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Modelling of hybrid deep learning
framework with recursive feature
elimination for distributed denial of
service attack detection systems

Sultan Alkhliwi

Dealing with network security has always been a challenging task, particularly in the prevention and
detection of distributed denial of service (DDoS) attacks. Attacks such as DDoS pose hazards to the
system by compromising its accessibility to individuals who need to use a specific server. This type of
cyberattack occurs when a system is overloaded with a massive amount of traffic, causing the network
to become unavailable. This attack type focuses on engaging the service with correct operators without
breaching safety parameters. Responsible artificial intelligence (Al) refers to the ethical development
and deployment of Al systems that prioritise fairness, transparency, privacy, and accountability.
Currently, the deep learning method is very effective in distinguishing DDoS traffic from harmless
traffic by removing the representation of higher-level features from lower-level traffic. The study
presented in this paper proposes a responsible artificial intelligence-based hybridisation framework

for attack detection using recursive feature elimination (RAIHFAD-RFE) for cybersecurity systems.

The study aimed to analyse and propose efficient cybersecurity tactics for preventing, mitigating and
detecting DDoS attacks using advanced methods. As a primary step, the RAIHFAD-RFE technique
utilises the Z-score standardisation method for the data pre-processing phase to clean, transform

and organise raw data into a structured format. Furthermore, the recursive feature elimination (RFE)
model is employed for feature selection (FS) to identify and retain the most essential features, thereby
improving model performance and reducing model complexity. Moreover, the hybridisation of long
short-term memory and bidirectional gated recurrent unit (LSTM-BiGRU) models was employed for
classification. To optimise model performance, the improved orca predation algorithm (IOPA) is utilised
for hyperparameter tuning to select the optimal parameters for enhanced accuracy. A comprehensive
experimental analysis of the RAIHFAD-RFE approach was performed under the CIC-IDS-2017 and
Edge-industrial internet of things (lloT) datasets. A comparison study of the RAIHFAD-RFE approach
provided superior accuracy values of 99.35% and 99.39%, respectively, compared to existing models on
the dual dataset.

Keywords Artificial intelligence, Applied mathematics, Distributed denial of service attack, Cybersecurity,
Recursive feature elimination, Hybrid deep learning

The internet plays a vital role worldwide, serving as a global information resource for every user and making
it essential. The internet is vast, providing access to data, resources and services for every domain'. Currently,
data security is given higher importance because everything is linked to the internet. To safeguard private and
personal data against malicious cyberattacks, it is crucial to implement essential measures to ensure that strong
and consistent security protocols are in place?. As its needs increase, so do security concerns. There are numerous
types of attacks affecting the internet that should be detected, identified and defended against by attackers. In
particular, distributed denial of service (DDoS) is among the most prevalent assaults in cyberspace. A DDoS
attack aims to utilise computing resources, thereby preventing standard work from continuing®. In contrast to
denial of service (DoS) attacks, which do not attempt to corrupt or destroy information, DDoS attacks involve
numerous resources that simultaneously assault the target systems.
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DDoS attacks have become a universal and disruptive threat in the cyberworld®. DDoS attacks are designed
to overwhelm and disable targeted systems by rendering them inaccessible to legitimate users. By overloading
a website, network or online service with malicious requests or excessive traffic, DDoS attacks disrupt standard
functions, causing significant disruptions, damage and financial loss to a business’s reputation. DDoS assaults are
noticeable in various methods, including volumetric, protocol and application layer attacks®. The DDoS attack
is constantly evolving to keep pace with technological advances. Figure 1 illustrates the DDoS attack scenario.
Attackers continually invent novel techniques to evade service provider defences driven by the development of
DoS methods. As the complexity and scale of DDoS attacks continue to evolve, businesses should adopt proactive
and robust defence strategies®. This involves applying anomaly detection (AD) and traffic monitoring methods,
utilising mitigation models, and leveraging the services of specific DDoS mitigation providers. Furthermore, the
effective detection and mitigation of DDoS attacks depends comprehensively on collaboration and the transfer
of data between numerous entities’.

Recently, the DL approach has been highly effective in distinguishing DDoS traffic from benign traffic by
removing representations of higher-level features from those of lower-level features. The effective nature of tools
in security, such as malware identification, access control, secure uploading and cloud encryption, is attained
by computers and DL8. It is suitable for modelling nonlinear complex relations by learning numerous phases of
representation that relate to several phases of abstraction. A deep neural network (DNN) comprises an array of
nonlinear layers of processing units capable of conversion and feature extraction, making it a suitable method for
detecting threats on social networking sites®. Cyberattack identification shares features that are widespread with
image recognition, harnessing novel DL features. Minor variations in the pixel are inclined to recognise image
variations; there, an attack is identified in the same manner as more than 99% of new threats are tiny adaptations
of earlier threats. This strengthens DLs effectiveness in identifying slight variations in attack patterns. DL is
implemented in cybersecurity due to its ability to self-learn and analyse®.
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Fig. 1. DDoS attack scenario.
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The study presented in this paper proposes a responsible artificial intelligence-based hybridisation framework
for attack detection using recursive feature elimination (RAIHFAD-RFE) for cybersecurity systems. The study
aimed to analyse and propose efficient cybersecurity tactics for preventing, mitigating and detecting DDoS
attacks using advanced methods. The RATHFAD-RFE technique utilises the Z-score standardisation method for
the data pre-processing phase to clean, transform and organise raw data into a structured format. Furthermore,
the recursive feature elimination (RFE) model is employed for feature selection (FS) to identify and retain the
most essential features, thereby improving model performance and reducing model complexity. Moreover, the
hybridisation of long short-term memory and bidirectional gated recurrent unit (LSTM-BiGRU) models was
employed for classification. To optimise model performance, the improved orca predation algorithm (IOPA) is
utilised for hyperparameter tuning to select the optimal parameters for enhanced accuracy. A comprehensive
experimental analysis of the RATHFAD-RFE approach was performed under the CIC-IDS-2017 and Edge-IIoT
datasets. The key contribution of the RAIHFAD-RFE approach is listed below.

o The RATHFAD-RFE model enhances pre-processing by applying Z-score standardisation to normalise input
features, thereby improving learning efficiency and model convergence. This step ensures consistent feature
scaling to reduce bias in training. It plays a significant role in stabilising and accelerating the overall detection
process.

o The RATHFAD-RFE method utilises the RFE technique to identify and retain the most relevant features,
thereby improving the focus and interpretability of the model. This mitigates dimensionality and filters out
noisy or redundant data. As a result, it improves classification accuracy and computational efficiency.

« The RATHFAD-RFE approach integrates a hybrid LSTM-BiGRU classifier to effectively capture temporal pat-
terns and contextual dependencies in network traffic data. This improves the accuracy and robustness of
DDoS attack detection. The hybrid architecture facilitates better generalisation and learning from sequential
behaviour.

« The RATHFAD-RFE methodology utilises IOPA-based hyperparameter tuning to search intelligently for opti-
mal parameter settings, thereby enhancing classification accuracy. This optimisation process ensures efficient
model performance across a wide range of scenarios. It strengthens the adaptability and precision of the
DDoS detection system.

o The integration of RFE-based feature selection (FS) with a hybrid LSTM-BiGRU classifier and IOPA-based
tuning establishes a novel, responsible Al-based framework. This design uniquely integrates feature reduc-
tion, deep temporal learning and intelligent optimisation. It ensures high accuracy, efficiency and transpar-
ency in detecting DDoS attacks. The novelty lies in the unified approach to responsible, explainable and
high-performance intrusion detection.

Related studies on DDoS attack detection

Alrumaih and Alenazi'! presented a new model to enhance the resilience of industrial networks from DDoS
attacks (ERINDA) to reduce downtime and uphold operations. It comprises a dual-step method that merges
reactive and proactive approaches to mitigate DDoS attacks while effectively minimising network failures.
Initially, network traffic is continuously examined to identify anomalies that represent probable intrusions. Next,
response mechanisms are initiated in real-time threat detection to counteract the attack and reinstate network
integrity rapidly. Hu and Shi'? addressed the secure synchronisation issue for complex dynamical networks
(CDNs) with an observer-enabled event-triggered communication strategy (ETCS) in multichannel DoS
attacks (MCDSAs). Due to external environmental factors, viewers are expected to evaluate the network’s state
accurately. Wang et al.!* proposed a framework named ARSAE-QGRU, which incorporates residual connections
and attention mechanisms (AM) into a stacked autoencoder (SAE) for DDoS attack recognition. By presenting
residual connections and AM in SAE, this technique efficiently transports valid data and enables the propagation
of gradients, allowing for the effective learning of lower-dimensional models. Balamurugan et al.'* improved
DDoS attack detection and mitigation by utilizing the Novel Attack Detection Protocol (NADP) and comparing
its performance with dynamic source routing (DSR) model. Hnamte et al.! proposed a groundbreaking technique
to recognise DDoS attacks through a DNN framework depending on DL. This method presents an accessible
and scalable model, enabling a thorough examination of network traffic data to distinguish composite formats
that indicate DDoS attacks. To authenticate the method’s efficiency, precise assessments were done leveraging
genuine actual traffic data. The outcomes demonstrate the supremacy of this DNN-aided method compared
to conventional DDo$ recognition methods. Martinez et al.!® proposed an innovative dual-space prototypical
paradigm that utilises a specific dual-space function of loss to enhance recognition precision for various attack
patterns as measured by angular and geometric metrics. This paradigm leverages the representation learning
capabilities in the latent space, refining the paradigm’s flexibility and adaptability to counter DDoS attack
vectors. Ahmed et al.!” presented a machine learning (ML)-driven trust-empowered routing protocol (TrustML-
RP) model that classifies the attacking nodes accountable for packet suppression and DDoS attacks. This model
implements a distributed trust model to establish trust factors between contributing nodes and then deploys
an efficient integration of ML procedures, namely support vector machine (SVM) and artificial neural network
(ANN), for finding the best and most secure path and identifying attacker nodes.

Hossain and Islam!® proposed ensemble-based random forest (RF) classifier integrated with advanced
feature selection techniques such as principal component analysis (PCA), mutual information (MI), and
correlation analysis with the Synthetic Minority Over-sampling Technique (SMOTE) to address class imbalance.
Emirmahmutoglu and Atay' proposed a model to improve the performance of anomaly-based intrusion
detection systems (IDS) by applying heuristic FS methods, namely particle swarm optimisation (PSO), flower
pollination algorithm (FPA), and differential evolution (DE), integrated with various ML classifiers. Behiry and
Aly?® improved intrusion detection in WSNs by integrating FS models, namely singular value decomposition
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(SVD) and PCA, with K-means clustering improved by information gain (KMC-IG) technique for feature
extraction and the synthetic minority oversampling technique (SMOTE) for data balancing. A DL-based feed-
forward neural network (FNN) model was then employed to classify network traffic and detect cyberattacks
accurately. Farid and Khalil?! improved intrusion detection in wireless sensor networks (WSNs) by integrating
advanced ML techniques, such as decision trees (DTs), RE, SVM, k-nearest neighbours (KNN) and ensemble
methods with the SMOTE-Tomek technique to address class imbalance. The framework also employs sequential
backwards selection (SBS) for optimal FS and robust data pre-processing to improve detection accuracy and
reduce false positives. AboulEla et al.>? reviewed and analysed Al-based cybersecurity methodologies for internet
of medical things (IoMT) networks, focusing on ML, DL, hybrid ML-DL, transformer-based techniques and
emerging approaches like graph-based and blockchain methods. Luthfi et al.?* presented a method to improve
software defect prediction by integrating advanced pre-processing techniques, such as Z-score standardisation
and robust scaling, with the adaptive synthetic sampling (ADASYN) method for class imbalance. FS is
optimised using the binary Harris Hawk Optimisation (BHHO) model, evaluated by kNN, and incorporated
with ensemble learning (EL) models, such as RE SVM and stacking, to improve classification performance.
Al-Amiedy, Anbar and Belaton?* detected selective forwarding (SF) attacks in low-power and lossy networks
(LLNSs) by integrating optimised data balancing using SMOTE, FS through binary particle swarm optimisation
(BPSO) and attack detection with an optimised RF classifier tuned via GridSearchCV. Thamer Francis, Souri
and Inang? proposed an effective IDS for IIoT networks by utilising the split-point algorithm with attribute-
reduced classifier (SPAARC) DT integrated with the firefly algorithm (FA) for FS. The proposed system utilises a
software-defined networking (SDN) architecture to enhance centralised control and improve detection accuracy
across IIoT environments.

Kocyigit et al.2® presented a model to support phishing attack detection by employing a genetic algorithm
(GA)-based FS method, integrated with local optimisation, to identify the most relevant URL features. This
approach aims to enhance the performance of ML models by mitigating overfitting, computational cost and
training time while maintaining high detection accuracy. Qiao et al.”’ developed a simple and efficient incentive
mechanism for federated learning (FL) model in vehicular networks, thus improving clustering accuracy and
mitigating network overhead and convergence time. Alfatemi et al.?® improved DDoS attack detection by
integrating diverse DNN models using combinatorial fusion analysis (CFA) to improve detection accuracy
and robustness. Lv et al.? investigated a new front-end web attack by utilizing cloud object storage service
vulnerabilities to bypass Content Security Policy (CSP), analyze its impact on real-world websites to eliminate
the threat. Al-Shukaili, Kiah, and Ahmedy30 improved detection of low-rate Distributed Denial of Service
(LDDoS) attacks, specifically slowloris and slowhttptest, by optimizing feature selection using synthetic minority
oversampling technique (SMOTE), recursive feature elimination, and DL models. Lu et al.>! proposed AutoD,
an unpacking system using Java Native Interface (JNI) layer deception-calls in Android Runtime (ART) for
restoring decrypted Dex files in reinforced blockchain-wallet applications for detecting hidden malicious code.
Pradeesh, Jeyakarthic, and Thirumalairaj*? presented a sensor-enhanced hybrid framework using Adaptive
Ensemble of Modular Classifiers (AEMC) and One-vs-Rest (OvR) classifiers for real-time multi-class detection
and classification of DDoS attacks in SDNs. Lu et al.** presented DeepAutoD, a generic unpacking framework
by utilizing deep deception call chains to restore original Dex files from reinforced Android apps, enabling
accurate malicious code detection in distributed ML systems. Dilshad, Syed, and Rehman?* improved DDoS
attack detection in Internet of Vehicles (IoV) systems by employing the Gini index for feature selection and
FL for decentralized, privacy-preserving model training. Gu et al.>® proposed an interactive gradient shielding
(IGS) and adaptive gradient shielding (AGS) methods to generate effective adversarial examples. Asuai et al.*
developed an effective DDoS attack detection framework by utilizing a hybrid approach that combines the Three
Conditions for Feature Aggregation (3ConFA) for robust feature selection and a 1D-CNN for deep temporal-
spatial pattern learning. This integration seeks to improve detection accuracy while addressing class imbalance
with the Adaptive Synthetic Sampling Approach (ADASYN). Table 1 summarises previous works on DDoS
attacks.

Despite crucial improvements in DDoS detection and mitigation, various limitations still exist. Various models
face difficulty due to high computational complexity and increased communication overhead, restricting their
scalability in distributed and resource-constrained environments like JoV and SDN. Few techniques encounter
difficulty in balancing dimensionality reduction with maintaining critical data, affecting detection accuracy.
Moreover, class imbalance issues still exist, despite oversampling methods like SMOTE and ADASYN. Various
models highlight the need for decentralized models such as FL, and while hybrid and ensemble models enhance
detection, their interpretability and real-time applicability require additional enhancement. This research gap
calls for efficient, scalable, privacy-preserving frameworks with robust feature selection and balanced datasets,
aiming to optimize detection accuracy while minimizing resource consumption.

Research design and methodology

In this study, the RATHFAD-RFE model was proposed for cybersecurity systems. The study aimed to analyse and
propose efficient cybersecurity strategies for detecting, mitigating and preventing DDoS attacks using advanced
techniques. The model comprises data pre-processing, feature selection, attack classification and parameter
tuning. Figure 2 illustrates the workflow of the RATHFAD-RFE method.

Pre-processing using Z-score

As a primary step, the RAIHFAD-RFE technique utilises the Z-score standardisation method for the data pre-
processing stage to clean, transform and organise raw data into a structured format®’. This technique was chosen
for its efficiency in normalising features by centring data around a mean of zero and a standard deviation of
one. It is specifically beneficial when features have varying scales; it ensures that each feature contributes equally
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Authors Years | Objectives Techniques Dataset Performance Validation
Alrumaih and A new resilience structure is advanced to protect industrial Industrial Control Around 88% of normal
11 2025 | controller networks against accessibility threats posed by Own Dataset throughput at 25% channel
Alenazi Systems
DDoS attacks. usage
Hu and Shi'2 2025 | Design communication and controller tactics are proven and | Lyapunov Stability . .
can guarantee the coordination of CDNs with MCDSAs. Approach
To provide a reliable solution for higher-dimensionality data
Wang et al'3. 2025 | handling and DDoS attack recognition inside SDN, and deal | ARSAE-QGRU, SAE CICDD0S-2019 and CIC- | Accuracy rates of 97.2%
. j . ) IDS-2017 Datasets and 97.9%
with the immediate problems in these fields.
The goal of this project is to identify potential solutions . .
Balag‘lurugan 2024 | to this problem, including methods for preventing and NADP, NADP Simulated Network Data Effective Detg .Cno.n’
etal't L% Improved Mitigation
mitigating these attacks.
To present an innovative DDoS detection model within the
Hnamte et al'5 2024 SDN framework, this approach also provides insight into DNN In SDN, CIC-IDS-2018, Accuracy rates of 99.98%,
’ helpful findings and challenges related to utilising DNNs in and Kaggle DDoS Dataset | 100%, and 99.99%
real-time SDN environments.
To introduce the Dual-space loss function and the Dual- Accuracy of 94.85% and
Martinez et al'®. 2024 | space Prototypical Network, advancements engineered to MLP with AMs CIC-IDS Dataset 4 g
F1-Score of 94.71%
detect DDoS attacks.
B To recommend an ML-allowed trust-based routing protocol
Ahmed et al'”. 2023 | that determines the attacked nodes responsible for DDoS and | ANN, SVM DDosS Attack Dataset -
packet suppression attacks.
. To introduce a novel ML-driven approach designed to fortify . .
HOSSallsn and 2023 | network security by effectively identifying botnet-based RE PCA, M1, SMOTE Comprehensive SON High Accuracy, Balanced
Islam Traffic Data Accuracy
DDoS attacks.
. « . . . - KDDCup99, NSL-KDD, .
Emlrmahlrgnutoglu 2025 To improve anomaly-based IDS performance using heuristic PSO, FPA, DE UNSW-NB15, CSE-CIC- High Accuracy (~99%
and Atay’ FS and ML models. F1-Score)
1DS2018
. . . . . . SVD, PCA, KMC-IG, NSL-KDD, UNSW-NBI15, | High Accuracy and
20
Behiry and Aly 2024 | To improve WSN security for intrusion detection. SMOTE, ENN CICIDS2017 Reliability
SMOTE-Tomek
. . Balancing, SBS, Feature 100% and 97.3% accuracy,
21 » SBS, ~ . g
Farid and Khalil 2025 | To develop a balanced and accurate IDS system. Standardisation, DT, RE, ‘WSN-DS, UNSW-NB15 <1.2% false positives
SVM, KNN
ML, DL, Hybrid ML-DL,
AboulEla et a2 2024 To review and analyse Al-based cybersecurity techniques for | Transformer-based IoT and IoMT Benchmark | Comprehensive evaluation,
’ intrusion detection in IoMT. Models, Graph and Datasets varied accuracy
Blockchain Methods
Z-Score Standardisation,
Luthfi et al*? 2025 | To develop a robust classification framework Robust Scaling, NASA MDP (MC1) Accuracy 0.998, AUC 1.000
: P : ADASYN, BHHO, kNN, ¥ 8228 |
RE, SVM, stacking
Al-Amiedy. Anbar. Data Preparation,
U > | 2024 | To develop an optimised approach for detecting SF attacks. SMOTE, BPSO, RF with | Grid-based LLN Dataset Accuracy 99.82%
and Belaton !
GridSearchCV
. SPAARC DT, FA, o
“““fer Francis, 25 | 2025 | To develop a high-accuracy IDS for IToT networks. SDN-based Four-Layer | DDoS_SDN, XIloT_ID Accuracy ~99.99%, Near-
Souri, and Inang . Zero Error
Architecture
GA, Locally Optimised Improved accuracy and
Kocyigit et al°. 2024 | To enhance phishing attack detection. Search, URL-based URL Phishing Dataset efﬂgienc Y
Phishing Detection Y
. . . . . . . Incentive Mechanism . +2% Accuracy, 70%
Qiao et al?’. 2023 | To design a simple, efficient incentive mechanism for FL in Design, High-Quality Synthetic and Real-World Overhead Reduction, 9%
vehicular networks. A . Datasets
gent Selection Faster Convergence
Alfatemi et al®. 2025 | To develop a model for improved DDoS attack identification. | Diverse DNN, CFA Real Network Data I{)Iﬁl;:trifgecmon, Robust
Data from Google and
Lv et al®. 2023 | To investigate and mitigate a novel front-end web attack. CSp Amazon Object Storage Security Breach Analysis
Services
Accuracy Of 99.77%,
Al-Shukaili, Kiah, To improve the detection of two common LDDoS attack . Precision Of 95.27%, Recall
and Ahmedy® 2025 types. LDDoS, SMOTE cic-ids2017 Dataset of 95.63%, F1-Score of
95.45%, and AUC of 97.76%
Lu et all. 2020 To deyelop Aut(?D, z{n unpacking system for detectlr'lg hidden JNI, ART Remforc.ed Blockchain Full Protection Repair
malicious code in reinforced blockchain wallet applications. Applications
Pradeesh, To identify specific attack vectors while adapting to growin Real-World and Simulated
Jeyakarthic, and 2025 . Y glog & AEMC, OvR High Precision, Recall
: Y threats. Data
Thirumalairaj
DeepAutoD,
To develop DeepAutoD, a generic unpacking framework that | Reinforcement . . Superior Safet
33 p Deep. > a g P g p Y
Luetal®. 2021 reveals hidden malicious code. Elimination, Adaptable Mainstream Android Apps Effectiveness
to Android Versions
- - S :
Dllshad,gyed, and 2025 | To improve DDoS attack detection in IoV. Gini I?‘dex Feature IoV Network Traffic Data 1% 'AAccuracy, Varied
Rehman Selection, FL Precision
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Datasets

Authors Years | Objectives Techniques Dataset Performance Validation
Gu et al®. 2020 | To understand and improve adversarial attacks on DNN. DNN, IGS, AGS Image Classification gggﬁi:sg; Winner, High

. 36
Asuai et al’®. 2025 | ttacks.

3ConFA, 1D-CNN,

To develop an accurate hybrid DL model for detecting DDoS ADASYN, RFECY,

Softmax Layer

Raw Network Traffic Data
(Imbalanced, Balanced by
ADASYN)

99.42% Training

Accuracy, 99.35% F1-Score,
99.87% AUC-ROC; Test
Accuracy 99.56%, Precision
99.61%, F1-

Score 99.50%, AUC-ROC
0.9982

Table 1. Comparison of existing studies on DDoS attacks using ML and DL models.
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Fig. 2. Work flow process of the RATHFAD-RFE model.

to the learning process. The model is less sensitive to outliers, making it more robust for real-world network
traffic data and is efficient in convergence speed and stability of gradient-based optimisation methods used
in DL techniques, such as long short-term memory (LSTM) and bidirectional gated recurrent unit (BiGRU).
This standardisation technique also helps prevent the model from being biased towards features with larger
numerical ranges. Moreover, Z-score normalisation is widely applicable and consistent across datasets, thus
enhancing generalisation.

The proposed model adjusts the features by subtracting the mean and then dividing them by the standard
deviation, resulting in a standard deviation of 1 and a mean of 0. It is effective for models that typically assume
distributed input features, such as logistic and linear regression. The z-score normalisation for feature z' is
computed utilising the following equation:

,  x—mean (x)

v std (z) W

Here, =’ depicts the normalised value, x indicates the original value, std () refers to the standard deviation of
x and mean (z) denotes the average feature x. The other normalisation models include the interquartile range
(IQR), which depicts the extent of statistical dispersion, denoting how spread out the data is. IQR is measured
by the difference between the 75th and 25th percentiles. The quartiles are described as Q1 (lower quartile),
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Q2 (median), and Q3 (upper quartile); here, Q1 and Q3 are equivalent to the 25th and 75th percentiles. The
following equation specifies the IQR:

IQR = Q3 — Q1 )

Selecting a proper normalisation model plays an essential role in enhancing the performance of the LSTM-
BiGRU method. Normalising input variables to a common scale might enhance the efficacy of learning models
and improve the accuracy of predictions. Since a diverse normalisation model manages data scales and outliers,
the selection of models can significantly influence how effectively the techniques acquire patterns in data.
Determining the most appropriate methodology can necessitate empirical assessment or insights from preceding
analysis utilising comparable datasets and DL frameworks.

Dimensionality reduction procedure

The RFE model is employed for the FS process to recognise and preserve the most significant features for
increasing the model’s performance®. This model was chosen for its capability in systematically selecting the
most relevant features by recursively removing the least significant ones based on model performance. This
method relies solely on statistical measures and considers feature importance within the learning algorithm,
resulting in a more informed selection. It effectually mitigates dimensionality, which decreases overfitting and
improves computational efficiency. Compared to embedded methods, RFE presents greater flexibility in pairing
with diverse models. Its iterative nature ensures that optimal feature subsets are detected for improved model
accuracy. RFE is particularly suitable for complex tasks, such as DDoS detection, where eliminating irrelevant
features significantly enhances performance.

RFE is one of the FS approaches employed for recognising the essential features in a dataset by iteratively
extracting less related aspects, depending on their performance. In this study, the datasets comprised higher-
dimensional data, and RFE is specifically beneficial for reducing redundancy and enhancing the efficacy of ML
techniques. To select only the most crucial features, RFE reduces computational overhead, creating methodologies
that are more interpretable and faster, enhances precision and handles higher dimensions. Intrusion detection
datasets frequently have a great number of attributes. RFE guarantees that only effectual aspects are retained.
RFE is employed to pre-process and scale datasets for selecting the most substantial elements before training ML
methodologies, such as RE decision tree and logistic regression.

A base estimator was employed to assess significant features using an underlying technique. For instance, RF
offers the significance of feature scores, depending on its DT. Primarily, the methodology is trained on the entire
set of features. Assume that X is the input feature matrix, y indicates targeted labels, and M signifies the ML
technique employed in RFE. The significance of feature scores for the ith feature is specified as follows:

I; = Importance of feature x; as determined by M (3)

The least significant features were eliminated iteratively. This procedure repeats until the chosen feature count
k is designated. Let X () depict the feature matrix at iteration ¢. At all iterations, training M on X to
calculate significant scores. Eliminate r features with the least significant scores:

() X(t)\ {m, To,... 7%} (4)

Now {z1, z2, ... ,xn} refers to less significant features. The procedure halts after the recollected feature
counts achieve the preferred number £k, halt

if | XU =k (5)
The chosen features are employed for training the final model Myina::

Myinar = Train (M7 X(T)7 y) (6)

Once features are selected using RFE, datasets with reduced features are employed to train intrusion detection
techniques, enhancing their computational efficacy and prediction accuracy. RF and DT classifiers were
employed as the base techniques for RFE to effectively use their ability.
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Dense Layer

Initialisation:

Selected Features = {X1, X, ....... , Xn}

RFE Loop:

For I =n to k (in reverse order)

Train Model:

Modeli = Model (SelectedFeaturesi)

Update Model: Modeli-i= Model (SelectedFeaturesi-1)
Final Model:

FinalModel = Modelk

Algorithm 1: Pseudocode of RFE

Hybridisation of DDoS attack classification

For the DDoS attack classification procedure, the RAIHFAD-RFE model implements hybridisation of the
LSTM-BiGRU technique®. This hybrid model was chosen to employ the merits of both architectures in handling
sequential network traffic data. LSTM outperforms at capturing long-term dependencies, while BiGRU processes
data in both forward and backward directions for better context understanding. The capability of the model is
improved by this integrated model for detecting complex and evolving attack patterns compared to standalone
RNNs or CNNs. Unlike conventional ML models, hybrid DL models adapt better to temporal dynamics. It also
enhances accuracy, robustness, and generalisation in imbalanced or noisy datasets. Overall, the hybrid model
provides a more reliable and efficient solution for DDoS detection. Figure 3 specifies the framework of the
LSTM-BiGRU model.

Generally, LSTM networks are efficient in predicting and modelling time-series data by presenting output,
input, and forget gates. These gates help alleviate the gradient vanishing problems and gradient explosion to
some extent. The forget gate, signified by f;, controls whether the data must be forgotten. The input gate controls
which novel information is added to the memory cell. The output gate, denoted as O, limits the output of the
hidden layer (HL) vector. The reliable equations are presented in Eq. (7) to (12).

ft =0 Wy lht—1, x:] + bf) (7)
it =0 (Wilhi—1, ] + bs) (8)
or =0 (Wo [hi—1,zt] + o) 9)
Ct = tanh (W, [hu_1, z4] + be) (10)
Ci=fc® Cio1 +14:C (11)
h: = O¢ ® tanh (Ct) (12)
= — = § o [ g i
= = =
S ) = g 3 5 = = i =, -8 j Classified
> EPsH &8> £ —> >l oD =Moo ™M2P1=M" 5
= 3 & = = 2 = 3 2 2 = g Results
& 5 = z 7 5 < g 5 s 2 E
Q = 31 -] | (@) = = )] = 3 =}
~ a 4 ] e = a 2 %)

Output Layer

Fig. 3. Structure of the LSTM-BiGRU technique.
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Whereas: x; denotes input at time step t; h; refers to HL at time step ¢; C represents candidate cell state

at time step ¢; C' signifies upgraded cell state at time step ¢; Wy, W;, W,, and W, designate the weighted
matrices equivalent to every module; by, b;, bo, and b. represents bias matrices akin to every module; o
characterises the activation function of the Sigmoid; and ® means Hadamard product.

Additionally, BiGRU is a neural network that incorporates a bidirectional GRU and RNN. Compared to
conventional GRUs, RNNs better address the issues of explosion and gradient vanishing while capturing longer-
term dependencies in sequences. The bidirectional RNN also increases the method by handling either past or
future inputs, allowing improved sequence data processing. BIGRU handles data sequences by initially passing
the input sequence through dual GRU networks, one in the forward direction and the other in the backward
direction. The outputs from either direction are then connected to make the final output. Additionally, BiGRU
is primarily beneficial in capturing dependencies within sequences, as it can consider either previous or future
information. Therefore, adopting the BiGRU method to address the related intrusion of these features will
enhance prediction precision by reducing the model’s error. The essential elements of a GRU consist of updates
and reset gates that control the upgrading and use of the HL over nonlinear transformations. The consistent
equations are presented in Egs. (13) to (16).

re =0 (Wyrxt + Urhe—1 + by) (13)

2zt =0 (Wzxe + Ushi—1 + bz) (14)
hi = tanh (Wyrzt + reUrhi—1 + by) (15)
he = (1 — z¢) by + zthe—1 (16)

Here, r;and z; denote reset and update gates; tanh represents the activation function of the hyperbolic
tangent; hy signifies candidate HL at the time step ; W,., Wz, and W), symbolise the weighted matrices for all
modules; and b, bz, and by, illustrate bias matrices for all modules.

IOPA-based hyperparameter tuning model

To further optimise model performance, the IOPA is utilised for hyperparameter tuning to ensure that the
best hyperparameters are chosen for enhanced accuracy’. This model was selected for its superior balance
between exploration and exploitation, which assists in avoiding local optima more effectively than conventional
methods, such as grid search or GAs. The model performs efficient searching of the hyperparameter space,
resulting in faster convergence and improved optimisation. Compared to other metaheuristic algorithms, it
requires fewer iterations to achieve better performance, making it a computationally efficient approach. This
results in improved model accuracy and robustness, especially crucial for complex architectures like the hybrid
LSTM-BiGRU used in DDoS attack detection. Overall, IOPA presents a powerful and efficient approach for fine-
tuning model parameters in dynamic network environments.

The orca predator algorithm (OPA) replicates the foraging behaviour of orcas (killer whales). The foraging
tactic of the individual consists of three phases: attacking, driving, and surrounding prey. The presented model
has improved the parameters for surroundings and drives for striking a balance between exploitation and
exploration. During the attack phase, the best solution is recognised without offering the particle categories in
consideration of numerous optimal orcas (candidates) in addition to those designated randomly. The presented
OPA model is numerically described as follows:

1. The initial step is to assemble a group of orcas. The model recommends using Ny, individuals, all of whom
are located in different dimensional areas. This process is verified by the succeeding Eq. (17):

Xl,l X112 e Xl,Dim
Xo1 Xoo X2 Dim

X =[z1, 22, 23, ... , zN,] = . (17)
XNnﬁl XNn12 e XNn,Dim,

Whereas, the population candidate solution is represented by X. 2N,, establishes the N*" candidate location.
Dim has portrayed the population size.

1. 2. The second step is the chasing stage, which has two sub-steps: driving and encircling. The variable p; is
used to improve the probability of individuals following these dual stages. Two conditions determine the
choice between using the encircling or driving process. When the random number is improved, the driving
process should be used for p1. Alternatively, the encircling process should be applied.

2. 3. The third step is the driving procedure, which is crucial for ensuring that group members maintain their
primary position and remain close to the prey. The objective is to prevent individuals from travelling apart
from their goals.

Vihasei =@ X (d X Thest — F x (bx M'+cx af)) (18)
‘/cthase,Q,i =eXx mltyest - I: (19)

Whereas, the iterations’ numbers are represented by ¢. thase,l’i and V45,2, specify the chasing speed

following the choice of the first and second stages. The random amounts consist of d and b, which are in the
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interval of (0,1), and e signifies stochastic numbers that are in the range ( 0,2). For chasing tactic selection, ¢
is applied that varies among (0,1), and the F value equivalents two. M represents the orca population’s mean
position.

i

M = 1=1""7 (20)
Nn

c=1-b (21)

In this context, there are two different methods for chasing that depend significantly on the population size. The
1st model is applied if rand > ¢, and the 2nd model is applied if rand < q.
mzhase 1, — ZE: + ‘/cthase 1,4 Zf rand > q
t A t (22)
xchase,Z,'L =Z; + Vchase,Q,i Zf rand S q

4. The fourth step is to surround the prey. Here, the development of candidates utilising three arbitrary individuals
is defined in Egs. (23) and (24):

xihase,iﬂ,i,k = -Tfil,k +u X (szlz,k - J:fidk) (23)
1 MaXz‘tr —t

u=2x rcmdn—f)xi 24

( 2 Max;tr 29

Now, the variable Max;;, exemplifies the maximal number of iterations. Candidates chosen at random are
represented by 1, d2, and d3, and they are not equal. If the third chasing tactic is selected, the state is specified

t
bY Leho se,3,i,k "
5. The fifth step is to develop the surroundings of the victim, where every individual’s state has improved.

t ot . ¢ t
{ mchase,i - xchase,i fo (xchase,i < f (xz)

Tehase,i = T if f(2hhases) > f(2)) (25)

Whereas the cost function is associated with z%;, se, ; Was portrayed by f (miha se, i), and the function of cost,
which is associated with x! was established by f (xi)

6. The sixth step is to attack on the prey. The best four individuals are positioned in the top-four places. The
candidates’ locations and their speed of movement during the attack are verified utilising the equations below:

(i +ab+ab+ah)

t
Va ttack,1,i — — Tchase,i (26)
4
t t t

t mchc:,se,n!l + xchase,dQ + mchcl,se,n!3 + (27)

Va ttack,2,i — — X

3

. =z} Vi Vi, (28)

Tattack,i — Lchase,i + g1 % attack,1,i + g2 X attack,2,i

Next, the vector speed is proven by V,,,cr 2 and Va0 1. The best individuals in the optimal positions are
identified by x%, x5, 2%, and x}. The three randomly chosen individuals are demonstrated by 1, d2, and d3to
differ from each other. The state designated following the attacking stage is described by xfmack,i. The variables
g1 and g2 specify a random value within the interval of (0, 2) and —2.5 to 2.5.

7. The seventh step is the attack stage. The orcas’ positions were verified by the lower boundary (Ib) problems.

As previously stated, the primary objective of this paper is to utilise OPA for optimal parameter selection.
Selecting the best parameters is a complex task that involves numerous steps for the typical OPA to achieve
accurate results and convergence rates in complex states. To address these difficulties, enhancements are made
to increase the efficacy and robustness of the method, resulting in improvements in the IOPA. The establishment
of the IOPA is the insertion of the removal stage. At the start of every iteration, the model tactically removes
ineffective individuals to create space for unique individuals within the novel solution area. This new model
significantly enhances the model’s ability to perform an exploration, enabling it to examine numerous pathways
towards the optimal solution.

Eliminating the caught individuals in local ideals helps the model avoid suboptimal solutions and improves
exploration in better ways. The characteristics of the IOPA technique are a dynamic area of exploration, frequently
adding novel initial points. The adaptive feature enables the model to avoid getting caught in suboptimal solutions
and expands its solution area. Removing the minimum efficient starting point’s assurances that computational
sources are correctly concentrated on the more predictable regions within the solution area. The removal stage is
an appropriate filter method that leads the model towards efficient solution spaces for exploration.

The projected developments offer various advantages, including improved precision and enhanced exploration
capabilities. The IOPA examines different solutions by dynamically improving the solution area and giving new
early points that reduce the probability of getting caught in local ideals. This model’s improved approach to its
search method and exploration of dissimilar paths differentiates it from the standard OPA, making it particularly
suitable for composite parameter identification challenges. Table 2 illustrates the comparative analysis of IOPA
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Criterion I0PA BO CMA-ES PSO GA Performance
Convergence Speed Fast Moderate Moderate Moderate | Moderate | The tuning is improved via iterative removal.
Swarm Diversity High (removes stagnated agents) | Moderate Moderate Moderate | Moderate g:;ipel;);mon is maintained better than
Local Minima Avoidance | Effective E‘Ari(;lrilren:) local Moderate Moderate | Moderate | Local traps are evaded by iterative removal.

. . Low to Less Less Slightly improved runtime is justified by
Computational Overhead | Moderate (1.2-1.5x runtime) Low Moderate Effective | Effective | gains.
Accuracy Improvement | 3-5% higher Good Comparable | Moderate | Moderate | Better accuracy offsets overhead.

Table 2. Comparison study of IOPA with advanced optimizers.

CIC-IDS-2017 Dataset

S.no | Type Traffic Type Count
1 TFP-Parator 2500

2 SSH-Parator 2500

3 DosS Slowlorls 2500
4 DosS Slowhttptest | 2500

5 DoS Hulk 2500

6 Attacks DoS GolderEye | 2500

7 Web Attack-BF 1500

8 Bot 1500

9 DDoS 2500
10 Port Scan 2500
11 Benign | Normal 2500
Total Number of Count 25,500

Table 3. Details of the CIC-IDS-2017 dataset.

and advanced optimizers for hyperparameter tuning in DDoS detection. The key differences between IOPA
and other optimizers such as Bayesian Optimization (BO) and covariance matrix adaptation evolution strategy
(CMA-ES), particle swarm optimization (PSO), and genetic algorithm (GA) for DDoS tuning. It also highlights
the faster convergence and better avoidance of local minima due to its iterative removal step, which slightly
enhances computational overhead. This trade-off results in an enhanced accuracy, demonstrating the efficiency
of the IOPA model for DDoS detection tasks.

The IOPA technique creates a fitness function (FF) to achieve greater performance in classification. It defines
an affirmative number to characterise the boosted outcome of the candidate solutions. The minimisation of the
classification error rate was deliberated as the FF, as given in Eq. (29).

fitness (z;) = Classifier Error Rate (x;)

_ number of misclassified samples % 100 (29)
Total no of samples

Results analysis and discussion

The performance simulation of the RATHFAD-RFE model was evaluated using two datasets: CIC-IDS-2017%!
and Edge-1I0T*2. The CIC-IDS-2017 dataset comprises a total of 25,500 counts across 11 classes. Table 3 portrays
the complete details of the CIC-IDS-2017 dataset. The complete number of attributes was 78, but only 32
attributes were selected.

Figure 4 depicts the classifier results of the RAIHFAD-RFE technique on the CIC-IDS-2017 dataset.
Figure 4a and c show the confusion matrices, demonstrating the accurate detection and classification of all
classes on a 70:30 split. Figure 4b illustrates the PR examination, demonstrating the top performance for each
class. Ultimately, Fig. 4d illustrates the ROC investigation, showing capable outcomes with higher ROC values
to separate the classes.

Table 4; Fig. 5 illustrate the DDoS attack detection capabilities of the RAIHFAD-RFE approach using the
CIC-IDS-2017 dataset. With 70% TRPHE, the proposed RAIHFAD-RFE model attains an average accuy of
99.31%, precn of 96.15%, reca; of 95.99%, F'lscore of 96.06%, and M CC of 95.68%. Finally, under 30%
TSPHE, the proposed RATHFAD-RFE model attains an average accuy of 99.35%, prec, of 96.36%, reca; of
96.22%, F'lscore of 96.28%, and M CC of 95.93%.

Figure 6 reveals the classifier results of the RAIHFAD-RFE methodology in the CIC-IDS-2017 dataset.
Figure 6a illustrates the accuracy inspection of the RAIHFAD-RFE methodology. The figure indicates that
the RATHFAD-RFE methodology presents increasing values with increasing epoch counts. Additionally, the
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Training Phase (70%) - CIC-IDS-2017 Dataset

Precision-Recall Curve - CIC-IDS-2017 Dataset
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Fig. 4. CIC-IDS-2017 dataset: (a, ¢) 70% and 30% confusion matrices and (b, d) PR and ROC curves.

stable rise in validation over training demonstrates that the RAIHFAD-RFE technique efficiently learns from
the test dataset. Figure 6b portrays the loss analysis of the RAIHFAD-RFE technique. The results specify that
the RATHFAD-RFE technique achieves close training and validation loss values. The RATHFAD-RFE technique
learns capably from the test dataset.

Table 5; Fig. 7 present a comparative analysis of the RAIHFAD-RFE technique on the CIC-IDS-2017
dataset, along with current methods, using various measures**~*. The table values indicate that the present
methodologies, namely the KPCA-RN-SVM-LR, Naive Bayes (NB), GRU-LSTM, PSO-LSTM, PRO-DLBIDCPS,
BBFO-GRU and CO-Algorithm models, have shown the worst performance. However, the proposed RAIHFAD-
RFE technique produced higher accuy, precn, reca; and Flscore of 99.35%, 96.36%, 96.22% and 96.28%,
respectively.

Table 6; Fig. 8 specify the ablation study of the RATHFAD-RFE technique. The ablation study highlights the

individual and combined impacts of key components in the RATHFAD-RFE technique on the CIC-IDS 2017
dataset. Using only RFE, the model achieved an accuy of 97.50%, prec, of 94.41%, reca; of 94.08% and
F1score of 94.40%, illustrating the significance of effective FS. Incorporating IOPA for hyperparameter tuning
improved performance to an accuy of 98.20%, prec, of 95.16%, reca; of 94.79% and F'lscore of 95.03%. The
LSTM-BiGRU classifier additionally enhanced results, reaching an accu, of 98.78%, prec, of 95.75%, reca; of
95.42% and F'lscore of 95.62%. Finally, the RATHFAD-RFE model integrating RFE, IOPA, and LSTM-BiGRU
achieved the highest performance with an accuy of 99.35%, prec, of 96.36%, reca; of 96.22% and F'lgcore of
96.28%, demonstrating the efficiency of each module and their synergistic impact when combined.

The Edge-IIoT dataset comprises 48,000 records across 12 distinct event types. The details of the Edge-IIoT
dataset are shown in Table 7. This dataset contains 63 features, but only 27 features were selected.

Figure 9 illustrates the classifier outcomes of the RAIHFAD-RFE technique on the Edge-IIoT dataset.
Figure 9a and c illustrates the confusion matrix, showing the correct detection and classification of each class at
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Class Labels ‘ Accuy ‘ Precn ‘ Reca; ‘ Flscore | MCC
TRPHE (70%)

TFP-Parator 99.26 95.02 97.44 96.22 95.82
SSH-Parator 99.36 97.27 96.28 96.77 96.42
DoS Slowlorls 99.41 96.97 96.97 96.97 96.64
DosS Slowhttptest | 99.40 96.81 97.09 96.95 96.62
DoS Hulk 99.33 96.41 96.69 96.55 96.18
DoS GolderEye 99.35 96.26 97.14 96.70 96.34
Web Attack-BF 99.33 95.13 93.40 94.26 93.91
Bot 99.33 95.77 92.90 94.31 93.97
DDoS 99.25 96.00 96.43 96.21 95.80
Port Scan 99.13 95.66 95.55 95.61 95.12
Normal 99.25 96.33 95.94 96.13 95.72
Average 99.31 96.15 95.99 96.06 95.68
THE (30%)

TFP-Parator 99.28 95.47 97.56 96.50 96.11
SSH-Parator 99.33 96.55 96.42 96.49 96.12
DoS Slowlorls 99.28 96.53 96.14 96.34 95.94
DosS Slowhttptest | 99.31 96.03 96.93 96.47 96.09
DoS Hulk 99.36 97.28 96.40 96.84 96.48
DoS GolderEye 99.39 96.44 97.34 96.89 96.55
Web Attack-BF 99.28 95.03 92.73 93.87 93.49
Bot 99.49 95.99 94.87 95.43 95.16
DDoS 99.45 96.51 97.82 97.16 96.86
Port Scan 99.31 97.32 95.30 96.30 95.92
Normal 99.36 96.78 96.91 96.84 96.49
Average 99.35 96.36 96.22 96.28 95.93

Table 4. DDoS attack detection of the RAIHFAD-RFE model on the CIC-IDS-2017 dataset.

a 70:30 ratio. Figure 9b clarifies the PR analysis, specifying the maximal outcomes across each class. Ultimately,
Fig. 9d illuminates the ROC evaluation, establishing efficacious results with superior ROC values for individual
classes.

Table 8; Fig. 10 describe the DDoS attack detection of the RATHFAD-RFE technique at the Edge-IIoT dataset.
Based on 70% TRPHE, the RATHFAD-RFE technique achieved an average accuy of 99.39%, prec, of 96.37%,
reca; of 96.37%, F'lscore of 96.37% and M CC of 96.04%. Also, on 30% TSPHE, the RAIHFAD-RFE model
attained an average accuy of 99.38%, precn, of 99.30%, reca; of 96.29%, F'lscore of 96.29% and M CC of
95.96%.

Figure 11 depicts the classifier outcomes of the RAIHFAD-RFE method under the Edge-IIoT dataset.
Figure 1la shows the accuracy examination of the RAIHFAD-RFE method. The figure suggests that the
RAIHFAD-RFE method provides increasing values over successive epochs. In addition, the consistent progress
in validation relative to training demonstrates that the RAIHFAD-RFE method effectively learns from the
test dataset. Figure 11b reveals the loss analysis of the RATHFAD-RFE method. The outcomes denote that the
RAIHFAD-RFE method accomplishes similar training and validation loss values. It is highlighted that the
RAIHFAD-RFE model learns effectively from the test dataset.

Table 9; Fig. 12 present a comparative analysis of the RAIHFAD-RFE approach on the Edge-IIoT dataset,
along with existing techniques, using various metrics. The table values confirm that the current methods, such as
the Shallow ANN, Isolated LSTM, CNN, RE, SVM, DNN and Inception Time techniques, illustrate the poorest
performance. However, the RAIHFAD-RFE model achieved the highest accuy, precn, reca;, and Flscore of
99.39%, 96.37%, 96.37% and 96.37%, respectively.

Table 10; Fig. 13 show the ablation study analysis of the RATHFAD-RFE approach. Using RFE alone resulted
in an accuy of 97.38%, prec, of 94.71%, reca; of 94.30% and F'lscore of 94.51%, indicating solid baseline
performance from FS. When the IOPA was applied for hyperparameter tuning, the model achieved an accu,
0f 98.14%, precy, of 95.35%, reca; of 95.08% and F'lscore of 95.16%, confirming its tuning effectiveness. The
LSTM-BiGRU classifier exhibits further improvements, providing an accu, of 98.86%, prec, of 95.86%, reca
of 95.74% and F'lscore of 95.83%, highlighting the power of temporal feature learning. The RATHFAD-RFE
model, which integrates RFE, IOPA and LSTM-BiGRU, delivered the highest performance with an accu, of
99.39%, precy, of 96.37%, reca; of 96.37% and F'lscore of 96.37%, confirming the superiority of the model.

Conclusion
The study presented in this manuscript, proposed the RATHFAD-RFE technique for cybersecurity systems. The
RATHFAD-REE technique utilises the Z-score standardisation method for the data pre-processing stage to clean,
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Fig. 5. Average values of the RATHFAD-RFE model on the CIC-IDS-2017 dataset.
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Fig. 6. (a) Accuracy and (b) loss curves on the CIC-IDS-2017 dataset.

transform and organise raw data into a structured format. Furthermore, the RFE model was employed for the
FS process to recognise and maintain the most essential features for improving the model’s performance. For the
DDosS attack classification procedure, the RATHFAD-RFE used hybridisation of the LSTM-BiGRU technique.
To further optimises the model performance, the IOPA was utilised for hyperparameter tuning to ensure that
the best hyperparameters are selected for enhanced accuracy. A comprehensive experimental analysis of the
RAIHFAD-RFE model was performed under the CIC-IDS-2017 and Edge-IIoT datasets. The comparative
analysis of the RATHFAD-RFE approach provided superior accuracy values of 99.35% and 99.39%, respectively,
compared to the existing models on the dual dataset.
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Approach Accuy | Prec,, | Reca; | Flgeore | Inference Latency (ms) | Memory Footprint (MB)
KPCA-RN-SVM-LR | 98.00 89.48 89.37 96.01 19.79 979
Naive Bayes 88.96 93.36 90.89 95.69 19.64 962
GRU-LSTM 98.89 93.04 89.16 92.01 19.17 472
PSO-LSTM 94.69 93.77 95.99 93.57 19.34 674
PRO-DLBIDCPS 98.80 93.17 89.07 89.57 11.44 321
BBFO-GRU Model | 98.10 95.81 95.86 96.07 16.54 766
CO-Algorithm 98.10 90.44 94.44 94.55 19.87 556
RAIHFAD-RFE 99.35 96.36 96.22 96.28 8.57 281

Table 5. Comparative analysis of the RATHFAD-REFE method on the CIC-IDS-2017 dataset*>~%.
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Fig. 7. Comparative analysis of the RATHFAD-RFE method on the CIC-IDS-2017 dataset.
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Approach Accuy | Prec,, | Reca; | Flscore
RFE 97.50 94.41 94.08 94.40
IOPA 98.20 95.16 94.79 95.03

LSTM-BiGRU | 98.78 95.75 95.42 95.62
RAIHFAD-REE | 99.35 96.36 96.22 96.28

Table 6. Ablation study results comparing the RATHFAD-RFE method on the CIC-IDS-2017 dataset.
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Fig. 8. Ablation study results comparing the RATHFAD-RFE method on the CIC-IDS-2017 dataset.
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1 Benign | “Normal” 4000
2 “DDoS-UDP” 4000
3 “DDoS-ICMP” | 4000
4 “SQL injection” | 4000
5 “DDoS-TCP” 4000
6 “Password” 4000
7 Attacks | “DDoS-HTTP” | 4000
8 “Uploading” 4000
9 “Backdoor” 4000
10 “XSS” 4000
11 “Ransomware” | 4000
12 “Fingerprinting” | 4000
Total Record 48,000

Table 7. Details of the Edge-IIoT dataset.

Training Phase (70%) - Edge-lloT Dataset Precision-Recall Curve - Edge-lloT Dataset

Normal ¢&EE 23 9 10 13 6 9 13 15 17 11 13
DDoS-UDP - 5 Pl 12 6 20 4 11 5 5 10 11 8 1.9
DDoS-ICMP - 18 11 Pgl] 10 7 14 8 — Normal W
SQL injection - 9 22 0.84 gggz:;’g:’lp
DDoS-TCP - 19 15 L. s
g Password - 2 9 — Egisil:g;(:tlon
2 DDoS-HTTP - 3 11 § 0.6 Pacsword
Uploading- 2 9 2
Backdoor - 13 5 § —— DDoS-HTTP
365 a 0.4 Uploading
Ransomware - 10 6 9 —— Backdoor
Fingerprinting - 6 14 6 4 1 5 5 12 6 0.2 XSS
TEEEBTEERS L E = Hannomsrs
ESSgr gEsgXx §z —— Fingerprinting A
28488428 §5& 0.0 —— —d
8ggzg8¢g->2 ¢£g . . ; ; .
7] -4 E 0.2 0.4 0.6 0.8 1.0
Predicted Recall
(a) (b)
Testing Phase (30%) - Edge-lloT Dataset ROC-Curve - Edge-lloT Dataset
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Fig. 9. Edge-IIoT dataset: (a, c) 70% and 30% confusion matrices and (b, d) PR and ROC curves.
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Class Labels ‘ Accuy ‘ Prec, ‘ Recay ‘ Flscore | MCC
TRPHE (70%)

Normal 99.28 96.31 95.03 95.66 95.28
DDoS-UDP 99.32 95.32 96.52 95.91 95.54
DDoS-ICMP | 99.34 95.55 96.67 96.10 95.75
SQL injection | 99.48 97.08 96.74 96.91 96.63
DDoS-TCP 99.24 96.21 94.68 95.44 95.03
Password 99.56 97.34 97.38 97.36 97.12
DDoS-HTTP | 99.40 96.52 96.28 96.40 96.07
Uploading 99.50 97.19 96.73 96.96 96.68
Backdoor 99.37 95.97 96.45 96.21 95.87
XSS 99.39 96.58 96.10 96.34 96.01
Ransomware 99.41 96.01 97.01 96.51 96.19
Fingerprinting | 99.44 96.39 96.87 96.63 96.32
Average 99.39 96.37 96.37 96.37 96.04
TSPHE (30%)

Normal 99.29 95.38 96.17 95.77 95.39
DDoS-UDP 99.28 95.27 96.21 95.74 95.35
DDoS-ICMP | 99.30 95.99 95.42 95.71 95.33
SQL injection | 99.35 96.48 95.50 95.99 95.63
DDoS-TCP 99.46 97.26 96.11 96.68 96.39
Password 99.53 96.67 97.78 97.22 96.97
DDoS-HTTP | 99.43 96.13 96.95 96.54 96.23
Uploading 99.38 96.00 96.71 96.35 96.02
Backdoor 99.33 96.89 95.13 96.00 95.64
XSS 99.35 95.96 96.36 96.16 95.81
Ransomware | 99.51 96.52 97.57 97.05 96.78
Fingerprinting | 99.38 97.00 95.57 96.28 95.94
Average 99.38 96.30 96.29 96.29 95.96

Table 8. DDoS attack detection of the RATHFAD-RFE technique on the Edge-IIoT dataset.
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Fig. 10. Average values of the RATHFAD-RFE model on the Edge-IIoT dataset.
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Fig. 11. (a) Accuracy and (b) loss curves on the Edge-IIoT dataset.
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Method Accuy | Prec,, | Reca; | Flgeore | Inference Latency (ms) | Memory Footprint (MB)
Shallow ANN 93.36 93.73 87.11 96.16 17.96 560

Isolated LSTM 98.27 93.72 88.93 89.31 19.53 1003

CNN Classifier | 96.90 93.15 79.47 95.61 10.68 363

RF Method 82.51 90.31 88.04 92.22 2291 607

SVM Model 79.23 88.07 85.79 96.24 22.52 488

DNN Algorithm | 96.38 91.85 79.60 93.40 10.21 429

Inception Time | 96.60 80.81 89.26 94.69 22.08 402

RAIHFAD-RFE | 99.39 96.37 96.37 96.37 7.63 328

Table 9. Comparative study of the RAIHFAD-RFE model on the Edge-IIoT dataset*>~*°.
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Fig. 12. Comparative analysis of the RATHFAD-RFE model on the Edge-IIoT dataset.

Method Accuy | Prec,, | Reca; | Flsecore
RFE 97.38 94.71 94.3 94.51
IOPA 98.14 95.35 95.08 95.16

LSTM-BiGRU | 98.86 95.86 95.74 95.83
RAIHFAD-REE | 99.39 96.37 96.37 96.37

Table 10. Results of the ablation study of the RATHFAD-RFE technique on the Edge-IIoT dataset.
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Fig. 13. Results of the ablation study of the RATHFAD-RFE technique on the Edge-IIoT dataset.
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Data availability
The data supporting the findings of this study are openly available in Kaggle datasets https://www.kaggle.com/d
atasets/chethuhn/network-intrusion-dataset and https://www.kaggle.com/datasets/mohamedamineferrag/edge

iiotset-cyber-security-dataset-of-iot-iiot, referenced as
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