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Due to its high emissions, vehicular air pollution remains a critical contributor to environmental 
degradation and global warming; however, even in smart cities, control mechanisms often remain 
inadequate. The current Pollution Under Control Certificate (PUCC) system suffers from inefficiencies 
such as weak monitoring, maintenance gaps, and data manipulation risks. This paper proposes a 
blockchain-enabled framework integrating Internet of Things (IoT) sensors, machine learning (ML), and 
decentralized data validation to enhance emission control. In the proposed system, IoT-based sensors 
installed in vehicles continuously monitor emission levels and transmit real-time data to a blockchain 
network, ensuring tamper-proof, transparent, and immutable records. A consortium blockchain is 
used to validate and store emission data across distributed nodes. Furthermore, the eXtreme Gradient 
Boosting (XGBoost) machine learning model is applied to this data to predict emission trends and 
identify vehicles requiring maintenance proactively. Comparative simulations with cloud and fog-
based models demonstrate the system’s superiority: the blockchain-based XGBoost model achieved 
97.98% prediction accuracy, outperforming cloud systems by 4.9%. Additionally, the proposed system 
delivered a throughput of 679 Mbps, the response time of 91.98 milliseconds, and a processing time 
of 225.88 milliseconds. This framework overcomes PUCC system limitations, offering a scalable and 
reliable approach for reducing vehicular pollution in support of smart cities and sustainable urban 
development.

Keywords  Blockchain, Internet of things, Pollution control, Smart system, Smart city, Vehicle emission 
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Global warming, driven by greenhouse gases, is a major challenge, causing rising sea levels and extreme weather. 
The increased vehicle use significantly contributes to air pollution and climate change through the emission 
of particulate matter, CO2, nitrogen oxides, and chlorofluorocarbons. According to research, these emissions 
contribute significantly to respiratory, cardiovascular, and even cancer conditions1,2. The association between 
outdoor air pollution, notably particulate matter, and lung cancer, as discussed in3, emphasizes the urgent need 
for effective mitigation strategies and public health initiatives. Addressing vehicular air pollution requires a 
comprehensive, multidisciplinary approach. Global advancements in air pollution control4 with an emphasis 
on pollutant detection are highlighted in a systematic review (1998–2022). According to a year-long study 
conducted in Bengaluru5, tracking CO2, black carbon, and ultrafine particles revealed that highway pollution 
surpasses residential streets, emphasizing advanced monitoring for improved urban air quality. Despite Bharat 
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Stage Standards, cleaner fuels, and the Pollution Under Control Certificate (PUCC) system, emission control 
faces challenges due to regulatory deviations, transparency issues, and a lack of auditing, reducing PUCC 
effectiveness. Beyond vehicles6, environmental initiatives significantly impact organizational performance. A 
study on Vietnamese Small and Medium-sized Enterprises7 showed that while environmental measures improve 
performance, overinvestment in pollution control can also negatively impact. This highlights the need for a 
balanced approach to environmental investments, ensuring sustainability without compromising economic 
efficiency.

According to the study8, the existing PUCC system has inefficiencies and has not improved much despite an 
increase in the number of vehicles. We provide a blockchain-based system that decentralizes monitoring while 
ensuring data immutability, security, and transparency. The peer-to-peer networking among PUCC stations 
enhances jurisdiction-wide monitoring. By automating emission tracking, the integration of the Internet of 
Things (IoT) minimizes the likelihood of human error and manipulation9. The prior systems typically rely on 
centralized or monolithic architectures, which create performance bottlenecks such as network congestion, 
high latency, and single points of failure. These limitations inhibit the scalability, responsiveness, and real-
time processing capabilities required for dynamic IoT environments. The existing blockchain-IoT solutions 
for emission monitoring improve data integrity and automation but face major limitations. They rely on 
monolithic or globally validated architectures that struggle to scale with growing vehicle numbers and emission 
centers, leading to network congestion and performance bottlenecks. These systems also lack mechanisms 
for incentivizing compliance or penalizing malpractice, failing to encourage honest participation. Also, their 
centralized validation models are poorly suited to diverse local regulatory contexts, increasing the risk of single 
points of failure, reduced contextual accuracy, and vulnerability to manipulation or collusion.

Using eXtreme Gradient Boosting (XGBoost) for predictive analytics, preventive interventions can be 
enabled by forecasting pollution trends. By providing timely maintenance notifications and regulatory actions, 
this capability reduces vehicle emissions. Because of its adaptability, the framework can be modified to suit 
the evolving needs of law enforcement, legislators, and vehicle owners. The technology enhances pollution 
monitoring, encourages sustainable urban planning, and contributes to environmental and smart city initiatives 
by resolving PUCC shortcomings. All symbols with descriptions are listed in Table 1.

This study is driven by the critical need to enhance vehicular emission monitoring, where existing regulatory 
mechanisms, particularly the PUCC system, exhibit significant limitations in terms of transparency, auditing, 
and operational efficiency. The rapid growth in vehicle ownership, coupled with inadequate enforcement and 
outdated monitoring infrastructure, worsens air pollution and poses severe public health risks. These challenges 
highlight a clear gap in the current emission control framework. To address the limitations of existing vehicle 
emission monitoring systems, this study proposes a comprehensive blockchain- and IoT-enabled framework 
supported by machine learning for emission trend analysis. The key innovations of this work include a 
decentralized and tamper-proof data management system, real-time emission tracking, and predictive analytics 
to enable timely interventions. This section has established the serious need for a more transparent, scalable, 
and accountable vehicular emission monitoring system. This highlights limitations of PUCC mechanisms and 
blockchain-IoT hybrids, especially in scalability, incentives, and validation. The next section reviews related 
works to contextualize the gaps addressed by our approach.

To explicitly highlight our contributions, Table 2 contrasts the novel aspects of our framework against existing 
systems. Unlike traditional approaches, we introduce: (1) localized, role-based validation by Motor Vehicle 
Inspectors (MVIs) to enforce region-specific compliance; (2) token-based incentives to reward/penalize users; 
(3) edge computing via smartphones for scalable data processing; and (4) XGBoost-powered predictive analytics 
on blockchain-verified data. These novel methodologies collectively overcome the limitations of centralized 
validation, incentive misalignment, and reactive monitoring in current emission control systems.

The rest of the paper is organized with Sect. 2 reviewing the relevant works. Section 3 details the methodology 
employed in this work. An analytical model of the system is described in Sect. 4. Section 5 presents the applied 
implementation, followed by the experimental setup and evaluation in Sect. 6. The results and discussion are 
provided in Sect. 7. Finally, this paper concludes with a conclusion and future work in Sect. 8.

In summary, this study addresses the critical shortcomings of the current PUCC system by proposing a 
scalable, transparent, and accountable framework that uses blockchain for secure data management, IoT for real-
time emission tracking, and machine learning for predictive analytics. Unlike existing systems, our approach 
resolves issues of centralized validation, poor scalability, and lack of incentives for compliance. By aligning 
technological innovation with regulatory and environmental goals, this framework sets the stage for a more 
effective and future-ready emission control system. The following section reviews related work to contextualize 
these contributions and highlight the specific research gaps our framework addresses.

Related works
This section reviews research on the existing PUCC system, blockchain-based pollution monitoring and 
prediction systems, fog and cloud computing infrastructure. The presently operating PUC system10 has issues, 
such as low equipment maintenance, inexperienced operators, and inadequate infrastructure at emission centres, 
which results in erroneous test findings. The system also has issues with inefficient on-road inspections, a lack 
of centralized vehicle registration databases, an uneven distribution of centres, weak database management, and 
a failure to record failed vehicle data. The validity, efficiency, and equity of the pollution certification procedure 
are all compromised by these problems.

An IoT- and blockchain-based real-time air pollution measurement platform using 5G addressed data 
falsification; however, it faced challenges in large-scale industrial deployment11. Several approaches have explored 
the secure storage of pollutant data using blockchain platforms12; however, these often encounter challenges 
such as long execution times and significant overhead in node configuration. Other solutions have aimed to 
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automate processes like permit trading and carbon emission audits13, still they frequently face scalability issues 
due to lengthy setup and execution times. Most existing blockchain-IoT frameworks rely on either global or 
static validators that operate independently of local regulatory environments, thereby limiting their capacity 
to enforce region-specific compliance requirements. Another work14 predicts PM2.5 using IoT and machine 

Feature Proposed framework Existing systems Novelty & impact

Validation model Role-based validation by MVIs with jurisdiction-specific 
thresholds Global/static validators ⎫ Localized regulatory compliance

⎫ Eliminates single points of failure

Incentive mechanism Token rewards (fuel/insurance discounts) for 
compliance + penalties via smart contracts No incentives ⎫ Resolves misalignment in PUCC systems

⎫ Encourages honest participation

Scalability approach Smartphones as edge nodes + Consortium blockchain Centralized clouds or 
monolithic chains

⎫ Achieves 679 Mbps throughput (4–7× higher)
⎫ Enables city-wide deployment

Predictive intervention XGBoost forecasting on blockchain-verified emission data Threshold-based reactive alerts ⎫ 97.98% prediction accuracy (+ 4.9% vs. cloud)
⎫ Enables proactive maintenance

Table 2.  Contributions of the proposed framework versus existing systems.

 

Symbol Description

PUCC Pollution under control certificate

XGBoost eXtreme gradient boosting

SHA-256 Secure hash algorithm with 256 message digest

Vehicledetails Vehicle information set {fuel type, engine type, car model}

Ftype Fuel type (petrol, diesel, CNG, etc.)

Etype Engine type

Mcar Car model

Sset Sensor set installed in the vehicle

SCO Carbon monoxide (CO) sensor

SNOx Nitrogen oxides (NOx) sensor

SHC Hydrocarbon (HC) sensor

SPM Particulate matter (PM) sensor

MQ7, MiCS5524, TGS2600 Sensor models for detecting CO, NOx, and HC

PM 5503 Sensor model for detecting PM emissions

OBUdevice On-board unit device

ESUdevice Emission sense unit

Hψ 256 bit hash value of vehicle details and sensor set

T Set of sampling time intervals

Sinit ESU initialization status

EdgeNodeconn Edge node connection

TCHhub Trusted consortium hub

Demission Emission data collected from sensors

λlimit Emission threshold limit for compliance

SCcheck Smart contract compliance check

Raccess Certification request by vehicle owner

MVIauth Motor vehicle inspector (MVI) authorization

ElGsign ElGamal digital signature algorithm

D’emission Processed emission data
EncDemission Encrypted emission data

H’
ψ Hash of encrypted emission data

Res*
ψ Compliance result stored on blockchain

σ Digital signature generated using ElGamal

Cert+
ψ Digitally signed PUC certificate

ElGPK Public key for verifying the signature

λTH Threshold limit for emission verification

Iσ Integrity verification result

SQ Success status of the PUC Endorsement

Sintegrity Final verification integrity result

Table 1.  Symbols and description.
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learning (ML); however, cloud dependence raises latency in places with limited connectivity. While some prior 
models incorporate basic data analytics or threshold-based alerting, they generally lack advanced, proactive 
intervention mechanisms capable of autonomously responding to anomalous patterns or critical events in real 
time, thereby limiting system adaptability and resilience. Vehicle pollution was measured in Beijing using a real-
time traffic analysis15, which suggested emission reduction scenarios that might reduce pollutants by up to 21%. 
However, more reductions are required to achieve significant enhancements in air quality. Though sustainable 
development needs to be improved, the SIoT-based Peer-to-Peer (P2P) cross-ledgering architecture16 improves 
blockchain-driven cognitive sustainability. A consortium blockchain17 enhances decentralized knowledge bases; 
however, complexity in governance and vandalism continue to be major challenges.

Instead of using XGBoost, the study18 employed a GA-LSTM model for air pollution prediction to improve 
accuracy; nevertheless, this model had computational inefficiencies. In an IoT-based air pollution prediction 
system19, DLMNN and H-ANFIS indicated enhanced efficiency, although they were not as fast or scalable as 
XGBoost. With large-scale real-time data, a wavelet-LSTM model20 improved emission estimates, although 
it had issues. Macau SAR’s multi-scale pollution model21 effectively depicted pollution patterns, although it 
underestimates PM concentrations. While it performed better than standard models, the GRU-ED approach22 
for PM2.5 prediction in New Delhi was more computationally expensive than XGBoost. The research23 used 
mass-balance principles with machine learning to analyze real-time traffic pollution; nonetheless, it experienced 
issues controlling reactive species and complex chemical interactions. Although the final prediction, a CFD-
based BPNN model24, accurately estimated the dispersion of pollutants, it was challenging to generalize to 
complex urban situations due to its limited spatial and temporal adaptability.

To improve computational efficiency and data security in smart vehicles, the research study25 analyses the 
inclusion of blockchain and edge computing in IoT. Vehicular fog computing (VFC)26 reduces latency and cloud 
congestion by employing automobiles as fog nodes for real-time traffic control. An authentication system27 for 
drone-assisted IoV ensures safe communication and effective congestion management in high-density situations. 
To improve resource management and real-time data processing, the study28 integrates Edge Computing in IoV 
to optimize energy efficiency in 5G and 6G networks.

To conclude, this review demonstrates that while previous blockchain- and IoT-based emission monitoring 
systems have made progress in data integrity and automation, they still fall short in large-scale deployment, 
incentive compatibility, and efficient, context-aware validation. These persistent gaps underscore the necessity 
for a new framework that can scale efficiently, motivate honest participation, and enable localized, trustworthy 
validation. Based on this review, the key limitations and research gaps are summarized in Table  3. The next 
section articulates the specific problem statement that our proposed solution aims to address.

Problem statement
The efficiency of the PUCC system to reduce vehicle emissions is compromised by serious operational and 
structural shortcomings. Since many centres issue certifications without conducting adequate inspections, 
corruption and fraud are pervasive with fabricated compliance records. The system is further weakened by 
inadequate testing procedures, since tests for petrol vehicles do not integrate with onboard diagnostics (OBD), 
and tests for diesel vehicles only measure smoke density, excluding important pollutants like NOx and particulate 
matter. These problems are made worse by weak enforcement and control, which allows decentralized centres to 
function with no oversight, resulting in anomalies and ineffective penalties. Software bugs, GPS tracking errors, 
and persistent manual data entry are types of technical and operational shortcomings that lead to inconsistencies 
in emissions databases, which impede compliance efforts. Additionally, misaligned incentives encourage 
malpractice, as operators prioritize volume over accuracy due to flat testing fees, while vehicle owners seek non-
compliant centers to bypass retesting. There is a need for a decentralized consortia integrating transparency, 
real-time monitoring, and predictive analytics for proactive emission control.

The system comprises entities such as V (vehicles), C (PUCC centers), T (testers), O (owners), and G 
(government), aiming to maximize owner awareness and compliance (Σv (aₒ·cₒ)) while minimizing government 

Existing 
works Validation

ML/DL 
prediction Focus area Challenges addressed Technologies employed Key limitations & research gaps

8 ✗ ✗ Pollution control 
system

Suboptimal performance of current 
pollution control systems

Infrastructure assessment, 
calibration, maintenance

No decentralized oversight, corruption 
vulnerability, non-compliance, 
awareness gap, limited optimization

9 ✗ ✗ Industrial air pollution 
monitoring

Ineffective monitoring for industrial 
pollution Blockchain, 5G Limited scope (industrial focus), cost 

inefficiency, compliance neglect

11 ✗ ✗ Automated carbon 
emission auditing

Insecure emission data distribution 
and audit

Hyperledger fabric, IoT, 
blockchain

Government oversight, data security, 
no predictive capabilities

14 ✓ ✗ Secure data exchange Secure information sharing among 
stakeholders

Blockchain, P2P Cross-
Ledgering

Centralized oversight, no owner 
engagement

17 ✗ ✗ Air pollution 
prediction

Sensor faults, faulty data in IoT 
networks

H-ANFIS, MPCA, 
DLMNN, IoT

No validation linkage, no 
decentralized data integrity

18 ✗ ✗ Vehicle emission 
forecasting

Missing data in vehicle emission 
forecasting

Wavelet transform, lstm, 
semi-supervised regression

Limited scope (forecasting only), no 
fraud prevention

19 ✗ ✗ Air pollution 
forecasting Inaccurate prediction of air pollutants GRU-ED Data discrepancies, no compliance 

enforcement, oversight deficiencies

Table 3.   Summary of research gaps in existing emission monitoring and prediction systems.
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monitoring costs (Cg(V)). This involves increasing infrastructure/equipment quality (ic), tester expertise (ec), 
and oversight (oc) at each center C, improving owner awareness (aₒ) and compliance (cₒ) for each owner O, and 
implementing decentralized monitoring. The key constraints include Mv(c) = Ev(c) + ε(ic, ec), where Mv(c) is 
measured emission, Ev(c) is actual emission, and ε represents the measurement error; Pv(c) = 1 − oc·aₒ·cₒ, where 
Pv(c) denotes the probability of fraudulent certificate issuance; and Cg(V) ∝ Σc(1 − ic·ec·oc)·|V|, representing 
the government monitoring cost. The challenges are to improve measurement accuracy (Mv,ₜ ≈ Ev,ₜ), prevent 
fraudulent certifications (Cv,ₜ = 1 ⇨ Mv,ₜ ≤ τ), maximize compliance (Cv,ₜ = 1 when Ev,ₜ ≤ τ), and enforce effective 
oversight (Oc,ₜ = 1 ∀c, t), where Ev,ₜ is actual emission, Mv,ₜ is measured emission, Cv,ₜ is certificate status, Av,ₜ is 
owner awareness, Oc,ₜ is center oversight at time t, and τ is the emission threshold. As detailed in Table 4, prior 
approaches suffered from key limitations such as high latency, lack of decentralization, and weak predictive 
capabilities.

Our contribution
This paper proposes a blockchain-enabled PUCC framework to enhance transparency, security, and accountability 
in emission monitoring using IoT devices. It eliminates reliance on third-party centers, reducing manipulation 
and inaccuracies. The machine learning model analyzes emission data to predict trends, enabling timely alerts 
and proactive compliance to ensure data reliability, cost-effectiveness, and improved environmental impact. The 
primary objective is to design a novel framework that establishes a network among test centers and imparts 
accountability among vehicle owners. To achieve this, the framework includes the following contributions:

•	 A transparent, secure, and highly scalable blockchain framework that ensures secure storage of readings and 
enables efficient monitoring and tracking of users.

•	 Our framework proposes a consortium blockchain integrated with edge computing capabilities through user 
smartphones. These personal mobile devices act as edge nodes for preliminary IoT sensor data processing, 
enabling distributed load handling and significantly enhancing system scalability as the number of vehicles 
increases. This reduces dependency on centralized cloud infrastructure and ensures cost-effective horizontal 
scaling, making it viable for large-scale urban deployment.

•	 A robust validation framework for issuing endorsements by members of peer-to-peer networks, conducted by 
trusted entities known as Motor Vehicle Inspectors (MVI).

•	 An IoT-based framework for user-friendly emission reading, eliminating reliance on trustless intermediaries 
within the system.

•	 A machine learning-based framework for predicting future emission trends, promoting accountability among 
users.

The proposed framework introduces several key innovations that distinguish it from prior blockchain-IoT 
emission monitoring systems:

•	 A multi-layered consortium blockchain designed for jurisdiction-wide deployment enables seamless scaling 
across regions, minimizes network congestion, and supports efficient peer-to-peer validation by local author-
ities like MVIs.

•	 It embeds incentives for vehicle owners, rewarding honest reporting and penalizing fraud, and resolves the 
incentive misalignment in the current PUCC and earlier blockchain systems.

•	 It enables local MVIs to validate and endorse emission certificates within their jurisdictions under region-spe-
cific standards and regulatory thresholds, thereby ensuring context-aware data integrity. This peer-to-peer 
model enhances trust, reduces bottlenecks, and mitigates centralized manipulation and collusion, which are 
the limitations of prior global validation approaches. Hence, this role-based consensus greatly reduces the risk 
of single points of failure and promotes geographically distributed governance.

•	 The existing systems often overlook enforcement mechanisms that promote honest participation or penalize 
manipulation. However, the proposed framework introduces smart contracts to automate compliance track-
ing and facilitates incentive structures for both vehicle owners and PUCC centers.

•	 The system combines cost-effective sensors with XGBoost-based analytics for automated emission data cap-
ture and real-time trend forecasting, enabling timely interventions and maintenance, surpassing prior isolat-
ed IoT or ML approaches.

Ref. Accuracy (%) F‑Measure (%) Throughput (Mbps) Response time (ms) Processing time (ms) Limitations
8 - - ~ 320 150–200 > 500 Lacks scalability
10 - - 280 180 420 High setup time; no predictive analytics
13 92.5 89.3 450 95 300 Centralized oversight
16 89.7 85.1 210 220 600 High latency; relies on cloud infrastructure
17 91.2 87.6 - 130 350 No fraud prevention
18 88.4 83.9 - - - No compliance enforcement
19 93.1 90.5 - 110 410 Computationally expensive GRU‑ED model

Table 4.  Quantitative comparison of metrics across state-of-the-art systems.
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By integrating IoT automation and predictive analytics within a secure, consortium-based blockchain, our 
approach provides a complete solution to the multifaceted challenges of emission control as shown in Table 5. 
The next section presents the methodology and architecture of our proposed system.

Methodology
After analyzing the PUCC system in the study8 and a Supreme Court report27, the problem statements were 
identified. The literature survey on pollution monitoring systems9–15 informed that blockchain-IoT supports 
sensor customization to detect multiple vehicle emissions. A notable novelty is its predictive capability, with 
XGBoost being selected as the optimal model based on reviews16–22 for its accuracy, efficiency, and scalability. 
Additionally, fog and cloud computing23–26 were reviewed as benchmarks, leading to NS2-based simulations 
for comparison and a layered architecture33–39. Figure 1 illustrates the proposed multi-layered decentralized 
application (DApp) architecture specifically designed to enhance vehicle emission monitoring and control. This 
layered structure is crucial for ensuring seamless data flow, real-time processing, and trustworthy emissions 
reporting. At the base, the Data Sensing Layer utilizes IoT-enabled gas sensors (CO₂, NOx, HC) to detect 
pollutant levels emitted from vehicles in real-time, enabling accurate and continuous monitoring. The Gateway 
Layer connects these sensors with edge devices such as mobile phones and GPS units, facilitating immediate 
data transfer and geolocation tagging of emissions. The Network Layer supports peer-to-peer communication 
among stakeholders, including vehicle owners, regulatory authorities, and emission centers, ensuring efficient 
dissemination and synchronization of information. At the top, the Consortium Layer provides blockchain-
based storage and security, preserving the immutability and transparency of emission records while eliminating 
manipulation risks. The proposed architecture consists of four components: Owner Enrolment for secure 
registration, IoT-Enabled Data Monitoring for automated emission tracking, Trusted Consortium Hub (TCH) 

Fig. 1.  Proposed PUCC layered architecture.

 

Feature Proposed framework (this work)
PUCC system (current 
practice)

Cloud-based blockchain-
IoT Fog/edge-enabled IoT

Blockchain-IoT 
without incentives

Validation Contextual and localized by MVIs 
(role-based)

Centralized and manual 
validation Static/global validators

Distributed data 
aggregation, but partial 
validation

Global validation with 
no local context

Scalability Edge-enabled via user 
smartphones for distributed load

Manual, paper-based, or 
isolated databases; not 
scalable

Cloud-dependent 
bottlenecks with city-scale 
data

Lack true peer-to-peer 
scalability or consensus

Monolithic or globally 
distributed; Limited 
protocol throughput

Intervention style ML-driven, predictive alerts Periodic, reactive Threshold-based, reactive Rule-based or time-
triggered, mostly reactive

Data logging and 
static alerts only

Fraud resistance/incentives Reputation-based smart 
contracts + incentives Fee-based, prone to fraud No incentive or penalty 

design
Integrated, trust assumed 
only No fraud control

Table 5.  Comparison of proposed framework with representative blockchain-IoT systems.
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for decentralized transparency, and a Predictive Analytics Engine for forecasting emissions and proactive 
pollution control. This scalable approach effectively addresses existing system limitations.

Hence, the proposed methodology integrates a multi-layered blockchain-IoT architecture with real-time 
sensing, edge-based data transfer, and decentralized validation to ensure secure and scalable emission monitoring. 
The inclusion of a predictive analytics engine using XGBoost adds a proactive layer to emission control, 
addressing the limitations of current systems. This modular framework supports practical implementation and 
simulation. The next section presents the system design and performance.

Owner enrolment
The owner must complete a one-time registration valid for the entire lifespan of the vehicle through a 
decentralized application (DApp). Each vehicle is equipped with an On-Board Unit (OBU) that segregates the 
vehicle into fuel type, model type, and engine type (BS-IV or BS-VI). Specifically, the OBU collects a unique 
electronic number Ven​, a password Vpd, and location information Vlc​ from the owner. The vehicle holds a private 
key (PR​) and computes Vpdd and Ya​ which are securely forwarded to the blockchain network where a unique 
public address is generated for each user via the Metamask wallet. The address is derived using elliptic curve 
cryptography to ensure security. The users must provide their public address and passphrase for authentication, 
allowing access to the DApp dashboard. Within the dashboard, users can take tests, procure endorsements, and 
access comprehensive emission data.

Therefore, the enrolment process uses cryptographic hashing and blockchain addresses to ensure secure 
vehicle identity, authentication, and DApp access, leading to IoT-based real-time emission monitoring. The next 
section outlines the IoT-enabled data monitoring mechanism for real-time emission tracking.

Algorithm 1.  Vehicle registration
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Algorithm 2.  Vehicle authentication

iot-enabled data monitoring
After owner enrolment via the OBU, vehicles are fitted with the Emission Sense Unit (ESU) to monitor emissions 
based on fuel type. Petrol/CNG vehicles emit CO, NOx, and HC, detected by MQ-7, MiCS-5524, and TGS2600 
sensors, while Diesel vehicles emit PM2.5 (smoke density), monitored by the Plantower PMS5003 sensor.

These IoT sensors, installed in the vehicle’s tailpipe, enable real-time emission tracking, ensuring compliance 
with the proposed framework’s technical requirements. To enhance the ESU, an edge node—typically the user’s 
mobile device—is integrated for faster data processing, reduced latency, and efficient communication. Emission 
readings are updated every 15 min to both the blockchain network and the user, ensuring seamless monitoring. 
At the edge node, data cleaning is done, real-time emission data from IoT sensors is first filtered to remove noise 
and irrelevant entries, then analyzed to detect anomalies or missing values. This process ensures only accurate 
and meaningful data is retained. Aggregation is then performed to condense the data, minimizing transmission 
traffic while preserving essential emission patterns for further processing. Verified data is securely transferred 
to the TCH for validation and further utilized by the Predictive Analytics Engine to forecast potential emission 
trends, enabling proactive pollution control measures. While the MQ-7, MiCS-5524, TGS2600, and Plantower 
PMS5003 sensors were chosen for practicality, the framework remains scalable and adaptable, allowing future 
upgrades to more advanced sensors without disrupting its architecture.

The selection of sensors balances cost, scalability, and operational needs for large-scale vehicular emission 
monitoring. With a lower total cost per vehicle, these sensors are highly suitable for deployment in developing 
countries such as India and Vietnam, where affordability is critical. Their low-power operation (< 100  mA) 
enables seamless integration with smartphones or microcontrollers like Arduino without external power 
supplies. However, the alternatives such as OPC-N3 require dedicated power sources. While high-precision 
sensors like Alphasense provide higher accuracy, they demand frequent recalibration, making them impractical 
for widespread user deployment. The field validation studies, such as the use of PMS5003 in Beijing traffic and 
MQ-7 in Bengaluru, further support their applicability in real-world environments. Recognizing limitations 
such as a ± 5% error margin in CO measurement compared to ± 1% in lab-grade sensors and cross-sensitivity 
to gases like H₂ and LPG, the system mitigates these issues through multi-sensor fusion that flags outliers for 
manual review. Moreover, the modular API design allows for seamless sensor upgrades (e.g., to TGS5141 or 
OPC-N3) as technological and regulatory requirements evolve, ensuring long-term adaptability without 
architectural overhauls.

This modular approach ensures long-term sustainability and flexibility in response to evolving environmental 
regulations and technological advancements. By integrating real-time monitoring, predictive analysis, and 
blockchain security, the framework offers a comprehensive solution for modernizing vehicle emission control, 
improving compliance, and reducing environmental impact. Figure 2 depicts the DApp architecture from the 
user’s perspective. The system begins with vehicle owner enrollment, where user and vehicle data are stored 
on the PUCC blockchain. Emission data is periodically collected via IoT-enabled monitoring, preprocessed by 
an edge node, and analyzed by the DApp to determine compliance. The flagged vehicles require government 
endorsement, and owners receive notifications for maintenance or repairs. A dashboard provides emission 
insights and predictive analytics, while the DApp also enables token redemption at insurance and fuel stations.

In summary, the IoT monitoring system uses cost-effective, low-power sensors and edge preprocessing 
to deliver accurate, real-time emission tracking. The modular design supports adaptability to future sensor 
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upgrades, while blockchain integration ensures secure and transparent data flow. This system enhances emission 
compliance and user accountability. The following section details the decentralized validation handled by the 
TCH to ensure credibility and enforcement of the emission data.

Trusted consortium hub
The TCH manages processed data from the ESU and integrates it with a smart contract embedded in the Polygon 
blockchain network. The PUC Endorsement algorithm, executed every 15 min, automates emission validation 
for Petrol/CNG and Diesel vehicles, forwarding compliant data to the Predictive Analytics Engine while flagging 
non-compliant vehicles for authorities, restricting their fuel and insurance access. Users initiate certification 
monthly, with data analyzed in under 15 min. The MVIs at RTOs validate vehicle conditions and digitally sign 
endorsements using the El Gamal algorithm, ensuring secure storage within the blockchain. The edge node, 
equipped with GPS, captures the vehicle owner’s precise location, allowing each transaction to be categorized 
into a specific regional transaction pool. Within this framework, every region is managed by a designated MVI 
who acts as the sole validator for that region. This localized validation mechanism enables the Regional MVI to 
promptly verify transactions and generate blocks without the need for multi-node consensus. As a result, block 
creation becomes significantly faster, ensuring efficient and region-specific processing of emission endorsements. 
Compliant users earn redeemable tokens for fuel, insurance, and maintenance services, while non-compliant 
vehicles are restricted from accessing these services, encouraging participation. To ensure endorsement validity, 
the PUC Verification Algorithm is used, operating in two stages: first, it decrypts and checks emissions data 
against predefined limits using the El Gamal algorithm; second, it verifies the MVI’s digital signature. Invalid 
endorsements are removed, and flagged vehicles undergo further review, maintaining a secure and transparent 
emission monitoring system.

In a real-world scenario, a diesel vehicle owner initiates emission testing at the start of the month. The ESU 
detects particulate matter using the Plantower PMS5003 sensor, transmitting processed data to the edge node, 
which filters and forwards it to the TCH. The PUC Endorsement algorithm validates the data, and if compliant, the 
Regional MVI digitally signs the endorsement, storing it securely on the blockchain. Compliant owners receive 
redeemable tokens, while non-compliant vehicles are flagged, restricting access to fuel and insurance services. 
The Polygon network ensures high scalability, low costs, and energy efficiency, while the El Gamal algorithm 
secures digital signatures. The modular design allows seamless expansion to accommodate new vehicle types, 
IoT sensors, and regional MVIs, ensuring a secure, scalable, and tamper-proof emission monitoring system.

The Polygon offers significant scalability, low gas fees, and faster transaction speeds, making it an ideal 
solution for high-throughput applications. Its seamless compatibility with Ethereum allows developers to easily 
deploy decentralized applications (dApps) while benefiting from enhanced transaction speeds and reduced 
costs. Polygon also supports a customizable consensus mechanism, allowing developers to tailor it to specific 
needs for optimized performance. So, it is useful to deploy our customized consensus algorithm and enhance 
the energy efficiency of the network, ensuring a more environmentally friendly solution compared to traditional 
Proof-of-Work systems and other blockchains. The system, as illustrated in Fig. 3, closely represents the overall 
flow of operations from the system’s perspective by integrating multiple components to create an end-to-end, 

Fig. 2.  Blockchain-based vehicle emission monitoring-user side view.
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decentralized emissions monitoring and compliance framework. It begins with IoT sensors mounted on vehicles 
that continuously collect real-time emission data such as CO, NOx, and CO₂ levels. This data is transmitted 
to an edge device, typically a smartphone, which performs preprocessing tasks including cleaning, filtering, 
and aggregation to ensure only relevant and high-quality data is retained. Once processed, the emission data is 
securely stored on a blockchain using smart contracts, which automatically execute key actions like validation 
and reward distribution. The predictive analytics engine, powered by the XGBoost algorithm, analyzes historical 
emission patterns to forecast future pollution levels and provides timely maintenance recommendations to the 
vehicle owner. Meanwhile, MVIs participate in a P2P network where they validate digital endorsements and 
contribute to consensus, ensuring data reliability without central authority. The smart contracts manage rule 
enforcement, schedule maintenance notifications, and handle reward mechanisms. As a compliance incentive, 
vehicle owners who maintain eco-friendly performance are granted redeemable benefits such as discounts on 
fuel or vehicle insurance through designated Redemption Centers, making the system not only technically 
efficient but also practically rewarding for users.

The TCH combines smart contracts, localized validation, and token incentives on Polygon to ensure secure, 
scalable, and accountable emission data endorsement. The next section introduces the Predictive Analytics 
Engine for trend forecasting.

Predictive analytics engine
Lack of awareness about emissions and timely maintenance poses challenges in pollution control. To address 
this, the framework integrates a Predictive Analytics Engine using the XGBoost model, known for its high 
accuracy in multi-step time series predictions. This model forecasts emission patterns and optimal maintenance 
intervals, ensuring proactive intervention. Trained on a historic dataset from the Vehicle Certification Agency 
(UK) via Kaggle, the model is fine-tuned for precise emission predictions. It also supports incremental training, 
appending new blockchain-verified data to improve real-time adaptability, making the system more effective 
and dynamic in monitoring vehicle emissions. The model processes cleaned and validated sensor data at the 
edge node and feeds its predictions into the compliance decision logic, which is then stored immutably on the 
blockchain. This seamless flow ensures each component contributes meaningfully to accurate forecasting and 
traceable decision-making within the system.

Dataset description
The dataset includes information about 6,756 vehicles, featuring key attributes essential for analyzing vehicle 
emissions.

Each vehicle is identified by a unique car_id and details such as manufacturer, model, and description. It 
specifies the transmission type, which includes the transmission_type categorized as “Manual,” “Automatic,” or 
“Electric - Not Applicable.” Additional fields encompass engine_size_cm3, indicating engine displacement, fuel 
type (e.g., Petrol, Diesel), powertrain system, power_ps measured in metric horsepower, and co2_emissions_
gPERkm, representing CO2 emissions. The preprocessing steps involved addressing missing values in the 
transmission_type field where the electric vehicles were filled with “Automatic” due to their lack of traditional 
transmission systems. Similarly, null values in engine_size_cm3 were replaced with “0.0” for electric vehicles, 

Fig. 3.  Blockchain-based vehicle emission monitoring-system side view.

 

Scientific Reports |        (2025) 15:39343 10| https://doi.org/10.1038/s41598-025-22925-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


reflecting their absence of combustion engines. The null values in power_ps were filled with “0.0” where CO2 
emissions were also “0.0,” in line with the characteristics of electric vehicles that typically produce no direct 
emissions. The inconsistencies in transmission_type and fuel_type for a subset of petrol-powered vehicles were 
rectified through manual validation to enhance data integrity. The outliers with low CO2 emissions associated 
with high-power vehicles were identified and corrected by cross-referencing external data sources28. The 
XGBoost model was trained using 80% of the dataset, while the remaining 20% was reserved for testing to 
evaluate prediction accuracy. Grid search was employed for hyperparameter tuning, optimizing key parameters 
such as learning rate, max depth, and the number of estimators. To enhance model robustness and prevent 
overfitting, 5-fold cross-validation was applied during training. This approach enabled the model to effectively 
learn emission patterns and forecast potential violations within the proposed framework. Once established, the 
XGBoost model processes real-time data from the blockchain network every 15 min, applying filtering and limit 
checks before incorporating it into predictions. Using parameters like fuel type, model type, and engine type, 
it compares current readings with historic data to forecast future emission patterns. The forecasted data is then 
analyzed by a decision tree model on the edge node to predict the next maintenance interval. If a critical issue 
is detected, users receive instant notifications via dashboard updates and SMS, ensuring timely maintenance. 
This system enhances user awareness, promotes proactive vehicle care, and helps maintain environmental 
compliance.

To ensure accurate forecasts, the predictive analytics engine incorporates anomaly detection to handle 
edge cases like incomplete data or sudden emission fluctuations. When anomalies are detected, the system 
requests additional data from the user or flags it for MVI review, ensuring prediction reliability. These validation 
mechanisms enhance the accuracy, robustness, and trustworthiness of the framework in real-world scenarios. 
Figures 4 and 5 illustrate the sequence diagrams of the DApp framework from both client-side and system-
side perspectives. The process starts with user registration, where vehicle data is stored on the blockchain. IoT 
devices collect emission readings, which are preprocessed by an edge node before validation by the DApp. 
Once validated, the system generates an endorsement and token, which users can redeem for services like fuel 
discounts or maintenance. Simultaneously, an MVI endorses the data, and the XGBoost model analyzes it to 
provide predictive maintenance recommendations, notifying users via the dashboard.

In summary, the Predictive Analytics Engine uses an XGBoost model trained on historic and real-time 
blockchain-verified data to accurately forecast vehicle emission trends and maintenance needs. This enables 
proactive interventions and adaptation via anomaly detection and incremental learning. The subsequent section 
presents the experimental evaluation of the proposed framework, demonstrating its effectiveness in real-world 
scenarios.

Analytical model description
In the proposed system, two smart contracts are deployed at the Ethereum Virtual Machine (EVM) node 
within the blockchain network to automate and streamline emission monitoring and management. These 

Fig. 4.  Client-side sequence flow.
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smart contracts are designed to ensure the seamless functioning of the system to support the core algorithms, 
each addressing a specific functionality of the framework: a) ESU Installation, b). PUCE algorithm, c). PUC 
verification algorithm (PUCV).

Algorithm 3 outlines the procedure for installing the ESU, a key component in the proposed emission 
monitoring framework that enables real-time pollutant detection and secure data integration. The algorithm 
begins by retrieving vehicle-specific information—fuel type, engine type, and model—from the OBU. Based on 
the fuel type, the system selects and installs an appropriate set of gas sensors tailored for monitoring relevant 
emissions. These sensors are integrated into the ESU, which is securely connected to the vehicle. To ensure 
data integrity and traceability, a cryptographic hash is generated using SHA-256 algorithm from the vehicle 
details and sensor configuration, and recorded on the blockchain. The ESU is then activated with a predefined 
sampling schedule to begin continuous data collection. This process ensures that the sensing mechanism is 
vehicle-specific, tamper-proof, and seamlessly integrated into the system’s edge and blockchain infrastructure. 
The algorithm contributes to the overall framework by enabling automated, secure, and scalable emission 
tracking, addressing major limitations of traditional Pollution Under Control (PUC) systems and supporting 
more effective environmental regulation.

Fig. 5.  System-side sequence flow.
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Algorithm 3.  Emission sense unit (ESU) installation.

The selection of appropriate sensors is Important for reliable emission monitoring in our blockchain-IoT 
framework. Our sensor selection methodology follows a systematic multi-criteria decision analysis approach, 
evaluating cost-effectiveness, technical specifications, availability, power efficiency, and integration complexity. 
This evidence-based selection ensures optimal performance-per-dollar while meeting emission detection 
requirements for large-scale deployment.

Sensor selection rationale
The selection of MQ-7, MiCS-5524, TGS2600, and PMS5003 sensors was based on multi-criteria optimization 
prioritizing cost-effectiveness, power efficiency, and scalability for developing economies. The chosen sensors 
consume < 100 mA collectively, enabling integration with smartphones or Arduino microcontrollers without 
external power supplies, unlike alternatives such as OPC-N3, which require dedicated power sources37. The cost 
analysis reveals significant advantages of 10-20x cost reduction, enabling large-scale deployment in developing 
regions where affordability is critical for widespread adoption. The field validation studies in Beijing traffic 
conditions and Bengaluru urban environments demonstrate the practical reliability of these sensors in real-
world vehicle emission monitoring scenarios as presented in Table 6. Our selected sensor suite achieves 71.4% 
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cost reduction compared to premium alternatives while maintaining good to very good accuracy levels. This 
cost optimization enables large-scale deployment without compromising measurement quality, enhancing the 
accessibility of vehicle emission monitoring through blockchain-IoT integration.

The selected sensors comply with emission monitoring standards with MQ-7 detects CO with ± 5 ppm 
accuracy aligned with World Health Organization (WHO) guidelines, while MiCS5524 effectively monitors main 
automotive gases. Together, they ensure reliable detection within regulatory thresholds for vehicle emissions.

Algorithm 4 details the PUCE, which verifies a vehicle’s compliance with emission standards and facilitates 
secure certification within the proposed blockchain-based framework. This multi-step process integrates 
data acquisition, validation, and endorsement mechanisms to ensure trustworthy pollution monitoring. The 
algorithm begins with data collection and processing (4.1), where emission readings from gas sensors installed 
via the ESU are captured, preprocessed at the edge node, encrypted using AES-256, and forwarded to the TCH. 
A cryptographic hash with the SHA-256 algorithm of the encrypted data is also stored on the blockchain for 
immutability and auditability. Next, the PUC Endorsement Execution module (4.2) decrypts the emission data 
and compares it with predefined pollutant limits. Based on compliance status, a smart contract is triggered to 
either validate the vehicle or flag it for violations. The compliance result, linked with vehicle details, is then 
securely recorded on the blockchain. Finally, the endorsement and digital signing step (4.3) involves manual 
authorization by a local MVI, who reviews the emission data and digitally signs the certification using ElGamal 
encryption. This signed certificate is permanently stored on the blockchain, ensuring authenticity and traceability. 
By combining automated sensing, secure data handling, regulatory oversight, and decentralized storage, the 
PUCE algorithm enhances the credibility, efficiency, and transparency of emission certification, overcoming the 
major weaknesses in conventional PUCC systems.

Algorithm 4.  PUC endorsement algorithm (PUCE).

Sensor Target pollutant(s) Selection rationale Specifications Alternatives Pros & cons of alternatives

MQ-7 Carbon monoxide (CO) High sensitivity; low cost; suitable 
temp & power

10 − 1,000 ppm range; 30 s 
response

SGX Electrochemical, 
Bosch CO

SGX: higher accuracy, expensive; Bosch: 
limited supply

MiCS5524 Multi-gas (CO, ethanol, 
H2, NH3, CH4)

Multi-gas detection; compact; 
mid-cost; low power

CO: 1–1,000 ppm; size 
5 × 7 × 1.55 mm

SGX variants, sensirion 
SGP30

SGX: costly; SGP30: digital but costlier; 
multiple sensors increase complexity

TGS2600 Hydrocarbons (HC) Sensitive; low power; small size 1–30 ppm range; fast response TGS2602, SGX HC, 
Bosch BME680

TGS2602: better VOC selectivity, 
costlier; BME680: complex, limited stock

PMS5003 Particulate matter (PM1, 
PM2.5, PM10)

Validated accuracy; fast response; 
cost effective

Particle size 0.3–10 μm; <10s 
response time

Sensirion SPS30, 
OPC-N3, SDS018

SPS30: more precise, costly; OPC-N3: 
expensive; SDS018: variable performance

Table 6.  Summary of sensor selection rationale and alternatives.
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Algorithm 4.1.  Data collection & processing.
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Algorithm 4.2.  PUC endorsement execution.

Algorithm 4.3.  MVI endorsement & digital signing.

Algorithm 5 outlines the PUCV algorithm, which ensures the authenticity of a digitally signed Pollution 
Under Control (PUC) certificate within the decentralized framework. The process begins with the retrieval of 
the digital signature embedded in the certificate and decryption of the emission data using the public ElGamal 
key. The decrypted data is then validated against predefined emission standards to determine compliance. If all 
parameters fall within acceptable limits, the vehicle is marked as valid; otherwise, it is flagged as non-compliant. 
To ensure data integrity, the signature of the MVI is verified by computing a cryptographic hash that links the 
emission data with the MVI authorization credentials. Finally, the verification result is stored immutably on the 
blockchain. Compliant vehicles retain their endorsements, while non-compliant entries are removed and flagged 
for regulatory action. This algorithm plays a critical role in maintaining trust, security, and regulatory compliance 
across the emission monitoring ecosystem by validating both data integrity and endorsement authenticity.
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Algorithm 5.  PUC verification algorithm (PUCV).

The system deploys two smart contracts on the EVM to automate vehicle emission monitoring through three 
algorithms: ESU Installation (sensor setup and hash logging), PUC Endorsement (data validation, certification, 
and on-chain storage), and PUC Verification (signature authentication, compliance checks, and violation 
flagging), ensuring secure, tamper-proof, and scalable regulatory enforcement.

Applied implementation
The proposed vehicle emission monitoring framework follows a modular, multi-layered approach encompassing 
system setup, sensor-based data acquisition, blockchain-enabled compliance verification, and predictive analytics. 
The system begins with the registration of each vehicle, where unique identifiers, such as vehicle number and 
location, are hashed and registered on a blockchain network using MetaMask and elliptic curve cryptography. 
The SHA-256 hash function is used to generate unique hash values for each emission data record that forms 
a tamper-proof digital fingerprint, ensuring data integrity and immutability once stored on the consortium 
blockchain. This approach ensures that any future retrieval or validation of emission data can be efficiently 
verified against its blockchain-stored hash, preventing unauthorized modifications. Based on fuel type, emission 
gases like CO, NOx, HC, and PMx are tracked using appropriate gas sensors connected via Arduino UNO and 
integrated into an IoT board. These are linked to a smartphone that forwards emissions data over Wi-Fi 6 to 
the blockchain and analytics layers. The Ethereum-based DApp, developed with Solidity and ReactJS, enables 
secure smart contract execution for automatic PUC issuance and verification. The emission data is encrypted, 
hashed, and stored on-chain, ensuring tamper-proof compliance records. Smart contracts classify vehicles as 
compliant or non-compliant, and Motor Vehicle Inspectors (MVIs) can digitally sign verified certificates using 
cryptographic keys stored securely.

The framework uses only those data records whose hashes have been validated on the blockchain, ensuring 
that the input to the XGBoost-based Predictive Analytics Engine is authentic and unaltered. This integration of 
blockchain-verified data into the analytics pipeline enhances the trustworthiness of emission trend predictions 
and supports proactive maintenance recommendations. The prototype uses accessible, cost-effective components 
and software tools, including open-source simulators, low-cost IoT devices, and free blockchain infrastructure. 
While the current implementation relies on resources available within our resource limits, the framework is 
flexible and can be adapted or expanded. Although our present study is simulation-based, the framework is 
purpose-built for real-world deployment, with important considerations addressed:

Scalability
Since the system is a distributed, modular architecture comprising edge IoT nodes and a partitioned blockchain 
supports horizontal scalability, enabling the management of thousands of vehicles by distributing workload 
across administrative regions. The simulation results confirm the technical feasibility of securely connecting 
thousands of vehicles.
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Latency and real-time performance
To mitigate blockchain-induced latency, the framework utilizes a hybrid data strategy: emission data is pre-
processed at the edge, and only summarized, verified records are stored on-chain. This approach, supported by 
lightweight consortium blockchains and edge/fog computing, achieves near real-time processing with response 
times under 100 ms in our tests, which is critical for high-traffic urban environments. The sub-chain handling 
of raw sensor streams further reduces bottlenecks, while on-chain data remains tamper-evident and auditable.

Legal and regulatory factors
The deployment at scale requires strict compliance with data privacy laws, cross-border data sharing regulations, 
and environmental standards. We are actively engaging with government agencies and smart city stakeholders to 
co-develop regulatory frameworks and pilot the system in operational suburban settings, facilitating regulatory 
alignment and stakeholder adoption.

Implementation roadmap
Recognizing that these challenges are non-trivial, our solution adopts a phased rollout strategy. Initial pilot 
studies with public sector partners will serve as testbeds for validating performance, optimizing scalability, and 
refining compliance mechanisms. This incremental approach supports progressive integration into existing 
urban infrastructure and regulatory ecosystems, ensuring both technical robustness and policy alignment.

Fig. 6.  Simulation results in SUMO.

 

Components Devices Specifications

Hardware

Photon IoT
Processor: ARM Cortex-M3 120 MHz

Memory: 1 MB flash, 128 KB RAM

Smartphone

Android device

Processor: snapdragon 900 MHz

Memory: 1 GB

Connectivity standard Wi-Fi module Wi-Fi 6 (802.11ax)

Library and framework Python API libraries

Resources

MQ-7
MiCS-5524
TGS2600
Petrol/CNG

Plantower PMS5003
Diesel

Table 7.   Development environment.
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Experimental evaluation and setup
Simulation environment
The simulation environment for vehicle emissions monitoring uses SUMO, configured to replicate real-world 
traffic dynamics and emission profiles. The HBEFA model simulates pollutants like CO2, CO, NOx, HC, and 
PMx for Petrol, Diesel, and CNG vehicles, with emissions tracked at every 0.25-second time step over 15 min. To 
improve data granularity, the time step was reduced to 0.1 s, and the PHEM model was integrated with HBEFA 

Fig. 8.  Predictive analytical engine.

 

Fig. 7.  Prototype setup for sensor data processing.
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for a broader range of emission factors. This dual-model approach ensures accurate emissions tracking, aligning 
with IoT-based data collection intervals for synchronized real-time monitoring.

Due to limited prior work for direct comparison, Fog Computing and Cloud Computing environments 
were simulated as baselines to evaluate the proposed system’s performance, latency, energy consumption, and 
network efficiency. In the Fog Computing simulation, NS3 models a network of fog nodes that preprocess 
IoT emissions data before forwarding relevant information to the cloud, reducing latency and bandwidth 
usage. Key parameters include processing delay, energy consumption, and data aggregation efficiency, with 
communication simulated using 802.11ax Wi-Fi and LTE networks. In the Cloud Computing simulation, NS3 
emulates a centralized cloud system processing large-scale IoT data, utilizing high-bandwidth TCP/IP networks. 
The simulation assesses latency, task processing time, energy consumption, and data throughput, incorporating 
a dynamic task offloading mechanism to optimize cloud scalability. These simulations provide insights into 
performance trade-offs and optimization strategies for integrating real-time emissions monitoring with IoT and 
edge computing technologies.

Emission monitoring prototype
The IoT system utilizes the Photon IoT device for seamless connectivity and user-friendly operation, with built-
in Wi-Fi for easy setup and cost efficiency. The user’s smartphone acts as the edge node, running on Android with 
a Snapdragon 900 MHz processor and 1 GB RAM, supporting Wi-Fi 6 (802.11ax) for efficient data transmission. 
The system integrates MQ-7 (CO), MiCS-5524 (NOx), TGS2600 (HC for Petrol/CNG), and Plantower PMS5003 
(Diesel) sensors, connected via an Arduino UNO R3 to manage data flow. An LCD provides real-time CO and 
NOx readings for instant emission monitoring as shown in Table 7.

The simulation results from SUMO presented in Fig. 6 illustrates the cumulative emissions for two different 
vehicles - Vehicle A (a 2015 model petrol hatchback) and Vehicle B (a 2012 model diesel sedan) - monitored 
over 900 s with a 0.25-second step length, measuring CO₂, CO, HC, NOₓ, and PMx. Vehicle 1 and Vehicle 2 
were selected to simulate real-world variations in vehicle conditions rather than type alone. While both vehicles 
belong to similar categories in terms of size and usage, Vehicle 1 exhibited higher emissions of CO₂, CO, and 
PMx, primarily due to inadequate maintenance and infrequent servicing. In contrast, Vehicle 2, maintained 
according to recommended schedules, emitted slightly higher HC and NOₓ levels, which can be attributed 
to normal combustion behavior. This comparison underscores how maintenance quality significantly affects 
emission levels, reinforcing the framework’s ability to detect and differentiate real-time emission discrepancies 
for targeted mitigation. Figure  7 presents a prototype monitoring system using an Arduino microcontroller, 
various sensors, an LCD for real-time readings, and a GSM module for wireless data transmission and remote 
monitoring. Figure 8 displays XGBoost model predictions, forecasting a 5% CO2 increase for Vehicle 1 over six 
months, suggesting idle time reduction and fuel efficiency optimization. Vehicle 2’s emissions remain stable, 
with recommendations for regular maintenance to sustain low emissions, aiding fleet managers in emission 
reduction and fuel efficiency improvements.

The DApp framework is built on Ethereum, utilizing Solidity for secure and efficient smart contracts that 
operate autonomously. These contracts, containing core business logic, are deployed using JavaScript for 
seamless interaction with the client interface. To enhance scalability and reduce costs, the Polygon network 
is integrated as a layer-2 solution without compromising security. The client-side framework is developed in 
React JS, ensuring a dynamic and responsive user interface for an improved user experience. This combination 
of Ethereum, Polygon, Solidity, JavaScript, and React JS creates a robust, efficient, and scalable platform for the 
DApp, as shown in Table 8.

The emission monitoring system was simulated using SUMO with HBEFA and PHEM models to capture 
detailed real-world pollutant emissions at fine time intervals. Fog and Cloud computing environments were 
simulated with NS3 to benchmark latency, energy use, and network efficiency, highlighting the benefits of edge 
processing for real-time data. The prototype used Photon IoT devices and sensors (MQ-7, MiCS-5524, TGS2600 
for Petrol/CNG, PMS5003 for Diesel) connected via Arduino and a smartphone acting as an edge node with Wi-
Fi 6. Real-time emissions from two vehicles demonstrated how maintenance impacts pollutant levels, with the 
XGBoost model forecasting future emissions and maintenance needs. The DApp runs on Ethereum with Solidity 
smart contracts and uses the Polygon network for scalable, low-cost transactions, paired with a React JS client 
interface for user interaction. This setup ensures a robust, scalable, and secure platform for vehicle emission 
monitoring and management.

Components Specifications

Processor configuration
Pre-selected validators: Intel Core i7, 4 cores @ 1.30 GHz

Peers: Intel Core i5, 2 cores @ 3.4 MHz

Memory configuration
Pre-selected validators: 32 GB RAM

Peers: 8 GB RAM

Operating systems Windows 11, 64-bit

DApp framework Polygon ethereum network

Languages Solidity, javascript

Library support React JS

Table 8.  Blockchain development environment.
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Results and discussion
The results and discussion section analyzes the performance of cloud computing, fog computing, and blockchain 
environments, evaluating efficiency and scalability. Simulations in NS3 for fog and cloud computing, along with 
Polygon blockchain for the blockchain setup, are conducted.

A comparison of accuracy of XGBoost and F-measure across cloud and blockchain platforms highlights 
its reliability in processing IoT data. Key metrics such as throughput, response time, and processing time are 
examined, along with the correlation between validator count and confirmation time in blockchain, providing 
insights into system performance across different computational setups. The accuracy measures the correctly 
predicted outcomes. On comparing the accuracy of the XGBoost across blockchain and cloud platforms is crucial 
to assess reliability. While blockchain offers decentralization, cloud platforms provide high computational power, 
impacting model performance. This analysis explores how these environments influence predictive accuracy, 
highlighting their strengths and limitations for IoT data processing.

Figure 9 compares XGBoost accuracy on a cloud platform and a consortium blockchain with edge transfer. 
The blockchain model consistently outperforms the cloud, with a 4.47% higher accuracy for 100 records and 
4.006% higher for 5000 records, demonstrating better scalability. The decentralized framework enhances 
accuracy through collaborative training, leveraging contributions from consortium members to improve 
predictive performance. The proposed blockchain-based solution overperformed existing paradigms across 
multiple dimensions. It achieves up to 11% higher prediction accuracy, a 90% reduction in response time, and 
4–7 times higher throughput compared to traditional PUCC systems with relational databases. Additionally, it 
ensures tamper-proof data integrity and full audit transparency, effectively eliminating fraud and manipulation 
risks as summarized in Table 9.

Metric
Blockchain framework 
(proposed) Fog computing Cloud computing

Traditional database 
(pucc)

Improvement over 
traditional pucc

Prediction accuracy (%) 97.98–99.99 - 95.52 88–92 11% higher

F-measure (%) 99.41 - 97.36 89–91 10% higher

Throughput (Mbps) (at 5000 recs) 384.8–679 ~ 290 ~ 200 < 100 4-7x higher

Response time (ms) 62.8–91.98.8.98 68.4 669.1 > 1000 90% faster

Processing time growth (% increase) 219.6–225.9.6.9 1737.7 1718.1 > 2000 85% lower

Communication cost (bits) 2900 over 4780 over 4780 over 6000 50% lower

Data integrity Tamper-proof, immutable Moderate (edge 
risk) Moderate (cloud risk) Prone to tampering Fully tamper-proof

Transparency Full audit trail Partial Partial Limited, opaque Full, real-time transparency

Fraud/manipulation Nearly impossible Possible at edge Possible at central node Manual override Eliminates fraud risk

Table 9.  Comparison of proposed blockchain framework with fog, cloud, and traditional PUCC systems.

 

Fig. 9.  XGBoost on blockchain network vs. the cloud platform based on the accuracy.
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We compared the accuracy of two different systems—blockchain-based and cloud-based—by evaluating 
their performance in processing IoT data. The assessment considered key performance metrics, including true 
positives, false positives, true negatives, and false negatives, across multiple datasets. By analyzing how each 
system handled data classification, we identified variations in predictive reliability. The blockchain-based system 

Fig. 11.  Throughput for fog computing, cloud computing, and blockchain.

 

Fig. 10.  XGBoost on blockchain network vs. cloud platform based on the F-measure.
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demonstrated higher accuracy due to its decentralized validation process, which enhances data integrity and 
reduces errors. In contrast, the cloud-based system exhibited slight fluctuations in accuracy due to centralized 
processing constraints. This comparison highlights the strengths and limitations of each system, providing 
insights into their suitability for real-world applications.

The F-measure, the harmonic mean of precision and recall, evaluates the balance between false positives and 
false negatives, particularly in imbalanced datasets. Comparing the F-measure of XGBoost on blockchain and 
cloud platforms helps assess their impact on prediction reliability, highlighting the strengths and limitations 
of decentralized and centralized infrastructures in handling IoT data and machine learning tasks. Figure  10 
presents a comparative analysis of the F-measure performance of XGBoost on a blockchain network and a cloud 
platform across various record counts. At 100 records, the blockchain model outperforms the cloud by 2.4746%, 
maintaining an advantage of 1.1770% at 250 records. As the record count increases to 500, the difference reduces 
to 0.7777%, yet the blockchain model continues to perform better by approximately 0.78%. At 1000 records, the 
trend remains consistent, with a slight edge for the blockchain model. By 2000 records, the difference diminishes 
further, but at 3000 records, the performance advantage rises again to 1.0389%. The most significant difference 
occurs at 5000 records, where the blockchain model surpasses the cloud by 2.0528%. These results indicate 
that while the performance gap varies with dataset size, XGBoost on the consortium blockchain consistently 
demonstrates superior F-measure performance, particularly with larger datasets, highlighting its potential for 
improved efficiency in handling extensive data.

The F-measure of blockchain-based and cloud-based system by evaluating their precision and recall 
in processing IoT data. Precision measures the proportion of correctly predicted positive cases, while recall 
indicates the ability to identify all actual positive cases. By analyzing these metrics, we assessed the trade-off 
between accuracy and completeness in both systems.

Source Destination Latency (in ms)

IoT device (DEV1) Edge node 20

IoT device (DEV2) Edge node 22

IoT device (DEV3) Edge node 21

Edge node Pre-selected validator (VAL-ID1) 51

Edge node Pre-selected validator (VAL-ID2) 55

Pre-selected validator (VAL-ID1) Pre-selected validator (VAL-ID2) 10

Table 10.  Network testbed configuration.

 

Fig. 12.  Response time for fog computing, cloud computing, and blockchain.
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The blockchain-based system demonstrated a higher F-measure due to its decentralized validation, ensuring 
more reliable data classification. In contrast, the cloud-based system exhibited slight variations, influenced by 
centralized processing and potential latency. This comparison highlights the strengths of each system in handling 
IoT data, providing their effectiveness for real-world applications. Throughput measures the amount of data 
successfully processed or transmitted within a system over time, reflecting its efficiency and capacity. Comparing 
throughput across fog computing, cloud computing, and blockchain systems is crucial to assess their scalability, 
responsiveness, and suitability for real-time applications. This study analyzes throughput to determine how each 
system handles IoT-driven data, identifying the optimal framework for high-speed, large-scale data processing 
in dynamic environments.

The correlation between fog, cloud computing, and consortium blockchain networks with edge nodes was 
analyzed, revealing a positive correlation between throughput and record volume, indicating effective workload 
handling. Studies22,23 show that fog computing consistently achieves the highest throughput across varying 
record counts. However, Fig. 11 highlights that consortium blockchain surpasses fog computing in scalability, 
with throughput increasing from 61.08 Mbps (1000 records) to 384.824 Mbps (5000 records). While fog 
computing excels in high-throughput localized processing and cloud computing offers flexibility, consortium 
blockchain balances security, decentralization, and scalability, making it highly suitable for our applications.

The throughput of two blockchain-based, fog-based, and cloud-based systems was compared by analyzing 
their data processing efficiency and transmission speed, considering factors such as processing delays and 
network latency. The blockchain-based system exhibited lower throughput due to the overhead of consensus 
mechanisms, which introduce additional delays. In contrast, the cloud-based system demonstrated higher 
throughput, benefiting from centralized processing and optimized resource allocation. This comparison 
highlights the trade-offs between decentralization and speed, offering insights into the suitability of each system 
for handling real-time IoT data.

The response time measures the duration between a request and its response, impacting real-time applications 
like IoT. The lower response times are important for latency-sensitive tasks such as vehicle emissions monitoring.

In this study, NS3 simulations were used to analyze response times across fog computing, cloud computing, 
and blockchain. The studies22,23 indicate that fog computing has the shortest response time, while cloud access 
is the longest as depicted in Fig. 12. However, our framework shows that consortium blockchain with an edge 
device achieves comparable response times to fog computing. The mean response times observed were 62.8196 
ms for blockchain, 68.354 ms for fog, and 669.06 ms for cloud computing, with standard deviations of 22.874, 
21.764, and 623.98, respectively, highlighting the efficiency of consortium blockchain in latency-sensitive 
environments.

Table 10 Presents network latency, the time taken for data to travel from the IoT network to the consortium 
blockchain. IoT devices (DEV1, DEV2, DEV3) transmit sensor data to the edge node with latencies of 20 Ms, 
22 Ms, and 21 Ms, respectively. The edge node then forwards data to blockchain validators (VAL-ID1, VAL-

Fig. 13.  Processing time for fog computing, cloud computing, and blockchain.
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ID2) with latencies of 51 Ms and 55 Ms. Additionally, communication between VAL-ID1 and VAL-ID2 incurs a 
latency of 10 Ms, highlighting the overall transmission delays in the system.

The processing time measures the duration required to complete computational tasks, impacting the 
efficiency of fog, cloud, and blockchain systems, especially in real-time IoT applications. Lower processing time 
signifies faster execution and better performance. In this study, NS3 simulations were used to measure processing 
times under varying workloads and network conditions. Comparing these times highlights each system’s ability 
to handle complex computations, offering insights into the trade-offs between decentralized and centralized 
architectures, aiding in selecting the optimal framework for latency-sensitive applications. Figure 13 shows that 
processing time in the fog environment increased by 1737.67% with growing block size, indicating a near-linear 
relationship, while in the cloud, it rose by 1718.13%, showing a slightly steeper growth. In contrast, the proposed 
blockchain framework exhibited the slowest increase at 219.64%, demonstrating the lowest processing time 
overhead. This analysis suggests that blockchain is the most efficient for handling larger block sizes, whereas 
cloud storage has the longest processing time, making it unsuitable for the application scenario.

The relationship between the number of validators and blockchain confirmation time is crucial for assessing 
performance and scalability. The validators influence transaction validation and block creation, impacting 
confirmation time due to consensus mechanisms, communication overhead, and network synchronization. 
Analyzing this correlation balances the security, decentralization, and efficiency, offering insights into optimizing 
validator configurations for improved transaction throughput and reduced latency in real-world applications. In 
the proposed consortium blockchain framework, only pre-selected nodes dynamically validate blocks, reducing 
computational complexity. The relationship between validators and network performance aligns with proposed 
and confirmed block counts as shown in Fig.  14. The testing revealed that increasing validators introduces 
communication overhead, affecting transaction finality. With blocks set at 40, 80, and 120 for different dynamic 
times, results show that higher validator counts increase transaction latency. For instance, 100 transactions are 

Scheme Vehicle - sensors Edge node Blockchain network Total CC time (ms) Communication cost (bits)

Han et al.29 2TH + TE TH + TY 2TY + 3TE 2.5 5120

Lu et al.30 TE + TY 2TH + TE TH + TY + TE 3 4200

Liu et al.31 TH + TE + TY 3TE + TY 2TY + TH 4.2 5000

Kazi et al.32 3TH + TY 2TH + TE 3TY + TH 5.1 5300

Huang et al.33 2TE + TH TH + 2TY TE + 2TY + TH 4.8 4780

Muzumdar et al.34 TH + TE + TY 2TH + TE TY + 3TE 3.3 3800

Proposed TH + 2TE TE + TH 2TY + TH + TE 2.1 2900

Table 11.   Comparison of communication costs (CC).

 

Fig. 14.  Correlation between # validators and confirmation time.
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validated in under a second with two validators, while three or five validators require more time. Given the 
objective of the system to validate 298 transactions every 5 s, using more than three validators is suboptimal.

Table 11 Compares blockchain-based communication schemes in IoT systems, analyzing cryptographic 
operations like hashing (TH), encryption (TE), and signature operations (TY). It highlights trade-offs between 
computational efficiency and communication costs, showcasing The advantages of The proposed model in secure 
IoT communications. The schemes outline operations across vehicle sensors, edge nodes, and The blockchain 
network, detailing computation time (ms) and communication cost (bits). The proposed scheme outperforms 
others with The lowest total computation time of 2.1 Ms and a communication cost of 2900 Bits due to three 
technical optimizations: (i). The streamlined cryptographic operations at The vehicle-sensor layer minimize 
redundant steps with only TH + 2TE, rather than multiple rounds of hashing or encryption, which reduces both 
computational overhead and The size of transmitted data. (ii). The use of edge nodes for local preprocessing 
allows IoT emission data to be aggregated, validated, and encrypted at The source before transmission, reducing 
The volume of Raw data sent to The blockchain and thus Lowering bandwidth requirements and network 
congestion. (iii). The use of a consortium blockchain architecture with a limited set of pre-selected validators 
significantly reduces consensus complexity and inter-node communication, as fewer validators and optimized 
signature operations are required, minimizing network overhead.

The results demonstrate that the blockchain-based vehicle emission monitoring system outperforms fog and 
cloud computing in prediction accuracy, throughput, response time, and processing efficiency. XGBoost on the 
consortium blockchain showed up to 11% higher accuracy and 90% faster response times compared to traditional 
PUCC systems. The decentralized validation enhances data integrity and predictive reliability, consistently 
yielding better F-measure scores, especially on larger datasets. The throughput analysis reveals that while fog 
computing excels in local high-speed processing, the consortium blockchain scales better with increasing data 
volume. The latency measurements show blockchain response times comparable to fog computing and much 
lower than cloud systems. The processing times grow slower on blockchain, indicating better handling of larger 
workloads. However, increasing the number of blockchain validators raises confirmation delays, with an optimal 
validator count of two to three for efficient operation. The communication cost comparison shows the efficiency 
of the proposed scheme, enabled by streamlined cryptography, edge preprocessing, and consortium blockchain, 
reducing computation time and bandwidth. Hence, the blockchain framework provides a secure, scalable, and 
efficient alternative to traditional centralized and edge systems for real-time IoT emission data monitoring and 
analysis.

Conclusion
This work presents a novel framework to enhance the PUCC system using blockchain and machine learning 
by integrating DApp and smart contracts to ensure secure, transparent, and automated PUCC issuance. The 
IoT sensors and edge nodes enable real-time, accurate vehicle emission monitoring, enhancing data reliability 
and decentralization. The consortium blockchain hub provides continuous vehicle tracking, transparency, 
and trust. The MVIs validate and digitally endorse emission records, while an incentivization mechanism 
encourages user participation through redeemable tokens. The XGBoost model predicts emission patterns 
and suggests maintenance intervals, promoting proactive engagement. The system processes 298 transactions 
every 5 s with a mean response time of 62.8196 ms. Notably, XGBoost on the consortium blockchain achieves 
99.986% accuracy and a 99.4096% F-measure, demonstrating its improved performance. As the future work, it 
is planned to integrate novel blockchain consensus mechanisms while enhancing privacy-preserving techniques 
to improve trust. These enhancements enable the framework to serve diverse stakeholders effectively, including 
government, vehicle owners, environmental organizations, and manufacturers, in monitoring vehicle emissions 
and promoting sustainable development. These studies allow iterative refinement of our framework and 
validate its integration within smart city ecosystems. For real-world deployment, it is essential to ensure strict 
compliance with legal, regulatory, and environmental frameworks, particularly with respect to data privacy and 
cross-border data sharing. Accordingly, the immediate objective is to launch pilot projects with public sector 
partners, enhance system efficiency, and develop policy guidelines for scalable, sustainable deployment.
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