights the overlooked dimension. To fill this gap, the current 
study focuses on these nanoscale parameters while numerically investigating entropy generation in MHD 
Maxwell dusty nanofluid flow over an inclined stretching sheet.

Novelty and contributions
This study advances the field by systematically quantifying the role of nanoparticle radius and inter-particle 
spacing on the flow, entropy production, and thermal efficiency in dusty nanofluids. The study focuses 
on reducing energy loss and improving heat transfer across a wide range of applications, including cooling 
technologies, energy systems, and manufacturing processes. The key novelties of the study include:

•	 Development of Maxwell dusty nanofluid model integrating both dust particles and nanoparticles.
•	 Systematic evaluation of nanoparticle radius and inter-particle spacing on thermal conductivity, flow dynam-

ics, and entropy.
•	 Extension of fluid-particle interaction models by including MHD effects across an inclined stretching sheet.
•	 Inclusion of viscous dissipation and thermal buoyancy to simulate realistic transport phenomena.

By offering new insights into the characteristics of nanoscale particles that govern thermal conductivity, this 
framework enables the creation of more effective thermal systems that lose less energy.

Flow analysis
Mathematical model
A mathematical formulation is developed to investigate fluid dynamics, heat transfer, and entropy optimization 
in a steady, two-dimensional dusty nanofluid flow across an inclined, stretched surface. The flow assumptions 
are as follows:

•	 Dust and nanoparticles are dispersed in the Maxwell fluid.
•	 The stretching sheet is inclined at an angle α to the vertical.
•	 Dust particles are spherical, evenly sized, and equally dispersed in Maxwell nanofluid.
•	 The density of dust particles and nanoparticles remains constant throughout the incompressible steady fluid 

flow.
•	 Agglomeration or accumulation of nanoparticles is neglected.
•	 A uniform magnetic field strength B0 is applied normally to the stretched sheet.
•	 Ohmic dissipation, ion-slip effects, and Hall current are ignored due to a weak magnetic field26.
•	 The sheet surface stretches with velocity uw = ax along the x-axis.

The flow configuration is illustrated in Fig. 1. Following26,32–34, the governing equations for the present flow are:

Authors Maxwell fluid Nanoparticles
Tiwari-Das 
model Dust particles

Nanoparticle radius 
impact

Thermal 
buoyancy

Role of inter-
particle spacing

Entropy 
analysis

Hussain et al.26 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
Ali et al.27 ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗
Ali et al.28 ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓

Darvesh et al.29 ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
Ramzan et al.30 ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
Algehyne31 ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Current study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1.  Existing research gap and contributions of the current study.
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For dust particle flow:
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Here, u and v denote velocity components along x− and y−axes, while up and vp represent the corresponding 
components of dust phase velocity. Tw  and T∞ indicate the boundary and ambient temperatures, respectively; g 
is the gravitational acceleration; N the dust particle number density; and B0 the applied magnetic field strength. 
The nanofluid properties are characterized by viscosity µnf  and density ρnf . Tp and cm correspond to the 
temperature and specific heat of dusty fluid, respectively, while K represents the Stokes’ drag constant.

Term-wise interpretation of equations
The governing equations characterize the coupled transport phenomena in incompressible dusty nanofluid flow. 
The continuity equation (1) enforces mass conservation in the carrier-particle mixture32. In Eq. (2), the left-
hand side accounts for the convective acceleration of base fluid together with the viscoelastic stresses introduced 
by the Maxwell fluid model. On the right-hand side, the first term represents viscous momentum diffusion 
within the boundary layer35, while the second term captures buoyancy-driven natural convection arising from 

Fig. 1.  Schematic flow configuration.
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density gradients38. The third term, associated with the Lorentz force, expresses magnetic damping of motion 
in line with classical MHD theories36,37. The final term establishes fluid-particle coupling, representing drag 
exerted by the dust phase on the carrier fluid15. The energy equation (3) represents the thermal energy balance 
in the dusty nanofluid system. The left-hand side describes how heat is carried by the moving nanofluid, which 
is essentially the transport of energy via convection as the fluid flows35. The first term on the right-hand side 
represents the conduction of heat within the fluid, which is further enhanced by the nanoparticles’ addition in 
the effective thermal conductivity26. The following term illustrates how heat is generated internally by the fluid’s 
motion; viscous dissipation is the process by which fluid layers slide past one another, and frictional forces 
convert kinetic energy into thermal energy39. The final term refers to the direct heat exchange between dust 
particles and fluid15. This interaction is essential because it permits the particulate phase to affect the thermal 
field. Equations (4–6) are governing equations for the flow of dusty phase26. Equation (4) ensures conservation of 
dust particle mass within the flow field. Equation (5) represents the momentum balance for dust particles, which 
is determined by drag attraction with the surrounding fluid. Equation (6) describes the energy balance of dust 
particles, emphasizing the heat exchange between the particle and fluid phases.

Boundary conditions
The present model focuses on the combined effects of dust particles, nanoparticles, thermal buoyancy, magnetic 
fields, and viscous dissipation on flow dynamics, entropy generation, and heat transfer in a Maxwell dusty 
nanofluid flow over an inclined stretching sheet. The following boundary conditions represent the physical 
constraints of boundary layer fluid flow26,35:

	

{
u = uw = ax, v = 0, T = Tw, as y = 0,
u → 0, v = vp → 0, T → T∞, up → 0, Tp → T∞, as y → ∞. � (7)

Thermophysical properties of nanofluid
The effective properties of nanofluid are expressed in Table 2 as stated by35,40,41.

Here, ϕ is the solid volume fraction, while subscripts f and s correspond to the base fluid and nanoparticles, 
respectively. The radius of the nanoparticle and the inter-particle spacing are represented by dp and hp, 
respectively.

Similarity variables
Similarity variables are introduced as42–44:
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Dimensionless system
Using Eq. (8), Eqs. (1) and (4) are satisfied automatically. Other equations reduce to:
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Table 2.  Effective properties of nanofluid35,40,41.
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p + βtγt (θ − θp) = 0,� (12)

while the boundary constraints take the form:

	

{
f(0) = 0, , f ′(0) = 1, θ(0) = 1,
f ′

p(∞) → 0, f ′(∞) → 0, fp(∞) = f(∞) → 0, θp(∞) → 0, θ(∞) → 0.
� (13)

Dimensionless parameters
Here, Pr is the Prandtl number, λ the thermal buoyancy parameter, and Ec the Eckert number. Fluid-temperature 
interaction, specific heat ratio, the mass concentration of dusty granules, and fluid particle interaction for velocity 
are expressed by βt, γt, Γv , and βv , respectively. These dimensionless numbers are mathematically defined as:
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To improve clarity, Table 3 summarizes the definitions, physical significance, and potential uses of the essential 
dimensionless parameters employed in this work.

Engineering quantities
The local skin friction coefficient Cfx and Nusselt number Nux are given as26,43:

	
Cfx = τw

ρf (uw)2 , Nux = xqw

kf (Tw − T∞) .� (15)

Wall shear stress is τw = µnf
∂u
∂y

∣∣∣∣
y=0

 and the wall heat flux is qw = −knf
∂T
∂y

∣∣∣∣
y=0

.

In dimensionless form, the local skin friction coefficient and Nusselt number are expressed as:

	

√
RexCfx = A1f ′′(0), 1√

Rex

Nux = −A4θ′(0),� (16)

where Rex = uwx
νf

 shows local Reynolds number.

Solution procedure
The governing PDEs (1–6) along with boundary conditions (7) are first transformed into a set of nonlinear 
ODEs (9–12) with corresponding transformed constraints (13) using the similarity transformation defined in 
Eq. (8). These resulting ODEs are highly nonlinear, making exact solutions intractable. Therefore, a numerical 
technique is adopted. Numerical methods provide adaptability and flexibility, enabling the practical solution 
of complicated problems. Ensuring high numerical accuracy is critical to guarantee that the computed results 
closely approximate the actual physical behavior. Among different methods, MATLAB’s bvp4c solver is selected 

Parameters Definition/Physical Significance Applications

Pr The relative thickness of the velocity and thermal boundary layers is indicated by the ratio of 
momentum diffusivity to thermal diffusivity.

Heat exchangers, thermal insulation, polymer 
manufacturing, and electronic device cooling.

Ec Viscous dissipation effects are measured by the ratio of kinetic energy to enthalpy. Polymer processing and nanofluid energy systems.

β The fluid’s viscoelastic properties are described by the Maxwell relaxation parameter. Viscoelastic fluid modeling, polymer melts, and 
non-Newtonian fluid flows.

dp
The radius of the nanoparticle affects the thermophysical characteristics of the nanofluid via 
influencing thermophoretic diffusion and Brownian motion.

Advanced heat transfer systems, thermal energy 
storage, and microfluidics.

M Lorentz force effects on electrically conducting fluids are measured by the magnetic parameter. MHD generators, plasma control, electromagnetic 
pumps, and nuclear reactor cooling.

λ
The thermal buoyancy parameter measures the impact of temperature gradient-induced buoyant 
forces.

Applications for natural convection, material 
processing, solar collectors, and crystal formation.

hp
Inter-particle spacing affects flow dynamics and thermal conductivity via regulating nanoparticle 
interactions and distribution.

Energy systems, microchannel heat transmission, 
and nanofluid design.

Table 3.  Interpretation and applications of key dimensionless parameters.
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due to its robust handling of boundary value problems. The bvp4c solver combines the shooting method, 
collocation, and adaptive mesh refinement.

To employ bvp4c, the following fresh variables are defined to express the nonlinear system (9–12) as first-
order ODEs:

	 f = s1, f ′ = s2, f ′′ = s3, θ = s4,θ′ = s5, fp = s6, f ′
p = s7, and θp = s8.

This introduction reduces the system of ODEs to
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.� (20)

The transformed dimensionless boundary constraints are written as:

	

{
s1 = 0, s2 = 1, s4 = 1, as η = 0,
s7 → 0, s2 → 0, s8 → 0, s6 = s1 → 0, s4 → 0, as η → ∞. � (21)

By progressively modifying missing initial estimations at η = 0 to meet the far-field conditions at a sufficiently 
large but finite ηmax, the bvp4c solver efficiently handles these boundary conditions. To ensure convergence 
within the boundary layer, the computational domain [0, ηmax] is selected so that any increments in ηmax do not 
substantially alter the solution. The stopping criterion is defined as:

	max {|s2(ηmax) − 0|, |s1(ηmax) − 0|, |s4(ηmax) − 0|, |s7(ηmax) − 0|, |s8(ηmax) − 0|, |s6(ηmax) − 0|} < χ,

where χ = 10−6 ensures high precision convergence. This method preserves stability and numerical precision 
while enabling the methodical study of parameter effects such as magnetic field strength, viscous dissipation, 
and nanoparticle radius.

Irreversibility analysis
Entropy generation is linked to energy waste, so our primary goal is to minimize entropy production. Measuring 
entropy generation can help us understand the reasons behind potential system failures. It is analogous to 
discovering faults in a process or design, allowing us to improve overall performance once these areas are 
identified. Many industrial and technological sectors strive to improve efficiency by minimizing the generation 
of entropy. The depletion of global energy resources has prompted experts to examine energy generation designs, 
conversion, and application. The entropy generation rate per unit volume S′′′

gen within the context of a magnetic 
field being present is calculated as follows39:
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T 2
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Φ.� (22)

Φ, ∇, and J stand for viscous dissipation, Del operator, and current density, respectively. Assuming negligible 
effects of QV and E compared to magnetic term V × B, and applying boundary layer approximation, this 
reduces to
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Three different causes of entropy creation can be seen in this equation. First is heat transmission, which results 
from the temperature gradient of the problem. Viscous dissipation is the second source arising from fluid 
friction. Lastly, the most important source is the magnetic force, which results in irreversible Joule dissipation. 
The volumetric entropy generation rate is represented by entropy generation number Ns, defined as the ratio of 
S′′′

gen and characteristic entropy generation, S′′′
0 . From the use of similarity variables, Eq. (23) becomes

	
Ns =

S′′′
gen

S′′′
0

= A4θ′2 + P rEcΩA1f ′′2 + A3MP rEcΩf ′2,� (24)

where Ω = T∞
Tw−T∞

 is dimensionless temperature parameter, and S′′′
0 = kf a

Ω2νf
 is characteristic entropy 

generation. Bejan number is defined as:
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Be = Heat transfer irreversibility

Total irreversibility
.� (25)

By using Eq. (8), we get

	
Be = A4θ′2

Ns
.� (26)

Results and discussion
This research investigates thermal management and entropy generation in MHD Maxwell dusty nanofluid 
flow over an inclined stretching surface, focusing on the effects of nanoparticle radius, inter-particle spacing, 
viscous dissipation, and thermal buoyancy forces. The governing PDEs are converted to nonlinear ODEs using 
similarity variables and solved numerically via MATLAB’s bvp4c solver. Numerical results are validated against 
published research for limiting cases. The impacts of key significant parameters on the velocity, temperature, 
Bejan number, and entropy generation are analyzed. Default values of utilized parameters are: M = 3, β = 0.5, 
Ec = 0.2, α = 45◦, λ = 1.0, βv = 0.2, βt = 0.1, γt = 0.1, Γv = 0.2, hp = 0.5, and dp = 2.5.

Numerical validation
Analytical solutions are unavailable due to the coupled nonlinear nature of the equations. Therefore, a numerical 
validation is needed to establish reliability. The present approach is validated against existing benchmark research 
in the literature. Tables 4 and 5 compare our results to those given by Jalil et al.45, Rahman et al.46, and Afridi et 
al.39. The agreement is excellent, with minimal deviations for different parameters.

Velocity fields
Figure 2 illustrates that raising the Maxwell parameter (β) and magnetic parameter (M) reduces the velocities in 
both fluid and dust phases. Mechanistically, stronger magnetic fields induce Lorentz forces that oppose the flow, 
while increased elasticity (larger β) increases internal fluid resistance, slowing momentum transmission. Figure 3 
reveals that increasing nanoparticle radius dp exerts a decisive influence on momentum transport by modulating 
the effective viscosity. While smaller particles and shorter inter-particle distances exacerbate agglomeration, 
increase microstructural interactions, and obstruct flow, larger nanoparticles reduce viscous resistance and 
promote smoother fluid motion. Quantitatively, enlarging the nanoparticle radius from 2.0 nm to 3.0 nm at a 
fixed spacing of hp = 0.5 results in an approximately 18% increase in the peak velocity of both the fluid and 
dust phases, confirming the direct link between viscosity reduction, particle radius, and flow acceleration. This 
behavior highlights the importance of nanoparticle radius and spacing in controlling rheological properties, 
as higher flow speeds and momentum transfer within the carrier fluid are directly correlated with decreased 
effective viscosity, with implications for pipeline and microfluidic cooling applications.

Temperature fields
Figures 4, 5, 6 depict the impact of β, M, βt, Ec, nanoparticle radius (dp), and inter-particle spacing (hp) on 
temperature fields of fluid and dust phases. Figure 4 shows that increased M thickens the thermal boundary layer 
due to Lorentz force-induced Joule heating. Figure 5 illustrates how the size of nanoparticle radius and inter-

λ

Ec = 1,P r = 0.7,M = 1,α = π
4 Pr Ec = 1,λ = 0.2,M = 1,α = π

4

Afridi et al.39 Our Results Afridi et al.39 Our Results

0.0 0.5546 0.55465 0.3 0.3897 0.37885

0.5 0.6976 0.69752 0.7 0.6219 0.62176

1.0 0.7931 0.79297 1.2 0.8106 0.82024

1.5 0.8974 0.89744 1.5 0.8962 0.89624

Table 5.  Comparing Nusselt number with Afridi et al.39 for different values of λ and Pr.

 

M

βv = 0 βv = 0.5
Jalil et al.45 Rahman et al.46 Our Results Jalil et al.45 Rahman et al.46 Our Results

0.2 1.095445 1.0955 1.09548 1.126114 1.1261 1.12610

0.5 1.224745 1.2248 1.22475 1.252251 1.2523 1.25227

1.0 1.414214 1.4142 1.41421 1.438101 1.4381 1.438105

1.5 1.581139 1.5901 1.58857 1.602540 1.6026 1.60258

2.0 1.732051 1.8301 1.83002 1.751609 1.7517 1.75172

Table 4.  Comparing the skin friction coefficient with Jalil et al.45 and Rahman et al.46 for different values of βv  
and M while ignoring all other parameters.
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particle spacing significantly influence the properties of thermal transport. Due to their lower surface-area-to-
volume ratios, larger nanoparticles attenuate temperature gradients within the fluid and reduce the effective 
thermal conductivity by suppressing heat exchange. Smaller inter-particle spacing, on the other hand, increases 
phonon scattering, micro-convective interactions, and particle clustering, all of which support localized heat 
retention. Larger dp improves hydrodynamic performance, but this is offset by thermal inefficiency: according 
to the thermophysical mathematical models, an increase in dp from 2.0 nm to 3.0 nm reduces the effective 
thermal conductivity by approximately 12%. Figure 6 highlights the effects of thermal dusty parameter βt 

Fig. 4.  Response of θ(η) and θp(η) for fluctuation of M and β.

 

Fig. 3.  Response of fp(η) and f ′(η) for fluctuating hp and dp.

 

Fig. 2.  Response of fp(η) and f ′(η) for fluctuating β and M.
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and Eckert number Ec on θ and θp. Higher βt slows fluid motion and elevates dust-phase temperature due to 
enhanced thermal resistance. Elevated Ec represents viscous dissipation, directly raising both fluid and dust 
temperatures. These mechanistic interpretations guarantee significant insight by relating numerical results to 
physical processes.

Entropy generation and Bejan number
Entropy generation measures the degree of disorder, while the Bejan number distinguishes the entropy generated 
by heat transfer from the total entropy within a system. The second law of thermodynamics asserts that the 
entropy of an isolated system cannot decrease; hence, entropy generation is always non-negative. Figure 7(a) 
demonstrates that stronger magnetic fields enhance resistive heating and viscous dissipation, thereby increasing 
entropy generation. Conversely, decreasing the magnetic parameter reduces this resistive contribution, lowering 
total entropy generation. This reduction brings the system closer to its minimum irreversibility, which is fully in 
accordance with the second law of thermodynamics. Quantitatively, when the parameter M is raised from 1 to 
5, the maximum entropy generation Ns at the wall increases by nearly 45%. An increase in Maxwell parameter β 
enhances Ns, as a higher relaxation time increases fluid-particle friction and heat loss. Quantitatively, increasing 
the Maxwell parameter β from 0.2 to 1 results in a nearly 40% increase in Ns. It highlights the role of viscoelastic 
relaxation time in amplifying heat loss and fluid-particle friction. Figure 7(b) further highlights that higher values 
of M and β lower the Bejan number Be, indicating a dominance of viscous dissipation over heat transfer. This 
trend shows a shift in the dominant source of irreversibility. At η = 1.0, the value of Be reduces from 0.85 to 0.45 
as the magnetic parameter is elevated from 1 to 5, indicating a shift from heat-transfer-dominated irreversibility 
to a regime where viscous and magnetic effects contribute more than half of total entropy production.

Figure 8(a) visualizes that Ns increases with nanoparticle radius dp but decreases with hp. Larger particles 
impede conductive pathways and increase entropy, while smaller particles improve interfacial heat transfer, 
decrease irreversibility, and increase system efficiency due to their higher surface-area-to-volume ratios. 
Quantitatively, increasing dp from 1.5 nm to 3.5 nm produces nearly a 30% rise in Ns. A key result of entropy 
minimization is that reducing dp from 3.6 nm to 1.6 nm (a 2 nm decrease) under standard conditions (β = 0.5, 
hp = 0.5, M = 3) reduces total entropy generation about 20%, confirming nanoparticle radius is a decisive 
parameter in controlling thermodynamic irreversibility. Increasing hp reduces collisions, viscosity, and flow 

Fig. 6.  Response of θp(η) and θ(η) for fluctuating Ec and βt.

 

Fig. 5.  Response of θp(η) and θ(η) for fluctuating hp and dp.
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blockage, thereby enhancing convective heat transport and decreasing entropy. Quantitatively, reducing hp 
from 1.0 to 0.2 nearly doubles entropy due to viscous dissipation and enhanced clustering. Figure 8(b) shows 
that Be diminishes with hp as convection becomes dominant, while larger dp increases the Bejan number due 
to enhanced heat conduction. For dp = 1.5 nm, Be remains above 0.8, confirming thermal transmission as 
the main irreversibility, whereas for dp = 3.5 nm, it drops to about 0.6, indicating balanced contributions 
from other sources too. Optimizing hp in material design enhances flow, heat transmission, and long-term 
performance. Pumps, pipelines, microelectronics, solar cooling, and other applications benefit from improved 
nanofluid stability, less friction, and increased energy efficiency when inter-particle spacing (hp) is adjusted.

Figure 9(a) illustrates that entropy creation Ns grows with Eckert number Ec, reflecting the influence of 
viscous dissipation, while the thermal dusty parameter βt enhances Ns by intensifying thermal resistance between 
the dust and fluid phases. Quantitatively, raising Ec from 0.1 to 0.5 increases maximum entropy generation by 
nearly 50%, underscoring its significant influence on system inefficiency. Figure 9(b) shows that Be decreases 
with Ec, falling to around 0.3 at Ec = 0.5, which indicates that 70% of the entropy arises from magnetic and 
viscous dissipation. In contrast, higher values of βt increase Be, since stronger temperature gradients reinforce 
heat-transfer-dominated irreversibility. The findings emphasize on the role of Ec and βt on improving energy 
efficiency and flow stability, with practical implications for the design of microelectronics, pipelines, and solar 
cooling systems.

Physical insights and applications
The numerical findings, though theoretical, carry direct industrial relevance. Clear mechanistic reasoning 
explains the observed trends: optimal inter-particle spacing minimizes clustering and viscous resistance, 
controlled magnetic fields improve flow stability, and viscous dissipation increases entropy. Smaller nanoparticles 
increase heat conduction by increasing surface-to-volume ratios, while proper interparticle spacing reduces 
flow resistance and clustering. Controlled magnetic fields enhance heat management and mitigate instabilities, 
but viscous dissipation increases entropy and reduces efficiency. The findings provide practical design 
recommendations for microelectronics, MHD power systems, solar collectors, and advanced cooling loops. They 
provide instructions for experimentalists and system designers pursuing energy-efficient and thermally stable 
solutions by connecting nanoscale particle attributes to macroscopic heat transfer efficiency and flow stability.

Fig. 8.  Response of Ns and Be for fluctuating hp and dp.

 

Fig. 7.  Response of Ns and Be for fluctuating M and β.
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Conclusion
This study numerically examined entropy generation in magnetohydrodynamic Maxwell dusty nanofluid flow 
across an inclined stretching sheet, with particular focus on the impacts of nanoparticle radius and inter-particle 
spacing. Unlike previous studies that largely overlooked these microstructural factors, our analysis highlights 
their role in entropy generation, dust-fluid interaction, and thermal conductivity. The governing equations were 
modified using similarity transformations and solved using MATLAB’s bvp4c solver, revealing new insights into 
flow management, irreversibility, and thermal efficiency enhancement.

Key findings

•	 Intensified magnetic fields Lorentz forces, reducing velocities in both phases while increasing temperatures. 
This behavior applies to electromagnetic flow control devices and MHD pumps.

•	 Entropy generation and Bejan number rise with thermal dusty parameter βt but have an inverse relationship 
with inter-particle spacing hp, which affects cooling loops and pipeline design, where thermal efficiency is 
crucial.

•	 The Maxwell parameter improves flow resistance and energy dissipation while lowering the Bejan number, 
directly informing the design of viscoelastic nanofluids for cooling systems and solar collectors.

•	 Larger inter-particle spacing enhances thermal conduction while reducing velocity due to weaker particle 
interaction, providing design direction for nanofluids used in thermal exchangers.

•	 Fluid-dust momentum was increased by over 18% by nanoparticles larger than 2.5 nm, although thermal con-
ductivity was lost by around 12%. This trade-off is especially important for microelectronics cooling, where 
flow must be sustained while minimizing heat loss.

•	 Entropy generation was suppressed by reducing the radius of the nanoparticle from 3.6 nm to 1.6 nm, which 
resulted in a reduction of irreversibilities of almost one-fifth. It shows a significant potential for energy-effi-
cient working fluids in pipeline transport and solar cooling.

•	 A higher Eckert number raises temperature and entropy by increasing viscous dissipation but lowers the Be-
jan number, offering insights for high-speed fluid transport systems.

Limitations and future work
While this study gives valuable mechanistic insights, it depends on several simplifying assumptions. We 
investigated laminar flow with uniformly scattered nanoparticles, assuming that particle agglomeration is 
negligible, which may not accurately reflect real experimental situations. The findings are based on computational 
simulations rather than direct experimental validation; however, their dependability was validated through 
comparison with limiting cases. Furthermore, effects such as radiation, turbulence, and chemical reactions were 
excluded, even though they may be essential in large-scale industrial systems. Future research should address 
these challenges and incorporate experimental studies to support the current results.

Data availability
All the data used during this study are accessible within the manuscript.
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