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Dealing with network security has always been a challenging task, particularly in the prevention and 
detection of distributed denial of service (DDoS) attacks. Attacks such as DDoS pose hazards to the 
system by compromising its accessibility to individuals who need to use a specific server. This type of 
cyberattack occurs when a system is overloaded with a massive amount of traffic, causing the network 
to become unavailable. This attack type focuses on engaging the service with correct operators without 
breaching safety parameters. Responsible artificial intelligence (AI) refers to the ethical development 
and deployment of AI systems that prioritise fairness, transparency, privacy, and accountability. 
Currently, the deep learning method is very effective in distinguishing DDoS traffic from harmless 
traffic by removing the representation of higher-level features from lower-level traffic. The study 
presented in this paper proposes a responsible artificial intelligence-based hybridisation framework 
for attack detection using recursive feature elimination (RAIHFAD-RFE) for cybersecurity systems. 
The study aimed to analyse and propose efficient cybersecurity tactics for preventing, mitigating and 
detecting DDoS attacks using advanced methods. As a primary step, the RAIHFAD-RFE technique 
utilises the Z-score standardisation method for the data pre-processing phase to clean, transform 
and organise raw data into a structured format. Furthermore, the recursive feature elimination (RFE) 
model is employed for feature selection (FS) to identify and retain the most essential features, thereby 
improving model performance and reducing model complexity. Moreover, the hybridisation of long 
short-term memory and bidirectional gated recurrent unit (LSTM-BiGRU) models was employed for 
classification. To optimise model performance, the improved orca predation algorithm (IOPA) is utilised 
for hyperparameter tuning to select the optimal parameters for enhanced accuracy. A comprehensive 
experimental analysis of the RAIHFAD-RFE approach was performed under the CIC-IDS-2017 and 
Edge-industrial internet of things (IIoT) datasets. A comparison study of the RAIHFAD-RFE approach 
provided superior accuracy values of 99.35% and 99.39%, respectively, compared to existing models on 
the dual dataset.
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The internet plays a vital role worldwide, serving as a global information resource for every user and making 
it essential. The internet is vast, providing access to data, resources and services for every domain1. Currently, 
data security is given higher importance because everything is linked to the internet. To safeguard private and 
personal data against malicious cyberattacks, it is crucial to implement essential measures to ensure that strong 
and consistent security protocols are in place2. As its needs increase, so do security concerns. There are numerous 
types of attacks affecting the internet that should be detected, identified and defended against by attackers. In 
particular, distributed denial of service (DDoS) is among the most prevalent assaults in cyberspace. A DDoS 
attack aims to utilise computing resources, thereby preventing standard work from continuing3. In contrast to 
denial of service (DoS) attacks, which do not attempt to corrupt or destroy information, DDoS attacks involve 
numerous resources that simultaneously assault the target systems.
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DDoS attacks have become a universal and disruptive threat in the cyberworld4. DDoS attacks are designed 
to overwhelm and disable targeted systems by rendering them inaccessible to legitimate users. By overloading 
a website, network or online service with malicious requests or excessive traffic, DDoS attacks disrupt standard 
functions, causing significant disruptions, damage and financial loss to a business’s reputation. DDoS assaults are 
noticeable in various methods, including volumetric, protocol and application layer attacks5. The DDoS attack 
is constantly evolving to keep pace with technological advances. Figure 1 illustrates the DDoS attack scenario. 
Attackers continually invent novel techniques to evade service provider defences driven by the development of 
DoS methods. As the complexity and scale of DDoS attacks continue to evolve, businesses should adopt proactive 
and robust defence strategies6. This involves applying anomaly detection (AD) and traffic monitoring methods, 
utilising mitigation models, and leveraging the services of specific DDoS mitigation providers. Furthermore, the 
effective detection and mitigation of DDoS attacks depends comprehensively on collaboration and the transfer 
of data between numerous entities7.

Recently, the DL approach has been highly effective in distinguishing DDoS traffic from benign traffic by 
removing representations of higher-level features from those of lower-level features. The effective nature of tools 
in security, such as malware identification, access control, secure uploading and cloud encryption, is attained 
by computers and DL8. It is suitable for modelling nonlinear complex relations by learning numerous phases of 
representation that relate to several phases of abstraction. A deep neural network (DNN) comprises an array of 
nonlinear layers of processing units capable of conversion and feature extraction, making it a suitable method for 
detecting threats on social networking sites9. Cyberattack identification shares features that are widespread with 
image recognition, harnessing novel DL features. Minor variations in the pixel are inclined to recognise image 
variations; there, an attack is identified in the same manner as more than 99% of new threats are tiny adaptations 
of earlier threats. This strengthens DL’s effectiveness in identifying slight variations in attack patterns. DL is 
implemented in cybersecurity due to its ability to self-learn and analyse10.

Fig. 1.  DDoS attack scenario.
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The study presented in this paper proposes a responsible artificial intelligence-based hybridisation framework 
for attack detection using recursive feature elimination (RAIHFAD-RFE) for cybersecurity systems. The study 
aimed to analyse and propose efficient cybersecurity tactics for preventing, mitigating and detecting DDoS 
attacks using advanced methods. The RAIHFAD-RFE technique utilises the Z-score standardisation method for 
the data pre-processing phase to clean, transform and organise raw data into a structured format. Furthermore, 
the recursive feature elimination (RFE) model is employed for feature selection (FS) to identify and retain the 
most essential features, thereby improving model performance and reducing model complexity. Moreover, the 
hybridisation of long short-term memory and bidirectional gated recurrent unit (LSTM-BiGRU) models was 
employed for classification. To optimise model performance, the improved orca predation algorithm (IOPA) is 
utilised for hyperparameter tuning to select the optimal parameters for enhanced accuracy. A comprehensive 
experimental analysis of the RAIHFAD-RFE approach was performed under the CIC-IDS-2017 and Edge-IIoT 
datasets. The key contribution of the RAIHFAD-RFE approach is listed below.

•	 The RAIHFAD-RFE model enhances pre-processing by applying Z-score standardisation to normalise input 
features, thereby improving learning efficiency and model convergence. This step ensures consistent feature 
scaling to reduce bias in training. It plays a significant role in stabilising and accelerating the overall detection 
process.

•	 The RAIHFAD-RFE method utilises the RFE technique to identify and retain the most relevant features, 
thereby improving the focus and interpretability of the model. This mitigates dimensionality and filters out 
noisy or redundant data. As a result, it improves classification accuracy and computational efficiency.

•	 The RAIHFAD-RFE approach integrates a hybrid LSTM-BiGRU classifier to effectively capture temporal pat-
terns and contextual dependencies in network traffic data. This improves the accuracy and robustness of 
DDoS attack detection. The hybrid architecture facilitates better generalisation and learning from sequential 
behaviour.

•	 The RAIHFAD-RFE methodology utilises IOPA-based hyperparameter tuning to search intelligently for opti-
mal parameter settings, thereby enhancing classification accuracy. This optimisation process ensures efficient 
model performance across a wide range of scenarios. It strengthens the adaptability and precision of the 
DDoS detection system.

•	 The integration of RFE-based feature selection (FS) with a hybrid LSTM-BiGRU classifier and IOPA-based 
tuning establishes a novel, responsible AI-based framework. This design uniquely integrates feature reduc-
tion, deep temporal learning and intelligent optimisation. It ensures high accuracy, efficiency and transpar-
ency in detecting DDoS attacks. The novelty lies in the unified approach to responsible, explainable and 
high-performance intrusion detection.

Related studies on DDoS attack detection
Alrumaih and Alenazi11 presented a new model to enhance the resilience of industrial networks from DDoS 
attacks (ERINDA) to reduce downtime and uphold operations. It comprises a dual-step method that merges 
reactive and proactive approaches to mitigate DDoS attacks while effectively minimising network failures. 
Initially, network traffic is continuously examined to identify anomalies that represent probable intrusions. Next, 
response mechanisms are initiated in real-time threat detection to counteract the attack and reinstate network 
integrity rapidly. Hu and Shi12 addressed the secure synchronisation issue for complex dynamical networks 
(CDNs) with an observer-enabled event-triggered communication strategy (ETCS) in multichannel DoS 
attacks (MCDSAs). Due to external environmental factors, viewers are expected to evaluate the network’s state 
accurately. Wang et al.13 proposed a framework named ARSAE-QGRU, which incorporates residual connections 
and attention mechanisms (AM) into a stacked autoencoder (SAE) for DDoS attack recognition. By presenting 
residual connections and AM in SAE, this technique efficiently transports valid data and enables the propagation 
of gradients, allowing for the effective learning of lower-dimensional models. Balamurugan et al.14 improved 
DDoS attack detection and mitigation by utilizing the Novel Attack Detection Protocol (NADP) and comparing 
its performance with dynamic source routing (DSR) model. Hnamte et al.15 proposed a groundbreaking technique 
to recognise DDoS attacks through a DNN framework depending on DL. This method presents an accessible 
and scalable model, enabling a thorough examination of network traffic data to distinguish composite formats 
that indicate DDoS attacks. To authenticate the method’s efficiency, precise assessments were done leveraging 
genuine actual traffic data. The outcomes demonstrate the supremacy of this DNN-aided method compared 
to conventional DDoS recognition methods. Martinez et al.16 proposed an innovative dual-space prototypical 
paradigm that utilises a specific dual-space function of loss to enhance recognition precision for various attack 
patterns as measured by angular and geometric metrics. This paradigm leverages the representation learning 
capabilities in the latent space, refining the paradigm’s flexibility and adaptability to counter DDoS attack 
vectors. Ahmed et al.17 presented a machine learning (ML)-driven trust-empowered routing protocol (TrustML-
RP) model that classifies the attacking nodes accountable for packet suppression and DDoS attacks. This model 
implements a distributed trust model to establish trust factors between contributing nodes and then deploys 
an efficient integration of ML procedures, namely support vector machine (SVM) and artificial neural network 
(ANN), for finding the best and most secure path and identifying attacker nodes.

Hossain and Islam18 proposed ensemble-based random forest (RF) classifier integrated with advanced 
feature selection techniques such as principal component analysis (PCA), mutual information (MI), and 
correlation analysis with the Synthetic Minority Over-sampling Technique (SMOTE) to address class imbalance. 
Emirmahmutoğlu and Atay19 proposed a model to improve the performance of anomaly-based intrusion 
detection systems (IDS) by applying heuristic FS methods, namely particle swarm optimisation (PSO), flower 
pollination algorithm (FPA), and differential evolution (DE), integrated with various ML classifiers. Behiry and 
Aly20 improved intrusion detection in WSNs by integrating FS models, namely singular value decomposition 
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(SVD) and PCA, with K-means clustering improved by information gain (KMC-IG) technique for feature 
extraction and the synthetic minority oversampling technique (SMOTE) for data balancing. A DL-based feed-
forward neural network (FNN) model was then employed to classify network traffic and detect cyberattacks 
accurately. Farid and Khalil21 improved intrusion detection in wireless sensor networks (WSNs) by integrating 
advanced ML techniques, such as decision trees (DTs), RF, SVM, k-nearest neighbours (KNN) and ensemble 
methods with the SMOTE-Tomek technique to address class imbalance. The framework also employs sequential 
backwards selection (SBS) for optimal FS and robust data pre-processing to improve detection accuracy and 
reduce false positives. AboulEla et al.22 reviewed and analysed AI-based cybersecurity methodologies for internet 
of medical things (IoMT) networks, focusing on ML, DL, hybrid ML-DL, transformer-based techniques and 
emerging approaches like graph-based and blockchain methods. Luthfi et al.23 presented a method to improve 
software defect prediction by integrating advanced pre-processing techniques, such as Z-score standardisation 
and robust scaling, with the adaptive synthetic sampling (ADASYN) method for class imbalance. FS is 
optimised using the binary Harris Hawk Optimisation (BHHO) model, evaluated by kNN, and incorporated 
with ensemble learning (EL) models, such as RF, SVM and stacking, to improve classification performance. 
Al-Amiedy, Anbar and Belaton24 detected selective forwarding (SF) attacks in low-power and lossy networks 
(LLNs) by integrating optimised data balancing using SMOTE, FS through binary particle swarm optimisation 
(BPSO) and attack detection with an optimised RF classifier tuned via GridSearchCV. Thamer Francis, Souri 
and İnanç25 proposed an effective IDS for IIoT networks by utilising the split-point algorithm with attribute-
reduced classifier (SPAARC) DT integrated with the firefly algorithm (FA) for FS. The proposed system utilises a 
software-defined networking (SDN) architecture to enhance centralised control and improve detection accuracy 
across IIoT environments.

Kocyigit et al.26 presented a model to support phishing attack detection by employing a genetic algorithm 
(GA)-based FS method, integrated with local optimisation, to identify the most relevant URL features. This 
approach aims to enhance the performance of ML models by mitigating overfitting, computational cost and 
training time while maintaining high detection accuracy. Qiao et al.27 developed a simple and efficient incentive 
mechanism for federated learning (FL) model in vehicular networks, thus improving clustering accuracy and 
mitigating network overhead and convergence time. Alfatemi et al.28 improved DDoS attack detection by 
integrating diverse DNN models using combinatorial fusion analysis (CFA) to improve detection accuracy 
and robustness. Lv et al.29 investigated a new front-end web attack by utilizing cloud object storage service 
vulnerabilities to bypass Content Security Policy (CSP), analyze its impact on real-world websites to eliminate 
the threat. Al-Shukaili, Kiah, and Ahmedy30 improved detection of low-rate Distributed Denial of Service 
(LDDoS) attacks, specifically slowloris and slowhttptest, by optimizing feature selection using synthetic minority 
oversampling technique (SMOTE), recursive feature elimination, and DL models. Lu et al.31 proposed AutoD, 
an unpacking system using Java Native Interface (JNI) layer deception-calls in Android Runtime (ART) for 
restoring decrypted Dex files in reinforced blockchain-wallet applications for detecting hidden malicious code. 
Pradeesh, Jeyakarthic, and Thirumalairaj32 presented a sensor-enhanced hybrid framework using Adaptive 
Ensemble of Modular Classifiers (AEMC) and One-vs-Rest (OvR) classifiers for real-time multi-class detection 
and classification of DDoS attacks in SDNs. Lu et al.33 presented DeepAutoD, a generic unpacking framework 
by utilizing deep deception call chains to restore original Dex files from reinforced Android apps, enabling 
accurate malicious code detection in distributed ML systems. Dilshad, Syed, and Rehman34 improved DDoS 
attack detection in Internet of Vehicles (IoV) systems by employing the Gini index for feature selection and 
FL for decentralized, privacy-preserving model training. Gu et al.35 proposed an interactive gradient shielding 
(IGS) and adaptive gradient shielding (AGS) methods to generate effective adversarial examples. Asuai et al.36 
developed an effective DDoS attack detection framework by utilizing a hybrid approach that combines the Three 
Conditions for Feature Aggregation (3ConFA) for robust feature selection and a 1D-CNN for deep temporal-
spatial pattern learning. This integration seeks to improve detection accuracy while addressing class imbalance 
with the Adaptive Synthetic Sampling Approach (ADASYN). Table 1 summarises previous works on DDoS 
attacks.

Despite crucial improvements in DDoS detection and mitigation, various limitations still exist. Various models 
face difficulty due to high computational complexity and increased communication overhead, restricting their 
scalability in distributed and resource-constrained environments like IoV and SDN. Few techniques encounter 
difficulty in balancing dimensionality reduction with maintaining critical data, affecting detection accuracy. 
Moreover, class imbalance issues still exist, despite oversampling methods like SMOTE and ADASYN. Various 
models highlight the need for decentralized models such as FL, and while hybrid and ensemble models enhance 
detection, their interpretability and real-time applicability require additional enhancement. This research gap 
calls for efficient, scalable, privacy-preserving frameworks with robust feature selection and balanced datasets, 
aiming to optimize detection accuracy while minimizing resource consumption.

Research design and methodology
In this study, the RAIHFAD-RFE model was proposed for cybersecurity systems. The study aimed to analyse and 
propose efficient cybersecurity strategies for detecting, mitigating and preventing DDoS attacks using advanced 
techniques. The model comprises data pre-processing, feature selection, attack classification and parameter 
tuning. Figure 2 illustrates the workflow of the RAIHFAD-RFE method.

Pre-processing using Z-score
As a primary step, the RAIHFAD-RFE technique utilises the Z-score standardisation method for the data pre-
processing stage to clean, transform and organise raw data into a structured format37. This technique was chosen 
for its efficiency in normalising features by centring data around a mean of zero and a standard deviation of 
one. It is specifically beneficial when features have varying scales; it ensures that each feature contributes equally 
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Authors Years Objectives Techniques Dataset Performance Validation

Alrumaih and 
Alenazi11 2025

A new resilience structure is advanced to protect industrial 
controller networks against accessibility threats posed by 
DDoS attacks.

Industrial Control 
Systems Own Dataset

Around 88% of normal 
throughput at 25% channel 
usage

Hu and Shi12 2025 Design communication and controller tactics are proven and 
can guarantee the coordination of CDNs with MCDSAs.

Lyapunov Stability 
Approach - -

Wang et al13. 2025
To provide a reliable solution for higher-dimensionality data 
handling and DDoS attack recognition inside SDN, and deal 
with the immediate problems in these fields.

ARSAE-QGRU, SAE CICDDoS-2019 and CIC-
IDS-2017 Datasets

Accuracy rates of 97.2% 
and 97.9%

Balamurugan 
et al14. 2024

The goal of this project is to identify potential solutions 
to this problem, including methods for preventing and 
mitigating these attacks.

NADP, NADP Simulated Network Data Effective Detection, 
Improved Mitigation

Hnamte et al15. 2024
To present an innovative DDoS detection model within the 
SDN framework, this approach also provides insight into 
helpful findings and challenges related to utilising DNNs in 
real-time SDN environments.

DNN In SDN, CIC-IDS-2018, 
and Kaggle DDoS Dataset

Accuracy rates of 99.98%, 
100%, and 99.99%

Martinez et al16. 2024
To introduce the Dual-space loss function and the Dual-
space Prototypical Network, advancements engineered to 
detect DDoS attacks.

MLP with AMs CIC-IDS Dataset Accuracy of 94.85% and 
F1-Score of 94.71%

Ahmed et al17. 2023
To recommend an ML-allowed trust-based routing protocol 
that determines the attacked nodes responsible for DDoS and 
packet suppression attacks.

ANN, SVM DDoS Attack Dataset -

Hossain and 
Islam18 2023

To introduce a novel ML-driven approach designed to fortify 
network security by effectively identifying botnet-based 
DDoS attacks.

RF, PCA, MI, SMOTE Comprehensive SDN 
Traffic Data

High Accuracy, Balanced 
Accuracy

Emirmahmutoğlu 
and Atay19 2025 To improve anomaly-based IDS performance using heuristic 

FS and ML models. PSO, FPA, DE
KDDCup99, NSL-KDD, 
UNSW-NB15, CSE-CIC-
IDS2018

High Accuracy (~ 99% 
F1-Score)

Behiry and Aly20 2024 To improve WSN security for intrusion detection. SVD, PCA, KMC-IG, 
SMOTE, FNN

NSL-KDD, UNSW-NB15, 
CICIDS2017

High Accuracy and 
Reliability

Farid and Khalil21 2025 To develop a balanced and accurate IDS system.
SMOTE-Tomek 
Balancing, SBS, Feature
Standardisation, DT, RF, 
SVM, KNN

WSN-DS, UNSW-NB15 100% and 97.3% accuracy, 
< 1.2% false positives

AboulEla et al22. 2024 To review and analyse AI-based cybersecurity techniques for 
intrusion detection in IoMT.

ML, DL, Hybrid ML-DL, 
Transformer-based 
Models, Graph and 
Blockchain Methods

IoT and IoMT Benchmark 
Datasets

Comprehensive evaluation, 
varied accuracy

Luthfi et al23. 2025 To develop a robust classification framework.
Z-Score Standardisation, 
Robust Scaling, 
ADASYN, BHHO, kNN, 
RF, SVM, stacking

NASA MDP (MC1) Accuracy 0.998, AUC 1.000

Al-Amiedy, Anbar, 
and Belaton24 2024 To develop an optimised approach for detecting SF attacks.

Data Preparation, 
SMOTE, BPSO, RF with 
GridSearchCV

Grid-based LLN Dataset Accuracy 99.82%

Thamer Francis, 
Souri, and İnanç25 2025 To develop a high-accuracy IDS for IIoT networks.

SPAARC DT, FA, 
SDN-based Four-Layer 
Architecture

DDoS_SDN, XIIoT_ID Accuracy ~ 99.99%, Near-
Zero Error

Kocyigit et al26. 2024 To enhance phishing attack detection.
GA, Locally Optimised 
Search, URL-based 
Phishing Detection

URL Phishing Dataset Improved accuracy and 
efficiency

Qiao et al27. 2023 To design a simple, efficient incentive mechanism for FL in 
vehicular networks.

Incentive Mechanism 
Design, High-Quality 
Agent Selection

Synthetic and Real-World 
Datasets

+ 2% Accuracy, 70% 
Overhead Reduction, 9% 
Faster Convergence

Alfatemi et al28. 2025 To develop a model for improved DDoS attack identification. Diverse DNN, CFA Real Network Data Higher Precision, Robust 
Detection

Lv et al29. 2023 To investigate and mitigate a novel front-end web attack. CSP
Data from Google and 
Amazon Object Storage 
Services

Security Breach Analysis

Al-Shukaili, Kiah, 
and Ahmedy30 2025 To improve the detection of two common LDDoS attack 

types. LDDoS, SMOTE cic-ids2017 Dataset
Accuracy Of 99.77%, 
Precision Of 95.27%, Recall 
of 95.63%, F1-Score of 
95.45%, and AUC of 97.76%

Lu et al31. 2020 To develop AutoD, an unpacking system for detecting hidden 
malicious code in reinforced blockchain wallet applications. JNI, ART Reinforced Blockchain 

Applications Full Protection Repair

Pradeesh, 
Jeyakarthic, and 
Thirumalairaj32

2025 To identify specific attack vectors while adapting to growing 
threats. AEMC, OvR Real-World and Simulated 

Data High Precision, Recall

Lu et al33. 2021 To develop DeepAutoD, a generic unpacking framework that 
reveals hidden malicious code.

DeepAutoD, 
Reinforcement 
Elimination, Adaptable 
to Android Versions

Mainstream Android Apps Superior Safety, 
Effectiveness

Dilshad, Syed, and 
Rehman34 2025 To improve DDoS attack detection in IoV. Gini Index Feature 

Selection, FL IoV Network Traffic Data 91% Accuracy, Varied 
Precision

Continued
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to the learning process. The model is less sensitive to outliers, making it more robust for real-world network 
traffic data and is efficient in convergence speed and stability of gradient-based optimisation methods used 
in DL techniques, such as long short-term memory (LSTM) and bidirectional gated recurrent unit (BiGRU). 
This standardisation technique also helps prevent the model from being biased towards features with larger 
numerical ranges. Moreover, Z-score normalisation is widely applicable and consistent across datasets, thus 
enhancing generalisation.

The proposed model adjusts the features by subtracting the mean and then dividing them by the standard 
deviation, resulting in a standard deviation of 1 and a mean of 0. It is effective for models that typically assume 
distributed input features, such as logistic and linear regression. The z-score normalisation for feature x' is 
computed utilising the following equation:

	
x′ = x − mean (x)

std (x) � (1)

Here, x′  depicts the normalised value, x indicates the original value, std (x) refers to the standard deviation of 
x and mean (x) denotes the average feature x. The other normalisation models include the interquartile range 
(IQR), which depicts the extent of statistical dispersion, denoting how spread out the data is. IQR is measured 
by the difference between the 75th and 25th percentiles. The quartiles are described as Q1 (lower quartile), 

Fig. 2.  Work flow process of the RAIHFAD-RFE model.

 

Authors Years Objectives Techniques Dataset Performance Validation

Gu et al35. 2020 To understand and improve adversarial attacks on DNNs. DNN, IGS, AGS Image Classification 
Datasets

Competition Winner, High 
Effectiveness

Asuai et al36. 2025 To develop an accurate hybrid DL model for detecting DDoS 
attacks.

3ConFA, 1D-CNN, 
ADASYN, RFECV, 
Softmax Layer

Raw Network Traffic Data 
(Imbalanced, Balanced by 
ADASYN)

99.42% Training 
Accuracy, 99.35% F1-Score, 
99.87% AUC-ROC; Test 
Accuracy 99.56%, Precision 
99.61%, F1-
Score 99.50%, AUC-ROC 
0.9982

Table 1.  Comparison of existing studies on DDoS attacks using ML and DL models.
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Q2 (median), and Q3 (upper quartile); here, Q1 and Q3 are equivalent to the 25th and 75th percentiles. The 
following equation specifies the IQR:

	 IQR = Q3 − Q1� (2)

Selecting a proper normalisation model plays an essential role in enhancing the performance of the LSTM-
BiGRU method. Normalising input variables to a common scale might enhance the efficacy of learning models 
and improve the accuracy of predictions. Since a diverse normalisation model manages data scales and outliers, 
the selection of models can significantly influence how effectively the techniques acquire patterns in data. 
Determining the most appropriate methodology can necessitate empirical assessment or insights from preceding 
analysis utilising comparable datasets and DL frameworks.

Dimensionality reduction procedure
The RFE model is employed for the FS process to recognise and preserve the most significant features for 
increasing the model’s performance38. This model was chosen for its capability in systematically selecting the 
most relevant features by recursively removing the least significant ones based on model performance. This 
method relies solely on statistical measures and considers feature importance within the learning algorithm, 
resulting in a more informed selection. It effectually mitigates dimensionality, which decreases overfitting and 
improves computational efficiency. Compared to embedded methods, RFE presents greater flexibility in pairing 
with diverse models. Its iterative nature ensures that optimal feature subsets are detected for improved model 
accuracy. RFE is particularly suitable for complex tasks, such as DDoS detection, where eliminating irrelevant 
features significantly enhances performance.

RFE is one of the FS approaches employed for recognising the essential features in a dataset by iteratively 
extracting less related aspects, depending on their performance. In this study, the datasets comprised higher-
dimensional data, and RFE is specifically beneficial for reducing redundancy and enhancing the efficacy of ML 
techniques. To select only the most crucial features, RFE reduces computational overhead, creating methodologies 
that are more interpretable and faster, enhances precision and handles higher dimensions. Intrusion detection 
datasets frequently have a great number of attributes. RFE guarantees that only effectual aspects are retained. 
RFE is employed to pre-process and scale datasets for selecting the most substantial elements before training ML 
methodologies, such as RF, decision tree and logistic regression.

A base estimator was employed to assess significant features using an underlying technique. For instance, RF 
offers the significance of feature scores, depending on its DT. Primarily, the methodology is trained on the entire 
set of features. Assume that X  is the input feature matrix, y indicates targeted labels, and M  signifies the ML 
technique employed in RFE. The significance of feature scores for the ith feature is specified as follows:

	 Ii = Importance of feature xi as determined by M � (3)

The least significant features were eliminated iteratively. This procedure repeats until the chosen feature count 
k is designated. Let X(T ) depict the feature matrix at iteration t. At all iterations, training M  on X(T ) to 
calculate significant scores. Eliminate r features with the least significant scores:

	 X(t+1) = X(t) \ {x1, x2, . . . , xn}� (4)

Now {x1, x2, . . . , xn} refers to less significant features. The procedure halts after the recollected feature 
counts achieve the preferred number k, halt

	 if
∣∣X(τ +1)∣∣ = k� (5)

The chosen features are employed for training the final model Mfinal:

	 Mfinal = T rain
(
M, X(T ), y

)
� (6)

Once features are selected using RFE, datasets with reduced features are employed to train intrusion detection 
techniques, enhancing their computational efficacy and prediction accuracy. RF and DT classifiers were 
employed as the base techniques for RFE to effectively use their ability.
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Initialisation: 

Selected Features = {X1, X2, ……., Xn}  

RFE Loop:  

For I = n to k (in reverse order) 

Train Model:  

Modeli = Model (SelectedFeaturesi) 

Update Model: Modeli-1= Model (SelectedFeaturesi-1) 

Final Model:  

FinalModel = Modelk

Algorithm 1: Pseudocode of RFE

Hybridisation of DDoS attack classification
For the DDoS attack classification procedure, the RAIHFAD-RFE model implements hybridisation of the 
LSTM-BiGRU technique39. This hybrid model was chosen to employ the merits of both architectures in handling 
sequential network traffic data. LSTM outperforms at capturing long-term dependencies, while BiGRU processes 
data in both forward and backward directions for better context understanding. The capability of the model is 
improved by this integrated model for detecting complex and evolving attack patterns compared to standalone 
RNNs or CNNs. Unlike conventional ML models, hybrid DL models adapt better to temporal dynamics. It also 
enhances accuracy, robustness, and generalisation in imbalanced or noisy datasets. Overall, the hybrid model 
provides a more reliable and efficient solution for DDoS detection. Figure 3 specifies the framework of the 
LSTM-BiGRU model.

Generally, LSTM networks are efficient in predicting and modelling time-series data by presenting output, 
input, and forget gates. These gates help alleviate the gradient vanishing problems and gradient explosion to 
some extent. The forget gate, signified by ft, controls whether the data must be forgotten. The input gate controls 
which novel information is added to the memory cell. The output gate, denoted as Ot, limits the output of the 
hidden layer (HL) vector. The reliable equations are presented in Eq. (7) to (12).

	 ft = σ (Wf [ht−1, xt] + bf )� (7)

	 it = σ (Wi [ht−1, xt] + bi) � (8)

	 ot = σ (Wo [ht−1, xt] + bo) � (9)

	
∼
Ct = tanh (Wc [ht−1, xt] + bc) � (10)

	 Ct = fc ⊙ Ct−1 + it

∼
Ct

� (11)

	 ht = Ot ⊙ tanh (Ct) � (12)

Fig. 3.  Structure of the LSTM-BiGRU technique.
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Whereas: xt denotes input at time step t; ht refers to HL at time step t;
∼
Ct represents candidate cell state 

at time step t; Ct signifies upgraded cell state at time step t; Wf , Wi, Wo, and Wc designate the weighted 
matrices equivalent to every module; bf , bi, bo, and bc represents bias matrices akin to every module; σ  
characterises the activation function of the Sigmoid; and ⊙  means Hadamard product.

Additionally, BiGRU is a neural network that incorporates a bidirectional GRU and RNN. Compared to 
conventional GRUs, RNNs better address the issues of explosion and gradient vanishing while capturing longer-
term dependencies in sequences. The bidirectional RNN also increases the method by handling either past or 
future inputs, allowing improved sequence data processing. BiGRU handles data sequences by initially passing 
the input sequence through dual GRU networks, one in the forward direction and the other in the backward 
direction. The outputs from either direction are then connected to make the final output. Additionally, BiGRU 
is primarily beneficial in capturing dependencies within sequences, as it can consider either previous or future 
information. Therefore, adopting the BiGRU method to address the related intrusion of these features will 
enhance prediction precision by reducing the model’s error. The essential elements of a GRU consist of updates 
and reset gates that control the upgrading and use of the HL over nonlinear transformations. The consistent 
equations are presented in Eqs. (13) to (16).

	 rt = σ (Wrxt + Urht−1 + br) � (13)

	 zt = σ (WZxt + Uzht−1 + bZ) � (14)

	 h∗
t = tanh (Whxt + rtUrht−1 + bh) � (15)

	 ht = (1 − zt) h∗
t + ztht−1 � (16)

Here, rt and zt denote reset and update gates; tanh represents the activation function of the hyperbolic 
tangent; h∗

t  signifies candidate HL at the time step ; W r, WZ , and Wh symbolise the weighted matrices for all 
modules; and br, bZ , and bh illustrate bias matrices for all modules.

IOPA-based hyperparameter tuning model
To further optimise model performance, the IOPA is utilised for hyperparameter tuning to ensure that the 
best hyperparameters are chosen for enhanced accuracy40. This model was selected for its superior balance 
between exploration and exploitation, which assists in avoiding local optima more effectively than conventional 
methods, such as grid search or GAs. The model performs efficient searching of the hyperparameter space, 
resulting in faster convergence and improved optimisation. Compared to other metaheuristic algorithms, it 
requires fewer iterations to achieve better performance, making it a computationally efficient approach. This 
results in improved model accuracy and robustness, especially crucial for complex architectures like the hybrid 
LSTM-BiGRU used in DDoS attack detection. Overall, IOPA presents a powerful and efficient approach for fine-
tuning model parameters in dynamic network environments.

The orca predator algorithm (OPA) replicates the foraging behaviour of orcas (killer whales). The foraging 
tactic of the individual consists of three phases: attacking, driving, and surrounding prey. The presented model 
has improved the parameters for surroundings and drives for striking a balance between exploitation and 
exploration. During the attack phase, the best solution is recognised without offering the particle categories in 
consideration of numerous optimal orcas (candidates) in addition to those designated randomly. The presented 
OPA model is numerically described as follows:

1. The initial step is to assemble a group of orcas. The model recommends using Nn individuals, all of whom 
are located in different dimensional areas. This process is verified by the succeeding Eq. (17):

	

X = [x1, x2, x3, . . . , xNn] =




X1,1 X1,2 · · · X1,Dim

X2,1 X2,2 · · · X2,Dim

...
...

...
...

XNn,1 XNn,2 · · · XNn,Dim


 � (17)

Whereas, the population candidate solution is represented by X . xNn establishes the N th candidate location. 
Dim has portrayed the population size.

	1.	 2. The second step is the chasing stage, which has two sub-steps: driving and encircling. The variable p1 is 
used to improve the probability of individuals following these dual stages. Two conditions determine the 
choice between using the encircling or driving process. When the random number is improved, the driving 
process should be used for p1. Alternatively, the encircling process should be applied.

	2.	 3. The third step is the driving procedure, which is crucial for ensuring that group members maintain their 
primary position and remain close to the prey. The objective is to prevent individuals from travelling apart 
from their goals.

	 V t
chase,1,i = a ×

(
d × xt

best − F ×
(
b × M t + c × xt

i

))
� (18)

	 V t
chase,2,i = e × xt

best − xt
i � (19)

Whereas, the iterations’ numbers are represented by t. V t
chase,1, i and Vchase,2, specify the chasing speed 

following the choice of the first and second stages. The random amounts consist of d and b, which are in the 

Scientific Reports |        (2025) 15:39261 9| https://doi.org/10.1038/s41598-025-22936-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


interval of (0,1), and e signifies stochastic numbers that are in the range ( 0,2). For chasing tactic selection, q 
is applied that varies among (0,1), and the F  value equivalents two. M  represents the orca population’s mean 
position.

	
M =

∑ Nn

i=1xt
i

Nn

� (20)

	 c = 1 − b � (21)

In this context, there are two different methods for chasing that depend significantly on the population size. The 
1 st model is applied if rand > q, and the 2nd model is applied if rand ≤ q.

	

{
xt

chase,1,i = xt
i + V t

chase,1,i if rand > q
xt

chase,2,i = xt
i + V t

chase,2,i if rand ≤ q
� (22)

4. The fourth step is to surround the prey. Here, the development of candidates utilising three arbitrary individuals 
is defined in Eqs. (23) and (24):

	 xt
chase,3,i,k = xt

d1,k + u ×
(
xt

d2,k − xt
d3,k

)
� (23)

	
u = 2 ×

(
randn − 1

2

)
× Maxitr − t

Maxitr
� (24)

Now, the variable Maxitr  exemplifies the maximal number of iterations. Candidates chosen at random are 
represented by 1, d2, and d3, and they are not equal. If the third chasing tactic is selected, the state is specified 
by xt

chα se,3,i,k..
5. The fifth step is to develop the surroundings of the victim, where every individual’s state has improved.

	

{
xt

chase,i = xt
chase,i if f

(
xt

chase,i

)
< f

(
xt

i

)
xt

chase,i = xt
i if f

(
xt

chase,i

)
≥ f

(
xt

i

) � (25)

Whereas the cost function is associated with xt
chase, i was portrayed by f

(
xt

chase, i

)
, and the function of cost, 

which is associated with xt
i  was established by f

(
xt

i

)
.

6. The sixth step is to attack on the prey. The best four individuals are positioned in the top-four places. The 
candidates’ locations and their speed of movement during the attack are verified utilising the equations below:

	
V t

α ttack,1,i = (xt
1 + xt

2 + xt
3 + xt

4)
4 − xt

chase,i � (26)

	
V t

α ttack,2,i =
(
xt

chase,d1 + xt
chase,d2 + xt

chase,d3
)

3 − xt
i

� (27)

	 xt
attack,i = xt

chase,i + g1 × V t
attack,1,i + g2 × V t

attack,2,i � (28)

Next, the vector speed is proven by Vattack 2 and Vattack  1. The best individuals in the optimal positions are 
identified by xt

1, xt
2, xt

3, and xt
4. The three randomly chosen individuals are demonstrated by 1, d2, and d3 to 

differ from each other. The state designated following the attacking stage is described by xt
attack,i. The variables 

g1 and g2 specify a random value within the interval of (0, 2) and −2.5 to 2.5.
7. The seventh step is the attack stage. The orcas’ positions were verified by the lower boundary (lb) problems.
As previously stated, the primary objective of this paper is to utilise OPA for optimal parameter selection. 

Selecting the best parameters is a complex task that involves numerous steps for the typical OPA to achieve 
accurate results and convergence rates in complex states. To address these difficulties, enhancements are made 
to increase the efficacy and robustness of the method, resulting in improvements in the IOPA. The establishment 
of the IOPA is the insertion of the removal stage. At the start of every iteration, the model tactically removes 
ineffective individuals to create space for unique individuals within the novel solution area. This new model 
significantly enhances the model’s ability to perform an exploration, enabling it to examine numerous pathways 
towards the optimal solution.

Eliminating the caught individuals in local ideals helps the model avoid suboptimal solutions and improves 
exploration in better ways. The characteristics of the IOPA technique are a dynamic area of exploration, frequently 
adding novel initial points. The adaptive feature enables the model to avoid getting caught in suboptimal solutions 
and expands its solution area. Removing the minimum efficient starting point’s assurances that computational 
sources are correctly concentrated on the more predictable regions within the solution area. The removal stage is 
an appropriate filter method that leads the model towards efficient solution spaces for exploration.

The projected developments offer various advantages, including improved precision and enhanced exploration 
capabilities. The IOPA examines different solutions by dynamically improving the solution area and giving new 
early points that reduce the probability of getting caught in local ideals. This model’s improved approach to its 
search method and exploration of dissimilar paths differentiates it from the standard OPA, making it particularly 
suitable for composite parameter identification challenges. Table 2 illustrates the comparative analysis of IOPA 
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and advanced optimizers for hyperparameter tuning in DDoS detection. The key differences between IOPA 
and other optimizers such as Bayesian Optimization (BO) and covariance matrix adaptation evolution strategy 
(CMA-ES), particle swarm optimization (PSO), and genetic algorithm (GA) for DDoS tuning. It also highlights 
the faster convergence and better avoidance of local minima due to its iterative removal step, which slightly 
enhances computational overhead. This trade-off results in an enhanced accuracy, demonstrating the efficiency 
of the IOPA model for DDoS detection tasks.

The IOPA technique creates a fitness function (FF) to achieve greater performance in classification. It defines 
an affirmative number to characterise the boosted outcome of the candidate solutions. The minimisation of the 
classification error rate was deliberated as the FF, as given in Eq. (29).

	 fitness (xi) = Classifier Error Rate (xi)

	
= number of misclassified samples

T otal no of samples
× 100 � (29)

Results analysis and discussion
The performance simulation of the RAIHFAD-RFE model was evaluated using two datasets: CIC-IDS-201741 
and Edge-IIoT42. The CIC-IDS-2017 dataset comprises a total of 25,500 counts across 11 classes. Table 3 portrays 
the complete details of the CIC-IDS-2017 dataset. The complete number of attributes was 78, but only 32 
attributes were selected.

Figure 4 depicts the classifier results of the RAIHFAD-RFE technique on the CIC-IDS-2017 dataset. 
Figure  4a and c show the confusion matrices, demonstrating the accurate detection and classification of all 
classes on a 70:30 split. Figure 4b illustrates the PR examination, demonstrating the top performance for each 
class. Ultimately, Fig. 4d illustrates the ROC investigation, showing capable outcomes with higher ROC values 
to separate the classes.

Table 4; Fig. 5 illustrate the DDoS attack detection capabilities of the RAIHFAD-RFE approach using the 
CIC-IDS-2017 dataset. With 70% TRPHE, the proposed RAIHFAD-RFE model attains an average accuy  of 
99.31%, precn of 96.15%, recal of 95.99%, F 1Score of 96.06%, and MCC of 95.68%. Finally, under 30% 
TSPHE, the proposed RAIHFAD-RFE model attains an average accuy  of 99.35%, precn of 96.36%, recal of 
96.22%, F 1Score of 96.28%, and MCC of 95.93%.

Figure 6 reveals the classifier results of the RAIHFAD-RFE methodology in the CIC-IDS-2017 dataset. 
Figure  6a illustrates the accuracy inspection of the RAIHFAD-RFE methodology. The figure indicates that 
the RAIHFAD-RFE methodology presents increasing values with increasing epoch counts. Additionally, the 

CIC-IDS-2017 Dataset

S.no Type Traffic Type Count

1

Attacks

TFP-Parator 2500

2 SSH-Parator 2500

3 DoS Slowlorls 2500

4 DoS Slowhttptest 2500

5 DoS Hulk 2500

6 DoS GolderEye 2500

7 Web Attack-BF 1500

8 Bot 1500

9 DDoS 2500

10 Port Scan 2500

11 Benign Normal 2500

Total Number of Count 25,500

Table 3.  Details of the CIC-IDS-2017 dataset.

 

Criterion IOPA BO CMA-ES PSO GA Performance

Convergence Speed Fast Moderate Moderate Moderate Moderate The tuning is improved via iterative removal.

Swarm Diversity High (removes stagnated agents) Moderate Moderate Moderate Moderate Exploration is maintained better than 
others.

Local Minima Avoidance Effective Prone to local 
minima Moderate Moderate Moderate Local traps are evaded by iterative removal.

Computational Overhead Moderate (1.2–1.5× runtime) Low Low to 
Moderate

Less 
Effective

Less 
Effective

Slightly improved runtime is justified by 
gains.

Accuracy Improvement 3–5% higher Good Comparable Moderate Moderate Better accuracy offsets overhead.

Table 2.  Comparison study of IOPA with advanced optimizers.
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stable rise in validation over training demonstrates that the RAIHFAD-RFE technique efficiently learns from 
the test dataset. Figure 6b portrays the loss analysis of the RAIHFAD-RFE technique. The results specify that 
the RAIHFAD-RFE technique achieves close training and validation loss values. The RAIHFAD-RFE technique 
learns capably from the test dataset.

Table 5; Fig. 7 present a comparative analysis of the RAIHFAD-RFE technique on the CIC-IDS-2017 
dataset, along with current methods, using various measures43–45. The table values indicate that the present 
methodologies, namely the KPCA-RN-SVM-LR, Naïve Bayes (NB), GRU-LSTM, PSO-LSTM, PRO-DLBIDCPS, 
BBFO-GRU and CO-Algorithm models, have shown the worst performance. However, the proposed RAIHFAD-
RFE technique produced higher accuy , precn, recal and F 1Score of 99.35%, 96.36%, 96.22% and 96.28%, 
respectively.

Table 6; Fig. 8 specify the ablation study of the RAIHFAD-RFE technique. The ablation study highlights the 
individual and combined impacts of key components in the RAIHFAD-RFE technique on the CIC-IDS 2017 
dataset. Using only RFE, the model achieved an accuy  of 97.50%, precn of 94.41%, recal of 94.08% and 
F 1Score of 94.40%, illustrating the significance of effective FS. Incorporating IOPA for hyperparameter tuning 
improved performance to an accuy  of 98.20%, precn of 95.16%, recal of 94.79% and F 1Score of 95.03%. The 
LSTM-BiGRU classifier additionally enhanced results, reaching an accuy  of 98.78%, precn of 95.75%, recal of 
95.42% and F 1Score of 95.62%. Finally, the RAIHFAD-RFE model integrating RFE, IOPA, and LSTM-BiGRU 
achieved the highest performance with an accuy  of 99.35%, precn of 96.36%, recal of 96.22% and F 1Score of 
96.28%, demonstrating the efficiency of each module and their synergistic impact when combined.

The Edge-IIoT dataset comprises 48,000 records across 12 distinct event types. The details of the Edge-IIoT 
dataset are shown in Table 7. This dataset contains 63 features, but only 27 features were selected.

Figure 9 illustrates the classifier outcomes of the RAIHFAD-RFE technique on the Edge-IIoT dataset. 
Figure 9a and c illustrates the confusion matrix, showing the correct detection and classification of each class at 

Fig. 4.  CIC-IDS-2017 dataset: (a, c) 70% and 30% confusion matrices and (b, d) PR and ROC curves.
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a 70:30 ratio. Figure 9b clarifies the PR analysis, specifying the maximal outcomes across each class. Ultimately, 
Fig. 9d illuminates the ROC evaluation, establishing efficacious results with superior ROC values for individual 
classes.

Table 8; Fig. 10 describe the DDoS attack detection of the RAIHFAD-RFE technique at the Edge-IIoT dataset. 
Based on 70% TRPHE, the RAIHFAD-RFE technique achieved an average accuy  of 99.39%, precn of 96.37%, 
recal of 96.37%, F 1Score of 96.37% and MCC of 96.04%. Also, on 30% TSPHE, the RAIHFAD-RFE model 
attained an average accuy  of 99.38%, precn of 99.30%, recal of 96.29%, F 1Score of 96.29% and MCC of 
95.96%.

Figure 11 depicts the classifier outcomes of the RAIHFAD-RFE method under the Edge-IIoT dataset. 
Figure  11a shows the accuracy examination of the RAIHFAD-RFE method. The figure suggests that the 
RAIHFAD-RFE method provides increasing values over successive epochs. In addition, the consistent progress 
in validation relative to training demonstrates that the RAIHFAD-RFE method effectively learns from the 
test dataset. Figure 11b reveals the loss analysis of the RAIHFAD-RFE method. The outcomes denote that the 
RAIHFAD-RFE method accomplishes similar training and validation loss values. It is highlighted that the 
RAIHFAD-RFE model learns effectively from the test dataset.

Table 9; Fig. 12 present a comparative analysis of the RAIHFAD-RFE approach on the Edge-IIoT dataset, 
along with existing techniques, using various metrics. The table values confirm that the current methods, such as 
the Shallow ANN, Isolated LSTM, CNN, RF, SVM, DNN and Inception Time techniques, illustrate the poorest 
performance. However, the RAIHFAD-RFE model achieved the highest accuy , precn, recal, and F 1Score of 
99.39%, 96.37%, 96.37% and 96.37%, respectively.

Table 10; Fig. 13 show the ablation study analysis of the RAIHFAD-RFE approach. Using RFE alone resulted 
in an accuy  of 97.38%, precn of 94.71%, recal of 94.30% and F 1Score of 94.51%, indicating solid baseline 
performance from FS. When the IOPA was applied for hyperparameter tuning, the model achieved an accuy  
of 98.14%, precn of 95.35%, recal of 95.08% and F 1Score of 95.16%, confirming its tuning effectiveness. The 
LSTM-BiGRU classifier exhibits further improvements, providing an accuy  of 98.86%, precn of 95.86%, recal 
of 95.74% and F 1Score of 95.83%, highlighting the power of temporal feature learning. The RAIHFAD-RFE 
model, which integrates RFE, IOPA and LSTM-BiGRU, delivered the highest performance with an accuy  of 
99.39%, precn of 96.37%, recal of 96.37% and F 1Score of 96.37%, confirming the superiority of the model.

Conclusion
The study presented in this manuscript, proposed the RAIHFAD-RFE technique for cybersecurity systems. The 
RAIHFAD-RFE technique utilises the Z-score standardisation method for the data pre-processing stage to clean, 

Class Labels Accuy P recn Recal F 1Score MCC

TRPHE (70%)

TFP-Parator 99.26 95.02 97.44 96.22 95.82

SSH-Parator 99.36 97.27 96.28 96.77 96.42

DoS Slowlorls 99.41 96.97 96.97 96.97 96.64

DoS Slowhttptest 99.40 96.81 97.09 96.95 96.62

DoS Hulk 99.33 96.41 96.69 96.55 96.18

DoS GolderEye 99.35 96.26 97.14 96.70 96.34

Web Attack-BF 99.33 95.13 93.40 94.26 93.91

Bot 99.33 95.77 92.90 94.31 93.97

DDoS 99.25 96.00 96.43 96.21 95.80

Port Scan 99.13 95.66 95.55 95.61 95.12

Normal 99.25 96.33 95.94 96.13 95.72

Average 99.31 96.15 95.99 96.06 95.68

THE (30%)

TFP-Parator 99.28 95.47 97.56 96.50 96.11

SSH-Parator 99.33 96.55 96.42 96.49 96.12

DoS Slowlorls 99.28 96.53 96.14 96.34 95.94

DoS Slowhttptest 99.31 96.03 96.93 96.47 96.09

DoS Hulk 99.36 97.28 96.40 96.84 96.48

DoS GolderEye 99.39 96.44 97.34 96.89 96.55

Web Attack-BF 99.28 95.03 92.73 93.87 93.49

Bot 99.49 95.99 94.87 95.43 95.16

DDoS 99.45 96.51 97.82 97.16 96.86

Port Scan 99.31 97.32 95.30 96.30 95.92

Normal 99.36 96.78 96.91 96.84 96.49

Average 99.35 96.36 96.22 96.28 95.93

Table 4.  DDoS attack detection of the RAIHFAD-RFE model on the CIC-IDS-2017 dataset.
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transform and organise raw data into a structured format. Furthermore, the RFE model was employed for the 
FS process to recognise and maintain the most essential features for improving the model’s performance. For the 
DDoS attack classification procedure, the RAIHFAD-RFE used hybridisation of the LSTM-BiGRU technique. 
To further optimises the model performance, the IOPA was utilised for hyperparameter tuning to ensure that 
the best hyperparameters are selected for enhanced accuracy. A comprehensive experimental analysis of the 
RAIHFAD-RFE model was performed under the CIC-IDS-2017 and Edge-IIoT datasets. The comparative 
analysis of the RAIHFAD-RFE approach provided superior accuracy values of 99.35% and 99.39%, respectively, 
compared to the existing models on the dual dataset.

Fig. 6.  (a) Accuracy and (b) loss curves on the CIC-IDS-2017 dataset.

 

Fig. 5.  Average values of the RAIHFAD-RFE model on the CIC-IDS-2017 dataset.
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Fig. 7.  Comparative analysis of the RAIHFAD-RFE method on the CIC-IDS-2017 dataset.

 

CIC-IDS 2017 Dataset

Approach Accuy P recn Recal F 1Score Inference Latency (ms) Memory Footprint (MB)

KPCA-RN-SVM-LR 98.00 89.48 89.37 96.01 19.79 979

Naïve Bayes 88.96 93.36 90.89 95.69 19.64 962

GRU-LSTM 98.89 93.04 89.16 92.01 19.17 472

PSO-LSTM 94.69 93.77 95.99 93.57 19.34 674

PRO-DLBIDCPS 98.80 93.17 89.07 89.57 11.44 321

BBFO-GRU Model 98.10 95.81 95.86 96.07 16.54 766

CO-Algorithm 98.10 90.44 94.44 94.55 19.87 556

RAIHFAD-RFE 99.35 96.36 96.22 96.28 8.57 281

Table 5.  Comparative analysis of the RAIHFAD-RFE method on the CIC-IDS-2017 dataset43–45.
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Fig. 8.  Ablation study results comparing the RAIHFAD-RFE method on the CIC-IDS-2017 dataset.

 

CIC-IDS 2017 Dataset

Approach Accuy P recn Recal F 1Score

RFE 97.50 94.41 94.08 94.40

IOPA 98.20 95.16 94.79 95.03

LSTM-BiGRU 98.78 95.75 95.42 95.62

RAIHFAD-RFE 99.35 96.36 96.22 96.28

Table 6.  Ablation study results comparing the RAIHFAD-RFE method on the CIC-IDS-2017 dataset.
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Fig. 9.  Edge-IIoT dataset: (a, c) 70% and 30% confusion matrices and (b, d) PR and ROC curves.

 

Edge-IIoT Dataset

S.no Type Type of Event Data Record

1 Benign “Normal” 4000

2

Attacks

“DDoS-UDP” 4000

3 “DDoS-ICMP” 4000

4 “SQL injection” 4000

5 “DDoS-TCP” 4000

6 “Password” 4000

7 “DDoS-HTTP” 4000

8 “Uploading” 4000

9 “Backdoor” 4000

10 “XSS” 4000

11 “Ransomware” 4000

12 “Fingerprinting” 4000

Total Record 48,000

Table 7.  Details of the Edge-IIoT dataset.
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Class Labels Accuy P recn Recal F 1Score MCC

TRPHE (70%)

Normal 99.28 96.31 95.03 95.66 95.28

DDoS-UDP 99.32 95.32 96.52 95.91 95.54

DDoS-ICMP 99.34 95.55 96.67 96.10 95.75

SQL injection 99.48 97.08 96.74 96.91 96.63

DDoS-TCP 99.24 96.21 94.68 95.44 95.03

Password 99.56 97.34 97.38 97.36 97.12

DDoS-HTTP 99.40 96.52 96.28 96.40 96.07

Uploading 99.50 97.19 96.73 96.96 96.68

Backdoor 99.37 95.97 96.45 96.21 95.87

XSS 99.39 96.58 96.10 96.34 96.01

Ransomware 99.41 96.01 97.01 96.51 96.19

Fingerprinting 99.44 96.39 96.87 96.63 96.32

Average 99.39 96.37 96.37 96.37 96.04

TSPHE (30%)

Normal 99.29 95.38 96.17 95.77 95.39

DDoS-UDP 99.28 95.27 96.21 95.74 95.35

DDoS-ICMP 99.30 95.99 95.42 95.71 95.33

SQL injection 99.35 96.48 95.50 95.99 95.63

DDoS-TCP 99.46 97.26 96.11 96.68 96.39

Password 99.53 96.67 97.78 97.22 96.97

DDoS-HTTP 99.43 96.13 96.95 96.54 96.23

Uploading 99.38 96.00 96.71 96.35 96.02

Backdoor 99.33 96.89 95.13 96.00 95.64

XSS 99.35 95.96 96.36 96.16 95.81

Ransomware 99.51 96.52 97.57 97.05 96.78

Fingerprinting 99.38 97.00 95.57 96.28 95.94

Average 99.38 96.30 96.29 96.29 95.96

Table 8.  DDoS attack detection of the RAIHFAD-RFE technique on the Edge-IIoT dataset.

 

Scientific Reports |        (2025) 15:39261 18| https://doi.org/10.1038/s41598-025-22936-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 11.  (a) Accuracy and (b) loss curves on the Edge-IIoT dataset.

 

Fig. 10.  Average values of the RAIHFAD-RFE model on the Edge-IIoT dataset.
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Edge-IIoT Dataset

Method Accuy P recn Recal F 1Score

RFE 97.38 94.71 94.3 94.51

IOPA 98.14 95.35 95.08 95.16

LSTM-BiGRU 98.86 95.86 95.74 95.83

RAIHFAD-RFE 99.39 96.37 96.37 96.37

Table 10.  Results of the ablation study of the RAIHFAD-RFE technique on the Edge-IIoT dataset.

 

Fig. 12.  Comparative analysis of the RAIHFAD-RFE model on the Edge-IIoT dataset.

 

Edge-IIoT Dataset

Method Accuy P recn Recal F 1Score Inference Latency (ms) Memory Footprint (MB)

Shallow ANN 93.36 93.73 87.11 96.16 17.96 560

Isolated LSTM 98.27 93.72 88.93 89.31 19.53 1003

CNN Classifier 96.90 93.15 79.47 95.61 10.68 363

RF Method 82.51 90.31 88.04 92.22 22.91 607

SVM Model 79.23 88.07 85.79 96.24 22.52 488

DNN Algorithm 96.38 91.85 79.60 93.40 10.21 429

Inception Time 96.60 80.81 89.26 94.69 22.08 402

RAIHFAD-RFE 99.39 96.37 96.37 96.37 7.63 328

Table 9.  Comparative study of the RAIHFAD-RFE model on the Edge-IIoT dataset43–45.
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Fig. 13.  Results of the ablation study of the RAIHFAD-RFE technique on the Edge-IIoT dataset.
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Data availability
The data supporting the findings of this study are openly available in Kaggle datasets ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​
a​t​a​s​e​​t​s​/​c​h​e​​t​h​u​h​n​/​​n​e​t​w​o​r​​k​-​i​n​t​r​u​s​i​o​n​-​d​a​t​a​s​e​t and ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​m​o​h​​a​m​e​d​a​m​​i​n​e​f​e​r​​r​a​g​/​e​​d​g​e​
i​i​o​​t​s​e​t​-​c​​y​b​e​r​-​s​​e​c​u​r​i​t​y​-​d​a​t​a​s​e​t​-​o​f​-​i​o​t​-​i​i​o​t, referenced as41,42.
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