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In recent years, graph neural network-based community detection methods have integrated local 
structure and node attributes, incorporating various optimization strategies with notable progress. 
However, most current algorithms require predefining the number of communities, introducing human 
bias, and rely on contrastive objectives or data augmentation, leading to extra hyperparameters and 
complexity. To address these issues without sacrificing detection quality, we propose an adaptive 
community detection framework that eliminates contrastive learning and the need for pre-specified 
community numbers, simplifying training and reducing prior dependency. First, the adaptive detection 
method is introduced to ensure the identification of high-quality structural communities as reliable 
global references. Then, a novel mechanism for modeling node-community relationships is proposed, 
integrating global structure, local structure, and attribute information into a unified space. Finally, a 
reconstructed soft modularity loss is applied to optimize node-community relationships end-to-end, 
enhancing community structure without data augmentation or contrastive learning. The proposed 
approach is efficient to train and computationally lightweight, demonstrating superior detection 
efficiency and competitive accuracy across multiple graph datasets compared to traditional and recent 
deep learning methods. The code is available at https://github.com/wuanghoong/Less-is-More.git.
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Numerous complex systems in the real world are composed of interconnected entities. To uncover their 
underlying principles, such systems are often abstracted as complex network models1, including social 
networks (Facebook2, Twitter3), computer networks (the Internet, LAN4), and biological networks (gene 
regulatory networks5, protein-protein interaction networks6), among others. In a complex network, entities 
are represented as nodes, and the relationships between them correspond to edges. A set of nodes with dense 
internal connections often shares similar attributes or functions in reality. Such node clusters are referred to as 
“communities”. Communities exhibit cohesion and homogeneity internally, while connections between different 
communities are sparse and heterogeneous. Therefore, community detection has become a crucial approach for 
analyzing complex network structures and uncovering group behaviors and functional patterns.

Community detection aims to identify clusters of nodes within a network that are densely interconnected 
and share similar attributes, known as community structures, which are characterized by dense internal links 
and sparser connections between communities7. Traditional community detection methods primarily include 
techniques such as modularity optimization, spectral clustering, random walks, and label propagation8. While 
effective in small to medium-sized networks, these methods reveal significant limitations when applied to today’s 
large-scale complex networks. Many traditional approaches rely solely on topological structure, resulting in high 
computational complexity that hinders scalability. Moreover, they often overlook rich node attributes, limiting 
their ability to capture complex relational patterns in real-world networks.

In recent years, deep learning methods have emerged as a new research focus in community detection, 
leveraging strong nonlinear representation capabilities and efficient large-scale data processing9. The application 
of deep learning in this field has evolved from graph embedding to graph neural networks (GNNs). Early graph 
embedding methods10–13 mapped network nodes into low-dimensional vectors so that structurally similar 
nodes are close in the embedding space, after which standard clustering algorithms14,15 were applied to group 
these vectors. However, the inherent disconnection between the embedding and clustering stages in this two-
step paradigm motivated the shift toward end-to-end GNN frameworks, which have become the mainstream 
architecture for community detection. Typical GNN models offer diverse information aggregation schemes for 
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community detection. As a foundational work, GCN (Graph Convolutional Network)16 employs spectral graph 
convolution to aggregate neighborhood features, yet its equal-weight aggregation struggles to distinguish the 
importance of different neighbors. GAT (Graph Attention Network)17 addresses this by introducing an attention 
mechanism, enabling dynamic weighting of neighbor contributions. In contrast, GAE (Graph Autoencoder)18 
adopts an unsupervised approach, using an encoder (e.g., GCN) to learn node representations and a decoder to 
reconstruct the adjacency matrix, which helps preserve community structure in low-dimensional embeddings.

Building on these classic models, researchers have integrated advanced learning strategies with GNN 
architectures to enhance the perception and utilization of complex network information19. For instance, by 
designing contrastive tasks20–26 at the node, subgraph, or community level, GNNs can learn intrinsic structural 
patterns without relying on ground-truth labels, enabling the identification of stable community features across 
varying augmented views. Another direction involves guiding the optimization process through differentiable 
objective functions27–32. For example, some methods allow GNNs to jointly optimize both representation 
learning and community partitioning in an end-to-end manner, by transforming modularity maximization into 
a differentiable loss function33. These strategies not only expand the expressive power of GNNs in community 
detection but also promote the development of more adaptive, interpretable, and integrated solutions.

Despite significant progress in GNN-based community detection, overall performance and practical utility 
remain constrained by several core issues. First, there is an excessive reliance on specific learning strategies: current 
methods heavily depend on carefully designed graph data augmentation or contrastive learning mechanisms. 
Their performance is sensitive to the choice of augmentation strategies and the quality of sample pairs, lacking 
inherent robustness. Second, the optimization process is often overcomplicated. Many advanced models enhance 
performance by stacking multiple loss functions or introducing complex contrastive mechanisms, resulting 
in bloated model architectures, increased training difficulty, and challenges in convergence. Finally, adaptive 
capability remains insufficient: although end-to-end learning has become mainstream, practical GNN models 
that can fully adaptively determine the number of communities without any prior knowledge are still relatively 
scarce.

To address the above challenges, the main contributions of this paper are summarized as follows: 

	1.	 Adaptive Detection: By leveraging the Louvain algorithm combined with a size-based filtering strategy, the 
method adaptively extracts high-quality structural communities without pre-defined cluster numbers to 
provide reliable global structural information.

	2.	 Global-Local-Attribute Integrated Node-Community Relationship Modeling: Within a unified shared em-
bedding space, a single-layer GCN integrates local topology and node attributes to generate node representa-
tions, while structural communities are projected as structural center vectors. A soft relational matrix, con-
structed based on node-center similarity, serves as the optimization objective for community refinement and 
interpretation.

	3.	 Reconstructed Soft Modularity Objective Based on Node-Community Relations: Using the soft relational 
matrix, a reconstructed soft modularity loss is formulated, enabling end-to-end optimization of node-com-
munity affiliation probabilities without relying on contrastive learning or data augmentation. This results in 
a more streamlined and robust training process.

	4.	 Efficiency and Practical Applicability: The framework is lightweight and easy to train. Experiments on multi-
ple real-world network datasets demonstrate higher detection efficiency and competitive accuracy compared 
to both traditional and recent deep learning approaches.

Related work
GNN-based community detection
GNN-based community detection methods learn node embeddings to identify community structures. These 
approaches leverage the powerful capability of GNNs in modeling graph data, incorporating both topological 
information and node features to significantly improve detection performance. Compared to traditional 
methods, GNN-based techniques can more accurately capture complex community patterns, particularly in 
graphs with rich node attributes. Recent studies have integrated various learning strategies to optimize node 
representations, thereby enhancing the accuracy and robustness of community detection. These methods not 
only strengthen the modeling of graph structure but also exploit underlying relationships among node features 
to further refine community partitioning. CommDGI21 introduces a dual objective combining “community 
mutual information” and modularity, coupled with a differentiable soft K-means clustering layer, enabling 
end-to-end joint optimization of GNN representation learning and community detection. SGCMC22 employs 
a graph attentional autoencoder with a self-supervised mechanism to co-optimize node representations and 
affinity matrix learning, achieving end-to-end training of multi-view GNNs for soft clustering and significantly 
enhancing joint modeling of graph structure and nonlinear semantics. DCGL23 addresses generic clustering 
scenarios without prior graph structures by proposing a pseudo-siamese network that parallelizes GCN and 
autoencoder. It applies centroid-guided contrastive loss at the feature level and local-global graph contrast at the 
cluster level to explicitly optimize cluster compactness, significantly improving discriminativity and robustness. 
DCLN24 incorporates a dual-level contrastive learning mechanism, introducing high-order neighborhood 
similarity constraints at the node level and dimension decorrelation constraints at the feature level, effectively 
alleviating representation collapse and enhancing structural and feature discrimination. SCGC25 replaces GNN 
with a lightweight MLP, condensing multi-hop structures into “influence scores,” and uses an augmentation-free 
IAC loss to dynamically guide embedding learning, achieving highly efficient and scalable deep graph clustering. 
CPGCL26 enables a GCN to simultaneously output node embeddings and community distributions, uses 
community probabilities to weight contrastive loss dynamically, and reinforces high-confidence samples in a 
self-supervised manner to suppress false negatives and co-optimize community assignment and representation.
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Despite the notable progress achieved by GNN-based community detection methods, their performance 
often heavily relies on data augmentation or contrastive learning strategies. However, improperly designed data 
augmentation may disrupt the inherent semantic structure of graph data, while the effectiveness of contrastive 
learning is highly dependent on the quality of positive and negative sample pairs. If poorly constructed, these 
strategies can mislead the model into learning spurious correlations instead of essential community structures 
and compromise its generalization capability as a result.

Modularity maximization
Modularity, as one of the standard metrics for evaluating the quality of network community division, primarily 
assesses the density of connections within communities and the sparsity of links between them34. In the context 
of modularity maximization, Ulrik Brandes35 demonstrated that maximizing modularity is an NP-complete 
problem, a finding that spurred the development of heuristic approaches such as spectral relaxation36 and greedy 
algorithms37. However, these earlier studies focused predominantly on network topology, often overlooking 
the interrelationships between node attributes. With the rapid advancement of deep learning, integrating 
deep learning techniques with modularity maximization has emerged as a mainstream optimization strategy 
in community detection, leading to more accurate and robust partitioning solutions. Yang et al.27 proposed a 
Deep Nonlinear Reconstruction (DNR) method, which uses stacked autoencoders to perform nonlinear low-
dimensional embedding and reconstruction of the modularity matrix, overcoming the limitations of traditional 
linear methods in representation capability. Alexandre Hollocou et al.28 introduced a soft clustering relaxation 
method based on modularity maximization, along with an efficient local sparsification algorithm, allowing nodes 
to probabilistically belong to multiple communities. Guillaume Salha-Galvan et al.29 developed a modularity-
aware graph autoencoder that incorporates community-preserving message passing and a modularity-inspired 
regularization loss, effectively integrating graph structure and community information during encoding to 
significantly improve detection performance. DGCluster30 proposed a deep graph clustering framework based 
on differentiable modularity maximization. By softening the modularity objective and combining it with GNN-
based community similarity, it achieves efficient clustering without predefining the number of communities. 
MAGI31 reformulated modularity maximization from a contrastive learning perspective, showing its 
equivalence to graph contrastive learning guided by modularity coefficients, and proposed a community-aware 
self-supervised pretraining task that captures high-order proximity without graph augmentation. MOMCD32 
introduced a motif-weighted modularity optimization model, integrating high-order motif structures and low-
order edge information into a unified weighting scheme. By constructing a motif adjacency matrix and defining 
a weighted modularity metric, it uses heuristic algorithms to maximize modularity, enabling higher-quality and 
higher-order community detection.

The integration of deep learning with modularity not only enables effective fusion of node features and 
network structure from complex networks but also injects community-level semantic information into node 
representation learning through the objective of modularity maximization. Furthermore, end-to-end deep 
learning frameworks avoid the complex iterative processes of traditional optimization algorithms, significantly 
reducing computational overhead.

Table 1 provides a comparative summary of the aforementioned relevant algorithms and the method proposed 
in this paper, offering a clear overview of the design differences among them. Although the MOMCD method 
in Table 1 appears to be consistent with our method at first glance, there are essential differences between them. 
Both MOMCD and Louvain belong to traditional methods and do not take into account the attribute features 
of nodes.

Model Year Types of GNNs

Requirement to 
specify the number of 
communities

Contrastive 
learning

Modularity 
optimization

Joint 
optimization

K-means15 1982 Without GNN ✓

Louvain38 2008 Without GNN ✓

Yang et al.27 2016 Stacked Auto-Encoder ✓ ✓

Alexandre Hollocou et al.28 2019 Without GNN ✓

CommDGI21 2020 GCN ✓ ✓ ✓ ✓

SGCMC22 2021 GATE ✓ ✓

Guillaume Salha-Galvan et al.29 2022 Modularity-Aware GAE/VGAE ✓ ✓ ✓

DCLN24 2023 GCN ✓ ✓ ✓

DGCluster30 2023 GCN ✓ ✓

DCGL23 2024 GCN and AE ✓ ✓ ✓

MAGI31 2024 GCN ✓ ✓ ✓

MGCN39 2024 GAE and AE ✓ ✓

MOMCD32 2025 Without GNN ✓

SCGC25 2025 Without GNN ✓ ✓ ✓

CPGCL26 2025 GCN ✓ ✓ ✓

Our GCN ✓

Table 1.  Review and comparison of related algorithms.
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Preliminaries
Definition 1  Undirected Attributed Graph. An undirected attributed graph can be formally defined as a triple 
G = (V, E, X). Where V = {v1, v2, v3, . . . , vn} is the set of nodes, and n = |V | denotes the total number 
of nodes in the network. E ⊆ V × V  is the set of edges, representing pairwise relationships between nodes. 
An edge eij = (vi, vj) ∈ E indicates a connection between nodes vi and vj . Let M = |E| denote the total 
number of edges. X = {x1, x2, x3, . . . , xn} ∈ Rn×d is the node attribute matrix. The i-th row vector xi ∈ Rd 
corresponds to the d-dimensional feature representation of node vi. The topological structure of the graph is 
characterized by the adjacency matrix A ∈ {0, 1}n×n , where aij = 1 if and only if (vi, vj) ∈ E , otherwise 
aij = 0. Based on the adjacency matrix, the degree matrix D = diag(d1, d2, d3, ..., dn) is defined as a diagonal 
matrix whose elements di =

∑n

j=1 aij  represent the degree of node vi, i.e., the number of neighbors directly 
connected to it.

Definition 2  Graph convolutional networks. The core idea of GCN originates from spectral filtering of graph 
signals in spectral graph theory. Its layer-wise propagation rule represents a first-order Chebyshev polynomial 
approximation of the graph Laplacian operator, achieving efficient spatial-domain neighborhood aggregation. 
The propagation rule for a single-layer GCN is given by:

	
Z(l+1) = GCN

(
Z(l), A

)
= σ

(
ÃZ(l)W (l)

)
� (1)

where Z(l) =
{

z
(l)
1 , z

(l)
2 , z

(l)
3 , . . . , z

(l)
n

}
∈ Rn×d′

 denotes the node representation matrix at the -th layer, 

with the initial input Z(0) = X . Ã = D̂− 1
2 ÂD̂− 1

2  is the normalized adjacency matrix, which stabilizes the 
training process and mitigates gradient explosion or vanishing. Â = A + I  is the adjacency matrix with self-
loops added, where I  is the identity matrix, ensuring that each node retains its own features during aggregation. 
D̂ is the degree matrix of Â, i.e., D̂ii =

∑
j

Âij . W (l) is the trainable weight parameter matrix of the l-th layer. 
σ(·) is the nonlinear activation function (PReLU), enhancing the model’s nonlinear expressive capacity and 
feature discrimination ability.

The objective of node representation learning is to obtain a low-dimensional, dense vector representation zi 
for each node through stacked GCN layers, which simultaneously encodes both its local topological structure 
and intrinsic attribute features.

Definition 3  Structural community centers. The purpose of structural community centers is to learn a prototype 
vector for each potential community in the graph, which represents the core characteristics of that community 
in the feature space. Given the learned embedding matrix H ∈ Rn×d′

 from representation learning and the 
pre-detected structural communities {C1, C2, . . . , Ck}, the structural center uj  of the j-th community can be 
computed by aggregating the representations of its member nodes. A common approach is to compute the mean 
vector:

	

uj = 1
|Cj |

∑
vi∈Cj

hi� (2)

where Cj  denotes the set of nodes assigned to the j-th community. The set of all structural community centers 
U = {u1, u2, . . . , uk} forms a compact representation of the global community structure in the graph. In 
community detection, these centers serve as reference points, enabling the inference of node-community 
assignments by computing the similarity between node representations and each center.

Definition 4  Modularity. Modularity Q is a widely used metric in network science for quantifying the quality of 
a given community partition by measuring its deviation from a random connectivity null model with the same 
degree distribution. Its mathematical definition is as follows:

	
Q = 1

2M

n∑
i=1

n∑
j=1

(
aij − didj

2M

)
δ(ci, cj)� (3)

where M  represents the total number of edges in the network, aij  is an element of the adjacency matrix A, and 
di denotes the degree of node vi. The term didj

2M  indicates the expected number of edges between nodes vi and 

vj . The variable ci represents the community label of node vi, and δ(·) is the Kronecker delta function, which 
equals 1 if two nodes belong to the same community and 0 otherwise. Today, modularity maximization is often 
directly employed as the optimization objective in community detection algorithms.

Methods
This section outlines the framework of the proposed method, as illustrated in Fig. 1. First, in the global structure 
extraction phase, the Louvain algorithm combined with a size-based filtering strategy is employed to adaptively 
identify structural communities with meaningful global topology, while effectively filtering out noisy clusters. 
This yields reliable global structural guidance. Second, a lightweight single-layer GCN is utilized to integrate 
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node attributes and local structural information, generating low-dimensional embeddings that preserve essential 
relational patterns. Subsequently, through a mean aggregation operation, each structural community is mapped 
to a structural center within the same embedding space. A fine-grained node-community relational matrix 
is then constructed based on the similarity between node embeddings and these structural centers. Finally, 
a reconstructed soft modularity loss, derived from the modeled relationships, is optimized to directly refine 
the community membership associations among closely connected nodes, thereby deeply excavating the latent 
community structure.

Adaptive structural community pre-detection based on global structure
In real-world networks, structure can be analyzed from both local and global perspectives. The global structural 
perspective helps capture the overall distribution pattern of communities but is often sensitive to noisy clusters. 
Conversely, the local structural perspective effectively identifies high-connectivity patterns among nearby nodes 
but is susceptible to interference from inter-community connections. As shown in the top-right corner of Fig. 1, 
the differences between the two are clearly noticeable.

To overcome the limitations of the local perspective and achieve adaptive community discovery, this paper 
proposes a global structure-guided approach for adaptive community identification and high-quality global 
structure extraction. The core idea is to leverage the macro-level distribution information embedded in the 
global network structure to provide boundary constraints and validation for partitioning locally dense regions, 
thereby dynamically guiding the delineation of community boundaries. The Louvain algorithm accomplishes 
adaptive community detection through iterative optimization of the network topology, continuously merging 
adjacent nodes and communities. Under the constraint of modularity, this method ensures both clear separation 
between communities and high cohesion within them, aligning well with our design principles of adaptive 
partitioning and global structure discovery.

Using the Louvain algorithm, we first extract preliminary structural communities C = {c1, c2, c3, . . . , ct}, with 
the number of communities denoted as t. Although these communities preserve the overall structural information 
of the graph, many of them are small in size and isolated, contributing little to the global structure and potentially 
introducing noise. To address this, we propose an adaptive size-based filtering mechanism. The threshold T  is 
determined by calculating the mean µ and standard deviation σ of community sizes, and only communities 
exceeding this threshold are retained. The threshold T  is calculated as follows:

	
µ = n

t
� (4)

	
σ =

√∑t

i=1(|ci| − µ)2

t
� (5)

	 T = µ + 0.5σ � (6)

Finally, the structural communities that satisfy the condition of having a community node count |ci| ≥ T  are 
denoted as S = {s1, s2, s3, . . . , sk}, where k represents the number of structural communities that meet the 
requirements.

Fig. 1.  Model framework.
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The threshold defined using the mean and standard deviation can automatically adapt to the size of the 
dataset without manual tuning. When community sizes vary greatly, the mean may decrease; however, the 
standard deviation will increase substantially due to the extreme differences. This effect raises the threshold, 
ensuring the retention of medium- and large-sized core communities that are more representative of the overall 
structure, thereby providing a stable and high-quality structural foundation.

Fusion learning of local structural information and feature information
In attributed graphs, node attributes provide crucial feature information for community detection, effectively 
compensating for the limitations of relying solely on topological structure. Specifically, attribute features can 
transcend the constraints of topological connectivity, enabling nodes that are not directly connected but share 
similar attributes to form meaningful clusters in the feature space. This offers important clues for resolving the 
ambiguity in community assignments for nodes located at community boundaries.

Original node attributes typically contain only node-specific features and lack the capacity to capture 
relationships between related nodes, making it challenging to identify potentially similar nodes. To address 
this limitation, we employ GCNs to explicitly integrate node features with local structural information. GCNs 
utilize a symmetrically normalized adjacency matrix with self-connections, ensuring numerical stability during 
aggregation and mitigating the influence of node degree disparities. Through this aggregation process, GCNs 
combine each node’s features with those of its neighbors, enhance representational power and discriminative 
ability via nonlinear activation functions, and produce low-dimensional embeddings Z ∈ Rn×d′

 that jointly 
encode attribute information and local structural patterns, thereby providing a robust foundation for subsequent 
community partitioning.

L2 normalization achieves feature scaling by dividing each vector by its Euclidean norm, thereby eliminating 
the influence of scale variation on similarity calculations. To this end, we apply L2 normalization to the node 
representations Z  learned by the GCN, obtaining the normalized embedding vectors H ∈ Rn×d′

. The final 
node representation learning process is formulated as follows:

	 H = L2Norm(GCN(X, A))� (7)

Normalized vectors exhibit geometric relationships determined solely by their directions, independent of their 
magnitudes. This property not only enhances computational efficiency but also ensures gradient stability during 
propagation.

Node-community relationship modeling mechanism
We propose a multi-source information fusion mechanism for node-community relationship modeling, aiming 
to reconcile structural information and node features within a unified perspective, thereby directly capturing 
and revealing associations between nodes and communities. The core of this mechanism lies in mapping 
global structure, local topology, and node attributes into a unified embedding space, achieving alignment and 
integration of heterogeneous information sources. Within this space, soft membership relationships between 
nodes and communities are directly modeled, effectively leveraging the complementary advantages of multi-
source information.

In this mechanism, the first step involves mapping global structural information into the continuous 
embedding space. Using the high-quality structural communities S with reference to the node representation 
matrix H, we compute a center matrix U ∈ Rk×d′

, where the representation of the j-th community sj  is derived 
by averaging the representations of all its member nodes:

	
uj =

∑
hi∈sj

hi

|sj |
� (8)

where |sj | represents the number of nodes in the j-th community, and hi represents the representation of j-th 
node belonging to the sj  community. This operation materializes the abstract community structure sj  into 
a point uj , effectively mapping global structural information into a continuous vector space and laying the 
foundation for subsequent relationship modeling.

Following the global structure mapping, the second step infers the relationships between nodes and 
communities within the same space. Specifically, we quantify the association strength between a node and a 
community by measuring the similarity between the node representation hi and each structural community 
center uj . Thanks to the normalization of the feature representations, using cosine similarity to accurately 
measure the similarity between node hi and structural center uj  in the embedding space is equivalent to 
performing a vector dot product operation.

	
sim(hi, uj) = hi · uj

∥hi ∥∥ uj∥ = hi · uj � (9)

To make this similarity more intuitively reflect node-to-community assignments, the similarities are normalized 
using a Softmax function, yielding a node-community affiliation matrix P ∈ Rn×k ,

	
pij = exp(−δ · sim(hi, uj))∑k

j=1exp(−δ · sim(hi, uj)) � (10)
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where δ is a temperature hyperparameter that controls the sharpness of the community distribution. By 
integrating global structure, local topology, and node attributes within a unified embedding space, this 
mechanism effectively leverages the complementary strengths of multi-source information. It not only offers 
more accurate membership determination for nodes at structural boundaries but also identifies and associates 
topologically disconnected nodes with high attribute similarity, ultimately enhancing the accuracy and 
robustness of community detection. Finally, the community to which a node belongs is determined according to 
the principle of maximum membership probability,

	
yi = argmax

j

pij � (11)

Soft modularity-based community optimization
Modularity serves as a core metric for evaluating the quality of network community partitions, and its optimization 
process directly determines the rationality of community discovery. Traditional modularity functions rely on 
hard assignments, using discrete indicator functions to determine whether nodes belong to the same community. 
This approach fails to capture the strength of node-to-community affiliations and lacks flexibility in handling 
boundary nodes. To address this limitation, this study proposes a soft modularity function that incorporates a 
node-community affiliation probability matrix. This matrix transforms discrete community assignments into 
continuous probabilistic representations, enabling fine-grained optimization of node-community membership. 
By replacing the hard-assignment indicator function in traditional modularity with an inner product form of 
affiliation probabilities, we derive the soft modularity function Q′,

	
Q′ = 1

2M

∑
ij

k∑
m

(aij − didj

2M
)pimpjm� (12)

where aij  is an element of the adjacency matrix A, di =
∑

j
aij  denotes the degree of node vi, and pim 

represents the affiliation probability of node i to community m. This design ensures that a node’s contribution 
to a community is proportional to its affiliation probability, allowing nodes to participate in the structural 
optimization of multiple communities through soft assignments. To simplify computation and improve 
optimization efficiency, the soft modularity function is converted into matrix form:

	
B = A − ddT

2M
� (13)

	
Q′ = 1

2M
tr[P T BP ] � (14)

where B denotes the modularity matrix, and tr() denotes the trace of a matrix. This transformation not only 
reduces computational complexity but, more importantly, facilitates subsequent gradient-based optimization, 
enabling the modularity maximization process to be embedded into an end-to-end neural network training 
framework. The final loss function is:

	 L = −αQ′� (15)

α is the scaling factor. During the optimization process, the magnitude of a single loss value affects the gradient’s 
variation. Excessive changes in gradient magnitude can lead to an unstable training process. By setting an 
appropriate loss scaling factor α, the loss values can be scaled to enhance the stability of the optimization, 
ensuring a smoother optimization process and preventing the algorithm from getting stuck in local optima.

Thus, unlike contrastive learning methods that rely on selecting positive and negative samples to make 
closely connected nodes more similar in the feature space, our approach leverages the node’s local structural 
connections, global structural position, and feature information to discover effective community-level 
information that enhances the correlation between nodes and their communities. This means that nodes with 
close connections within the same community will become increasingly similar. The specific process of the 
proposed method is shown in Algorithm 1.

Are contrastive learning strategies necessary
In recent years, a large number of community detection methods have been developed that optimize node 
representations by incorporating contrastive learning strategies, thereby improving clustering performance. 
These methods typically construct positive and negative sample pairs based on structural proximity or semantic 
similarity, and enhance the separability of different communities in the embedding space by maximizing the 
consistency of positive sample pair representations and minimizing the consistency of negative sample pair 
representations.

In this study, we attempt to integrate three representative contrast strategies into the proposed method: 
contrast loss designs from CommDGI21, SupCon40, and MAGI31. In CommDGI, nodes within the same 
community as the current center are selected as positive samples, while nodes drawn from the nearest different 
community are used as negative samples. For SupCon and MAGI, the positive samples are defined as first-order 
neighbors within the same community, and the negative samples are nodes drawn from the nearest different 
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community. This sampling scheme pulls together representations of nodes from the same class and pushes apart 
those from different classes in the embedding space, thereby learning more discriminative embeddings.

The CommDGI contrastive loss is computed as follows:

	
LCommDGI = − 1

2n

∑k

i=1[
∑

V+∈M+
logD(hv+ , ui) +

∑
v−

log(1 − D(hv− , ui))]� (16)

where M+ denotes the positive sample set, and v+ represents a positive sample node. Similarly, M− represents 
the negative sample set, and v− represents a negative sample node. D() denotes a discriminator, computed by 
applying a sigmoid function to the dot product of two vectors.

The SupCon contrastive loss is computed as follows:

	
LSupCon = − 1

n

∑n

i=1 log
{

1
|M+|

∑
v+∈M+

exp(hv+ ·hi)∑
v ̸=i

exp(hv·hi)

}
� (17)

The MAGI contrastive loss is computed as follows:

	
LMAGI = −

∑
v+∈M+

log
log(zi · zv+ /τ)∑

v+∈M+
exp(zi · zv+ /τ) +

∑
v−∈M−

exp(zi · zv− /τ) � (18)

Finally, all the aforementioned contrastive losses are collectively denoted as Lcontarst, and incorporated into 
the total loss function as:

	 L = −αQ′ + βLcontrast� (19)

By introducing different contrastive losses within the same framework, we can systematically evaluate the 
performance gains brought by contrastive strategies to our method and further verify the effectiveness of our 
model in the absence of such strategies. This design not only helps quantify the contribution of each contras-
tive strategy but also reveals the advantages of our model in simplifying the training process, reducing compu-
tational complexity, and enhancing generalization capability. 

Algorithm 1.  Community detection algorithm

Experimentation
The experiments were conducted on a computer with an Intel i9 processor, 128GB of RAM, and the Windows 11 
operating system, using a Python 3.8 environment for programming and computation.

Datasets
The datasets used in our experiments can be categorized as follows:

Citation Networks41: Including Citeseer, Cora, and Pubmed, where nodes represent publications, edges 
represent citation relationships, node features are either bag-of-words or TF-IDF features, and labels correspond 
to publication topics.
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Co-authorship Networks: ACM42 is a paper network where edges indicate shared authorship, while CoCS is a 
scholar network where edges represent co-authorship. Node features for both are bag-of-words from keywords, 
and labels denote research fields or subject categories, respectively.

Product Co-purchasing Networks: Amazon-Computers (Amac) and Amazon-Photo (Amap)43 contain 
computers and photography-related products, respectively, with edges indicating frequent co-purchase. Features 
are derived from review bag-of-words, and labels are product categories. Electronics-Photo (Ele-photo)44 is a 
network of electronics products based on co-purchase or co-view relationships.

Social Networks: Film45 is an actor network where edges denote co-appearance on the same Wikipedia page; 
UAT46 is an airport network where edges represent commercial flight routes. Labels indicate actor genres and 
passenger traffic levels, respectively.

The dataset is processed and provided by47, with a detailed description of the dataset shown in Table 2.

Comparison models
This paper selects eight representative community detection algorithms for comparison to comprehensively 
evaluate the performance of the proposed method. These algorithms cover three main paradigms: attribute-
based, structure-based, and methods that integrate both attributes and structure.

K-means15 is a classic attribute-based clustering algorithm. It partitions nodes solely based on the distribution 
of their feature vectors in the latent space, serving as a baseline for attribute-only clustering.

Louvain38 is a heuristic structure-based algorithm. It iteratively merges nodes to maximize modularity, 
serving as a benchmark for pure structural methods.

Six baseline algorithms that integrate attributes and structure are selected:
CommDGI21 learns node embeddings by maximizing the mutual information between local node 

representations and a global graph summary.
DGCluster30 transforms modularity maximization into a differentiable loss function, enabling end-to-end 

joint optimization with GNN-based representation learning.
DCGL23 employs a pseudo-siamese network architecture to extract features from structural and attribute 

perspectives separately, enhancing the representations through cross-view contrastive learning.
MAGI31 uses the modularity matrix as an anchor for contrastive learning, capturing high-order structural 

similarity without requiring graph augmentation.
MGCN39 designs multi-hop graph convolution to adaptively fuse information from higher-order 

neighborhoods, learning more comprehensive node representations.
CPGCL26 jointly learns node representations and soft community assignments, dynamically refining sample 

pairs in contrastive learning to alleviate the false negative problem.

Evaluation metrics and parameter settings
In this experiment, the community detection task in attribute graphs will be the main focus, and the performance 
of all community detection methods will be compared. To evaluate the quality of the predicted communities, 
we use eight evaluation metrics: DBI, Q, NMI, ACC, F1-score, ARI, FMI and SC to assess the effectiveness of 
the community detection results. The DBI metric primarily measures the similarity and separation between the 
detected communities, aiming to make communities more compact internally and more separated from each 
other. A smaller DBI value is preferable. For the other metrics, higher values are better, that is

	
DBI = 1

k

∑k

i=1maxj ̸=i(
avg(ci) + avg(cj)

dcen(ui + uj) )� (20)

where k represents the number of communities, avg(ci) represents the average distance of all nodes in the i-th 
community to its center, and dcen(ui + uj) represents the distance between the centers of the i-th and j-th 
communities.

The NMI metric is normalized based on the concept of mutual information from information theory, and is 
used to measure the similarity between the community detection results and the ground truth, that is

Dataset Nodes Edges Features Communities

Acm 3025 13128 1870 3

Amac 7650 245861 767 10

Amap 13752 119081 745 8

Citeseer 3327 4552 3703 6

Cocs 18333 81894 6805 15

Cora 2708 5278 1433 7

Film 7600 15009 932 5

Pubmed 19717 44324 500 3

Uat 1190 13599 239 4

Ele-photo 48362 500928 384 12

Table 2.  Detailed description of the dataset.
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MI(C, G) =

∑
c∈C

∑
g∈G

P (c, g)log
P (c, g)

P (c)P (g) � (21)

	
H(G) = −

∑
g∈G

P (g)logP (g) � (22)

	
NMI(C, G) = MI(C, G)√

H(C) · H(G)
� (23)

where G represents the ground truth, and C  represents the community detection results. P (c, g) denotes the 
joint probability distribution of a node being in both the true community g and the detected community c. P (g) 
represents the probability of a node being in the true community g. MI() represents mutual information, and 
H() represents entropy.

The ACC metric is used to measure the consistency between the community detection results and the ground 
truth, that is

	
ACC = 1

n

∑n

i=1ρ(yi, map(ŷi))� (24)

where yi represents the true community label of i-th node, and ŷi represents the community detection label of 
the node. ρ is an indicator function that takes the value 1 if the true label and the detected label are the same, and 
0 otherwise. map(ŷi) denotes the mapping of the detection label of node i to the true label.

The F1-score provides a comprehensive evaluation of the model’s precision and recall, measuring the 
consistency between the communities detected by the algorithm and the true communities, that is

	
F 1 = 2 · P recision · Recall

P recision + Recall
� (25)

	
P recision = T P

T P + F P
� (26)

	
Recall = T P

T P + F N
� (27)

where TP represents the number of nodes predicted to belong to community c and actually belong to c, FP 
represents the number of nodes predicted to belong to community c but do not belong to c, FN represents the 
number of nodes that actually belong to community c but are predicted not to belong to c.

The ARI is a metric used to measure the similarity between detection results and true labels, that is

	
RI = 2 · T P + T N

n(n − 1) � (28)

	
ARI = RI − E[RI]

max(RI) − E[RI] � (29)

where TN represents the number of nodes that do not actually belong to community c and are predicted not to 
belong to c, and E[] denotes the expected value.

The FMI metric measures the geometric mean of precision and recall for community detection results, 
balancing the trade-off between false positives and false negatives, that is

	
FMI = TP√

(TP + FP) · (TP + FN)
=

√
P recision · Recall� (30)

The SC metric evaluates the compactness within communities and the separation between communities, that is

	
SC = 1

n

n∑
i=1

SC(xi) � (31)

	
SC(x) = b(x) − a(x)

max
{

a(x), b(x)
} � (32)

	

a(x) = 1
|Cx| − 1

∑

x′ ∈ Cx

d(x, x′) � (33)

	

b(x) = min
Cj ̸=Cx

{ 1
|Cj |

∑
x′∈Cj

d(x, x′)
}

� (34)
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where SC(x) is the Silhouette Score of node x. a(x) is the mean intra-cluster distance of node x, and b(x) is the 
minimum mean distance from x to any other cluster. SC ranges from −1 to 1, with higher values indicating more 
coherent and well-separated clusters.

In our work, a single-layer convolutional network is used for node representation learning. The hyperparameter 
δ is set to 30, and the loss coefficient α is set to 0.001. The Adam optimizer is used for 300 iterations of model 
training, with a learning rate of 0.001 and weight decay set to 0.005. In all experiments, the dimension of node 
representations is fixed at 512. For comparison experiments, the number of communities to be specified is set to 
the number of communities detected in this experiment. All other parameters for baseline methods follow their 
original papers to ensure optimal performance. For example, CommDGI uses a learning rate of 0.001 for 500 
iterations; DGCluster uses 0.001 for 300 iterations; DCGL uses 0.001 for 300 iterations; MAGI uses 0.0005 for 
400 iterations; MGCN uses 0.003 for 700 iterations; and CPGCL uses 0.0007 for 600 iterations.

Experiment result
This paper compares the performance of seven community detection methods for the community detection 
task. Table 3 summarizes the results of the community performance comparison across different algorithms. 
Bold numbers indicate the best performance, while underlined numbers indicate the runner-up performance.

As shown in Table 3, the proposed algorithm achieves the best or runner-up performance in most evaluation 
metrics across different datasets. Compared to other deep learning-based methods, our approach incorporates 
global, local structural, and feature information for community detection, enhancing modularity loss by 
leveraging community membership probabilities derived from these three information sources. By maximizing 
the improved modularity loss, the algorithm effectively uncovers the community memberships of nodes, leading 
to strong experimental results in the community detection task.

Comprehensive algorithm evaluation and statistical validation
Experiment 1: Wilcoxon signed-rank test for algorithm comparison

The Wilcoxon signed-rank test48 is a non-parametric statistical method used to compare paired or related 
samples. This study adopted a significance level of 0.05 to assess the differences between the proposed algorithm 
and comparative algorithms. The results are recorded in Table  4. The terms R+ and R- represent the sum of 
ranks where the proposed algorithm performed superior or inferior to its competing algorithms, respectively. 
A p-value below 0.05 indicates a statistically significant difference between the proposed algorithm and the 
compared algorithm. Specifically, when the p-value is less than 0.05, it signifies a significant difference between 
the proposed algorithm and the comparative algorithm, which is highlighted in bold in the table.

Table 4 presents the Wilcoxon test results for the ACC, F1, ARI, and SC metrics of the algorithms. The data 
results demonstrate that the metrics of the proposed algorithm differ significantly from those of the comparison 
algorithms, thus validating its strong performance across the 10 datasets.

Experiment 2: Comprehensive ranking experiment based on multi-criteria decision-making
To comprehensively evaluate the overall performance of different algorithms, this study adopts the TOPSIS49 

method as a multi-criteria decision-making (MCDM) approach50. Considering that the eight evaluation metrics 
used in this experiment are of diverse types and that some of them are highly correlated, the CRITIC method51 
is employed to automatically compute objective weights, thereby avoiding the subjectivity of manual weight 
assignment.

The experimental procedure is as follows: first, missing values and special entries (e.g., OM, N/A) in the 
original evaluation metrics are processed, followed by orientation unification and normalization to eliminate 
differences in scale and direction; next, the CRITIC method is applied to determine the weights by jointly 
considering the discrimination power and information independence of each metric; finally, the TOPSIS method 
is used to calculate the closeness coefficient of each algorithm to the positive and negative ideal solutions, and 
the algorithms are ranked in descending order of the coefficient, yielding an objective and unified performance 
ranking in the multi-dimensional evaluation system.

As shown in Table 5, our method consistently captures the overall performance differences among algorithms 
across multiple real-world datasets. It achieves the top rank on most datasets, thereby demonstrating its 
superiority in terms of comprehensive performance across multiple evaluation metrics.

Ablation experiments
Experiment 1: Effectiveness analysis of the adaptive structural community extraction module

The first ablation experiment aims to remove the Louvain-based adaptive structural community extraction 
module to verify the effectiveness of global structure information. Since the proposed method relies on global 
centroids during the fusion stage to compute node-community memberships, in the absence of Louvain, 
we directly perform K-means clustering on the learned node embedding matrix H , using the ground-truth 
number of communities KR as the number of clusters to generate global centroids. These centroids then replace 
the structural community centers extracted by Louvain in the subsequent steps, allowing us to evaluate the 
contribution and necessity of Louvain pre-detection to the quality of global structural information.

The experimental results are shown in Table 6. Specifically, the model incorporating global structural 
information outperforms the counterpart without global structural information across multiple evaluation 
metrics, indicating that global structural information plays a significant role in improving the accuracy and 
stability of community partitioning, thereby highlighting its necessity in the proposed method.

Experiment 2: Effectiveness analysis of the contrastive strategy
To evaluate the impact of different contrastive learning strategies on the performance of our method, we 

incorporated three representative contrastive losses–LCommDGI , LSupCon and LMAGI –into the same 
framework and compared them with a baseline model without contrastive optimization. All experiments were 
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Dataset Metrics K-means Louvain CommDGI DGCluster DCGL MAGI MGCN CPGCL Our

Cora

Min DBI – – 1.554865 0.958007 1.916085 2.142677 0.457259 3.370206 0.458970

Max Q 0.216550 0.783224 0.685146 0.752858 0.288298 0.722241 0.211403 0.480478 0.765320

Max NMI 0.233923 0.457330 0.518370 0.465627 0.230544 0.591830 0.225887 0.233233 0.561596

Max ACC 0.364845 0.519202 0.666913 0.274003 0.408789 0.691285 0.361521 0.388848 0.669129

Max F1 0.392400 0.069800 0.546800 0.231300 0.325500 0.703900 0.296000 0.377249 0.663200

Max ARI 0.123668 0.310949 0.444888 0.154347 0.110080 0.560715 0.082515 0.156608 0.469243

Max FMI 0.285960 0.419639 0.560501 0.297193 0.409037 0.579507 0.420040 0.287833 0.562167

Max SC 0.030930 0.095201 0.434185 0.561923 0.046621 0.478210 0.285998 0.067724 0.858014

Citeseer

Min DBI – – 1.718555 0.682854 1.712106 2.810201 0.458751 4.929488 0.583929

Max Q 0.342458 0.783224 0.718006 0.813808 0.286117 0.794073 0.177122 0.462403 0.822334

Max NMI 0.231280 0.457330 0.353227 0.351596 0.138506 0.341371 0.095831 0.094860 0.385114

Max ACC 0.421100 0.519202 0.545537 0.122633 0.360986 0.420800 0.235047 0.276225 0.559663

Max F1 0.380200 0.069800 0.438600 0.117700 0.289200 0.446200 0.188400 0.258641 0.504300

Max ARI 0.172758 0.310949 0.312169 0.057623 0.087879 0.217544 0.004307 0.072031 0.356296

Max FMI 0.290782 0.279003 0.448738 0.162507 0.416197 0.341115 0.386031 0.208526 0.459963

Max SC 0.014913 0.047396 0.420256 0.616554 0.057491 0.289657 0.164237 0.011400 0.814350

Acm

Min DBI – – 0.626647 0.829712 1.162722 1.828684 0.261183 3.167038 0.684481

Max Q 0.179559 0.783224 0.585480 0.793614 0.162135 0.732835 0.427613 0.655669 0.745318

Max NMI 0.287808 0.457330 0.648341 0.382356 0.214327 0.431209 0.069817 0.154253 0.620495

Max ACC 0.351074 0.519202 0.875041 0.270413 0.525289 0.338843 0.333223 0.303471 0.844300

Max F1 0.411000 0.069800 0.742500 0.249200 0.382500 0.446000 0.289200 0.342566 0.670900

Max ARI 0.193426 0.310949 0.693615 0.165469 0.177992 0.256714 0.000088 0.113481 0.692292

Max FMI 0.415971 0.320982 0.825851 0.357503 0.575100 0.479568 0.523107 0.308405 0.788906

Max SC 0.014176 0.108579 0.540433 0.552963 0.010168 0.305496 0.512783 0.035922 0.798375

Amap

Min DBI – – 0.539270 1.272281 1.255727 0.760000 0.486686 NAN 0.377126

Max Q 0.080476 0.783224 0.346104 0.680452 0.435044 0.711067 0.240120 NAN 0.670459

Max NMI 0.117092 0.457330 0.220800 0.695787 0.514492 0.674966 0.169413 NAN 0.646764

Max ACC 0.291503 0.519202 0.389150 0.661961 0.669412 0.786144 0.290588 NAN 0.685882

Max F1 0.284700 0.069800 0.310100 0.452600 0.650500 0.776100 0.225300 NAN 0.684800

Max ARI 0.048474 0.310949 0.085440 0.547796 0.434472 0.583538 0.015830 NAN 0.506579

Max FMI 0.220878 0.505307 0.437640 0.633039 0.495231 0.601123 0.332593 NAN 0.607000

Max SC 0.167072 0.322381 0.847948 0.764490 0.194227 0.730850 0.591428 NAN 0.899968

Uat

Min DBI - - 1.650489 0.995580 0.609719 2.086179 0.542170 2.117715 0.453726

Max Q 0.000959 0.783224 0.219029 0.268062 0.049000 0.229935 0.113806 0.174967 0.280535

Max NMI 0.214282 0.116344 0.261743 0.194440 0.268799 0.135860 0.266431 0.097880 0.248141

Max ACC 0.430252 0.356303 0.556303 0.234454 0.468908 0.457983 0.336134 0.380672 0.547059

Max F1 0.451700 0.075200 0.570600 0.225900 0.404000 0.444900 0.438200 0.353601 0.575400

Max ARI 0.144351 0.087934 0.248691 0.086840 0.404000 0.118683 0.119921 0.070222 0.243589

Max FMI 0.427409 0.412096 0.447597 0.224049 0.484028 0.369455 0.475867 0.387757 0.476756

Max SC 0.312638 0.218247 0.609281 0.515990 0.574159 0.419987 0.470890 0.408284 0.648977

Ele-Photo

Min DBI – – 2.274522 1.358343 N/A 0.883479 OM OM 0.730426

Max Q 0.328653 0.797354 0.678545 0.604822 N/A 0.682104 OM OM 0.739465

Max NMI 0.244915 0.425891 0.450860 0.381566 N/A 0.435163 OM OM 0.453136

Max ACC 0.322939 0.445763 0.519189 0.272177 N/A 0.460672 OM OM 0.533353

Max F1 0.276600 0.036300 0.367200 0.179200 N/A 0.502600 OM OM 0.487800

Max ARI 0.089260 0.155509 0.258453 0.070701 N/A 0.206226 OM OM 0.240034

Max FMI 0.229346 0.287502 0.395542 0.192001 N/A 0.342707 OM OM 0.370855

Max SC 0.043629 0.356345 0.375267 0.423660 N/A 0.641512 OM OM 0.696875

Table 3.  The performance comparison of different community detection algorithms “-” indicates that the 
metric is not applicable to the algorithm, “OM” indicates an out-of-memory error occurred, “N/A” indicates 
the algorithm’s runtime exceeded five days, and “NAN” indicates the algorithm encountered a NAN error. Bold 
values represent the best results, and underlined values represent the runner-up results
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conducted on the same datasets (Cora, Acm, Amap, and Uat) to ensure comparability, with the contrastive loss 
coefficient β tested at values of 1, 0.1, 0.01, and 0.001, and the best-performing setting (β=0.001) adopted for 
reporting results. Performance was quantitatively assessed using six metrics: DBI, Q, NMI, ACC, F1-score, and 
ARI.

The detailed results are presented in Tables 7, 8 and 9, where Table 7 compares the results with and without 
LCommDGI , Table 8 compares the results with and without LSupCon, and Table 9 compares the results with 

Min DBI Max Q Max NMI Max ACC Max F1 Max ARI Max FMI Max SC

Cora
With global structure 0.458282 0.765320 0.561161 0.673929 0.663000 0.472555 0.562167 0.858014

Without global structure 0.676832 0.681079 0.528015 0.673929 0.657000 0.451359 0.566008 0.708492

Acm
With global structure 0.684481 0.745318 0.620495 0.844298 0.670900 0.692292 0.788906 0.798375

Without global structure 2.697249 0.470766 0.460258 0.639339 0.740500 0.428861 0.678737 0.269921

Amap
With global structure 0.377126 0.670459 0.646764 0.685882 0.684800 0.506579 0.607000 0.899968

Without global structure 0.242789 0.461736 0.347316 0.452810 0.451600 0.233878 0.453156 0.834500

Uat
With global structure 0.774019 0.280535 0.248141 0.547059 0.575400 0.243589 0.476756 0.648977

Without global structure 0.723423 0.241941 0.219666 0.512605 0.500600 0.196388 0.499371 0.655903

Table 6.  Effectiveness analysis of the adaptive structural community extraction Module.

 

Kmeans Louvain CommDGI DGCluster DCGL MAGI MGCN CPGCL Our

Cora
Topsis score 0.1815 0.5131 0.7164 0.5515 0.3290 0.6856 0.4751 0.2225 0.9387

Rank 9 5 2 4 7 3 6 8 1

Citeseer
Topsis score 0.4160 0.5444 0.7609 0.5341 0.4591 0.6187 0.4471 0.2304 0.9346

Rank 8 4 2 5 6 3 7 9 1

Acm
Topsis score 0.2164 0.4909 0.8133 0.5610 0.3819 0.5177 0.4993 0.3270 0.9080

Rank 9 6 2 3 7 4 5 8 1

Amap
Topsis score 0.1019 0.4939 0.4581 0.6469 0.5057 0.8236 0.3566 0.0000 0.8864

Rank 8 5 6 3 4 2 7 9 1

Film
Topsis Score 0.4113 0.5057 0.5103 0.2829 0.5534 0.4109 0.5653 0.3883 0.6225

Rank 6 5 4 9 3 7 2 8 1

Pubmed
Topsis score 0.6262 0.5372 0.5733 0.2688 0.0000 0.5083 0.4584 0.3557 0.7189

Rank 2 4 3 8 9 5 6 7 1

Cocs
Topsis score 0.5866 0.3198 0.7030 0.4180 0.0000 0.4774 0.3614 0.0000 0.9288

Rank 3 7 2 5 8 4 6 8 1

Amac
Topsis score 0.1776 0.3001 0.5332 0.5739 0.0000 0.6304 0.0000 0.0000 0.7852

Rank 6 5 4 3 7 2 7 7 1

Uat
Topsis score 0.4162 0.4807 0.7473 0.4962 0.6199 0.4659 0.6064 0.3495 0.8252

Rank 8 6 2 5 3 7 4 9 1

Ele-Photo
Topsis score 0.2069 0.5361 0.6487 0.3701 0.0000 0.8089 0.0000 0.0000 0.9317

Rank 6 4 3 5 7 2 7 7 1

Table 5.  Comprehensive performance ranking of different community detection methods based on MCDM.

 

Our vs.

ACC F1 ARI SC

R+ R- p-value R+ R- p-value R+ R- p-value R+ R- p-value

K-means 53 2 0.009344 54 1 0.00691 52 3 0.012515 55 0 0.005062

Louvain 48 7 0.036658 55 0 0.005062 44 11 0.092601 55 0 0.005062

CommDGI 46 9 0.059336 51 4 0.016605 48 7 0.036658 50 5 0.021824

DGCluster 55 0 0.005062 55 0 0.005062 53 2 0.009344 55 0 0.005062

DCGL 21 0 0.027708 36 0 0.011719 24 12 0.400814 21 0 0.027708

MAGI 46 9 0.059336 39 16 0.241121 44 11 0.092601 55 0 0.005062

MGCN 36 0 0.011719 55 0 0.005062 53 2 0.009344 36 0 0.011719

CPGCL 21 0 0.027708 21 0 0.027708 21 0 0.027708 21 0 0.027708

Table 4.  Results of the Wilcoxon signed-rank test Bold values indicate statistically significant differences (p < 
0.05).
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and without LMAGI . These comparisons intuitively reveal the actual performance gains of different contrastive 
strategies and validate the effectiveness of our method in the absence of contrastive optimization.

Parameter analysis
Experiment 1: Sensitivity Analysis of the Threshold Filtering Mechanism

This experiment analyzes the threshold filtering mechanism applied after Louvain-based community 
partitioning. To evaluate the sensitivity of this mechanism to threshold selection, we vary the standard deviation 
coefficient from 0.1 to 1.0 and systematically examine the impact of different threshold strategies on both the 
fidelity of global information and the final detection performance. This process helps verify the effectiveness and 
robustness of the filtering mechanism in balancing noise suppression with information preservation.

We analyzed the trends of the Q, ACC, and F1 metrics on the Acm, Amap, Uat, and Cocs datasets. As shown 
in Fig. 2, when the standard deviation coefficient is in the range of 0.4-0.6, most metrics achieve both superior 
and stable performance. In particular, a coefficient of 0.5 achieves a good balance among Q, ACC, and F1.

Experiment 2: Sensitivity Analysis of the  αParameter
In this experiment, we investigate the impact of different values of α on the performance of the experiment 

across various datasets. Specifically, we set α = 1.0, 0.1, 0.01, 0.001 and perform experiments on the Cora, 
Citeseer, ACM, and AMAP datasets, observing the Q, NMI, and ACC metrics. The experimental results shown 
in Fig. 3 demonstrate that when α is set to 0.001, the performance is optimal. This is because a smaller modularity 
loss helps mitigate the problem of modularity optimization getting stuck in local optima, preventing overfitting 
caused by forcing the algorithm to rigidly determine community memberships. A more comprehensive analysis 
of the relationships between all communities allows for better extraction of community membership information.

Min DBI Max Q Max NMI Max ACC Max F1 Max ARI

Cora
With contrastive loss 0.501831 0.746360 0.544831 0.666913 0.638700 0.488040

Without contrastive loss 0.458970 0.765320 0.561596 0.669129 0.663200 0.469243

Acm
With contrastive loss 0.916360 0.728609 0.516628 0.744463 0.553700 0.544837

Without contrastive loss 0.684481 0.745318 0.620495 0.844300 0.670900 0.692292

Amap
With contrastive loss 0.457712 0.643710 0.608214 0.615294 0.623500 0.466393

Without contrastive loss 0.377126 0.670459 0.646764 0.685882 0.684800 0.506579

Uat
With contrastive loss 0.206296 0.167113 0.227279 0.510924 0.491400 0.206899

Without contrastive loss 0.807088 0.280636 0.249595 0.546218 0.578200 0.242806

Table 9.  Experimental results with and without LMAGI  loss.

 

Min DBI Max Q Max NMI Max ACC Max F1 Max ARI

Cora
With contrastive loss 0.631657 0.721620 0.505175 0.579025 0.626200 0.384827

Without contrastive loss 0.458282 0.765320 0.561161 0.673929 0.663000 0.472555

Acm
With contrastive loss 0.868040 0.752136 0.414174 0.628430 0.510600 0.421314

Without contrastive loss 0.684481 0.745318 0.620495 0.844298 0.670900 0.692292

Amap
With contrastive loss 0.770020 0.650918 0.586971 0.597908 0.606000 0.449165

Without contrastive loss 0.377126 0.670459 0.646764 0.685882 0.684800 0.506579

Uat
With contrastive loss 0.643772 0.218710 0.212367 0.527731 0.523000 0.197494

Without contrastive loss 0.774019 0.280535 0.248141 0.547059 0.575400 0.243589

Table 8.  Experimental results with and without LSupCon loss.

 

Min DBI Max Q Max NMI Max ACC Max F1 Max ARI

Cora
With contrastive loss 0.459781 0.762369 0.559834 0.681315 0.655900 0.489056

Without contrastive loss 0.458282 0.765320 0.561161 0.673929 0.663000 0.472555

Acm
With contrastive loss 0.590283 0.746271 0.597249 0.836364 0.662600 0.658855

Without contrastive loss 0.684481 0.745318 0.620495 0.844298 0.670900 0.692292

Amap
With contrastive loss 0.356660 0.660752 0.645052 0.622745 0.654600 0.487767

Without contrastive loss 0.377126 0.670459 0.646764 0.685882 0.684800 0.506579

Uat
With contrastive loss 0.707185 0.279933 0.246803 0.547059 0.579100 0.243487

Without contrastive loss 0.774019 0.280535 0.248141 0.547059 0.575400 0.243589

Table 7.  Experimental results with and without LCommDGI  loss.
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Depth sensitivity analysis of GCN
To further investigate whether increasing the number of GCN layers can enhance the model’s ability to capture 
deep local features and attribute associations, we designed a depth sensitivity experiment using single-layer, two-
layer, and three-layer GCN encoders. All parameters other than the number of layers were kept consistent with 
the baseline to ensure result comparability.

The experimental results, as shown in Table  10, indicate that excessively deep GCNs suffer from over-
smoothing, leading to a decline in accuracy. Since the proposed method already incorporates rich global 
structural information, a single-layer GCN is sufficient to capture the necessary local structural features, thereby 
achieving a better balance between performance and computational efficiency.

Runtime comparison
In this experiment, the runtime comparison of various deep learning-based algorithms is conducted on four 
different datasets: Cora, Citeseer, Acm, and Uat. As shown in the experimental comparison in Fig.  4, our 
algorithm achieves the fastest runtime across different datasets. The reason for this is that the community 
detection framework designed in this paper employs the fast Louvain algorithm for pre-community detection to 
obtain global structural information, and uses a basic GCN to integrate local structural and feature information 
for learning node representations. These useful pieces of information are then fused to compute the community 
membership probabilities of nodes. Finally, modularity-based community optimization is performed using the 
membership probabilities to mine the community information, which is faster and more effective compared to 
other deep learning-based algorithms. Our community detection framework reduces the extra view generation 
for data augmentation, the construction of positive and negative samples for contrastive learning, and the joint 
optimization of multiple objectives, achieving rapid and effective detection with a simple yet efficient framework 
and optimization approach.
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Fig. 2.  Scores of Q, ACC, and F1 metrics for the Acm, Amap, Uat, and Cocs datasets under different standard 
deviation coefficients.
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Visualization comparison of community detection results
To intuitively verify the effectiveness of the algorithm presented in this paper, we use the T-distributed stochastic 
neighbor embedding (T-SNE) algorithm52 to visualize the final node representations and community partition 
results in a two-dimensional space, as shown in Fig. 5. In this figure, we compare the community detection 

Min DBI Max Q Max NMI Max ACC Max F1 Max ARI Max FMI Max SC Topsis Score

Citeseer

single-layer GCN 0.583929 0.822334 0.385114 0.559663 0.504300 0.356296 0.459963 0.814350 0.515353

two-layer GCN 0.484069 0.818214 0.377790 0.599940 0.568800 0.345601 0.456540 0.842465 0.492008

three-layer GCN 0.444321 0.816524 0.376340 0.617072 0.605500 0.336664 0.459849 0.792908 0.515290

Acm

single-layer GCN 0.684481 0.745318 0.620495 0.844300 0.670900 0.692292 0.788906 0.798375 0.518493

two-layer GCN 0.589847 0.752684 0.474369 0.621157 0.524600 0.475670 0.626644 0.598632 0.507636

three-layer GCN 0.572061 0.751419 0.440557 0.606281 0.599700 0.435782 0.595400 0.670572 0.502263

Amap

single-layer GCN 0.377126 0.670459 0.646764 0.685882 0.684800 0.506579 0.607000 0.899968 0.791961

two-layer GCN 0.536609 0.661113 0.641394 0.608366 0.629600 0.486151 0.604802 0.751231 0.251217

three-layer GCN 0.566904 0.659047 0.603202 0.599869 0.621300 0.468950 0.587254 0.692937 0.487811

Cocs

single-layer GCN 0.534169 0.646346 0.528356 0.624284 0.527100 0.508426 0.586879 0.823781 0.681961

two-layer GCN 0.636651 0.614536 0.390344 0.522064 0.392900 0.382378 0.482495 0.544767 0.381217

three-layer GCN 0.479450 0.591030 0.289053 0.442481 0.337100 0.315236 0.411786 0.717388 0.327811

Table 10.  Performance of GCNs with different numbers of layers in depth sensitivity Experiments.
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Fig. 3.  Scores of Q, ACC, and F1 metrics for the Cora, Citeseer, Acm, and Amap datasets under different α 
values.
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Fig. 5.  T-SNE visualization results on the Cora dataset.
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results after learning node representations based on the original features using K-means and deep learning on 
the Cora dataset. Our method more effectively distinguishes community differences and ensures community 
cohesion.

Conclusion
In this study, we proposed a straightforward and effective approach for community detection. Our method 
features adaptive detection, identifying high-quality structural communities without needing a predefined 
number of communities. It also includes node-community relationship modeling, which integrates local 
topology and node attributes into a shared embedding space, allowing us to model the soft relationships between 
nodes and community centers. Additionally, we implement soft modularity reconstruction, which optimizes 
community partitioning in an end-to-end manner using the soft relational matrix, without relying on contrastive 
learning or data augmentation. Our approach offers a new perspective on the research landscape, hoping to 
inspire researchers to develop improved algorithms for community detection.

We validate the effectiveness of our proposed algorithm through comparative experiments using various 
metrics, including DBI, Q, NMI, ACC, F1, ARI, FMI, and SC. In future work, we plan to explore different 
community detection techniques and social network analysis methods, focusing on optimizing the acquisition 
of global structural information.

Data availability
The datasets generated during and/or analysed during the current study are available in the Github repository, 
https://github.com/wuanghoong/Less-is-More.git.
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