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Long-range correlation-guided
dual-encoder fusion network for
medical images
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Multimodal medical image fusion plays an important role in clinical applications. However, multimodal
medical image fusion methods ignore the feature dependence among modals, and the feature fusion
ability with different granularity is not strong. A Long-Range Correlation-Guided Dual-Encoder

Fusion Network for Medical Images is proposed in this paper. The main innovations of this paper are

as follows: Firstly, A Cross-dimension Multi-scale Feature Extraction Module (CMFEM) is designed in
the encoder, by extracting multi-scale features and aggregating coarse-to-fine features, the model
realizes fine-grained feature enhancement in different modalities. Secondly, a Long-range Correlation
Fusion Module (LCFM) is designed, by calculating the long-range correlation coefficient between local
features and global features, the same granularity features are fused by the long-range correlation
fusion module. long-range dependencies between modalities are captured by the model, and different
granularity features are aggregated. Finally, this paper is validated on clinical multimodal lung medical
image dataset and brain medical data dataset. On the lung medical image dataset, IE, AG, QAB/F, and
El metrics are improved by 4.53%, 4.10%, 6.19%, and 6.62% respectively. On the brain medical image
dataset, SF, VIF, and QAB/F metrics are improved by 3.88%, 15.71%, and 7.99% respectively. This
model realizes better fusion performance, which plays an important role in the fusion of multimodal
medical images.

Keywords Deep learning, Dense network, Long-range correlation coefficient, Medical image fusion, Multi-
scale features

Multimodal medical image fusion is to fuse medical images of different modals into one image, which provides
a more comprehensive technical support for disease diagnosis and treatment. Medical images play an important
role in computer-aided detection and diagnosis of malignant tumors. However, due to the difference of medical
imaging equipment, different modals medical images examine different characteristics of the human body, and a
single modality of medical images does not provide sufficient information. For example, Computed Tomography
(CT) clearly displays bones and high-density structures information, CT images provide limited information
on organ metabolism. Positron emission tomography (PET) reflects biological metabolic processes and
neurotransmitter activity, but its spatial resolution is low. Magnetic resonance imaging (MRI) has advantages
in imaging human soft tissue, but it does not reflect metabolic activity. Multi-modal medical image fusion aims
to provide reliable references for clinical diagnosis and scientific research by integrating complementary and
redundant information from images of different modalities!, which assists doctors in accurately diagnosing
lesions?.

In recent years, deep learning is a key technology in multimodal medical image fusion®. The fusion methods
are generally classified into 3 categories: Convolutional Neural Network (CNN)-based fusion methods,
Autoencoder (AE)-based fusion methods, and Generative Adversarial Network (GAN)-based fusion methods.
CNN-based fusion methods are a technology that uses convolutional neural network to extract and fuse image
features. It learns local features through the convolutional layer and reduces the feature dimension through the
pooling operation, and finally realizes the fusion with different modal image. Tang* et al. proposes the Residual
Decoder-Encoder Detail-Preserving Cross Network (DPCN), which employs a dual-branch framework to
extract structural details from the source image. However, because the model only uses the last layer results, it is
easy to lose the information of the middle layer. Umirzakova® et al. propose a spatial/channel dual attention CNN
combined with deep learning reconstruction (DLR), which improves the feature extraction. VIF-Net® adopts a
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hybrid loss function that combines a modified structural similarity metric and total variation, it adaptively fuses
thermal radiation and texture details through unsupervised learning. Image fusion methods based on encoder-
decoder networks obtain fused images by designing and training encoders and decoders. The encoder extracts
features, and the decoder reconstructs them, effectively mitigating the network depth impact on performance.
DenseFuse’ introduces a dense connection mechanism in the encoder, effectively resolving the intermediate
layer information loss issue and achieving better fusion results. Res2Net® integrates ResNet into the encoder,
enhancing the network’s multi-scale feature extraction capacity. GAN-based fusion methods use adversarial
learning between the generator and discriminator to estimate the target probability distribution, thereby
implicitly performing feature extraction, feature fusion, and image reconstruction. DSAGAN? uses a dual-
stream structure and multi-scale convolutions to extract deep features, thus enhancing the fused features with an
attention mechanism to generate the final fused image. UCP2-ACGAN!? presents an adaptive conditional GAN
model that uses a context perceptual processor to obtain context perceptual feature maps, which better highlight
the lesion regions in the fused image. Zhou et al.!! propose a GAN model with dual discriminators, which uses
the source images semantic information as constraints to generate semantically consistent images. However,
multimodal medical image fusion still faces several challenges: In the encoding phase, existing methods don’t
achieve effective interaction among different modalities and different granular features. In the feature fusion, the
internal dependencies between modality are ignored in some degree, and it is difficult to capture the long-range
dependencies between local and global features effectively. To solve this problem, this paper proposes a Long-
Range Correlation-Guided Dual-Encoder Fusion Network for Medical Images. The main contributions of this
paper are as follows:

o A Long-Range Correlation-Guided Dual-Encoder Fusion Network for Medical Images is proposed. In the
encoder, a Cross-dimension Multi-scale Feature Extraction Module and a dense network architecture are
used to strengthen the feature Transmitting-Reuse ability among different layers. In the fusion module, it uses
correlation calculation and layer-by-layer aggregate strategy to capture the long-range dependencies between
different modal images.

« Aiming at the effective feature extraction problem at different dimension features. This paper designs Cross-di-
mension Multi-scale Feature Extraction Module (CMFEM). In the feature extraction stage, multi-scale fea-
tures are extracted along the height and width dimensions, enhancing the network’s sensitivity for lesion size.

o Aiming at the problem of feature dependence between modalities. In the fusion stage, this paper designs
a Long-range Correlation Fusion Module (LCFM). which calculates the long-range correlation coefficient
between local features and global features, the features of the same granularity are fused by the LCFM. Long-
range dependencies between modalities are captured, and features of different granularity are aggregated,
avoiding detail information being neglected.

Methodology

Existing multimodal medical image fusion methods generally focus on improving the individual modalities’
fine-grained feature extraction ability, but it neglects the inter-modal feature dependencies and the effective
fusion about different granularity features. This paper designs a Long-Range Correlation-Guided Dual-Encoder
Fusion Network for Medical Images, including the Cross-dimension Multi-scale Feature Extraction Module
(CMFEM), Long-range Correlation Fusion Module (LCFM), and the loss function construction. The Long-
Range Correlation-Guided Dual-Encoder Fusion Network for Medical Images adopts a dual-branch network
structure, and it extracts coarse-to-fine grained features from the two modes through the dense connection
structure, which enables efficient feature extraction and fusion. Each branch includes 5 feature extraction layers,
where the 1 to 4 layers consist of 4 CMFEM blocks, and the last layer uses a 1x 1 convolution followed by Tanh
as the nonlinear activation function. To reduce information loss, inspirated by DenseNet, this paper uses dense
connections on each branch, which strengthen the feature transmitting-reuse ability among different layers.
In order to improve the interaction ability of multi-scale features, the extracted image features of each layer
are fused by LCFM module, and the fused features are concatenated and aggregated to generate global fused
images. Finally, the model reconstructs the image using five 3x3 convolution layers, generating a fusion image
with sharp edges and clear lesion regions. The network structure of the Long-Range Correlation-Guided Dual-
Encoder Fusion Network for Medical Images is shown in Fig. 1.

Cross-dimension multi-scale feature extraction module

Attention mechanism is a technique that simulates the ability of human visual attention and is used in deep
learning to help models focus on important parts of input images. models are able to be more efficient and
precise in handling complex tasks. A model weight is a parameter used to adjust the importance of input
features. the weights determine how much each feature influences the final output. Channel attention deals with
the relationship between channels in the image. Its core idea is to evaluate which channels are more important
for the current task and dynamically adjust the activation intensity of each channel accordingly. Spatial attention
mechanism focuses on the spatial dimension of the image, which enhances the model’s ability to focus on
specific areas by applying weights to different positions of the input images. For multimodal medical images,
spatial information is reflected as semantic features at the pixel level, where local spatial information is helpful
to capture fine-grained low-level semantic features, and global spatial information supports the recognition
and understanding of high-level semantic features. Due to the complexity of multimodal medical images, a
single attention mechanism struggles to achieve extract critical features. Therefore, this paper designs a Cross-
dimension Multi-scale Feature Extraction Module (CMFEM), as shown in Fig. 2, which extracts features of
different scales through multi-scale convolution in width and height dimensions to obtain multi-scale feature
Xs. Then, it computes the self-attention in space, enhances the features of the spatial information, and obtains
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Figure 1. Long-range correlation-guided dual-encoder fusion network.

the channel attention. This approach not only helps to reduce information redundancy and data complexity, but
also improves model performance, making feature extraction of PET, CT and MRI images more accurate and
efficient.

As shown in Fig. 2, the internal structure of Cross-dimension Multi-scale Feature Extraction Module
(CMFEM), Firstly, the input X € RE**HXW js conyolved and decomposed along the height and width
dimensions. Two one-dimensional sequences are created by using global average pooling: Xz € RB*¢*W
and Xy € RBXOxH, Secondly, in order to capture spatial information at different scales, the features are
split into 4 sub-feature maps, Xz and X3, where i€ {1,2, 3,4}, each sub-feature map has C/4 channels, it
efficiently capture the diverse spatial information within sub-feature maps. The module utilizes one-dimension
convolutions with kernel sizes of 3,5,7,and 9 for the 4 sub-feature maps. In addition, in order to solve the issue
of limiting receptive fields caused by using one-dimension convolutions, this paper utilizes lightweight sharing
convolution. This method captures consistent features between the two dimensions indirectly modeling their
dependencies, which expands the perceptive field and improves feature representation ability. Then, 4 groups of
Group Normalization (GN) are applied for normalization, followed by a Sigmoid activation function to generate
spatial attention, which activates specific spatial regions. Finally, the feature maps Fy and Fy from the H and
W dimensions are multiplied with the input feature map X to obtain Xs. This process is represented by the
following formula (1)-(5):

Xjr = Convld; (Poolfﬁ% (Conv2d(X))). (1)

C
4

Xiy = Convld; (Poolfﬁ (Conv2d(X))). ()

Where X represents the input feature map, and X i and Xy represent the spatial structural information of the
ith sub-feature along the H and W directions. 7 represents the ith sub-feature, 2 € {1,2,3,4}.

Fp =0 (GNg (Concat(Xy, Xir, X3, X11))) - (3)
Fw =0 (GNy (Concat(Xyy, Xy, Xiv, Xw))) - (4)
Xs=Fyg x Fyw x X. (5)

Scientific Reports |

(2025) 15:38964 | https://doi.org/10.1038/s41598-025-22834-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

H \ C/4 x 1 xW Convlx1

C/4xHx1 Convl><1[

n=4 I |
Conv1x3 ] GroupNorm~4
4= =

O
e FHE‘ ] i (T
a -

= 7 - \
f CxHx1 split H f: Conv1x9 (] \

H AvgPool n= Convl Xi

. GroupNorm~4
split

Cx1xW Convlx7

CxHxW

GroupNorm~1

4
5 Sigmoid AvgPool E .l\f‘K‘ﬁ!‘_

Cx1x1 '
L. v ‘

[ Convix1)[Convlx1| Convlxl)

[GroupNorm~4} Group Normalization with 4 Groups X Element-wise Multiplication @ =

Conv3x3
BN
ReLU

f Sigmoid

Figure 2. Cross-dimension multi-scale feature extraction module.

Where o(-) represents the Sigmoid activation function, and GN7(-) and Gy, (-) represent the 4 group
normalization along the H and W directions, X5 represents the spatial information of X.

In order to retain and utilize the multi-scale spatial information extracted by multi-scale convolution, this
paper uses a self-attention module to enhance the spatial prior information, which improves the performance
of the model. Firstly, 3 different mapping functions F]-Q, FJ, F) are used to project X, into the query, key and

value respectively, and Q, K, V are obtained. These features are used in subsequent attention calculations to
obtain Xr, then, Xr is compressed into one-dimension vector and activated by the Sigmoid function. Finally,
the enhanced feature map F is obtained by multiplying Xs with the feature map that is calculated by Sigmoid and
average pooling operation. The process is represented by the following formula (6)-(8):

Q:FJQ(XP)7K:FJK(XP),V:F]V(Xp) (6)
T

Xr=F(Q,K,V) = Softmaz <Ci/[(5> V. (7)

F=X.xo (Poozggﬁjxjﬁ“*”(xlw)) : )

Where Fyroj(+) represents the mapping functions for generating the query, key, and value. o(+) represents the
Sigmoid activation function, and F represents the final output feature map.

Long-range correlation fusion module

To address the problem of feature dependence between modalities, this paper designs a Long-range Correlation
Fusion Model (LCFM). This module captures the long-range dependencies between local and global features by
calculating the correlation, and these dependencies are encoded into a correlation matrix. Then, 1 x 1 convolution
layer is used to reduce the dimension of the correlation matrix. After that, the two correlation feature maps are
added, their size is compressed to 1x1 by adaptive pooling, and then multiply with the input feature map to
enhance the feature representation. In the last layer of the LCFM module, the two enhanced feature maps are
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concatenated with the input feature map along the channel dimension. The features of the same granularity are
fused through the LCFM, which captures the long-range dependencies between the different modalities, and
then the features of different granularities are aggregated. This paper presents the forward flow of LCFM in
Algorithm 1.

The structure of the LCFM module is shown in Fig. 3, The LCFM fuses the feature maps extracted by CMFEM.
In image fusion tasks, capturing the long-range dependencies of different modalities is the key to image fusion.
However, when capturing long-range dependencies, overly relying on global information leads to the loss of
fine details, and overly relying on local information fails to capture global semantic relationships. Therefore,
balancing the relationship between the two in network design and ensuring that they can work together is a
challenge. To solve this issue, in this paper, the long-range dependencies of local and global features are captured
by calculating the correlation of different modalities. For example, the correlation between the features F; and
F} is calculated by the following formula (9):

F; - F;
Corr(Fs, Fj) = +—=5— 15 9)
I Ex 130 F5 115
Where F;; € ROH>XW (i 5 € {1,...,N}), and || - ||} represents the L2 norm. Since the two modalities

from the same scene are registered, the correlation distribution range remains consistent. The correlation
Corr(F;, F;) between two different modality images ranges from [-1, 1]. long-range dependencies are captured
by correlatlon calculation, but correlation calculation is complex and time-consuming. For example, when the
feature map size is N=H x W, the computational cost is N'. As the feature map size increases, the computational
cost becomes extremely large. To overcome this problem, this paper introduces a pooling operation to simplify
the calculation by the following formula (10):

I/’\temp = AdapAvgPool (14,16 (F). (10)

Where AdapAvgPool(-) is ad:%ptlve average pooling, which is used to compress the feature map and generate
the feature map Ftemp € RE*XTXT Then, the feature map Ftemp is used to compute the correlation with the
original image by the following formula (11):
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Figure 3. Long-range correlation fusion module.
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Where ﬁ}imp S ﬁtemp, (ke{l,..., 7’2}). In the fusion process, 1 x 1 convolution is used to reduce the

dimension and linear transform input features, which enables reduce the redundancy between channels and
highlights important features. 3x3 convolution is used to improve the ability of capturing local features. The
Sigmoid activation function is used to introduce nonlinearity and constrain the output values to the range of
[0,1]. Finally, Corrr, and Corrr, are obtained by adaptive average pooling of the feature maps using the
following formula (12) and (13).

Corrp, = AdapAvgPool (0 (Conv;; <3 (Conv1 %1 (Corrt}flmp> ) ) ) . (12)
Corrg, = AdapAvgPool (O’ (Conv;; %3 (Conv1 «1 (Corrtlf;“p> ) ) ) . (13)

t t . .
Where Corry:™" and Corry,™" represent the long-range correlation matrices of features Fi and F%,

respectively. Convyx1(+) represents the 1x1 convolution layer, Convsx3(-) represents the 3x3 convolution
layer, o (-) represents the Sigmoid activation function, and AdapAvgPool(-) represents the adaptive average
pooling operation. Then, the obtained feature maps are multiplied with the original feature maps by the following
formula (1415) and ():

ﬁl =R ®Corrg. (14)
ﬁz =F>,® Corrp,. (15)

Finally, the feature maps are concatenated using a concatenation strategy:

~

Fy :concat(Fl,Fg,ﬁl,ﬁg). (16)

where F 'r represents the fused feature, and concat(-) represents the concatenation operation along the channel
dimension.

Loss function

For the medical image fusion task, in this paper, the fusion network is trained in an unsupervised manner.
The loss function of the Long-Range Correlation-Guided Dual-Encoder Fusion Network for Medical Images is
designed, it is the combination of intensity loss and gradient loss by the following formula (17):

Lf = Lint + aLgrad~ (17)

Where L represents the total loss, L, represents the intensity loss, Lgrqq represents the gradient loss, o is a
hyperparameter.

Intensity Loss: The intensity loss ensures the global brightness consistency of the fused image by constraining
the low-frequency components of the image. Therefore, the intensity loss is defined as formula (18):

Lint = Lf;lt + Lf:?t (18)

Where L and L2 represent the intensity loss for the images, which are defined as formulas (19) and (20):

1

Lf;}t:ﬁ | Iy —Icr |1 - (19)
1

Li= T s — Iperll; - (20)

Where H and W represent the height and width of the image, and || - ||1 represents the L;-norm.

Gradient Loss: The gradient loss is used to capture the high-frequency components of the image to ensure the
accurate localization about the lesion and the clarity of the image texture information. Therefore, the gradient
loss is defined as formula (21):

L | VI; — max(VIp1, VIr2) |1 - 21)

grad — HW

Where | - | represents the absolute operation, V represents the image gradient is computed using the Sobel
operator, and max( ) is the operation to obtain the maximum value.
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Algorithm 1. LCFM (forward pass)

Results
Dataset
The model is trained on two different datasets:

(1

2

Lung tumor PET/CT images, The dataset uses clinical patients with lung tumors who underwent PET/CT
general examination in a top-three hospital in Ningxia from January 2018 to June 2020. These images are
high-quality, without artifacts, and clearly show tumor lesions. The patients did not undergo radiofrequen-
cy ablation or lung resection, and they have complete and detail pathological reports. The experiment in-
cludes 95 patients who met the specified criteria. Among them, There are 46 women (48%) aged between 30
and 80 years, with an average age of 54.32 years. There are 49 male (52%) aged between 27 and 74 years, with
an average age of 50 years, and the height of the patients is not restricted. Patients need to do the following
preparations before the PET/CT general examination: fast for 6 hours, which ensure that blood sugar is
below 10, urinate, and remove metal ornaments. The patient is injected with 3.7mBq/kg deoxyglucose and
waited for 1 hour. Subsequently, the patient lies flat in a dark room and waits for 45 to 60 minutes. Then,
PET/CT images of the lungs and torso are collected, including cross-sectional, sagittal, and coronal images.
To ensure the correct labeling of lesions and ensure the accuracy of the data, the dataset is evaluated and di-
agnosed by three expert physicians combined with clinical experience. The final result is decided according
to the opinion of the majority experts. The three expert doctors include a thoracic surgeon with 8 years of
clinical experience, a pulmonologist with 5 years of clinical experience, and a radiologist specializing in ra-
diology. The final number of samples for the two image datasets of different modalities is 2430, respectively.
In this paper, 1000 PET images and 1000 CT images are selected as the training set, and 400 are selected as
the test set. The labels of the images are manually drawn by two clinicians. The data is transformed into JPG
format by algorithms, and the image is adjusted to 356 <356 pixels. These pre-processing steps are designed
to improve image quality and adapt to the training requirements of neural networks.

Brain MRI/PET images. This dataset comes from Harvard Medical dataset. 269 MRI images and 269 PET
images are selected from this dataset. In order to expand the training dataset, this paper applies data aug-
mentation to the MR-PET images, which generates 807 MRI images and 807 PET images. In this paper, 600
MRI images and 600 PET images are selected as the training set, and 200 MRI images and 200 PET images
are selected as the test set. The size of the training image is 256 x 256.

Experimental environment

Random seed: All experiments use a fixed random seed (seed = 42). Data split: Training/validation/test =
74%/10%/16%. Early stopping: Monitored metric = validation QAB/F; patience = 10, min_delta = le-4. During
training, we use a batch size of 8 and the Adam optimizer. The initial learning rate is 0.01, and it is reduced by
10% every 5 epochs. Training runs for 80 epochs. Hardware Environment: The processor is Inetl(R) Xeon(R)
Gold 5218 CPU @ 2.30GHz, Memory: 64GB, GPU: NVIDIA TITAN RTX. Software Environment: Windows
Server 2019 Datacenter 64-bit operating system, Pytorch 1.12.1 deep learning framework, Python version 3.7.12,
CUDA version 11.3.58.
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Comparison experiment and evaluation metrics

Comparison experiment design

In order to verify the effectiveness of the Long-Range Correlation-Guided Dual-Encoder Fusion Network
for Medical Images, two sets of comparative experiments are conducted in the PET/CT image dataset of lung
tumors. The first set of experiments is compared with decomposition transformation methods, including method
1: image fusion method based on NSCT!2 Method 2: LatLRR'?, the second set of experiments is compared
with deep learning methods, including Method 3: Multi-modal image fusion method EMMA!*. Method 4:
Unsupervised DIF-Net!'® based on encoder-decoder. Method 5: DATFuse!®. Method 6: Fusion method based on
dense Res2net and dual non-local attention model, Res2Fusion®. Method 7: U2Fusion!”. Method 8: GAN-FM!8.
Method 9: CDDFuse'®. In the brain MRI/PET image dataset, the fusion results of 6 deep learning-based methods
are compared. Method 1: CDDFuse!®; Method 2: DATFuse!®; Method 3: EMM A% Method 4: MATR?’; Method
5: U2Fusion!’; Method 6: PLAFusion?!; Method 7: DDBFusion?%; Method 8: MMIF%; Method 9: MURF24. To
ensure the fairness of the comparison, all parameter values of the above methods are set to the default values
specified by their authors.

In this paper, 8 evaluation metrics widely used in the field of image fusion are used, including Information
Entropy (IE)*, Average Gradient (AG)?, Standard Deviation (SD)?, Spatial Frequency (SF)?, Sum of the
Correlations of Differences (SCD)'?, Visual Information Fidelity (VIF)?, Edge Preservation Values Q*¥F*, and
Edge Intensity (EI)*!. Among them, IE is used to measure the randomness or variation of pixel values in an
image. AG is used to represent image sharpness, reflecting the richness of texture details in the image. SD is used
to measure the degree of variation in pixel values and the difference in brightness, reflecting the image’s contrast
and details. SF describes the frequency and periodicity of brightness or color changes at different locations in
the image, indicating texture and detail information. SCD evaluates the image fusion quality by comparing the
structure, content, and distortion levels between the original images. VIF is used to assess the ability of the image
to retain original information during transmission or processing. QA®'F reflects the visual information quality in
the fused image. All these metrics are positively correlated with image fusion quality, meaning that the higher
the value of the evaluation metric, the better the fusion quality.

Comparison experiment

In order to verify the validity of the Long-Range Correlation-Guided Dual-Encoder Fusion Network for
Medical Images, 9 comparative experiments are carried out. In Section “CT lung window image and PET image
group’, 10 methods are qualitatively evaluated for 200 pairs of CT lung window images and PET images, and 8
evaluation metrics are quantitatively evaluated for the fused images. In Section “CT mediastinal window image
and PET image group’, 10 methods are qualitatively evaluated for 200 pairs of CT mediastinal window images
and PET images, and 8 evaluation metrics are quantitatively evaluated for the fused images. In Section “MRI
brain image and PET image group’, 10 methods are qualitatively evaluated for 100 pairs of MRI brain images
and PET images, and 8 evaluation metrics are quantitatively evaluated for the fused images.In Section “Ablation
experiment 4: ablation of pooling size”, ablation experiments are performed on the pooling size.

CT lung window image and PET image group

In this section, 200 pairs of CT lung window images and PET images are divided into 5 groups, with 40 pairs of
CT lung window images and PET images in each group, and 10 comparison methods are used for comparison. 5
groups of visualization fusion results are selected, and the fusion results are shown in Fig. 4. In Fig. 4, columns 3

EMMA DIF-Net DATFuse Res2Fusion  U2Fusion CDDFuse

Figure 4. The comparison experiments fusion results of CT lung window images and PET images. Method
1: NSCT; Method 2: LatLRR; Method 3: EMMA; Method 4: DIF-Net; Method 5: DATFuse; Method 6:
Res2Fusion; Method 7: U2Fusion; Method 8: GAN-FM; Method 9: CDDFuse; Method 10: Ours.
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Image | Methods |IE |AG |sD |SE |scp |vIF |Q*"/F | g1
NSCT 656 | 7.55 | 31.61 | 22.79 | 1.65 | 0.51 | 0.48 5341
LatLRR | 6.83 | 524 | 3298 | 1836 | 1.62 | 0.51 | 0.41 4185
EMMA | 548 | 464 | 21.08 | 1639 | 116 | 039 | 0.30 37.52
DIF-Net | 5.89 | 461 | 3227 | 1573 | 157 | 045 | 0.26 36.76
DATFuse | 579 | 479 | 2652 | 20.15 | 141 | 0.40 | 0.31 36.60

! Res2Fusion | 5.45 | 443 | 2354 | 21.08 | 131 | 043 | 034 | 36.46
U2Fusion | 6.62 | 639 | 33.82 | 17.62 | 156 | 047 | 0.42 | 49.27
GAN-FM 6.47 | 551 |23.87 | 17.50 | 1.41 | 0.41 | 0.24 39.32
CDDFuse | 6.18 | 7.28 | 28.68 | 25.10 | 121 | 034 | 0.49 | 63.38
Ours 7.02 | 7.95 | 33.60 | 2647 | 1.67 | 0.55 | 0.55 | 65.32
NSCT 7.09 | 7.46 | 36.44 | 25.05 | 1.54 | 0.53 | 0.57 62.03
LatLRR | 671 | 535 | 3532 | 1848 | 146 | 0.54 | 045 | 46.13
EMMA | 527 | 421 | 2087 | 16.10 | 099 | 039 | 0.24 34.04
DIF-Net 6.36 | 5.17 | 35.14 | 16.71 | 1.43 | 0.53 | 0.33 43.24
DATFuse | 567 | 432 | 23.61 | 19.65 | 118 | 038 | 027 33.82

2 Res2Fusion | 5.46 | 430 | 23.68 | 2047 | 132 | 0.48 | 0.32 35.87
U2Fusion | 6.90 | 6.63 | 35.69 | 1738 | 140 | 0.53 | 0.48 54.35
GAN-FM 6.44 | 5.68 | 2545 | 18.16 | 1.23 | 0.44 | 0.24 41.87
CDDFuse | 628 | 7.47 | 2938 | 25.26 | 122 | 034 | 048 | 62.66
Ours 7.01 | 8.08 | 37.28 | 26.33 | 157 | 0.57 | 0.58 | 67.19
NSCT 6.84 | 701 | 3287 | 25.95 | 1.62 | 0.60 | 0.51 55.73
LatlRR | 6.68 | 4.96 | 33.09 | 17.62 | 157 | 0.49 | 0.40 | 41.45
EMMA | 528 | 435 | 20.15 | 1735 | L14 | 039 | 0.25 3447
DIF-Net | 6.18 | 471 | 3539 | 1570 | 152 | 0.50 | 0.28 38.67
DATFuse | 5.73 | 454 | 2447 | 2060 | 135 | 035 | 0.27 34.36

3 Res2Fusion | 539 | 431 | 22.70 | 2066 | 143 | 0.48 | 0.32 35.83
U2Fusion 6.79 | 6.25 | 36.43 | 17.16 | 1.50 | 0.51 | 0.43 50.10
GAN-FM | 636 | 537 | 23.82 | 17.92 | 136 | 038 | 0.20 38.23
CDDFuse | 6.05 | 7.63 | 28.08 | 2513 | 127 | 035 | 048 | 62.90
Ours 7.05 | 7.86 | 36.50 | 26.62 | 1.63 | 0.61 | 0.56 63.72
NSCT 7.16 | 9.19 | 2972 | 26.68 | 1.67 | 0.43 | 0.52 | 72.14
LalRR | 671 | 6.09 | 31.20 | 19.07 | 163 | 0.41 | 0.43 51.86
EMMA 5.75 | 5.15 | 21.25 [ 16.91 | 1.30 | 0.33 | 0.23 42.30
DIF-Net | 644 | 581 |32.26 | 1692 | 160 |0.42 | 029 | 47.86
DATFuse | 5.89 | 481 | 21.75 | 19.70 | 140 | 0.28 | 0.24 38.14

¢ Res2Fusion | 5.63 | 4.74 | 22.79 | 2040 | 155 | 0.41 | 0.28 39.71
U2Fusion | 7.04 | 7.64 | 32.12 | 1871 | 157 | 0.43 | 046 | 62.77
GAN-FM | 684 | 673 | 2422 | 19.10 | 147 | 035 | 023 | 49.81
CDDFuse | 6.65 | 9.14 | 31.06 | 26.42 | 138 | 0.28 | 0.48 74.89
Ours 721 |9.24 | 3251 | 27.75 | 1.68 | 0.44 | 053 | 75.39
NSCT 6.92 8274038 | 27.85 | 1.61 | 0.56 | 057 | 59.41
LatLRR | 6.67 | 556 | 39.57 | 19.04 | 156 | 0.49 | 043 | 44.47
EMMA 5.48 | 4.50 | 24.05 | 16.21 | 1.12 | 0.39 | 0.27 37.07
DIF-Net | 6.13 | 491 | 34.66 | 1578 | 151 | 0.55 | 0.31 41.14
DATFuse | 5.75 | 457 | 23.23 | 2016 | 118 | 035 | 0.27 3531

> Res2Fusion | 5.48 | 4.34 | 24.23 | 20.59 | 1.29 | 0.49 | 0.33 36.20
U2Fusion | 6.73 | 648 | 36.05 | 17.68 | 1.50 | 0.52 | 0.47 54.03
GAN-FM | 647 | 565 | 2539 | 1829 | 124 | 042 | 024 | 4224
CDDFuse 6.13 | 7.54 | 30.08 | 28.07 | 1.23 | 0.37 | 0.48 62.89
Ours 7.02 | 8.48 | 42.78 | 28.60 | 1.70 | 0.59 | 0.59 | 69.78

Table 1. The comparison experiments evaluation metrics of CT lung window images and PET images (Bold:
best; Bolditalic: second best).
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Figure 5. Histogram of the evaluation metrics of CT lung window fusion images.
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and 4 are results of the first set, and columns 5 through 12 are results of the second set. Table 1 shows the average
results of evaluation metrics for each group of fused images. Among them, the best evaluation metric value is
represented in red, and the second-best evaluation metrics are represented in blue. The histogram of the average
evaluation metrics for the fused images is shown in Fig. 5.

As shown in Fig. 4, Methods 2, 3, 6, and 9 generate relatively clear fused images, but Methods 1 and 9 suffer
from overly high brightness, weak lesion information, and unclear textures, making it difficult to accurately
identify the detailed lung bronchial structures in the CT source images. Methods 3 and 7 accurately locate
the lesion areas, but their contrast is low, resulting in the lesion is not prominent. Among them, Method 3 is
severely exposed, which impairs the observation of details. Method 7 enables better retain the edge and texture
information of CT source images, but its lesion information is not obvious. Method 1 generates fusion images
with clear lesions but its ability to retain gradient information is poor, which makes it difficult to recognize edge
and bone information in CT source images. The fusion images obtained by methods 4 and 8 are generally dark
with poor visual effects. Moreover, the lesion information perception ability of method 8 is weak, which makes
it difficult to locate the lesion area effectively. Methods 5 and 7 result in fusion images that are blurry with high
brightness, resulting in the contrast between the region information and the background region information is
not obvious. In contrast, the method proposed in this paper not only retains the edge and contour information
from the CT source images effectively but also enhances the lesion information from the PET source images.

As shown in Table 1 and Fig. 5, there is little difference between the proposed method and NSCT in IE
and SD. Compared with the highest value of the comparison method, the proposes method improves by an
average increase of 4.55%, 5.64% and 4.49%, respectively, and compared with the lowest value of the comparison
method, the proposed method improves by an average of 4.55%, 5.64%, and 4.49%, respectively. Therefore, the
proposed method in this paper shows better performance in fusing CT lung window images and PET images.

CT mediastinal window image and PET image group
In this section, 200 pairs of CT lung window images and PET images are divided into 5 groups, with 40 pairs
of CT mediastinal window images and PET images in each group, and 10 comparison methods are used for
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Figure 6. The comparison experiments fusion results of CT mediastinal window images and PET images.
Method 1: NSCT; Method 2: LatLRR; Method 3: EMMA; Method 4: DIF-Net; Method 5: DATFuse; Method 6:
Res2Fusion; Method 7: U2Fusion; Method 8: GAN-FM; Method 9: CDDFuse; Method 10: Ours.

comparison. 5 groups of visualization fusion results are selected, and the fusion results are shown in Fig. 6. In
Fig. 6, columns 3 and 4 are results of the first set, and columns 5 through 12 are results of the second set. Table 2
shows the average results of evaluation metrics for each group of fused images. Among them, the best evaluation
metric value is represented in red, and the second-best evaluation metric is represented in blue. The histogram
of the average evaluation metrics for the fused images is shown in Fig. 7.

As shown in Fig. 6, Methods 1, 4, and 10 are capable of generating clear fusion images and accurately
locating the lesion area. However, the images from Methods 1 ,4 and 7 exhibit low overall contrast and blurred
details, with a lack of clear edge information. Method 2 generates fused images with a clear lesion area and
high contrast. However, the exposure is overly high, the edge and texture information cannot be clearly and
accurately identified. Method 8 generates fused image that lacks prominent lesion information in the lesion area.
The lesion information of fusion images generated by methods 3 and 6 is weak and unclear. The fusion images
generated by method 5 and method 9 are blurred, the visual effect is poor, and the contrast between the lesion
information and the background information is not obvious. Method 10 generates fused images that are clearer,
and the contrast between the lesion area and the background area is obvious, which enables effectively highlights
the lesion area. It not only retains the bone and edge contour information of the CT source images, but also
highlights the lesion information of the PET source image.

As shown in Table 2 and Fig. 7, there is little difference between the proposed method and NSCT in SCD,
and CDDFuse in EI. However, our method performs better in AG, QAPF, and EI, with average increases of
4.47%, 6.74%, and 8.74% over the highest values of the comparison methods, and average increases of 112.41%,
168.75%, and 87.85% over the lowest values. Therefore, our method achieves clear edge textures and lesion
regions, resulting in good visual effects in the fused images.

MRI brain image and PET image group

In this section, 100 pairs of MRI brain images and PET images are divided into 5 groups, with 20 pairs of MRI
brain images and PET images in each group, and 10 comparison methods are used for comparison. 5 groups of
visualization fusion results were selected, and the fusion results are shown in Fig. 8. Table 3 shows the average
results of evaluation metrics for each group of fused images. Among them, the best evaluation metric value is
represented in red, and the second-best evaluation metric is represented in blue. The histogram of the average
evaluation metrics for the fused images is shown in Fig. 9.

As shown in Fig. 8, Methods 2, 3, 4, and 9 better retain the color features of the PET images, but the structural
details of the MRI are insufficient, the tissue level of the brain is not obvious, and the contrast is low, which leads
to the unclear distinction between the lesion area and the surrounding structure. Methods 1, 6 and Method
10 not only retain the color information of PET, but also well preserve the structural details of MRI. However,
method 10 has higher contrast and clear edges, and has a clear sense of brain hierarchy and rich structural
information.

As shown in Table 3 and Fig. 9, there is little difference between the proposes method and CDDF in AG, and
DATFuse in IE and EI. However, our method performs better in SE VIF and QABE with average increases of
3.88%, 15.71%, and 7.99% over the highest values of the comparison methods, and average increases of 123.08%,
89.25%, and 201.54% over the lowest values. Therefore, this paper gains a clear edge textures and lesion regions,
resulting in good visual effects in the fused images.
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Image | Methods |IE |AG |SD |SF |scD |VIF | Q*®/" | g
NSCT 680 | 9.29 | 3452 | 2901 | 1.68 |049 |052 | 6526
LatLRR | 6.77 | 624 | 37.63 | 2021 | 165 |0.52 | 046 | 52.72
EMMA | 627 | 526 |29.19 | 1612 | 123 | 048 | 026 | 43.66
DIE-Net | 635 | 537 |30.90 | 16.11 | 160 | 049 | 027 | 44.09
DATFuse | 638 | 590 | 2722 | 2175 | 143 | 033 | 026 | 45.66

! Res2Fusion | 6.12 | 537 | 3515 | 2294 | 1.06 | 050 | 032 | 45.15
U2Fusion | 6.81 | 7.36 | 3552 | 19.15 | 159 | 046 | 047 | 60.12
GAN-FM | 678 | 6.15 | 2780 | 17.94 | 1.53 | 0.44 | 025 | 46.04
CDDFuse | 653 | 8.63 | 36.76 | 30.24 | 118 | 046 | 0.44 | 68.47
Ours 7.38 | 9.85 | 3891 |30.30 | 1.75 | 0.51 |0.58 | 78.53
NSCT 6.16 7.45 | 37.25 | 28.09 | 1.59 | 0.53 | 0.55 58.35
LatLRR | 634 | 575 | 37.78 | 1997 | 1.52 | 0.60 | 049 | 47.59
EMMA | 551 | 433 | 2133 | 1455 | 091 |045 |026 | 3622
DIF-Net 5.84 5.06 | 33.14 | 16.90 | 1.50 | 0.53 | 0.30 45.66
DATFuse | 582 | 531 | 27.69 | 2080 | 132 | 037 | 028 | 4L11

2 Res2Fusion | 538 | 5.05 | 2855 | 2339 | 052 | 039 | 022 | 40.56
U2Fusion | 620 | 659 | 36.63 | 1842 | 149 | 051 | 048 | 5278
GAN-EM | 6.36 | 541 | 2434 | 1699 | 133 | 048 | 024 | 39.57
CDDFuse | 6.02 | 7.82 | 30.61 | 29.65 | 0.75 | 0.51 | 048 | 61.79
Ours 6.97 | 887 |37.93 |29.86 | 1.64 | 0.59 | 0.61 | 70.99
NSCT 584 | 8.18 | 3391 | 2879 | 165 | 0.50 | 0.56 | 57.30
LatLRR | 6.00 | 553 | 34.18 | 2036 | 162 | 0.56 | 049 | 4681
EMMA | 560 | 479 |23.11 | 1644 | 102 | 045 | 027 | 39.08
DIENet | 555 | 504 |3047 | 1727 | 158 |049 | 031 | 4039
DATFuse | 5.64 | 524 | 2505 | 2130 | 140 | 033 | 028 | 40.04

} Res2Fusion | 472 | 424 | 3292 | 2239 | 094 | 048 | 030 | 39.66
U2Fusion 5.93 6.30 | 35.11 | 18.85 | 1.54 | 0.45 | 0.48 51.21
GAN-EM | 6.20 | 575 | 2389 | 1884 | 145 | 041 | 026 | 42.34
CDDFuse | 6.11 | 8.35 | 3346 | 31.18 | 090 | 045 | 047 | 65.74
Ours 6.67 8.57 | 35.65 | 31.35 | 1.71 | 0.57 | 0.60 68.39
NSCT 642 | 9.25 | 4025 | 2880 | 159 | 0.53 | 0.58 | 64.98
LatLRR | 647 | 6.18 | 40.28 | 20.13 | 152 | 0.55 | 049 | 5104
EMMA 5.93 498 | 25.06 | 15.80 | 0.98 | 0.44 | 0.25 41.54
DIE-Net | 603 | 526 | 3493 | 1665 | 151 | 051 |029 | 4285
DATFuse | 599 | 545 | 2863 | 21.14 | 132 | 0.34 | 026 | 42.06

¢ Res2Fusion | 539 | 495 | 33.06 | 2251 |0.82 | 037 |0.19 | 4114
U2Fusion | 645 | 7.16 | 40.16 | 18.68 | 150 | 048 | 049 | 57.02
GAN-FM | 6.66 | 6.12 | 27.89 | 18.16 | 140 | 044 | 024 | 44.40
CDDFuse | 626 | 8.32 | 3207 | 30.51 | 0.87 | 050 | 047 | 65.61
Ours 703 | 9.37 | 40.54 | 30.81 | 1.67 | 056 |0.60 | 73.33
NSCT 673 | 12.30 | 40.91 | 32.56 | 1.61 | 0.50 | 0.61 | 87.40
LatLRR | 6.93 | 859 |37.75 | 2261 | 153 | 049 | 049 | 64.10
EMMA | 603 | 606 | 2841 | 1670 | 1.02 | 0.37 | 022 | 4867
DIF-Net | 628 | 6.89 |3278 | 17.65 | 152 | 046 | 025 | 5199
DATFuse | 5.96 | 557 | 29.66 | 2130 | 131 | 035 | 031 | 4393

> Res2Fusion | 5.48 434 | 24.23 | 20.59 | 0.84 | 0.06 | 0.34 45.90
U2Fusion | 6.75 | 9.92 | 40.01 | 2253 | 159 | 046 | 050 | 73.62
GAN-EM | 687 | 7.75 | 2577 | 1983 | 135 | 0.36 | 020 | 5297
CDDFuse 6.72 | 12.15 | 38.80 | 31.51 | 0.86 | 0.39 | 0.56 90.85
Ours 745 | 12.45 | 41.92 | 32.61 | 1.70 | 051 |0.62 | 92.03

Table 2. The comparison experiments evaluation metrics of CT mediastinal window images and PET images
(Bold: best; Bolditalic: second best).
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Figure 7. Histogram of the evaluation metrics of CT mediastinal window fusion images.
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Ablation experiment

In order to verify the effectiveness of each module of the Long-Range Correlation-Guided Dual-Encoder Fusion
Network for Medical Images, 3 CT lung window images and PET images, 3 CT mediastinal window images
and PET images, and 3 MRI brain images and PET images are selected for ablation experiments to verify the
effectiveness of the proposed method. Expl: Remove all the modules design in this paper, and use the basic
encoder-decoder network (Base) for feature extraction, and adopts the direct addition fusion strategy for fusion.
Exp2: Dual-encoder Single-decoder network architecture is used to verify the effectiveness of enhancing fine-
grained features from different modals. Exp3: Based on Exp2, CMFEM is added to validate its effectiveness.
Exp4: Based on Exp3, only the last stage of CMFEM - LCEM is used for feature fusion. Exp5: Long-Range
Correlation-Guided Dual-Encoder Fusion Network for Medical Images. The details are shown in Table 4.

Ablation experiment 1: CT lung window image and PET image

In Fig. 10, the fusion image is generated by Exp1 retains some edge information from the CT source image and
lesion information in the PET source image. However, because the dense aggregate encoder, CMFEM and LCFM
modules are not included, the direct addition fusion strategy is adopted, which leads to the lesion area is not
significant enough, and the contrast between the lesion and the background is low. In contrast, the fusion images
from Exp2 show improve edge and texture information, indicating that the dense Aggregate dual-encoder is
more effective at preserving the structural details. However, due to the lack of CMFEM and LCEM modules,
the intensity distribution of the image is uneven, resulting in unclear lesion information. In the fusion image of
Exp3, the lesion area is more prominent, and the contrast between the lesion and the background is significantly
improved, which indicates the effectiveness of CMFEM module in capturing image intensity distribution.
However, due to the lack of LCFM module, the edge and intensity information extracted by the fusion strategy
of direct addition is insufficient, resulting in high overall image brightness. Compared with Exp3, Exp4 fusion
image improves brightness, but there are still artifacts around the lesion, and the edge and detail information
are poor. Exp5, the method proposed in this paper generates a fusion image that effectively preserves edge and
texture information, with the lesion area clearly visible.
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Figure 8. The comparison experiments fusion results of MRI brain images and PET images. Method 1:
CDDFuse; Method 2: DATFuse; Method 3: EMMA; Method 4: MATR; Method 5: U2Fusion; Method 6:
PLAFusion; Method 7: DDBFusion; Method 8: MMIF; Method 9: MURF; Method 10: Ours.

As shown in Table 5 and Fig. 11, The evaluation metrics value of Expl1 is the lowest. Compared with Exp1, the
values of various evaluation metrics of Exp3 and Exp4 have little difference from the proposed method, but they
are all lower than the proposed method. For example, the SCD of Exp4 is second only to the proposed method.
The above results reflect that the fusion images obtained by the proposed method have certain advantages in
both subjective and objective evaluation.

Ablation experiment 2: CT mediastinal window image and PET image

The results of CT mediastinal window images and PET images ablation experiments are consistent with the
fusion results of CT lung window images and PET images ablation experiments. As shown in Fig. 12, the overall
effect of Expl fusion image is poor, the lesion area is not prominent, and the contrast is low. Exp2 retains more
edge and texture information, and CT structure information is clearer, but the brightness distribution is uneven,
resulting in local brightness distortion. In the fusion image of Exp3, the lesion area is more prominent, and the
contrast between the lesion and the background is enhanced, but the overall brightness of the image is high, and
the detail performance is still insufficient. Exp4 not only makes the lesion information more prominent, but also
improves the brightness distribution, and CT structure information is retained, but there are still artifacts and
blurring phenomena in the detailed areas. Exp5 is the method proposed in this paper. The fusion images are
clear in edges and details, the lesion area is prominent and the overall visual quality is better.

As shown in Table 6 and Fig. 13, The method in this paper is superior to the other 4 methods in 8 objective
evaluation metrics, especially in AG, VIE, QABE and EI, the method in this paper has obvious advantages over
the other 4 methods. In addition, the evaluation metrics value of Exp1 is the lowest. Exp3 and Exp4 have little
difference with this paper in each evaluation metric. For example, Exp4 is only secondary to this method on SD,
SCD, and VIE Therefore, the fusion image obtained by the method in this paper has certain advantages in both
subjective and objective evaluation.

Ablation experiment 3: MRI brain image and PET image

As show in Fig. 14, the overall effect of Exp1 fusion images is poor and the contrast is low. The edge and texture
information of the fusion image obtained by Exp2 are improved, but the brightness distribution is uneven.
The fusion images obtained by Exp3 shows more prominent lesion areas, but blurred details. The fusion image
obtained by Exp4 loses MRI structural information and has artifacts. The fusion image of Exp5 has the best
performance in edge sharpness and contrast, and has rich details, and has a good visual effect.

As shown in Table 7 and Fig. 15, The method in this paper is superior to the other 4 methods in 8 objective
evaluation metrics, especially in SD, VIE QAPE and EI, the method in this paper has obvious advantages over
the other 4 methods. In addition, the evaluation metrics value of Expl is the lowest. Exp3 has little difference
with this paper in each evaluation metric. Therefore, the fusion image obtained by the method in this paper has
certain advantages in both subjective and objective evaluation.

Ablation experiment 4: ablation of pooling size

When calculating the correlation among modalities, we perform pooling operations on the feature map to reduce
parameters and computational load. We selected three Pooling sizes, namely 8 x8, 16 x16 (Our), and 32x 32, and
provided a comparison between the FLOPs/ parameter and the fusion metrics (IE, AG, SD, SE, SCD, VIE QAB/E,
EI). The experimental results are listed in Tables 8 and 9. When T=16, FLOPS and Parameters are only 94.75G /
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Image | Methods |IE |AG |SD |SF |scD |VIF | Q*®/" | g
CDDE 441 | 10.28 | 76.61 | 30.25 | 113 | 0.64 | 0.68 89.06
DATFuse | 535 | 10.02 | 67.73 | 29.79 | 093 | 0.55 | 0.63 91.90
EMMA | 5.44 | 9.04 | 74.02 | 25.10 | 0.98 | 0.60 | 0.60 83.11
MATR 478 | 893 | 7041 | 2527 | 043 | 0.71 | 0.74 80.69
U2Fusion | 458 | 5.10 | 4079 | 1424 | 0.35 | 049 | 0.27 47.79

! PLAFusion | 491 | 1012 | 73.21 | 2832 | 1.07 | 0.67 | 0.64 88.26
DDBEusion | 455 | 9.01 | 66.13 | 19.78 | 0.46 | 0.56 | 0.34 7152
MMIF 487 | 10.11 | 70.94 | 2807 | 0.97 | 0.71 | 065 89.94
MURE 534 | 10.04 | 73.94 | 2952 | 0.68 | 0.44 | 0.56 81.21
Ours 5.51 | 10.61 | 79.20 | 29.82 | 1.14 | 0.82 | 0.79 92.21
CDDF 4,51 | 10.49 | 79.82 | 30.71 | 1.09 | 0.63 | 0.68 90.85
DATFuse | 5.47 | 1021 | 68.60 | 30.10 | 0.90 | 0.56 | 0.63 93.91
EMMA | 540 | 9.19 | 7895 | 2543 | 1.05 | 0.60 | 0.59 84.66
MATR 4.86 9.11 | 71.07 | 25.66 | 0.40 | 0.71 | 0.73 82.46
U2Fusion 4.57 5.13 | 41.01 | 14.14 | 0.39 | 0.49 | 0.26 48.21

2 PLAFusion | 4.17 | 10.14 | 77.62 | 30.11 | 0.97 | 0.61 | 0.67 90.16
DDBFusion | 4.61 6.17 | 46.72 | 17.34 | 0.51 | 0.59 | 0.34 85.13
MMIF 491 | 9.84 | 7731 | 2897 | 094 | 064 | 0.66 89.19
MURE 536 | 9.84 | 74.85 | 2949 | 0.65 | 0.44 | 0.56 83.19
Ours 5.50 | 10.83 | 80.16 | 33.34 | 1.12 | 0.82 | 0.79 9421
CDDF 478 | 11.04 | 7724 | 30.51 | 1.12 | 061 | 0.68 94.91
DATFuse | 5.60 | 10.74 | 70.54 | 30.08 | 0.87 | 0.54 | 0.62 96.76
EMMA | 5.60 | 946 | 80.17 | 2571 | 0.94 | 0.58 | 0.59 87.70
MATR 503 | 941 | 7122 | 2603 | 036 | 0.70 | 0.72 85.18
UFusion | 470 | 5.09 | 39.97 | 13.76 | 0.57 | 0.48 | 0.24 48.03

’ PLAFusion | 4.69 | 10.86 | 7825 | 2931 | 104 | 0.61 | 0.70 91.73
DDBFusion | 4.31 6.29 | 40.39 | 19.43 | 0.62 | 0.56 | 0.31 51.14
MMIE 471 | 927 | 7981 | 2991 | 107 | 062 | 0.69 90.47
MURE 548 | 1049 | 75.56 | 28.16 | 0.62 | 0.43 | 055 78.25
Ours 5.75 | 11.27 | 80.20 | 30.89 | 1.14 | 0.81 | 0.78 97.73
CDDF 478 | 11.55 | 77.24 | 31.25 | 1.00 | 061 | 0.68 98.87
DATFuse | 5.66 | 1158 | 71.17 | 30.43 | 0.86 | 0.54 | 0.62 | 100.30
EMMA 5.65 9.78 | 76.15 | 26.17 | 1.04 | 0.58 | 0.59 90.73
MATR 518 | 975 | 71.04 | 2640 | 032 | 0.69 | 0.72 88.21
U2Fusion | 479 | 555 | 42.77 | 1467 | 030 | 0.48 | 0.26 52.19

¢ PLAFusion | 5.01 | 10.64 | 7531 | 29.81 | 0.91 | 0.63 | 0.66 98.17
DDBFusion | 523 | 596 | 4538 | 1957 | 042 | 0.51 | 0.46 62.19
MMIE 497 | 10.15 | 7461 | 29.74 | 088 | 061 | 0.69 97.96
MURE 554 | 1025 | 7625 | 30.12 | 0.59 | 0.42 | 0.54 79.27
Ours 592 | 11.70 | 79.68 | 34.34 | 1.06 | 0.80 |0.78 | 101.06
CDDF 490 | 11.82 | 7641 | 31.38 | 1.00 | 061 | 0.68 10116
DATFuse | 5.72 | 1158 | 71.17 | 3043 | 0.86 | 0.54 | 0.62 | 102.05
EMMA | 5.72 | 10.08 | 76.68 | 2681 | 1.05 | 0.59 | 0.59 93.60
MATR 528 | 9.98 | 70.62 | 2667 | 027 | 0.69 | 0.72 90.48
U2Fusion | 487 | 572 | 4357 | 1495 | 0.36 | 049 | 0.27 53.88

> PLAFusion |5.06 | 11.21 | 75.64 | 29.59 | 0.86 | 0.62 | 0.69 100.98
DDBFusion | 492 | 631 | 5198 | 21.75 | 049 | 045 | 0.47 59.83
MMIE 501 | 1076 | 75.67 | 29.87 | 0.89 | 0.64 | 0.66 99.29
MURF 5.61 9.56 | 75.31 | 28.46 | 0.55 | 0.41 | 0.54 80.15
Ours 597 | 12.00 | 79.06 | 31.69 | 1.14 | 0.80 |0.78 | 103.67

Table 3. The comparison experiments evaluation metrics of MRI brain images and PET images (Bold: best;
Bolditalic: second best).
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Figure 9. Histogram of the evaluation metrics of MRI brain images and PET images.

Expl v X X X X
Exp2 v v X X X
Bxp3  |v |« v x X
Exp4 v v v v X
Exp5 v v v X v

Table 4. Ablation experiment module setup, where v' means the module is included and x means the module
is not included.

556.8K; Compared with T=32, FLOPs decreased by 29.9%, parameters decreased by 22.7%, while the indicators
were better or remained the same. Compared with T=8, although FLOPs increased by 12%, the metrics have
been comprehensively improved. In conclusion, T=16 strikes the best balance between computational cost and
fusion quality, so we set it as the default setting in the paper.

Conclusion and future work

Conclusion

Aiming at the existing multimodal medical image fusion methods ignore the feature dependence among
modals, and the feature fusion ability with different granularity is not strong. This paper proposes a Long-Range
Correlation-Guided Dual-Encoder Fusion Network for Medical Images. Firstly, a Long-Range Correlation-
Guided Dual-Encoder Fusion Network for Medical Images is designed, which aggregates multi-scale features
layer by layer and captures feature dependencies between modals, it achieves an effective fusion of different
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Figure 10. The ablation experiments fusion results of CT lung window images and PET images.

Expl 49 |5.67 | 2744 | 24.68 | 1.34 |0.35 | 0.35 43.10
Exp2 5 577 | 27.82 | 26.14 | 1.50 | 0.38 | 0.37 44.97
1 Exp3 6.73 | 7.36 | 34.22 | 26.47 | 1.57 | 0.58 | 0.46 49.11
Exp4 6.37 | 6.26 | 35.07 | 24.78 | 1.61 | 0.56 | 0.40 56.45
Exp5 7.05 | 7.86 | 36.50 | 26.62 | 1.63 | 0.61 | 0.56 63.72
Expl 524 |6.90 | 27.98 | 23.60 | 1.37 [0.33 | 0.31 55.22
Exp2 595 | 7.13 | 28.66 | 27.26 | 1.62 | 0.36 | 0.36 55.74
2 Exp3 6.91 | 8.85 | 31.17 | 27.41 | 1.60 | 0.39 | 0.42 60.26
Exp4 6.89 | 7.78 | 31.14 | 24.51 | 1.65 | 0.41 | 0.38 68.57
Exp5 7.21 | 9.24 | 32.51 | 27.75 | 1.68 | 0.60 | 0.53 75.39
Expl 505 | 6.11 | 2695 | 23.11 | 1.04 |0.32 | 0.35 49.78
Exp2 545 | 6.56 | 34.66 | 27.32 | 1.56 |0.44 | 0.43 52.66
3 Exp3 6.75 | 7.89 | 38.22 | 27.93 | 1.60 | 0.48 | 0.46 52.86
Exp4 6.34 | 644 | 41.95 | 23.53 | 1.67 | 0.53 | 0.42 61.3
Exp5 7.02 | 8.48 | 42.78 | 28.6 | 1.70 |0.59 | 0.59 69.78

Table 5. The ablation experiments evaluation metrics values of CT lung window images and PET images
(Bold: best; Bolditalic: second best).

IE —s— Expl
—e— Exp2
=s— Exp3
—v— Exp4
—+— Expb

SD

IE —a— Expl
1.5 —e— Exp2
=—s— Exp3
=v— Exp4
—+— Expb

Image 3

Figure 11. The ablation experiments evaluation metrics coeflicient radar maps of CT lung window images and

PET images.
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Figure 12. The ablation experiments fusion results of CT mediastinal window images and PET images.

Expl 6.7 7.12 | 3247 | 2346 | 1.23 |04 |0.32 57.65
Exp2 6.71 | 8.76 | 36.81 |29.57 | 1.68 | 0.48 | 0.46 68.94
1 Exp3 721 | 9.69 | 3545 (29.8 | 1.6 0.42 | 0.44 69.84
Exp4 7.08 | 7.69 | 37.08 | 24.88 | 1.69 | 0.48 | 0.38 58.85
Exp5 7.38 | 9.85 (3891 303 |1.75 |0.51 | 0.58 78.53
Expl 6.44 | 7.2 129.68 [24.74 | 121 |0.39 |04 52.19
Exp2 6.52 | 7.99 | 33.07 |28.34 | 1.56 |0.42 | 0.49 63.1
2 Exp3 6.82 | 891|367 |2797 |1.56 |0.47 |0.42 65.1
Exp4 6.7 7.55 | 39.8 | 2547 | 1.61 |0.49 | 041 54.39
Exp5 7.03 | 9.17 | 40.54 | 28.81 | 1.67 | 0.55 | 0.6 73.33
Expl 6.48 | 8.95 | 28.58 |24.26 | 0.96 | 0.35 | 0.36 61.01
Exp2 6.54 | 10.65 | 38.64 | 30.7 | 1.6 0.42 | 0.44 77.47
3 Exp3 7.1 | 1234 |37.79 | 31.99 | 1.56 | 0.43 | 0.39 78.91
Exp4 712 | 9.5 |41.33 |26.82 | 1.65 | 0.41 | 0.41 64.13
Exp5 7.45 | 12.45 | 41.92 | 32.61 | 1.7 | 0.45 | 0.58 92.03

Table 6. The ablation experiments evaluation metrics values of CT lung window images and PET images
(Bold: best; Bolditalic: second best).

Figure 13. The ablation experiments evaluation metrics coefficient radar maps of CT mediastinal window
images and PET images.
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Figure 14. The ablation experiments fusion results of MRI brain images and PET images.

Image | Methods |IE |AG |SD |SE |scp |vIF [Q*"/" |EI
Expl | 472 | 667 | 5669 | 1991 | 0.54 | 0.60 | 0.24 50.68
Exp2 | 502 | 972 | 6534 | 2461 | 073 | 061 | 045 71.66
1 Exp3 | 5.10 | 9.98 | 67.08 | 25.01 | 0.74 | 0.62 | 0.46 72.78
Expd | 497 | 7.29 | 58.69 | 2066 | 0.55 | 0.78 | 0.25 68.00
Exp5 5.75 | 11.27 | 80.20 | 30.89 | 1.14 | 0.81 | 0.78 97.73
Expl | 483 | 602 |59.54 | 1840 | 0.59 | 0.56 | 0.24 53.11
Exp2 | 541 | 10.11 | 60.86 | 2608 | 0.72 | 0.58 | 0.38 70.64
2 Exp3 5.11 8.96 | 61.38 | 27.54 | 0.74 | 0.60 | 0.38 70.79
Expd | 509 | 717 | 6046 | 19.97 | 0.60 | 0.78 | 026 70.10
Exps | 592 | 1170 | 79.68 | 3434 | 1.06 | 0.80 | 0.78 | 101.06
Expl | 491 | 5.18 | 6024 | 19.65 | 051 | 0.55 | 0.24 54.99
Exp2 | 5.47 | 10.31 | 6428 | 2536 | 0.58 | 0.58 | 0.38 70.53
3 Exp3 | 519 | 1020 | 64.61 | 26.94 | 0.60 | 0.61 | 0.39 71.83
Expd | 515 | 580 | 6203 | 2077 | 055 | 0.79 | 025 70.97
Exp5 | 597 | 12.00 | 79.06 | 31.69 | 1.14 | 0.80 | 0.78 | 103.67

Table 7. The ablation experiments evaluation metrics values of MRI brain images and PET images (Bold: best;
Bolditalic: second best).

Figure 15. The ablation experiments evaluation metrics coefficient radar maps of MRI brain images and PET
imagess.
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Fremp size FLOPs (G) | Params (K)

8% 8 84.63 515.9
32x32 135.24 720.4
16x16 (Ours) | 94.75 556.8

Table 8. FLOPs and parameters of LCFM for different mep sizes (T'XT).

Ftempsize | JE |AG |SD |SE |SCD |VIF | QAB/F | EI

8x8 7.39 | 12.41 | 41.56 | 31.93 | 1.66 |0.47 | 0.58 91.77
32x32 7.41 | 12.46 | 41.79 | 32.11 | 1.71 | 0.49 | 0.61 91.86
16x16 (Ours) | 7.45 | 12.45 | 41.92 | 32.61 | 1.70 | 0.51 | 0.62 92.03

Table 9. Ablation experiment of ﬁ’temp sizes (T'XT).

granularity features. Secondly, a Cross-dimension Multi-scale Feature Extraction Module is designed in the
feature extraction stage, which effectively retains the coarse-to-fine grain features by extracting different scale
information. Finally, the long-range correlation coefficients of local and global features are calculated by the
Long-range Correlation Fusion Module, and the long-range dependencies between local and global features
is captured. In addition, The method presented in this paper is validated on clinical multimodal lung medical
image dataset and brain medical image dataset. On the lung medical image dataset, the evaluation metrics such
as IE, AG, Q*P'F and EI show average improvements of 4.53%, 4.10%, 6.19%, and 6.62%, respectively, compared
to the optimal performance of the other 9 methods. On the brain medical image dataset, metrics like SE, VIF, and
QABF show average improvements of 3.88%, 15.71%, and 7.99%, respectively, compared to the best performance
of the other 6 methods. The experimental results show that the medical images fused by the model exhibit
clear structures and rich texture details. This accomplishment provides valuable support for doctors’ diagnostic
assistance and preoperative preparation.

Future work

Although encoder-decoder network is widely used in the medical image fusion field. However, there are still
some problems that need further study: Firstly, due to differences in imaging principles and dynamic organ
deformation, most medical multimodal datasets have spatial registration errors; Secondly, the traditional
method only relies on image information, but it lacks multi-source data integration (Such as medical history,
doctor’s advice). Thirdly, the evaluation metrics of image fusion effect are not uniform, which leads to the lack
of algorithm comparability. Therefore, the future encoder-decoder network research for multi-modal medical
image fusion are further explored from the following directions: Firstly, combined with the cross-modal self-
supervised registration method, which improves the accuracy and robustness of image registration. Secondly,
Multi-source clinical data (such as medical history and doctor’s advice) are fused to enhance the model’s
performance. Thirdly, a unified evaluation system is important to improve the algorithms comparability.

Data Availability

1. The brain PET/MRI dataset used in this study is publicly available from the Harvard Brain Atlas: https://w
ww.med.harvard.edu/AANLIB/home.html. 2. The clinical lung PET/CT dataset is not publicly available due to
patient privacy restrictions but is available from the corresponding author upon reasonable request.
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