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Simple yet effective heuristic
community detection with graph
convolution network

Hong Wang, Yinglong Zhang™’, Zhangqi Zhao, Zhicong Cai, Xuewen Xia & Xing Xu

In recent years, graph neural network-based community detection methods have integrated local
structure and node attributes, incorporating various optimization strategies with notable progress.
However, most current algorithms require predefining the number of communities, introducing human
bias, and rely on contrastive objectives or data augmentation, leading to extra hyperparameters and
complexity. To address these issues without sacrificing detection quality, we propose an adaptive
community detection framework that eliminates contrastive learning and the need for pre-specified
community numbers, simplifying training and reducing prior dependency. First, the adaptive detection
method is introduced to ensure the identification of high-quality structural communities as reliable
global references. Then, a novel mechanism for modeling node-community relationships is proposed,
integrating global structure, local structure, and attribute information into a unified space. Finally, a
reconstructed soft modularity loss is applied to optimize node-community relationships end-to-end,
enhancing community structure without data augmentation or contrastive learning. The proposed
approach is efficient to train and computationally lightweight, demonstrating superior detection
efficiency and competitive accuracy across multiple graph datasets compared to traditional and recent
deep learning methods. The code is available at https://github.com/wuanghoong/Less-is-More.git.

Keywords Graph convolution network, Adaptive community detection, Node-community relationship
modeling, Soft modularity optimization

Numerous complex systems in the real world are composed of interconnected entities. To uncover their
underlying principles, such systems are often abstracted as complex network models!, including social
networks (Facebook?, Twitter’), computer networks (the Internet, LAN*), and biological networks (gene
regulatory networks®, protein-protein interaction networks®), among others. In a complex network, entities
are represented as nodes, and the relationships between them correspond to edges. A set of nodes with dense
internal connections often shares similar attributes or functions in reality. Such node clusters are referred to as
“communities” Communities exhibit cohesion and homogeneity internally, while connections between different
communities are sparse and heterogeneous. Therefore, community detection has become a crucial approach for
analyzing complex network structures and uncovering group behaviors and functional patterns.

Community detection aims to identify clusters of nodes within a network that are densely interconnected
and share similar attributes, known as community structures, which are characterized by dense internal links
and sparser connections between communities’. Traditional community detection methods primarily include
techniques such as modularity optimization, spectral clustering, random walks, and label propagation®. While
effective in small to medium-sized networks, these methods reveal significant limitations when applied to today’s
large-scale complex networks. Many traditional approaches rely solely on topological structure, resulting in high
computational complexity that hinders scalability. Moreover, they often overlook rich node attributes, limiting
their ability to capture complex relational patterns in real-world networks.

In recent years, deep learning methods have emerged as a new research focus in community detection,
leveraging strong nonlinear representation capabilities and efficient large-scale data processing’. The application
of deep learning in this field has evolved from graph embedding to graph neural networks (GNNs). Early graph
embedding methods!"!* mapped network nodes into low-dimensional vectors so that structurally similar
nodes are close in the embedding space, after which standard clustering algorithms'*!* were applied to group
these vectors. However, the inherent disconnection between the embedding and clustering stages in this two-
step paradigm motivated the shift toward end-to-end GNN frameworks, which have become the mainstream
architecture for community detection. Typical GNN models offer diverse information aggregation schemes for
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community detection. As a foundational work, GCN (Graph Convolutional Network)'® employs spectral graph
convolution to aggregate neighborhood features, yet its equal-weight aggregation struggles to distinguish the
importance of different neighbors. GAT (Graph Attention Network)'” addresses this by introducing an attention
mechanism, enabling dynamic weighting of neighbor contributions. In contrast, GAE (Graph Autoencoder)'®
adopts an unsupervised approach, using an encoder (e.g., GCN) to learn node representations and a decoder to
reconstruct the adjacency matrix, which helps preserve community structure in low-dimensional embeddings.

Building on these classic models, researchers have integrated advanced learning strategies with GNN
architectures to enhance the perception and utilization of complex network information'®. For instance, by
designing contrastive tasks?’-2 at the node, subgraph, or community level, GNNs can learn intrinsic structural
patterns without relying on ground-truth labels, enabling the identification of stable community features across
varying augmented views. Another direction involves guiding the optimization process through differentiable
objective functions?’ 2. For example, some methods allow GNNs to jointly optimize both representation
learning and community partitioning in an end-to-end manner, by transforming modularity maximization into
a differentiable loss function. These strategies not only expand the expressive power of GNNs in community
detection but also promote the development of more adaptive, interpretable, and integrated solutions.

Despite significant progress in GNN-based community detection, overall performance and practical utility
remain constrained by several core issues. First, there is an excessive reliance on specific learning strategies: current
methods heavily depend on carefully designed graph data augmentation or contrastive learning mechanisms.
Their performance is sensitive to the choice of augmentation strategies and the quality of sample pairs, lacking
inherent robustness. Second, the optimization process is often overcomplicated. Many advanced models enhance
performance by stacking multiple loss functions or introducing complex contrastive mechanisms, resulting
in bloated model architectures, increased training difficulty, and challenges in convergence. Finally, adaptive
capability remains insufficient: although end-to-end learning has become mainstream, practical GNN models
that can fully adaptively determine the number of communities without any prior knowledge are still relatively
scarce.

To address the above challenges, the main contributions of this paper are summarized as follows:

1. Adaptive Detection: By leveraging the Louvain algorithm combined with a size-based filtering strategy, the
method adaptively extracts high-quality structural communities without pre-defined cluster numbers to
provide reliable global structural information.

2. Global-Local-Attribute Integrated Node-Community Relationship Modeling: Within a unified shared em-
bedding space, a single-layer GCN integrates local topology and node attributes to generate node representa-
tions, while structural communities are projected as structural center vectors. A soft relational matrix, con-
structed based on node-center similarity, serves as the optimization objective for community refinement and
interpretation.

3. Reconstructed Soft Modularity Objective Based on Node-Community Relations: Using the soft relational
matrix, a reconstructed soft modularity loss is formulated, enabling end-to-end optimization of node-com-
munity affiliation probabilities without relying on contrastive learning or data augmentation. This results in
a more streamlined and robust training process.

4. Efficiency and Practical Applicability: The framework is lightweight and easy to train. Experiments on multi-
ple real-world network datasets demonstrate higher detection efficiency and competitive accuracy compared
to both traditional and recent deep learning approaches.

Related work

GNN-based community detection

GNN-based community detection methods learn node embeddings to identify community structures. These
approaches leverage the powerful capability of GNNs in modeling graph data, incorporating both topological
information and node features to significantly improve detection performance. Compared to traditional
methods, GNN-based techniques can more accurately capture complex community patterns, particularly in
graphs with rich node attributes. Recent studies have integrated various learning strategies to optimize node
representations, thereby enhancing the accuracy and robustness of community detection. These methods not
only strengthen the modeling of graph structure but also exploit underlying relationships among node features
to further refine community partitioning. CommDGI?! introduces a dual objective combining “community
mutual information” and modularity, coupled with a differentiable soft K-means clustering layer, enabling
end-to-end joint optimization of GNN representation learning and community detection. SGCMC?? employs
a graph attentional autoencoder with a self-supervised mechanism to co-optimize node representations and
affinity matrix learning, achieving end-to-end training of multi-view GNNs for soft clustering and significantly
enhancing joint modeling of graph structure and nonlinear semantics. DCGL?? addresses generic clustering
scenarios without prior graph structures by proposing a pseudo-siamese network that parallelizes GCN and
autoencoder. It applies centroid-guided contrastive loss at the feature level and local-global graph contrast at the
cluster level to explicitly optimize cluster compactness, significantly improving discriminativity and robustness.
DCLN?* incorporates a dual-level contrastive learning mechanism, introducing high-order neighborhood
similarity constraints at the node level and dimension decorrelation constraints at the feature level, effectively
alleviating representation collapse and enhancing structural and feature discrimination. SCGC?® replaces GNN
with a lightweight MLP, condensing multi-hop structures into “influence scores,” and uses an augmentation-free
IACloss to dynamically guide embedding learning, achieving highly efficient and scalable deep graph clustering.
CPGCL? enables a GCN to simultaneously output node embeddings and community distributions, uses
community probabilities to weight contrastive loss dynamically, and reinforces high-confidence samples in a
self-supervised manner to suppress false negatives and co-optimize community assignment and representation.
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Despite the notable progress achieved by GNN-based community detection methods, their performance
often heavily relies on data augmentation or contrastive learning strategies. However, improperly designed data
augmentation may disrupt the inherent semantic structure of graph data, while the effectiveness of contrastive
learning is highly dependent on the quality of positive and negative sample pairs. If poorly constructed, these
strategies can mislead the model into learning spurious correlations instead of essential community structures
and compromise its generalization capability as a result.

Modularity maximization

Modularity, as one of the standard metrics for evaluating the quality of network community division, primarily
assesses the density of connections within communities and the sparsity of links between them?!. In the context
of modularity maximization, Ulrik Brandes®> demonstrated that maximizing modularity is an NP-complete
problem, a finding that spurred the development of heuristic approaches such as spectral relaxation® and greedy
algorithms’. However, these earlier studies focused predominantly on network topology, often overlooking
the interrelationships between node attributes. With the rapid advancement of deep learning, integrating
deep learning techniques with modularity maximization has emerged as a mainstream optimization strategy
in community detection, leading to more accurate and robust partitioning solutions. Yang et al.?” proposed a
Deep Nonlinear Reconstruction (DNR) method, which uses stacked autoencoders to perform nonlinear low-
dimensional embedding and reconstruction of the modularity matrix, overcoming the limitations of traditional
linear methods in representation capability. Alexandre Hollocou et al.?® introduced a soft clustering relaxation
method based on modularity maximization, along with an efficient local sparsification algorithm, allowing nodes
to probabilistically belong to multiple communities. Guillaume Salha-Galvan et al.? developed a modularity-
aware graph autoencoder that incorporates community-preserving message passing and a modularity-inspired
regularization loss, effectively integrating graph structure and community information during encoding to
significantly improve detection performance. DGCluster®® proposed a deep graph clustering framework based
on differentiable modularity maximization. By softening the modularity objective and combining it with GNN-
based community similarity, it achieves efficient clustering without predefining the number of communities.
MAGI®! reformulated modularity maximization from a contrastive learning perspective, showing its
equivalence to graph contrastive learning guided by modularity coefficients, and proposed a community-aware
self-supervised pretraining task that captures high-order proximity without graph augmentation. MOMCD?*
introduced a motif-weighted modularity optimization model, integrating high-order motif structures and low-
order edge information into a unified weighting scheme. By constructing a motif adjacency matrix and defining
a weighted modularity metric, it uses heuristic algorithms to maximize modularity, enabling higher-quality and
higher-order community detection.

The integration of deep learning with modularity not only enables effective fusion of node features and
network structure from complex networks but also injects community-level semantic information into node
representation learning through the objective of modularity maximization. Furthermore, end-to-end deep
learning frameworks avoid the complex iterative processes of traditional optimization algorithms, significantly
reducing computational overhead.

Table 1 provides a comparative summary of the aforementioned relevant algorithms and the method proposed
in this paper, offering a clear overview of the design differences among them. Although the MOMCD method
in Table 1 appears to be consistent with our method at first glance, there are essential differences between them.
Both MOMCD and Louvain belong to traditional methods and do not take into account the attribute features
of nodes.

Requirement to

specify the number of | Contrastive | Modularity | Joint
Model Year | Types of GNNs communities learning optimization | optimization
K-means'® 1982 | Without GNN v
Louvain® 2008 | Without GNN V4
Yang et al.?’ 2016 | Stacked Auto-Encoder v v
Alexandre Hollocou et al.?® 2019 | Without GNN v
CommDGI*! 2020 | GCN v v v v
SGCMC? 2021 | GATE v v
Guillaume Salha-Galvan et al.?? | 2022 | Modularity-Aware GAE/VGAE | v/ v v
DCLN* 2023 | GCN v v v
DGCluster® 2023 | GCN v v
DCGL?* 2024 | GCN and AE 4 4 4
MAGT?! 2024 | GCN 4 v v
MGCN¥ 2024 | GAE and AE v v
MOMCD?* 2025 | Without GNN 4
SCGC*» 2025 | Without GNN 4 4 v
CPGCL* 2025 | GCN % v v
Our GCN v

Table 1. Review and comparison of related algorithms.
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Preliminaries

Definition 1 Undirected Attributed Graph. An undirected attributed graph can be formally defined as a triple
G = (V,E,X). Where V = {v1,v2,v3,...,0n} is the set of nodes, and n = |V| denotes the total number
of nodes in the network. EE C V x V is the set of edges, representing pairwise relationships between nodes.
An edge e;; = (v4,v;) € E indicates a connection between nodes v; and v;. Let M = |E| denote the total
number of edges. X = {z1,22,23,..., 20} € R"™*? is the node attribute matrix. The i-th row vector z; € R¢
corresponds to the d-dimensional feature representation of node v;. The topological structure of the graph is
characterized by the adjacency matrix A € {0,1}"*" , where a;; = 1 if and only if (v;,v;) € E , otherwise
ai; = 0. Based on the adjacency matrix, the degree matrix D = diag(d1, dz, ds, ..., dn) is defined as a diagonal
matrix whose elements d; = Z;L:l a;; represent the degree of node v;, i.e., the number of neighbors directly

connected to it.

Definition 2 Graph convolutional networks. The core idea of GCN originates from spectral filtering of graph
signals in spectral graph theory. Its layer-wise propagation rule represents a first-order Chebyshev polynomial
approximation of the graph Laplacian operator, achieving efficient spatial-domain neighborhood aggregation.
The propagation rule for a single-layer GCN is given by:

7 — GON (20, 4) = o (ZZ“)W(”) (1)

where Z() = {zil), zé”, zél), ey sz)} € R™ % denotes the node representation matrix at the -th layer,

with the initial input Z(®©) = X, A=D"2AD"7 is the normalized adjacency matrix, which stabilizes the
training process and mitigates gradient explosion or vanishing. A = A + I is the adjacency matrix with self-
loops added, where I is the identity matrix, ensuring that each node retains its own features during aggregation.

D is the degree matrix of A, i.e., Di; = Zj Aqij. WO s the trainable weight parameter matrix of the I-th layer.

o(-) is the nonlinear activation function (PReLU), enhancing the model’s nonlinear expressive capacity and
feature discrimination ability.

The objective of node representation learning is to obtain a low-dimensional, dense vector representation z;
for each node through stacked GCN layers, which simultaneously encodes both its local topological structure
and intrinsic attribute features.

Definition 3 Structural community centers. The purpose of structural community centers is to learn a prototype
vector for each potential community in the graph, which represents the core characteristics of that community
in the feature space. Given the learned embedding matrix H € R™*% from representation learning and the

pre-detected structural communities {C'1, Cs, . .., Cj }, the structural center u; of the j-th community can be
computed by aggregating the representations of its member nodes. A common approach is to compute the mean
vector:
1
g 2N @
v, €C;

where C; denotes the set of nodes assigned to the j-th community. The set of all structural community centers
U = {u1,us,...,ur} forms a compact representation of the global community structure in the graph. In
community detection, these centers serve as reference points, enabling the inference of node-community
assignments by computing the similarity between node representations and each center.

Definition 4 Modularity. Modularity Q is a widely used metric in network science for quantifying the quality of
a given community partition by measuring its deviation from a random connectivity null model with the same
degree distribution. Its mathematical definition is as follows:

1 —w did;
- S

i=1 j=1

) 8(ci, cj) 3)

where M represents the total number of edges in the network, a;; is an element of the adjacency matrix A, and

did; . .
d; denotes the degree of node v;. The term 517 indicates the expected number of edges between nodes v; and

v;. The variable c; represents the community label of node v;, and J(+) is the Kronecker delta function, which
equals 1 if two nodes belong to the same community and 0 otherwise. Today, modularity maximization is often
directly employed as the optimization objective in community detection algorithms.

Methods

This section outlines the framework of the proposed method, as illustrated in Fig. 1. First, in the global structure
extraction phase, the Louvain algorithm combined with a size-based filtering strategy is employed to adaptively
identify structural communities with meaningful global topology, while effectively filtering out noisy clusters.
This yields reliable global structural guidance. Second, a lightweight single-layer GCN is utilized to integrate
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node attributes and local structural information, generating low-dimensional embeddings that preserve essential
relational patterns. Subsequently, through a mean aggregation operation, each structural community is mapped
to a structural center within the same embedding space. A fine-grained node-community relational matrix
is then constructed based on the similarity between node embeddings and these structural centers. Finally,
a reconstructed soft modularity loss, derived from the modeled relationships, is optimized to directly refine
the community membership associations among closely connected nodes, thereby deeply excavating the latent
community structure.

Adaptive structural community pre-detection based on global structure

In real-world networks, structure can be analyzed from both local and global perspectives. The global structural
perspective helps capture the overall distribution pattern of communities but is often sensitive to noisy clusters.
Conversely, the local structural perspective effectively identifies high-connectivity patterns among nearby nodes
but is susceptible to interference from inter-community connections. As shown in the top-right corner of Fig. 1,
the differences between the two are clearly noticeable.

To overcome the limitations of the local perspective and achieve adaptive community discovery, this paper
proposes a global structure-guided approach for adaptive community identification and high-quality global
structure extraction. The core idea is to leverage the macro-level distribution information embedded in the
global network structure to provide boundary constraints and validation for partitioning locally dense regions,
thereby dynamically guiding the delineation of community boundaries. The Louvain algorithm accomplishes
adaptive community detection through iterative optimization of the network topology, continuously merging
adjacent nodes and communities. Under the constraint of modularity, this method ensures both clear separation
between communities and high cohesion within them, aligning well with our design principles of adaptive
partitioning and global structure discovery.

UsingtheLouvainalgorithm, wefirstextractpreliminarystructuralcommunitiesC' = {c1, ¢z, ¢3, . . ., ¢t },with
the number of communities denoted as t. Although these communities preserve the overall structural information
of the graph, many of them are small in size and isolated, contributing little to the global structure and potentially
introducing noise. To address this, we propose an adaptive size-based filtering mechanism. The threshold T is
determined by calculating the mean y and standard deviation o of community sizes, and only communities
exceeding this threshold are retained. The threshold T' is calculated as follows:

== 4
B=7 (4)

¢ 2
2izileil = p)” (5)

t
T=p+0.50 (6)
Finally, the structural communities that satisfy the condition of having a community node count |c;| > T are
denoted as S = {s1, s2, S3, ..., Sk}, where k represents the number of structural communities that meet the
requirements.

Adaptive Structural Community Pre-Detection
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Fig. 1. Model framework.
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The threshold defined using the mean and standard deviation can automatically adapt to the size of the
dataset without manual tuning. When community sizes vary greatly, the mean may decrease; however, the
standard deviation will increase substantially due to the extreme differences. This effect raises the threshold,
ensuring the retention of medium- and large-sized core communities that are more representative of the overall
structure, thereby providing a stable and high-quality structural foundation.

Fusion learning of local structural information and feature information

In attributed graphs, node attributes provide crucial feature information for community detection, effectively
compensating for the limitations of relying solely on topological structure. Specifically, attribute features can
transcend the constraints of topological connectivity, enabling nodes that are not directly connected but share
similar attributes to form meaningful clusters in the feature space. This offers important clues for resolving the
ambiguity in community assignments for nodes located at community boundaries.

Original node attributes typically contain only node-specific features and lack the capacity to capture
relationships between related nodes, making it challenging to identify potentially similar nodes. To address
this limitation, we employ GCNs to explicitly integrate node features with local structural information. GCNs
utilize a symmetrically normalized adjacency matrix with self-connections, ensuring numerical stability during
aggregation and mitigating the influence of node degree disparities. Through this aggregation process, GCNs
combine each node’s features with those of its neighbors, enhance representational power and discriminative
ability via nonlinear activation functions, and produce low-dimensional embeddings Z € R™*¢" that jointly
encode attribute information and local structural patterns, thereby providing a robust foundation for subsequent
community partitioning.

L2 normalization achieves feature scaling by dividing each vector by its Euclidean norm, thereby eliminating
the influence of scale variation on similarity calculations. To this end, we apply L2 normalization to the node
representations Z learned by the GCN, obtaining the normalized embedding vectors H € R™*%. The final
node representation learning process is formulated as follows:

H = L2Norm(GCN(X, A)) (7)

Normalized vectors exhibit geometric relationships determined solely by their directions, independent of their
magnitudes. This property not only enhances computational efficiency but also ensures gradient stability during
propagation.

Node-community relationship modeling mechanism

We propose a multi-source information fusion mechanism for node-community relationship modeling, aiming
to reconcile structural information and node features within a unified perspective, thereby directly capturing
and revealing associations between nodes and communities. The core of this mechanism lies in mapping
global structure, local topology, and node attributes into a unified embedding space, achieving alignment and
integration of heterogeneous information sources. Within this space, soft membership relationships between
nodes and communities are directly modeled, effectively leveraging the complementary advantages of multi-
source information.

In this mechanism, the first step involves mapping global structural information into the continuous
embedding space. Using the high-quality structural communities S with reference to the node representation
matrix H, we compute a center matrix U € R*> ' where the representation of the j-th community s; is derived
by averaging the representations of all its member nodes:

ZhiGSj hl

[s5]

(8)

Uu; =

where |s;| represents the number of nodes in the j-th community, and h; represents the representation of j-th
node belonging to the s; community. This operation materializes the abstract community structure s; into
a point uj, effectively mapping global structural information into a continuous vector space and laying the
foundation for subsequent relationship modeling.

Following the global structure mapping, the second step infers the relationships between nodes and
communities within the same space. Specifically, we quantify the association strength between a node and a
community by measuring the similarity between the node representation h; and each structural community
center u;. Thanks to the normalization of the feature representations, using cosine similarity to accurately
measure the similarity between node h; and structural center u; in the embedding space is equivalent to
performing a vector dot product operation.

hi - uj

stmihi 45) = g

= h; - uy 9)

To make this similarity more intuitively reflect node-to-community assignments, the similarities are normalized
using a Softmax function, yielding a node-community affiliation matrix P € R™**

exp(—9 - sim(hi, u;))
Pij = %

> —iexp(—6 - sim(hi, u;))

(10)
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where § is a temperature hyperparameter that controls the sharpness of the community distribution. By
integrating global structure, local topology, and node attributes within a unified embedding space, this
mechanism effectively leverages the complementary strengths of multi-source information. It not only offers
more accurate membership determination for nodes at structural boundaries but also identifies and associates
topologically disconnected nodes with high attribute similarity, ultimately enhancing the accuracy and
robustness of community detection. Finally, the community to which a node belongs is determined according to
the principle of maximum membership probability,

Yi = arg;nax Dij (11)

Soft modularity-based community optimization

Modularity serves as a core metric for evaluating the quality of network community partitions, and its optimization
process directly determines the rationality of community discovery. Traditional modularity functions rely on
hard assignments, using discrete indicator functions to determine whether nodes belong to the same community.
This approach fails to capture the strength of node-to-community affiliations and lacks flexibility in handling
boundary nodes. To address this limitation, this study proposes a soft modularity function that incorporates a
node-community affiliation probability matrix. This matrix transforms discrete community assignments into
continuous probabilistic representations, enabling fine-grained optimization of node-community membership.
By replacing the hard-assignment indicator function in traditional modularity with an inner product form of
affiliation probabilities, we derive the soft modularity function Q’,

k
1 d;d;
i > > ai; - 33 PimPam (12)
ij m

where a;; is an element of the adjacency matrix A, d; = Zj aij denotes the degree of node v;, and pim

represents the affiliation probability of node i to community m. This design ensures that a node’s contribution
to a community is proportional to its affiliation probability, allowing nodes to participate in the structural
optimization of multiple communities through soft assignments. To simplify computation and improve
optimization efficiency, the soft modularity function is converted into matrix form:

T
B—A- % (13)
Q= ﬁtr[PTBP} (14)

where B denotes the modularity matrix, and ¢r() denotes the trace of a matrix. This transformation not only
reduces computational complexity but, more importantly, facilitates subsequent gradient-based optimization,
enabling the modularity maximization process to be embedded into an end-to-end neural network training
framework. The final loss function is:

L=—-aQ (15)

o is the scaling factor. During the optimization process, the magnitude of a single loss value affects the gradient’s
variation. Excessive changes in gradient magnitude can lead to an unstable training process. By setting an
appropriate loss scaling factor o, the loss values can be scaled to enhance the stability of the optimization,
ensuring a smoother optimization process and preventing the algorithm from getting stuck in local optima.

Thus, unlike contrastive learning methods that rely on selecting positive and negative samples to make
closely connected nodes more similar in the feature space, our approach leverages the node’s local structural
connections, global structural position, and feature information to discover effective community-level
information that enhances the correlation between nodes and their communities. This means that nodes with
close connections within the same community will become increasingly similar. The specific process of the
proposed method is shown in Algorithm 1.

Are contrastive learning strategies necessary

In recent years, a large number of community detection methods have been developed that optimize node
representations by incorporating contrastive learning strategies, thereby improving clustering performance.
These methods typically construct positive and negative sample pairs based on structural proximity or semantic
similarity, and enhance the separability of different communities in the embedding space by maximizing the
consistency of positive sample pair representations and minimizing the consistency of negative sample pair
representations.

In this study, we attempt to integrate three representative contrast strategies into the proposed method:
contrast loss designs from CommDGI?!, SupCon*, and MAGI*!. In CommDGI, nodes within the same
community as the current center are selected as positive samples, while nodes drawn from the nearest different
community are used as negative samples. For SupCon and MAG]I, the positive samples are defined as first-order
neighbors within the same community, and the negative samples are nodes drawn from the nearest different
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community. This sampling scheme pulls together representations of nodes from the same class and pushes apart
those from different classes in the embedding space, thereby learning more discriminative embeddings.
The CommDGI contrastive loss is computed as follows:

1

LCommDGI = 7%ZE:1[ZV+€1VI+ logD(hU+ ’ 'le') + Z’u, lOg(l - D(h”Uf ’ ul))] (16)

where M denotes the positive sample set, and v represents a positive sample node. Similarly, M _ represents
the negative sample set, and v_ represents a negative sample node. D() denotes a discriminator, computed by
applying a sigmoid function to the dot product of two vectors.

The SupCon contrastive loss is computed as follows:

o 1 n 1 exp(hl,+~hi)
Lsupcon = T 2ai=1 log { M| Zv+eM+ m (17)

The MAGI contrastive loss is computed as follows:

log(zi - 2o, /T)

vy EeEMy exp(zi " Rug /T) + Zv,EI\J, exp(zi *Zu_ /T)

Lyvacr = —Z”eMJrlOgZ (18)

Finally, all the aforementioned contrastive losses are collectively denoted as Lcontarst, and incorporated into
the total loss function as:

L= 7OZQI + BLcontrast (19)

By introducing different contrastive losses within the same framework, we can systematically evaluate the
performance gains brought by contrastive strategies to our method and further verify the effectiveness of our
model in the absence of such strategies. This design not only helps quantify the contribution of each contras-
tive strategy but also reveals the advantages of our model in simplifying the training process, reducing compu-
tational complexity, and enhancing generalization capability.

1: Input: Attribute graph G(V, E,X); Number of iterations iter; Target distribution update interval T'.
2: Output: Node embedding H; Final community detection partition.

o

R

11:
12:
13:

Adaptively extract the high-quality structural communities S using the Louvain algorithm and filtering mechanism in
Eq. (4) (5) (6).
for ! =1toiter—1do

Learn the node representations H in Eq. (7).

Map structure center U in Eq. (8).

Construct the Node-Community Relationship Matrix P in Eq. (9) (10).

Minimize the objective loss to update the whole framework in Eq. (15).

if /%T == 0 then

Calculate the metrics DBI, DI, Q, NMI, ACC, F1, ARI, FMI and SC to evaluate the effectiveness of community

partitioning.

end if
end for
Get the partition results with final optimization by Eq. (11).

Algorithm 1. Community detection algorithm

Experimentation
The experiments were conducted on a computer with an Intel i9 processor, 128GB of RAM, and the Windows 11
operating system, using a Python 3.8 environment for programming and computation.

Datasets
The datasets used in our experiments can be categorized as follows:

Citation Networks*!: Including Citeseer, Cora, and Pubmed, where nodes represent publications, edges
represent citation relationships, node features are either bag-of-words or TF-IDF features, and labels correspond
to publication topics.
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Co-authorship Networks: ACM*2 is a paper network where edges indicate shared authorship, while CoCS is a
scholar network where edges represent co-authorship. Node features for both are bag-of-words from keywords,
and labels denote research fields or subject categories, respectively.

Product Co-purchasing Networks: Amazon-Computers (Amac) and Amazon-Photo (Amap)*® contain
computers and photography-related products, respectively, with edges indicating frequent co-purchase. Features
are derived from review bag-of-words, and labels are product categories. Electronics-Photo (Ele-photo)* is a
network of electronics products based on co-purchase or co-view relationships.

Social Networks: Film*® is an actor network where edges denote co-appearance on the same Wikipedia page;
UAT* is an airport network where edges represent commercial flight routes. Labels indicate actor genres and
passenger traffic levels, respectively.

The dataset is processed and provided by*’, with a detailed description of the dataset shown in Table 2.

Comparison models
This paper selects eight representative community detection algorithms for comparison to comprehensively
evaluate the performance of the proposed method. These algorithms cover three main paradigms: attribute-
based, structure-based, and methods that integrate both attributes and structure.

K-means! is a classic attribute-based clustering algorithm. It partitions nodes solely based on the distribution
of their feature vectors in the latent space, serving as a baseline for attribute-only clustering.

Louvain® is a heuristic structure-based algorithm. It iteratively merges nodes to maximize modularity,
serving as a benchmark for pure structural methods.

Six baseline algorithms that integrate attributes and structure are selected:

CommDGI?! learns node embeddings by maximizing the mutual information between local node
representations and a global graph summary.

DGCluster® transforms modularity maximization into a differentiable loss function, enabling end-to-end
joint optimization with GNN-based representation learning.

DCGL?® employs a pseudo-siamese network architecture to extract features from structural and attribute
perspectives separately, enhancing the representations through cross-view contrastive learning.

MAGT?! uses the modularity matrix as an anchor for contrastive learning, capturing high-order structural
similarity without requiring graph augmentation.

MGCN? designs multi-hop graph convolution to adaptively fuse information from higher-order
neighborhoods, learning more comprehensive node representations.

CPGCL? jointly learns node representations and soft community assignments, dynamically refining sample
pairs in contrastive learning to alleviate the false negative problem.

Evaluation metrics and parameter settings

In this experiment, the community detection task in attribute graphs will be the main focus, and the performance
of all community detection methods will be compared. To evaluate the quality of the predicted communities,
we use eight evaluation metrics: DBI, Q, NMI, ACC, F1-score, ARI, FMI and SC to assess the effectiveness of
the community detection results. The DBI metric primarily measures the similarity and separation between the
detected communities, aiming to make communities more compact internally and more separated from each
other. A smaller DBI value is preferable. For the other metrics, higher values are better, that is

DBI =25 maz;ui(

avg(ci) + avg(c;) )
k

where k represents the number of communities, avg(c;) represents the average distance of all nodes in the i-th
community to its center, and dcen(u; + u;) represents the distance between the centers of the i-th and j-th
communities.

The NMI metric is normalized based on the concept of mutual information from information theory, and is
used to measure the similarity between the community detection results and the ground truth, that is

Dataset | Nodes | Edges | Features | Communities
Acm 3025 13128 | 1870 3
Amac 7650 245861 | 767 10
Amap 13752 | 119081 | 745 8
Citeseer 3327 4552 3703 6
Cocs 18333 | 81894 | 6805 15
Cora 2708 5278 1433 7
Film 7600 15009 | 932 5
Pubmed 19717 | 44324 | 500 3
Uat 1190 13599 | 239 4
Ele-photo | 48362 | 500928 | 384 12

Table 2. Detailed description of the dataset.
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MI(C,G) = Z Z P(c, g)loy% (21)

ceC geG
H(G) = — Z P(g)logP(g) (22)
geG
__MICG)
NMI(C,G) = ONC) (23)

where G represents the ground truth, and C represents the community detection results. P(c, g) denotes the
joint probability distribution of a node being in both the true community g and the detected community c. P(g)
represents the probability of a node being in the true community g. M1 () represents mutual information, and
H () represents entropy.

The ACC metric is used to measure the consistency between the community detection results and the ground
truth, that is

1 n 5
ACC = =5 1 plyi;map(§:)) 20

where y; represents the true community label of i-th node, and §; represents the community detection label of
the node. p is an indicator function that takes the value 1 if the true label and the detected label are the same, and
0 otherwise. map(y;) denotes the mapping of the detection label of node i to the true label.

The Fl-score provides a comprehensive evaluation of the model’s precision and recall, measuring the
consistency between the communities detected by the algorithm and the true communities, that is

Precision - Recall

=92. 2
Fl=2 Precision + Recall (25)
TP
P LSTON, = ————— 26
recision TP+ FP (26)
TP
Recall = m (27)

where TP represents the number of nodes predicted to belong to community ¢ and actually belong to ¢, FP
represents the number of nodes predicted to belong to community ¢ but do not belong to ¢, FN represents the
number of nodes that actually belong to community ¢ but are predicted not to belong to c.

The ARI is a metric used to measure the similarity between detection results and true labels, that is

_ ., TP+TN
RI=2- W= 1) (28)
ARy — _ BI-E[RI] (29)

maz(RI) — E[RI]

where TN represents the number of nodes that do not actually belong to community ¢ and are predicted not to
belong to ¢, and E[] denotes the expected value.

The FMI metric measures the geometric mean of precision and recall for community detection results,
balancing the trade-off between false positives and false negatives, that is

TP
FMI = = /Precision - Recall (30)

\/(TP +FP) - (TP + FN)

The SC metric evaluates the compactness within communities and the separation between communities, that is

sc=+ S 5C() (31)
SC(x) = 2@ —al@) (32)

max{a(w), b(x) }

1 /
a(z) = =1 Z d(z,z") (33)

e,
o /
ba) = uin {15 Z; )} (34)
@' €0
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where SC(x) is the Silhouette Score of node x. a(x) is the mean intra-cluster distance of node x, and b(x) is the
minimum mean distance from x to any other cluster. SC ranges from —1 to 1, with higher values indicating more
coherent and well-separated clusters.

In our work, a single-layer convolutional network is used for node representation learning. The hyperparameter
¢ is set to 30, and the loss coefficient « is set to 0.001. The Adam optimizer is used for 300 iterations of model
training, with a learning rate of 0.001 and weight decay set to 0.005. In all experiments, the dimension of node
representations is fixed at 512. For comparison experiments, the number of communities to be specified is set to
the number of communities detected in this experiment. All other parameters for baseline methods follow their
original papers to ensure optimal performance. For example, CommDGI uses a learning rate of 0.001 for 500
iterations; DGCluster uses 0.001 for 300 iterations; DCGL uses 0.001 for 300 iterations; MAGI uses 0.0005 for
400 iterations; MGCN uses 0.003 for 700 iterations; and CPGCL uses 0.0007 for 600 iterations.

Experiment result
This paper compares the performance of seven community detection methods for the community detection
task. Table 3 summarizes the results of the community performance comparison across different algorithms.
Bold numbers indicate the best performance, while underlined numbers indicate the runner-up performance.
As shown in Table 3, the proposed algorithm achieves the best or runner-up performance in most evaluation
metrics across different datasets. Compared to other deep learning-based methods, our approach incorporates
global, local structural, and feature information for community detection, enhancing modularity loss by
leveraging community membership probabilities derived from these three information sources. By maximizing
the improved modularity loss, the algorithm effectively uncovers the community memberships of nodes, leading
to strong experimental results in the community detection task.

Comprehensive algorithm evaluation and statistical validation
Experiment 1: Wilcoxon signed-rank test for algorithm comparison

The Wilcoxon signed-rank test*® is a non-parametric statistical method used to compare paired or related
samples. This study adopted a significance level of 0.05 to assess the differences between the proposed algorithm
and comparative algorithms. The results are recorded in Table 4. The terms R+ and R- represent the sum of
ranks where the proposed algorithm performed superior or inferior to its competing algorithms, respectively.
A p-value below 0.05 indicates a statistically significant difference between the proposed algorithm and the
compared algorithm. Specifically, when the p-value is less than 0.05, it signifies a significant difference between
the proposed algorithm and the comparative algorithm, which is highlighted in bold in the table.

Table 4 presents the Wilcoxon test results for the ACC, F1, ARI, and SC metrics of the algorithms. The data
results demonstrate that the metrics of the proposed algorithm differ significantly from those of the comparison
algorithms, thus validating its strong performance across the 10 datasets.

Experiment 2: Comprehensive ranking experiment based on multi-criteria decision-making

To comprehensively evaluate the overall performance of different algorithms, this study adopts the TOPSIS*
method as a multi-criteria decision-making (MCDM) approach®. Considering that the eight evaluation metrics
used in this experiment are of diverse types and that some of them are highly correlated, the CRITIC method™!
is employed to automatically compute objective weights, thereby avoiding the subjectivity of manual weight
assignment.

The experimental procedure is as follows: first, missing values and special entries (e.g., OM, N/A) in the
original evaluation metrics are processed, followed by orientation unification and normalization to eliminate
differences in scale and direction; next, the CRITIC method is applied to determine the weights by jointly
considering the discrimination power and information independence of each metric; finally, the TOPSIS method
is used to calculate the closeness coefficient of each algorithm to the positive and negative ideal solutions, and
the algorithms are ranked in descending order of the coefficient, yielding an objective and unified performance
ranking in the multi-dimensional evaluation system.

As shown in Table 5, our method consistently captures the overall performance differences among algorithms
across multiple real-world datasets. It achieves the top rank on most datasets, thereby demonstrating its
superiority in terms of comprehensive performance across multiple evaluation metrics.

Ablation experiments
Experiment 1: Effectiveness analysis of the adaptive structural community extraction module

The first ablation experiment aims to remove the Louvain-based adaptive structural community extraction
module to verify the effectiveness of global structure information. Since the proposed method relies on global
centroids during the fusion stage to compute node-community memberships, in the absence of Louvain,
we directly perform K-means clustering on the learned node embedding matrix H, using the ground-truth
number of communities K r as the number of clusters to generate global centroids. These centroids then replace
the structural community centers extracted by Louvain in the subsequent steps, allowing us to evaluate the
contribution and necessity of Louvain pre-detection to the quality of global structural information.

The experimental results are shown in Table 6. Specifically, the model incorporating global structural
information outperforms the counterpart without global structural information across multiple evaluation
metrics, indicating that global structural information plays a significant role in improving the accuracy and
stability of community partitioning, thereby highlighting its necessity in the proposed method.

Experiment 2: Effectiveness analysis of the contrastive strategy

To evaluate the impact of different contrastive learning strategies on the performance of our method, we
incorporated three representative contrastive losses—LcommbDG1, Lsupcon and Laragr-into the same
framework and compared them with a baseline model without contrastive optimization. All experiments were
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Dataset Metrics K-means | Louvain | CommDGI | DGCluster | DCGL MAGI MGCN | CPGCL | Our
Min DBI |- - 1.554865 0.958007 1.916085 | 2.142677 | 0.457259 | 3.370206 | 0.458970
Max Q 0.216550 | 0.783224 | 0.685146 0.752858 0.288298 | 0.722241 | 0.211403 | 0.480478 | 0.765320
Max NMI | 0.233923 | 0.457330 | 0.518370 0.465627 0.230544 | 0.591830 | 0.225887 | 0.233233 | 0.561596
Max ACC | 0.364845 | 0.519202 | 0.666913 0.274003 0.408789 | 0.691285 | 0.361521 | 0.388848 | 0.669129
Cora Max F1 0.392400 | 0.069800 | 0.546800 0.231300 0.325500 | 0.703900 | 0.296000 | 0.377249 | 0.663200
Max ARI | 0.123668 | 0.310949 | 0.444888 0.154347 0.110080 | 0.560715 | 0.082515 | 0.156608 | 0.469243
Max FMI | 0.285960 | 0.419639 | 0.560501 0.297193 0.409037 | 0.579507 | 0.420040 | 0.287833 | 0.562167
Max SC 0.030930 | 0.095201 | 0.434185 0.561923 0.046621 | 0.478210 | 0.285998 | 0.067724 | 0.858014
MinDBI |- - 1.718555 0.682854 1.712106 | 2.810201 | 0.458751 | 4.929488 | 0.583929
Max Q 0.342458 | 0.783224 | 0.718006 0.813808 0.286117 | 0.794073 | 0.177122 | 0.462403 | 0.822334
Max NMI | 0.231280 | 0.457330 | 0.353227 0.351596 0.138506 | 0.341371 | 0.095831 | 0.094860 | 0.385114
) Max ACC | 0.421100 | 0.519202 | 0.545537 0.122633 0.360986 | 0.420800 | 0.235047 | 0.276225 | 0.559663
Citescer Max F1 0.380200 | 0.069800 | 0.438600 0.117700 0.289200 | 0.446200 | 0.188400 | 0.258641 | 0.504300
Max ARI | 0.172758 | 0.310949 | 0.312169 0.057623 0.087879 | 0.217544 | 0.004307 | 0.072031 | 0.356296
Max FMI | 0.290782 | 0.279003 | 0.448738 0.162507 0.416197 | 0.341115 | 0.386031 | 0.208526 | 0.459963
Max SC 0.014913 | 0.047396 | 0.420256 0.616554 0.057491 | 0.289657 | 0.164237 | 0.011400 | 0.814350
Min DBI |- - 0.626647 0.829712 1.162722 | 1.828684 | 0.261183 | 3.167038 | 0.684481
Max Q 0.179559 | 0.783224 | 0.585480 0.793614 | 0.162135 | 0.732835 | 0.427613 | 0.655669 | 0.745318
Max NMI | 0.287808 | 0.457330 | 0.648341 0.382356 0.214327 | 0.431209 | 0.069817 | 0.154253 | 0.620495
Max ACC | 0.351074 | 0.519202 | 0.875041 0.270413 0.525289 | 0.338843 | 0.333223 | 0.303471 | 0.844300
Acm Max F1 0.411000 | 0.069800 | 0.742500 0.249200 0.382500 | 0.446000 | 0.289200 | 0.342566 | 0.670900
Max ARI | 0.193426 | 0.310949 | 0.693615 0.165469 0.177992 | 0.256714 | 0.000088 | 0.113481 | 0.692292
Max FMI | 0.415971 | 0.320982 | 0.825851 0.357503 0.575100 | 0.479568 | 0.523107 | 0.308405 | 0.788906
Max SC 0.014176 | 0.108579 | 0.540433 0.552963 0.010168 | 0.305496 | 0.512783 | 0.035922 | 0.798375
MinDBI |- - 0.539270 1.272281 1.255727 | 0.760000 | 0.486686 | NAN 0.377126
Max Q 0.080476 | 0.783224 | 0.346104 0.680452 0.435044 | 0.711067 | 0.240120 | NAN 0.670459
Max NMI | 0.117092 | 0.457330 | 0.220800 0.695787 | 0.514492 | 0.674966 | 0.169413 | NAN 0.646764
Max ACC | 0.291503 | 0.519202 | 0.389150 0.661961 0.669412 | 0.786144 | 0.290588 | NAN 0.685882
Amap Max F1 0.284700 | 0.069800 | 0.310100 0.452600 0.650500 | 0.776100 | 0.225300 | NAN 0.684800
Max ARI | 0.048474 | 0.310949 | 0.085440 0.547796 0.434472 | 0.583538 | 0.015830 | NAN 0.506579
Max FMI | 0.220878 | 0.505307 | 0.437640 0.633039 | 0.495231 | 0.601123 | 0.332593 | NAN 0.607000
Max SC 0.167072 | 0.322381 | 0.847948 0.764490 0.194227 | 0.730850 | 0.591428 | NAN 0.899968
Min DBI |- - 1.650489 0.995580 0.609719 | 2.086179 | 0.542170 | 2.117715 | 0.453726
Max Q 0.000959 | 0.783224 | 0.219029 0.268062 0.049000 | 0.229935 | 0.113806 | 0.174967 | 0.280535
Max NMI | 0.214282 | 0.116344 | 0.261743 0.194440 0.268799 | 0.135860 | 0.266431 | 0.097880 | 0.248141
Max ACC | 0.430252 | 0.356303 | 0.556303 0.234454 0.468908 | 0.457983 | 0.336134 | 0.380672 | 0.547059
vat Max F1 0.451700 | 0.075200 | 0.570600 0.225900 0.404000 | 0.444900 | 0.438200 | 0.353601 | 0.575400
Max ARI | 0.144351 | 0.087934 | 0.248691 0.086840 0.404000 | 0.118683 | 0.119921 | 0.070222 | 0.243589
Max FMI | 0.427409 | 0.412096 | 0.447597 0.224049 0.484028 | 0.369455 | 0.475867 | 0.387757 | 0.476756
Max SC 0.312638 | 0.218247 | 0.609281 0.515990 0.574159 | 0.419987 | 0.470890 | 0.408284 | 0.648977
Min DBI |- - 2.274522 1.358343 N/A 0.883479 | OM OoM 0.730426
Max Q 0.328653 | 0.797354 | 0.678545 0.604822 N/A 0.682104 | OM oM 0.739465
Max NMI | 0.244915 | 0.425891 | 0.450860 0.381566 N/A 0.435163 | OM OoM 0.453136
Max ACC | 0.322939 | 0.445763 | 0.519189 0.272177 N/A 0.460672 | OM OM 0.533353
Ele-Photo Max F1 0.276600 | 0.036300 | 0.367200 0.179200 N/A 0.502600 | OM oM 0.487800
Max ARI | 0.089260 | 0.155509 | 0.258453 0.070701 N/A 0.206226 | OM OoM 0.240034
Max FMI | 0.229346 | 0.287502 | 0.395542 0.192001 N/A 0.342707 | OM OM 0.370855
Max SC 0.043629 | 0.356345 | 0.375267 0.423660 N/A 0.641512 | OM OoM 0.696875

Table 3. The performance comparison of different community detection algorithms

the algorithm’s runtime exceeded five days, and “NAN” indicates the algorithm encountered a NAN error. Bold

values represent the best results, and underlined values represent the runner-up results

« »

indicates that the
metric is not applicable to the algorithm, “OM” indicates an out-of-memory error occurred, “N/A” indicates
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ACC F1 ARI SC

Our vs. R+ | R- | p-value |R+ |R- |p-value |R+ |R- | p-value | R+ |R- | p-value

K-means 53 |2 [0.009344 |54 |1 |0.00691 |52 |3 |0.012515 |55 |0 |0.005062
Louvain 48 |7 |0.036658 |55 |0 |0.005062 |44 |11 |0.092601 |55 |0 |0.005062
CommDGI |46 |9 [0.059336 |51 |4 |0.016605 |48 |7 |0.036658 |50 |5 |0.021824
DGCluster |55 |0 |0.005062 |55 |0 |0.005062 |53 |2 |0.009344 |55 |0 |0.005062
DCGL 21 [0 |0.027708 |36 |0 |0.011719 |24 |12 | 0.400814 |21 |0 |0.027708
MAGI 46 |9 |0.059336 |39 |16 | 0.241121 |44 |11 |0.092601 |55 |0 |0.005062
MGCN 36 |0 |0.011719 |55 |0 |0.005062 |53 |2 |0.009344 |36 |0 |0.011719
CPGCL 21 [0 |0.027708 |21 |0 |0.027708 (21 |0 |0.027708 |21 |0 |0.027708

Table 4. Results of the Wilcoxon signed-rank test Bold values indicate statistically significant differences (p <

0.05).
Kmeans | Louvain | CommDGI | DGCluster | DCGL | MAGI | MGCN | CPGCL | Our

Topsis score | 0.1815 | 0.5131 0.7164 0.5515 0.3290 | 0.6856 | 0.4751 |0.2225 | 0.9387

Cora Rank 9 5 2 4 7 3 6 8 1
Citescer Topsis score | 0.4160 | 0.5444 | 0.7609 0.5341 0.4591 | 0.6187 | 0.4471 |0.2304 |0.9346

Rank 8 4 2 5 6 3 7 9 1
Topsis score | 0.2164 | 0.4909 0.8133 0.5610 0.3819 | 0.5177 | 0.4993 |0.3270 | 0.9080

Acm Rank 9 6 2 3 7 4 5 8 1
Topsis score | 0.1019 | 0.4939 0.4581 0.6469 0.5057 | 0.8236 | 0.3566 | 0.0000 | 0.8864

Amap Rank 8 5 6 3 4 2 7 9 1
. Topsis Score | 0.4113 | 0.5057 | 0.5103 0.2829 0.5534 | 0.4109 | 0.5653 |0.3883 | 0.6225

Film Rank 6 5 4 9 3 7 2 8 1
Pubmed Topsis score | 0.6262 | 0.5372 0.5733 0.2688 0.0000 |0.5083 | 0.4584 |0.3557 |0.7189

Rank 2 4 3 8 9 5 6 7 1
Topsis score | 0.5866 0.3198 0.7030 0.4180 0.0000 | 0.4774 | 0.3614 | 0.0000 0.9288

Coes Rank 3 7 2 5 8 4 6 8 1
Topsis score | 0.1776 | 0.3001 0.5332 0.5739 0.0000 | 0.6304 | 0.0000 | 0.0000 | 0.7852

Amac Rank 6 5 4 3 7 2 7 7 1
Topsis score | 0.4162 | 0.4807 | 0.7473 0.4962 0.6199 | 0.4659 | 0.6064 | 0.3495 | 0.8252

vat Rank 8 6 2 5 3 7 4 9 1
Ele-Photo Topsis score | 0.2069 0.5361 0.6487 0.3701 0.0000 | 0.8089 | 0.0000 | 0.0000 0.9317

Rank 6 4 3 5 7 2 7 7 1

Table 5. Comprehensive performance ranking of different community detection methods based on MCDM.

Min DBI | Max Q Max NMI | Max ACC | Max F1 Max ARI | Max FMI | Max SC
With global structure 0.458282 | 0.765320 | 0.561161 | 0.673929 | 0.663000 | 0.472555 | 0.562167 | 0.858014
Cora Without global structure | 0.676832 | 0.681079 | 0.528015 | 0.673929 | 0.657000 | 0.451359 | 0.566008 | 0.708492
Acm With global structure 0.684481 | 0.745318 | 0.620495 | 0.844298 | 0.670900 | 0.692292 | 0.788906 | 0.798375
Without global structure | 2.697249 | 0.470766 | 0.460258 | 0.639339 | 0.740500 | 0.428861 | 0.678737 | 0.269921
Amap With global structure 0.377126 | 0.670459 | 0.646764 | 0.685882 | 0.684800 | 0.506579 | 0.607000 | 0.899968
Without global structure | 0.242789 | 0.461736 | 0.347316 | 0.452810 | 0.451600 | 0.233878 |0.453156 | 0.834500
With global structure 0.774019 | 0.280535 | 0.248141 | 0.547059 | 0.575400 | 0.243589 | 0.476756 | 0.648977
vat Without global structure | 0.723423 | 0.241941 | 0.219666 | 0.512605 | 0.500600 | 0.196388 |0.499371 | 0.655903

Table 6. Effectiveness analysis of the adaptive structural community extraction Module.

conducted on the same datasets (Cora, Acm, Amap, and Uat) to ensure comparability, with the contrastive loss
coeflicient 3 tested at values of 1, 0.1, 0.01, and 0.001, and the best-performing setting (8=0.001) adopted for
reporting results. Performance was quantitatively assessed using six metrics: DBI, Q, NMI, ACC, F1-score, and
ARI.

The detailed results are presented in Tables 7, 8 and 9, where Table 7 compares the results with and without
Lcommbpar, Table 8 compares the results with and without Lsypcon, and Table 9 compares the results with
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Min DBI | Max Q Max NMI | Max ACC | MaxF1 | Max ARI

With contrastive loss 0.459781 | 0.762369 | 0.559834 | 0.681315 | 0.655900 | 0.489056

Cora Without contrastive loss | 0.458282 | 0.765320 | 0.561161 | 0.673929 | 0.663000 | 0.472555
With contrastive loss 0.590283 | 0.746271 | 0.597249 | 0.836364 | 0.662600 | 0.658855

Acm Without contrastive loss | 0.684481 | 0.745318 | 0.620495 | 0.844298 | 0.670900 | 0.692292
With contrastive loss 0.356660 | 0.660752 | 0.645052 | 0.622745 | 0.654600 | 0.487767

Amap Without contrastive loss | 0.377126 | 0.670459 | 0.646764 | 0.685882 | 0.684800 | 0.506579
With contrastive loss 0.707185 | 0.279933 | 0.246803 | 0.547059 | 0.579100 | 0.243487

vat Without contrastive loss | 0.774019 | 0.280535 | 0.248141 | 0.547059 | 0.575400 | 0.243589

Table 7. Experimental results with and without Lcommbpar loss.

Min DBI | Max Q Max NMI | Max ACC | MaxF1 | Max ARI

With contrastive loss 0.631657 | 0.721620 | 0.505175 | 0.579025 | 0.626200 | 0.384827

Cora Without contrastive loss | 0.458282 | 0.765320 | 0.561161 | 0.673929 | 0.663000 | 0.472555
With contrastive loss 0.868040 | 0.752136 | 0.414174 | 0.628430 | 0.510600 | 0.421314

Acm Without contrastive loss | 0.684481 | 0.745318 | 0.620495 | 0.844298 | 0.670900 | 0.692292
With contrastive loss 0.770020 | 0.650918 | 0.586971 | 0.597908 | 0.606000 | 0.449165

Amap Without contrastive loss | 0.377126 | 0.670459 | 0.646764 | 0.685882 | 0.684800 | 0.506579
With contrastive loss 0.643772 | 0.218710 | 0.212367 | 0.527731 0.523000 | 0.197494

vat Without contrastive loss | 0.774019 | 0.280535 | 0.248141 | 0.547059 | 0.575400 | 0.243589

Table 8. Experimental results with and without Lsupcon loss.

Min DBI | Max Q Max NMI | Max ACC | Max F1 Max ARI

With contrastive loss 0.501831 | 0.746360 | 0.544831 | 0.666913 | 0.638700 | 0.488040

Cora Without contrastive loss | 0.458970 | 0.765320 | 0.561596 | 0.669129 | 0.663200 | 0.469243
With contrastive loss 0.916360 | 0.728609 | 0.516628 | 0.744463 | 0.553700 | 0.544837

Acm Without contrastive loss | 0.684481 | 0.745318 | 0.620495 | 0.844300 | 0.670900 | 0.692292
With contrastive loss 0.457712 | 0.643710 | 0.608214 | 0.615294 | 0.623500 | 0.466393

Amap Without contrastive loss | 0.377126 | 0.670459 | 0.646764 | 0.685882 | 0.684800 | 0.506579
With contrastive loss 0.206296 | 0.167113 | 0.227279 | 0.510924 | 0.491400 | 0.206899

vat Without contrastive loss | 0.807088 | 0.280636 | 0.249595 | 0.546218 | 0.578200 | 0.242806

Table 9. Experimental results with and without Lasacr loss.

and without L acr. These comparisons intuitively reveal the actual performance gains of different contrastive
strategies and validate the effectiveness of our method in the absence of contrastive optimization.

Parameter analysis
Experiment 1: Sensitivity Analysis of the Threshold Filtering Mechanism

This experiment analyzes the threshold filtering mechanism applied after Louvain-based community
partitioning. To evaluate the sensitivity of this mechanism to threshold selection, we vary the standard deviation
coefficient from 0.1 to 1.0 and systematically examine the impact of different threshold strategies on both the
fidelity of global information and the final detection performance. This process helps verify the effectiveness and
robustness of the filtering mechanism in balancing noise suppression with information preservation.

We analyzed the trends of the Q, ACC, and F1 metrics on the Acm, Amap, Uat, and Cocs datasets. As shown
in Fig. 2, when the standard deviation coefficient is in the range of 0.4-0.6, most metrics achieve both superior
and stable performance. In particular, a coefficient of 0.5 achieves a good balance among Q, ACC, and F1.

Experiment 2: Sensitivity Analysis of the oParameter

In this experiment, we investigate the impact of different values of o on the performance of the experiment
across various datasets. Specifically, we set @ = 1.0, 0.1, 0.01, 0.001 and perform experiments on the Cora,
Citeseer, ACM, and AMAP datasets, observing the Q, NMI, and ACC metrics. The experimental results shown
in Fig. 3 demonstrate that when a is set to 0.001, the performance is optimal. This is because a smaller modularity
loss helps mitigate the problem of modularity optimization getting stuck in local optima, preventing overfitting
caused by forcing the algorithm to rigidly determine community memberships. A more comprehensive analysis
of the relationships between all communities allows for better extraction of community membership information.
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Fig. 2. Scores of Q, ACC, and F1 metrics for the Acm, Amap, Uat, and Cocs datasets under different standard
deviation coefficients.

Depth sensitivity analysis of GCN

To further investigate whether increasing the number of GCN layers can enhance the model’s ability to capture
deep local features and attribute associations, we designed a depth sensitivity experiment using single-layer, two-
layer, and three-layer GCN encoders. All parameters other than the number of layers were kept consistent with
the baseline to ensure result comparability.

The experimental results, as shown in Table 10, indicate that excessively deep GCNs suffer from over-
smoothing, leading to a decline in accuracy. Since the proposed method already incorporates rich global
structural information, a single-layer GCN is sufficient to capture the necessary local structural features, thereby
achieving a better balance between performance and computational efficiency.

Runtime comparison

In this experiment, the runtime comparison of various deep learning-based algorithms is conducted on four
different datasets: Cora, Citeseer, Acm, and Uat. As shown in the experimental comparison in Fig. 4, our
algorithm achieves the fastest runtime across different datasets. The reason for this is that the community
detection framework designed in this paper employs the fast Louvain algorithm for pre-community detection to
obtain global structural information, and uses a basic GCN to integrate local structural and feature information
for learning node representations. These useful pieces of information are then fused to compute the community
membership probabilities of nodes. Finally, modularity-based community optimization is performed using the
membership probabilities to mine the community information, which is faster and more effective compared to
other deep learning-based algorithms. Our community detection framework reduces the extra view generation
for data augmentation, the construction of positive and negative samples for contrastive learning, and the joint
optimization of multiple objectives, achieving rapid and effective detection with a simple yet efficient framework
and optimization approach.
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Fig. 3. Scores of Q, ACC, and F1 metrics for the Cora, Citeseer, Acm, and Amap datasets under different «

values.
Min DBI | Max Q Max NMI | Max ACC | MaxF1 | Max ARI | Max FMI | Max SC | Topsis Score
single-layer GCN | 0.583929 | 0.822334 | 0.385114 | 0.559663 | 0.504300 | 0.356296 | 0.459963 | 0.814350 | 0.515353
Citeseer | two-layer GCN 0.484069 | 0.818214 | 0.377790 | 0.599940 | 0.568800 | 0.345601 | 0.456540 | 0.842465 | 0.492008
three-layer GCN | 0.444321 | 0.816524 | 0.376340 | 0.617072 | 0.605500 | 0.336664 | 0.459849 | 0.792908 | 0.515290
single-layer GCN | 0.684481 | 0.745318 | 0.620495 | 0.844300 | 0.670900 | 0.692292 | 0.788906 | 0.798375 | 0.518493
Acm two-layer GCN 0.589847 | 0.752684 | 0.474369 | 0.621157 | 0.524600 | 0.475670 | 0.626644 | 0.598632 | 0.507636
three-layer GCN | 0.572061 | 0.751419 | 0.440557 | 0.606281 | 0.599700 | 0.435782 | 0.595400 | 0.670572 | 0.502263
single-layer GCN | 0.377126 | 0.670459 | 0.646764 | 0.685882 | 0.684800 | 0.506579 | 0.607000 | 0.899968 | 0.791961
Amap two-layer GCN 0.536609 | 0.661113 | 0.641394 | 0.608366 | 0.629600 | 0.486151 | 0.604802 |0.751231 |0.251217
three-layer GCN | 0.566904 | 0.659047 | 0.603202 | 0.599869 | 0.621300 | 0.468950 | 0.587254 | 0.692937 | 0.487811
single-layer GCN | 0.534169 | 0.646346 | 0.528356 | 0.624284 | 0.527100 | 0.508426 | 0.586879 | 0.823781 | 0.681961
Cocs two-layer GCN 0.636651 | 0.614536 | 0.390344 | 0.522064 | 0.392900 | 0.382378 | 0.482495 | 0.544767 | 0.381217
three-layer GCN | 0.479450 | 0.591030 | 0.289053 | 0.442481 | 0.337100 | 0.315236 | 0.411786 |0.717388 | 0.327811

Table 10. Performance of GCNs with different numbers of layers in depth sensitivity Experiments.

Visualization comparison of community detection results

To intuitively verify the effectiveness of the algorithm presented in this paper, we use the T-distributed stochastic
neighbor embedding (T-SNE) algorithm®? to visualize the final node representations and community partition
results in a two-dimensional space, as shown in Fig. 5. In this figure, we compare the community detection
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Scientific Reports|  (2025) 15:39249 | https://doi.org/10.1038/s41598-025-22860-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

results after learning node representations based on the original features using K-means and deep learning on
the Cora dataset. Our method more effectively distinguishes community differences and ensures community
cohesion.

Conclusion

In this study, we proposed a straightforward and effective approach for community detection. Our method
features adaptive detection, identifying high-quality structural communities without needing a predefined
number of communities. It also includes node-community relationship modeling, which integrates local
topology and node attributes into a shared embedding space, allowing us to model the soft relationships between
nodes and community centers. Additionally, we implement soft modularity reconstruction, which optimizes
community partitioning in an end-to-end manner using the soft relational matrix, without relying on contrastive
learning or data augmentation. Our approach offers a new perspective on the research landscape, hoping to
inspire researchers to develop improved algorithms for community detection.

We validate the effectiveness of our proposed algorithm through comparative experiments using various
metrics, including DBI, Q, NMI, ACC, F1, ARI, FMI, and SC. In future work, we plan to explore different
community detection techniques and social network analysis methods, focusing on optimizing the acquisition
of global structural information.

Data availability
The datasets generated during and/or analysed during the current study are available in the Github repository,
https://github.com/wuanghoong/Less-is-More.git.
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