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Pharmacogenomics (PGx) testing improves medication safety and efficacy by identifying genetic
variants that affect drug response. However, current technologies often fail to resolve complex loci,
detect structural variants, or phase alleles accurately. Here, we present an end-to-end PGx workflow
based on Targeted Adaptive Sampling-Long Read Sequencing (TAS-LRS), integrating a streamlined
laboratory protocol with a bioinformatics pipeline that includes a novel CYP2D6 caller. Using 1,000 ng
of DNA and three-sample multiplexing on a single PromethION flow cell, the assay achieves consistent
on-target (25x) and off-target (3x) coverage, enabling accurate, haplotype-resolved testing of 35
pharmacogenes alongside genome-wide genotyping from off-target reads. We further developed the
workflow into a clinically ready service and validated its performance across 17 reference and clinical
samples. The assay demonstrated high concordance for small variants (99.9%) and structural variants
(>95%), with phased diplotypes and metabolizer phenotypes reaching 97.7% and 98.0% concordance,
respectively. Improved calls were observed in 12 genes due to enhanced genotyping, phasing, or
novel allele detection. In addition, off-target reads supported accurate genome-wide imputation,
comparable to short-read sequencing and superior to microarrays. These results establish the
feasibility of long-read sequencing for clinical PGx testing and position TAS-LRS as a scalable solution
combining both targeted and genome-wide utility.

Keywords Pharmacogenomics, Long-read sequencing, Adaptive sampling, Haplotype phasing, Structural
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LOD Limit of detection
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FDA Food and drug administration
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NY% structural variant

SNV single nucleotide variant

CNV copy number variant

WGS whole-genome sequencing

HAC/SUP high-accuracy / super-accuracy

SNPs single nucleotide polymorphisms

NIST National institute of standards and technology
1KGP 1000 genomes project

GeT-RM Genetic testing reference materials

IGV Integrative genomics viewer

DRAGEN Dynamic read analysis for genetics
GIAB Genome in a bottle

MAF minor allele frequency

GSAv3 Global screening array v3

PRS Polygenic risk score

BED Browser extensible data

gDNA genomic DNA

SPRI Solid-phase reversible immobilization, dsDNA, double-stranded DNA
VCF Variant call format

gVCF genomic VCF

CRAM Compressed reference-aligned mapping
CV (%) coeflicient of variation

Pharmacogenomics (PGx) is a branch of medicine focused on understanding how an individual’s genetic
profile impacts their response to medications!. It examines the role of genetic variations in drug metabolism,
effectiveness, and safety, aiding in understanding and predicting individual responses to specific drugs. PGx
variants differ from those in other medical conditions in their high penetrance, widespread prevalence, and
actionable potential. Although Adverse Drug Reactions (ADRs) are multifactorial in origin, a substantial subset,
estimated at approximately one-third of serious cases, involve medications with known pharmacogenetic
associations*>. ADRs can manifest as allergic reactions or diminished drug efficacy, which can lead to negative
outcomes or toxicity. For example, severe reactions such as Stevens-Johnson syndrome are associated to
specific HLA-B alleles (HLA-B*58:01 and HLA-B*15:02) in patients taking Allopurinol and Carbamazepine,
respectively®. In terms of efficacy, certain CYP2CI9 alleles (*2 and *3) impair the metabolism of drugs like
Clopidogrel, increasing the risk of cardiovascular events®. Similarly, individuals with extra copies of the CYP2D6
gene metabolize codeine into morphine at an accelerated rate, enhancing pain relief but also heightening the risk
of serious side effects, such as respiratory depression or, in extreme cases, overdose and death®. PGx variants are
also highly prevalent, with over 90% of the general population estimated to carry at least one variant that could
significantly affect drug therapy'”’~°. For example, an NGS-based pilot study at the Mayo Clinic found that 99% of
1013 participants carried at least one actionable variant across five clinically important pharmacogenes (CYP2D6,
CYP2C19, CYP2C9, VKORCI, and SLCO1BI1)™. Lastly, and most importantly for clinical implementation, PGx
variants are actionable. Consortia such as the Clinical Pharmacogenetics Implementation Consortium (CPIC)
and the Dutch Pharmacogenetics Working Group (DPWG) have developed guidelines for over 100 gene-drug
pairs widely available in the market!""!2, which provide a robust and evidence-based framework for integrating
PGx into clinical practice. These guidelines demonstrate that many ADRs can be mitigated through personalized
approaches, such as dose adjustments or alternative therapies, highlighting the potential to improve effectiveness
and safety without necessarily raising treatment costs. Indeed, several pilot studies have shown that pre-emptive
PGx testing is feasible and can lead to reductions in emergency department visits, hospitalizations, and healthcare
costs'>1%. Among these, the PREPARE study - the largest prospective clinical trial to date conducted across
seven European countries - reported a 30% decrease in ADRs in a diverse cohort of 6,944 patients'“.

A range of technologies have been employed to characterize variation in PGx genes, including PCR,
microarrays, and short-read sequencing!”. More recently, long-read sequencing has emerged as a promising
method for improving accuracy of genomic analysis'®. Its ability to perform haplotype phasing without requiring
parental data has the potential to aid in the interpretation of PGx variants'®, for example, by enabling the
differentiation of genotypes such as TPMT*3B/*3C (where the *3B allele contains rs1800460 and *3 C contains
rs1142345) from TPMT*1/*3A (where *3A includes both rs1800460 and rs1142345). Long-read sequencing also
offers higher resolution in complex genomic regions, such as structural variants and hybrid rearrangements,
which are common in pharmacogenes like CYP2D6, UGT1A1, and HLA genes. For instance, the CYP2D6
*36+*10 haplotype, a common variant in East Asians characterized by a hybrid tandem duplication, is difficult to
detect with standard microarray chips?® and may also be missed by short-read sequencing approaches?! . Lastly,
long-read sequencing is not limited by prior knowledge of specific variants, making it capable of identifying rare
and novel alleles - a common limitation of targeted methods such as PCR, microarrays, and sequencing panels.

While historically more costly, the introduction of Targeted Adaptive Sampling-Long Read Sequencing
(TAS-LRS) by Oxford Nanopore Technologies (ONT) has made long-read sequencing more accessible?>~%’.
TAS-LRS leverages the real-time base-calling capabilities of nanopore sequencing to enrich for DNA fragments
that map to a set of pre-defined genomic regions. The process begins by sequencing an initial stretch of each
DNA molecule that enters the pore (approximately 400-800 bp). Basecalling and alignment are performed in
real time to determine whether this short sequence matches the specified target regions. If a match is found,
sequencing continues to generate a long read; if not, the fragment is ejected, allowing the next fragment to enter
the pore. As a targeted method, TAS-LRS supports multiplexing, which reduces sequencing costs. Combined
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with the lower burden of instrument investment, this makes the technology more accessible to research and
clinical laboratories. In addition, unlike conventional targeted assays that preselect DNA fragments during
library preparation, TAS-LRS enriches target regions while also producing low-depth off-target data, enabling
potential genome-wide analysis.

Here we introduce an end-to-end pharmacogenomics testing workflow based on TAS-LRS. We describe
the experimental protocol and bioinformatics reporting pipeline, which integrates external tools with in-house
algorithms, including a novel CYP2D6 caller. We also outline the development of this workflow into a clinically
ready service, presenting analytical and clinical validation results assessing the assay’s Limit of Detection (LOD),
accuracy, precision, and specificity. In addition, we demonstrate the utility of off-target signals generated during
adaptive sampling for genome-wide genotyping, highlighting the broader research potential of this approach.
Altogether, our workflow enables, for the first time, the clinical implementation of PGx testing using long-read
sequencing.

Results

TAS-LRS workflow and validation study design

The implementation of PGx into clinical practice requires an end-to-end workflow that ensures analytical validity,
clinical utility, and operational feasibility. Here we present a clinical workflow for pre-emptive PGx testing based
on TAS-LRS), designed to balance comprehensive variant detection with cost-efficiency and scalability. The
workflow consists of four key phases: (i) pre-test consultation (optional), (ii) sample preparation and sequencing,
(iii) bioinformatics analysis and reporting, and (iv) post-test consultation, with multiple Quality Control
(QC) steps applied throughout (Fig. 1a and "Methods"). The reporting workflow covers 35 pharmacogenes
(Supplementary Table 1), including all Very Important Pharmacogenes (VIPs) from Pharmacogenomics
Knowledgebase (PharmGKB) (N =34) along with HLA-A, which is routinely tested in our laboratory. Additionally,
genome-wide imputation from off-target reads is used for broader genotyping, supporting downstream research
applications. Beyond genetic variation, the workflow also captures base modification signals, including 5mC,
5hmC, 6 mA, and 4mC, leveraging ONT’s native DNA sequencing capabilities. While not analyzed in this study,
these epigenetic features offer potential insights into gene regulation and drug response for future research.

To evaluate the analytical performance of this workflow, we designed a validation framework based on
recommendations from regulatory guidelines, including those from the Food and Drug Administration (FDA),
College of American Pathologists/Clinical and Laboratory Standards Institute (CAP/CLSI), Clinical Laboratory
Improvement Amendments (CLIA), and In Vitro Diagnostic Regulation (IVDR)?. The framework consists
of four studies assessing key performance metrics: LOD, accuracy against established truth sets, precision
(reproducibility and repeatability) and specificity (interference and cross-contamination) (Fig. 1b). The
validation study included 17 unique samples across 10 sequencing runs (Supplementary Table 2), incorporating
cell lines, CAP External Quality Assessment (EQA) samples, and real patient specimens to ensure clinically
relevant testing. Cell lines were selected to represent a range of pharmacogenomic variants, including small
variants (SNPs and indels) and structural variants (SVs). CAP EQA and patient samples were used to validate
performance against orthogonal methods, including clinically validated workflows.

Across all validation runs, and when combining both the 1-hour Whole Genome Sequencing (WGS) and
adaptive sampling stages, we obtained a mean sequencing yield of 37.09 Gbases per run, with a mean base
quality score of 21.65. As expected, run yield positively correlated with the number of available starting pores on
the flow cell (R? = 0.67, p=0.0036 for total bases; R? = 0.66, p =0.0043 for passed bases; Supplementary Fig. 1).
De-multiplexing efficiency for the adaptive sampling runs using reads with Q-score>10 was greater than 95%,
resulting in an average of 10.38 Gbases of usable output per sample with our 3-plex strategy. On-target regions
(N=326) achieved a mean coverage of 25.2x, while off-target regions had an average coverage of 3.0x, indicating
a mean fold enrichment of 8.5 (Supplementary Tables 3 and Supplementary Fig. 2). N50 values were as expected,
with an average of 7,889 bp in on-target regions and 641 bp in off-target regions, confirming that adaptive
sampling successfully enriched sequencing depth for the desired loci. Closer inspection of on-target coverage
across the 35 pharmacogenes revealed a mean coverage of 21.9x (Supplementary Fig. 3). Only two genes, G6PD
and SLCI9A1, consistently showed lower coverage. For G6PD, the reduced coverage can be attributed to its
X-linked location, which results in sex-dependent coverage differences. Indeed, female samples, which are
expected to have approximately double the copy number of males, achieved an average depth of 17x, while male
samples reached only 10x. In the case of SLCI9A1, the lower coverage may be due to a low-complexity region in
the flanking sequence of the target region (Supplementary Fig. 4), and could potentially be handled by further
optimising padding in the target BED file.

To assess the impact of reduced sequencing depth on variant calling accuracy, we performed a depth of
coverage analysis by randomly down-sampling reads from HGO005, a male reference benchmark sample, to
simulate depths ranging from 10x to 40x in on-target regions (Supplementary Table 4). In SNPs of interest
evaluated above, the mean callability exceeded 99% at depths > 15x, the mean genotype concordance was greater
than 99.5% from 10x and the mean sensitivity, specificity and precision were above 98% in samples with at
least 15x. However, for SLC19A1, the mean genotype concordance was only 92% in samples where the depth of
coverage for all on-target regions was 30x indicating the lower performance for this region. A 100% concordance
rate was achieved with the 40x sample. In G6PD, 100% callability was achieved from 25x onwards. However,
HGO005 does not include any variants in this region and thus the sensitivity and precision could not be evaluated.

Variant calling performance - Limit of detection (LOD) study

To evaluate the LOD of the TAS-LRS-based PGx workflow, we first assessed the accuracy of genotype calls using
reference cell lines, focusing on raw genotype accuracy rather than diplotype interpretation. Given the potential
impact of DNA input on long-read sequencing performance, we compared runs using 800 ng and 1000 ng of
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Fig. 1. Overview of the TAS-LRS clinical workflow and validation framework. (a) Schematic of the end-to-end
pharmacogenomics testing workflow based on Targeted Adaptive Sampling-Long Read Sequencing (TAS-
LRS), comprising four main phases: optional pre-test consultation and sample collection; wet lab processing
(DNA extraction, shearing, and Oxford Nanopore sequencing); bioinformatics analysis (including alignment,
variant and star-allele calling, HLA typing, and genome-wide imputation); and post-test clinical consultation.
Adaptive sampling enriches for 35 target pharmacogenes, including all PharmGKB Very Important
Pharmacogenes (VIPs) and HLA-A, while generating low-depth off-target data for broader genome-wide
applications. Blue, green, orange, and red indicate distinct workflow stages. (b) Validation framework for the
TAS-LRS workflow, consisting of four core studies: (1) Limit of Detection (LOD), evaluating variant calling
performance (SNVs, indels, and SVs) across different DNA input amounts (800 ng vs. 1000 ng) and basecalling
models (High-accuracy (HAC) vs. Super-accuracy (SUP)); (2) Accuracy, assessed by diplotype and phenotype
concordance across reference cell lines (GIAB, GeT-RM, 1KGP), external quality assessment (CAP EQA),

and clinical samples from Tan Tock Seng Hospital (TTSH); (3) Precision, evaluated via reproducibility across
sequencing runs and repeatability across independent bioinformatics analyses; and (4) Specificity, assessed
through interference testing using triglyceride-spiked blood samples and cross-contamination testing using
VerifyBamID2.

library input. Three runs were performed at 800 ng, while four runs were conducted at 1000 ng, including one
sample (HG01190) sequenced under both conditions to enable direct comparison. Additionally, basecalling
performance was evaluated using High-accuracy (HAC) and Super-accuracy (SUP) models.

For small variants, analysis included 1142 variants (1,103 SNPs and 39 indels) across 31 PGx genes, excluding
CYP2D6, CYP2A6, HLA-A and HLA-B due to their complex structural variation that impacts the accuracy of calls
returned by Clair3 (see "Methods"). Across all conditions, and with SUP basecalling, callability averaged 99.49%
and genotype concordance averaged 99.90%. No significant differences in performance were observed between
DNA input conditions; however, basecalling with SUP instead of HAC resulted in improved performance, most
notably for callability, which increased by 1.41% (Table 1).
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DNA Input

N samples

Basecalling Model | Callability % (95% CI) | Concordance % (95% CI) | Sensitivity % (95% CI) | Specificity % (95% CI) | Precision % (95% CI)

1000ng

15

HAC

98.19 (97.89 - 98.50) 99.87 (99.80 - 99.94) 98.68 (97.75 - 99.61) 99.97 (99.94 - 99.99) 99.56 (99.21 - 99.92)

1000ng

15

SUP

99.57 (99.46 - 99.67) 99.90 (99.83 - 99.96 98.94 (98.10 - 99.77) 99.97 (99.94 - 100.00) | 99.63 (99.19 - 100.00)

800ng

9

HAC

97.90 (97.34 - 98.46) 99.91 (99.83 - 99.99 99.64 (99.10 - 100.00) 99.92 (99.84 - 100.00) | 98.91 (97.75 - 100.00)

800ng

9

SUP

All

24

HAC

98.08 (97.82 - 98.34) 99.89 (99.84 - 99.93 99.04 (98.43 - 99.65) 99.95 (99.92 - 99.98) 99.32 (98.86 - 99.77)

All

24

SUP

( ) (

( ) (
99.38(99.18-99.57) | 99.90 (99.82 - 99.98) 99.65 (99.11 - 100.00) | 99.91 (99.83 - 100.00) | 98.76 (97.51 - 100.00)

( ) (

( ) (

99.49 (99.40 - 99.59) 99.90 (99.85 - 99.95 99.20 (98.66 - 99.75) 99.95 (99.92 - 99.99) 99.30 (98.79 - 99.82)

Table 1. Evaluation of small variant genotyping accuracy. Performance metrics of the limit of detection
(LOD) study evaluating small variant calling (SNPs and indels) across two DNA input levels (1000 ng and

800 ng) and two basecalling models (HAC and SUP). A total of 1,142 variants (1,103 SNPs and 39 indels)

were analyzed across 31 pharmacogenes, excluding CYP2D6, CYP2A6, HLA-A, and HLA-B due to their high
genomic complexity. Sequencing was performed on the Oxford Nanopore Technologies PromethION Pa2 Solo
using a 3-plex sequencing strategy. Metrics shown include callability, concordance, sensitivity, specificity, and
precision, each with corresponding 95% confidence intervals (CI).

For SVs, including deletions, duplications, and hybrid alleles, evaluations were performed at the individual
event level, generating aggregate performance metrics across all samples (Table 2). Our analyses focused on
CYP2D6 and CYP2AG, as these were the only genes with SVs in our reference dataset of 17 unique samples. For
duplications, performance remained consistent across DNA inputs and basecalling modes. For deletions, all
expected events were also recovered, except for a missed CYP2D6 *5 deletion in sample NA18861 when using
800 ng of input and HAC mode, which was likely due to the lower sequencing depth in this sample (18.22x), and
which was successfully recovered when using SUP calling mode. Hybrid alleles presented a greater challenge,
with performance differences observed between 800 ng and 1000 ng of DNA input. Specifically, an increased
number of false negatives was detected at 1000 ng, consistently for HAC and SUP; however, further inspection
suggested that sequencing depth, rather than DNA input alone, was the primary factor influencing this trend
(27.4x mean depth in samples from 800 ng input runs vs. 24.2x in samples from 1000 ng input runs). Lastly, it
is worth noting that the pipeline did not return any false positives, with specificity and precision consistently
maintained at 100%.

These results highlight the strong influence of sequencing depth on SV detection, particularly for hybrid
alleles. When performing a follow up analysis at a per-locus depth of 25x in CYP2D6 and CYP2A6, genotype
concordance reached 100%, indicating reliable detection across all SV types (Supplementary Table 5). The above
findings also inform the choice of basecalling mode, with SUP demonstrating significant improvements in
detecting both small variants and SVs. As a result, SUP was adopted as the default basecalling mode, and all
subsequent validation studies were conducted using this approach.

PGx star allele diplotype and phenotype concordance — Accuracy study

While individual variant calling accuracy is critical for evaluating performance of genetic testing assays,
pharmacogenomic workflows often require variant calls to be phased and interpreted into haplotypes, which
are subsequently translated into metabolizer profiles. To address this, we expanded the performance assessment
to evaluate the accuracy of diplotype and phenotype calling in pharmacogenes with complex alleles (i.e.
star-alleles or similar; N = 20). A significant challenge in this analysis lies in the extensive number of star-
alleles associated with many pharmacogenes, exemplified by CYP2D6, which has over 100 known star-alleles
catalogued in PharmGKB?. This diversity complicates the availability of reference materials, particularly for rare
or population-specific haplotypes. To address these limitations, we selected samples representing a broad range
of star-alleles, with particular focus on CYP2D6, one of the most highly variable pharmacogenes, and prioritized
frequent haplotypes observed in Southeast Asian populations, such as *36+*10 hybrids (Supplementary Table
2). Cell lines from National Institute of Standards and Technology (NIST) and Coriell (N = 11) were selected
to include samples with truth data obtained either from Genetic Testing Reference Materials (GeT-RM), or
orthogonal methods, such as 30x whole-genome short-read sequencing in the 1000 Genomes Project (1IKGP).
EQA samples were also included (N = 3), with known expected results provided by previous CAP EQA outcomes.
Finally, we also evaluated patient samples that had been previously tested using orthogonal methods (N = 3),
namely microarrays validated under a clinical workflow.

For each pharmacogene in each sample, diplotype calls generated by the TAS-LRS workflow were compared
against truth data obtained from GeT-RM or orthogonal methods, including 30x whole-genome sequencing
from 1KGP and clinically validated microarrays (see "Methods"). Diplotype concordance results were classified
into four categories: concordant, where the call matched the truth set; discordant, where the call differed from the
truth set; improved, where TAS-LRS calls were deemed correct upon manual review of both truth and test data;
and no-calls, where the algorithm did not return a result due to quality control filters (see "Methods"). Overall,
across 519 total diplotype calls evaluated, spanning 20 genes and 17 samples, we observed 446 concordant calls
(85.93%), 2 discordant calls (0.39%), 61 improved calls (11.75%), and 10 no-calls (1.92%) (Fig. 2). Aside from
concordant calls, the next most frequent category was improved calls. We identified improvements in 12 out of
20 genes (60.00%), including CYP2A6, CYP2B6, CYP2C9, CYP2D6, CYP4F2, DPYD, GSTP1, HLA-B, NAT2,
NUDT15,SLCO1BI, and UGTIA1. These improvements were primarily driven by an expanded reportable range
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Fig. 2. Diplotype concordance for pharmacogenes with complex alleles. Results of the TAS-LRS workflow for
(a) reference cell lines (n=11), (b) clinical research samples (#=3) and (c) external quality assessment (EQA)
samples (n=3) were compared against reference truth sets. GeT-RM calls were used as the truth set for HG001,
HGO01190, NA18861, NA18966, NA19174, and NA19226 unless otherwise specified. Diplotype calls for
HG00337, HG005, HG01097, HG01572, and HG03259 were compared to PyPGx diplotypes from 30x short-
read data. For all samples, ABCB1, G6PD, NUDT15, and UGT1AI calls were compared to PyPGx outputs, and
HLA-A and HLA-B calls were evaluated against optitype v1.3.5. Calls matching the truth set were labelled as
concordant, while mismatched calls were considered improved based on IGV read support or consensus across
orthogonal methods.

(N=32), more accurate genotyping (N=16), phasing (N=9) and SV detection (N=1), and identification of
novel alleles due to enhanced phasing (N=3). Notably, improved calls remained consistent across replicates,
further supporting their validity. For example, NAT2 in sample NA19174 was ambiguously reported in the GeT-
RM truth set as *4/*5 or *5/*6. This ambiguity persisted across short-read sequencing datasets analyzed with
different tools, except for StellarPGx, which reported another set of potential star alleles (*16/*34). With TAS-
LRS, the diplotype was fully resolved to *5.002/*6.002, with phasing supported by underlying read alignments
in Integrative Genomics Viewer (IGV) (Fig. 3a). Clinically, distinguishing *5/*6 (slow acetylator) from *4/*5
(intermediate acetylator) is critical, as NAT2 encodes N-acetyltransferase 2, an enzyme involved in metabolizing
drugs such as isoniazid, hydralazine, and sulfasalazine, and slow acetylators are at increased risk of drug-induced
toxicities, including isoniazid-associated hepatotoxicity. Similarly, for CYP2B6 in sample NA19926, both GeT-
RM and orthogonal microarray and short-read datasets consistently returned a *18/*20 call, while PyPGx on
short-read data suggested a possible novel allele that was not fully resolved. TAS-LRS phased the four variants
involved in *18 and *20 into a novel configuration, assigning two variants to *6 in haplotype 1 and two variants
to a novel allele in haplotype 2. These phasing patterns were clearly supported by IGV read alignments (Fig. 3b).
This reconfiguration has potential clinical implications, as CYP2B6 alleles such as *6 and *18 are associated with
reduced enzymatic activity, impacting the metabolism of drugs including efavirenz, bupropion, and methadone.
In another similar case, TAS-LRS identified a novel DPYD haplotype in sample NA19226 that was not supported
by short-read data or reflected in the GeT-RM truth set (Supplementary Fig. 5a). While GeT-RM reported
a *1/*9A diplotype based on the presence of c¢.85T>C (rs61622928), TAS-LRS revealed that ¢.1218G>A
(rs1801265) co-occurred on the same haplotype. In this case, the ability to phase multiple functional variants on
the same allele has important implications for fluoropyrimidine dosing, drugs that are used to treat colorectal
and breast cancers and are primarily inactivated by DPYD. Both ¢.85T > C and ¢.1218G > A are missense variants
associated with reduced DPYD enzyme activity in functional studies, and, when phased together on the same
allele, their combined effect may further compromise enzyme function compared to either variant alone. As
a final example, TAS-LRS resolved a complex UGT1AI diplotype in a clinical sample previously reported as
*1/*28 based on microarray genotyping. Phased long-read data showed that the *28 allele co-occurred with *80
(rs887829) and *27 (rs35350960), yielding a corrected diplotype of *1/*80+*28+*27 (Supplementary Fig. 5b).
These additional variants, particularly *27, contribute to further reduced gene expression beyond the effect
of *28 and misclassifying this diplotype as *1/*28 may therefore underestimate the risk of irinotecan-induced
toxicity or hyperbilirubinemia.

In contrast to the improved calls, two discordant calls were observed in ABCBI and CYP4F2. For ABCBI in
sample HG01572, Clair3 reported a TT genotype for the star-defining SNP rs2032582, which PyPGx interpreted
as *2/*2, whereas short-read data supported a heterozygous alternate TC genotype, interpreted as *1/*2. IGV
pileups showed evidence for the TC allele in TAS-LRS, but the C allele had insufficient support to be confidently
called (Fig. 4a). This suggests that increased sequencing depth at this locus would likely have resulted in the
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Fig. 3. Examples of improved pharmacogene calls enabled by enhanced phasing, novel allele detection,
and expanded haplotype coverage. (a) Phasing and haplotype resolution for NAT2 in NA19174. (b)
Improved phasing and detection of a novel allele in CYP2B6 for NA19226. TAS-LRS resolved a partial call
(*6/*18 +1s36056539) as the correct genotype.

correct call. In CYP4F2, sample NA18966 was assigned a *3/*3 diplotype by TAS-LRS, whereas GeT-RM,
microarray, and short-read data supported a *1/*3 call. Similarly to ABCBI, IGV analysis revealed that the
incorrect call was due to low read depth, with very few reads spanning haplotype 1 (Fig. 4b).

Lastly, no-calls were observed in CYP2A6, CYP2D6, HLA-A, HLA-B, and SLCO1B1. For CYP2A6, a no-call
arose from limitations in the current logic for combining a 3" UTR conversion with a deletion; and algorithmic
improvements are expected to resolve this. In CYP2D6, no calls were partly attributed to lower sequencing
depth, where out of four HG005 replicates, the replicate with a no-call had the lowest sequencing depth (18x
compared to a mean depth of 20.5x for the remaining samples). In addition, a no-call for NA19174 was observed
despite having 32x coverage, due to a low-quality indel call at rs72549356, which did not match the expected
variant. Note however that this indel was correctly detected in two other replicates at 37x and 26x. HLA-A
and HLA-B no-calls were due to diplotype quality scores below the 0.95 threshold, also linked to insufficient
depth. For SLCO1BI, no-calls were related to unresolved ambiguous diplotypes: in the two no-call replicates of
HGO001, the workflow identified two possible diplotypes, *1/*15 and *1/*46, which share two SNPs, rs2306283
and rs4149056, but differ in a third SNP, rs71581941, present only in *46; and due to insufficient evidence to
detect the *46-defining SNP, it conservatively assigned a no-call.

In addition to the diplotype concordance analysis described above, in which results were compared against
available truth data, we conducted a direct comparison between our TAS-LRS workflow and orthogonal
testing platforms, including short-read 30x whole-genome sequencing (SR-WGS) analyzed with multiple
bioinformatics workflows, and microarrays (Illumina GSAv3) (see "Methods"). Although limited to a subset
of samples with available data (N=11), the analysis showed that TAS-LRS was able to achieve consistently high
concordance rates (>95%), outperforming other platforms in 13 of 20 genes evaluated (Supplementary Table
6). Across platforms, genes with complex structural variation or multiple gene copies, such as CYP2D6 and
CYP2A6, and highly polymorphic genes like UGT1AI and HLA-B, posed particular challenges for both SR-
WGS and microarrays. Microarrays, as expected, presented challenges with diplotype resolution for alleles
requiring phasing or detection of SVs. While DRAGEN achieved the highest concordance among short-read
workflows, it exhibited lower callability compared to TAS-LRS, whereas other pipelines, such as StellarPGx and
PyPGx, showed high variability across genes. Importantly, short-read workflows often rely on population-based
haplotype inference for diplotype assignment, introducing uncertainty when encountering novel or rare allele
combinations. In contrast, TAS-LRS simplifies interpretation by directly delivering phased diplotypes from
sequencing reads, minimizing reliance on statistical inference, and potentially reducing manual curation efforts
in clinical laboratories.
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Fig. 4. Examples of discordant calls caused by allele imbalance. (a) Discordant ABCB1 diplotype call in
HGO01572. rs2032582 was incorrectly called as homozygous alternate (TT) in long-read data, while short-read
data supported a heterozygous genotype (TC). The C allele is present in the long reads, but its coverage is too
low to meet the variant calling threshold. (b) Discordant CYP4F2 call in sample NA18966. TAS-LRS wrongly
called the rs2108622 as homozygous alternate, whereas other platforms including GeT-RM, microarray
(GSAv3), and short-read pipelines showed the diplotype as *1/*3. IGV plots show insufficient coverage of
haplotype 1 for this specific sample.

Finally, since the PGx workflow ultimately generates metabolizer profiles for clinical reporting, we evaluated
phenotype concordance across 13 genes with established phenotype interpretation tables. The classification
system mirrored that used for diplotypes: concordant (matching the expected result based on either the reference
or the improved diplotype call), discordant (not matching the expected result), or indeterminate. As expected,
and consistent with diplotype concordance results, the majority of phenotypes were concordant (341/348,
97.99%), with only seven cases (2.01%) classified as indeterminate due to a no-call or insufficient copy number
information, and no discordant phenotypes observed (Supplementary Fig. 5). We subsequently focused on
samples previously identified to have improved diplotype calls (Fig. 2), since these are the ones more likely to lead
to conflicting phenotype interpretations. Among the 52 improved diplotypes across the 13 genes evaluated, the
majority (n =36, 69.23%) had no impact on phenotype interpretation. However, in 10 cases (19.23%), phenotype
assignment was not possible due to the presence of novel alleles with uncharacterized function. This highlights
a key trade-off of higher-resolution sequencing technologies: while they improve variant detection, they also
increase the likelihood of identifying previously unreported alleles that require functional characterization
before clinical recommendations can be made. These findings emphasize the need for ongoing curation efforts,
and in the future, approaches such as in silico functional prediction or targeted functional assays could aid in
assigning provisional phenotype classifications and further enhance clinical utility. Finally, six cases (11.54%)
resulted in improved phenotype classification. An example is shown in Supplementary Fig. 7, where TAS-LRS
resolves a previously unphased copy number change in CYP2D6 for a clinical sample tested with microarrays,
allowing for an unambiguous phenotypic interpretation. Without accurate resolution, this genotype could have
led to inappropriate drug therapy recommendations and potential adverse outcomes.

Precision and specificity studies

To evaluate the precision of our assay, we performed reproducibility and repeatability studies using a subset of
validation runs. Reproducibility was assessed by analyzing both inter- and intra-run consistency using GIAB
replicates sequenced in three different runs (Supplementary Table 3). Across all performance metrics evaluated,
inter-run and intra-run coefficients of variation remained below 5% (Supplementary Table 7), demonstrating
high reproducibility. Repeatability was tested by running the analysis pipeline three times on the same input
data from the same GIAB runs and starting from basecalling. Results were fully consistent across all repetitions,
confirming the absence of stochastic variability in the analysis workflow.

Similarly, specificity was examined through interference and cross-contamination studies. To assess potential
interference, three distinct blood samples were spiked with triglycerides at a concentration three times the
optimal threshold based on the Singapore Ministry of Health 2016 Hyperlipidemia Guidelines (>450 mg/
dL), simulating patients with severely elevated triglyceride levels (see "Methods". Each sample was processed
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Fig. 5. Genome-wide imputation accuracy across technologies. Imputation was performed using GLIMPSE2
(for TAS-LRS and short-read WGS) and Minimac4 (for microarray data), with the 1KGP reference panel
which excludes the test samples (HG002 and HG005 from GIAB). Line plots show imputation accuracy (R?)
across allele frequency bins. Rare variants are defined as those with minor allele frequency < 1%. Shaded areas
indicate 95% confidence intervals across replicates.

in triplicate, with two spiked replicates and one non-spiked control. While all non-spiked samples met the
minimum DNA concentration requirements for downstream processing (min. 100 ng/ul for 3-plex sequencing),
none of the spiked samples did (Supplementary Table 8). These results indicate that the test is not recommended
for patients with significantly elevated triglyceride levels, as it may result in higher failure rates. This limitation
should be clearly noted in clinical protocols and pre-test consultations, where severely elevated triglyceride levels
could be considered an exclusion criterion or flagged for alternative sampling methods. No workaround, such
as dilution or alternative extraction kits, was attempted in this study; however, future work may explore such
options. Lastly, cross-contamination was assessed using VerifyBamID23 to detect human DNA contamination
in each sample. No signs of contamination were observed, with FREEMIX values consistently < 3%, confirming
high specificity (Supplementary Table 9).

Off-Target signal analysis and genome-wide genotyping
Lastly, we investigated the potential use of off-target signal, generated from reads not selected during the adaptive
sampling process (Fig. la), to obtain genome-wide genotype calls. This capability is unique to the TAS-LRS
workflow, as conventional targeted assays typically limit coverage to predefined regions, thus limiting genome-
wide analysis. In our dataset, the mean off-target sequencing depth across all runs was 3.0x (Supplementary
Table 3). Previous studies using both short-read and long-read sequencing have demonstrated that genome-wide
genotyping from such low-coverage data is feasible through imputation techniques®*2. To assess this, we used
the 1KGP reference panel to impute genotype calls in sample HG005 (Han Chinese), which is not part of the
panel, to avoid bias. Imputation was performed using GLIMPSE, with results compared to those obtained from
short-read sequencing downsampled to an equivalent depth and from a microarray dataset (see "Methods").
Our results show that imputation based on the off-target TAS-LRS signal (mean coverage of 2.0x for
the selected HGO05 replicates) achieved high accuracy, closely matching that of short-read datasets and
outperforming microarrays, particularly for rare variants with a minor allele frequency (MAF)<1% (Fig. 5).
This outcome highlights the unbiased nature of sequencing-based methods, which randomly sample DNA
fragments across the genome, in contrast to microarrays that rely on predefined marker panels often biased
toward common variants. Furthermore, the comparable imputation accuracy between short-read and long-read
datasets demonstrates that, despite the lower base quality of ONT reads, TAS-LRS can generate equally reliable
variant calls from imputation.

Discussion

Here, we introduce and validate an end-to-end pharmacogenomics (PGx) workflow based on targeted adaptive
sampling long-read sequencing (TAS-LRS), developed to support clinical implementation in a CAP-accredited
setting. The workflow combines an optimized laboratory protocol with a custom bioinformatics pipeline
capable of resolving small variants, structural variants, and complex star alleles across 35 clinically relevant
pharmacogenes, while also enabling genome-wide genotyping from off-target reads. Long-read sequencing
technologies have gained increasing traction in recent years (i.e. they were named Method of the Year in 20238
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) due to their ability to resolve complex genomic loci previously inaccessible with short-read sequencing. This
capability is particularly relevant in PGx, where many pharmacogenes are highly polymorphic and reside in
structurally challenging regions of the genome, often involving segmental duplications, tandem repeats, and
pseudogenes®. A prominent example is CYP2D6, which encodes the cytochrome P450 2D6 enzyme responsible
for metabolizing approximately 20% of clinically prescribed medications. To date, the CYP2D6 locus includes
over 170 catalogued star alleles, encompassing gene deletions, duplications, and hybrid rearrangements involving
the closely related pseudogenes CYP2D7 and CYP2D8%, with certain tandem hybrids, such as *36+*10, observed
in up to 30% of East Asian populations*~3. Several prior studies have demonstrated the feasibility of using
long-read platforms such as Oxford Nanopore and PacBio to resolve complex PGx loci, including early proof-
of-concept work by Liau et al.*”3, Charnaud et al.* and Turner et al.?* for CYP2D6, and by Graansma et al.*0
for CYP2C19. Most recently, Deserranno et al.?® showcased the potential of nanopore adaptive sampling for PGx
profiling across more than 1,000 genes. However, such efforts have been limited in sample size, gene coverage,
or lack of formal validation frameworks. To our knowledge, ours is the first study to present a comprehensive
analytical and clinical validation of a long-read-based PGx workflow, establishing key performance metrics
(including LOD, accuracy, precision and specificity) to support its routine use in clinical diagnostics.

By analysing data from 10 sequencing runs comprising 17 unique reference and clinical samples, we
demonstrated that our optimized adaptive sampling protocol yields consistent coverage, with a mean on-
target depth of 25.2x and off-target depth of 3.0x, corresponding to an average enrichment of 8.5x, in line with
expectations for TAS-LRS. We evaluated the impact of DNA input and basecalling mode on variant calling
performance and observed that the SUP model consistently outperformed HAC for both small variants and
structural variants in the target pharmacogenes. Notably, structural variant detection was more sensitive to
sequencing depth, with 25x sufficient to recover all expected events in our dataset. However, further calibration
is needed before establishing this as a universal threshold for clinical applications. To assess the clinical relevance
of our workflow, we evaluated star allele and phenotype concordance across the 35 target pharmacogenes. Of
520 total diplotype calls, 507 (97.5%) were either concordant with the expected result (n=446) or classified as
improved upon manual curation (n=61). Only two discordant calls (0.4%) and ten no-calls (1.9%) were observed,
all attributable to insufficient coverage, which can be addressed through further protocol optimizations, such
as improved DNA shearing, increased library loading and algorithmic refinements. To address loci prone to
coverage variability (e.g., G6PD, SLC19A1), we recommend repeat sequencing or supplementary testing in cases
where critical alleles cannot be confidently resolved. In addition, in a clinical setting, no-calls and ambiguous
results should undergo review by a clinical scientist, with additional testing performed as necessary to ensure
the reliability of reported genotypes.

As shown in previous long-read studies’”*!, our findings underscore that accurate haplotype reconstruction,
and not just variant detection, is essential for clinical PGx, particularly in genes with complex allelic architecture.
For example, the NAT2 diplotype in sample NA19174 was ambiguously reported as *4/*5 or *5/*6 in short-read
datasets and reference truth sets. TAS-LRS resolved this to *5.002/*6.002, with phasing clearly supported by
IGV alignments. Similarly, in CYP2B6, we observed an alternate phasing of four variants initially assigned to
*18/*20, revealing a novel allele combination with well-supported haplotype structure. However, a key challenge
remains in interpreting novel diplotypes for clinical actionability. While most improved calls (69.2%) maintained
consistent phenotype interpretations, 10 of the 52 evaluated (19.2%) could not be mapped to known metabolizer
categories due to the presence of novel or rare alleles. This limitation has also been noted in previous long-read
PGx studies*, where increased resolution reveals variants not yet accommodated by current clinical guidelines.
In clinical practice, novel or uncharacterized diplotypes would be reported with annotation of uncertain
significance, with parallel efforts to expand reference databases and generate functional evidence to support
future clinical interpretation. Conversely, in six cases (11.5%), improved genotyping enabled more definitive
phenotype classification. For instance, in a clinical sample previously tested with microarrays, TAS-LRS resolved
a copy number event in CYP2D6 that had previously been unphased, enabling unambiguous assignment of
metabolizer status.

While most of our validation focused on benchmarking against established truth sets and clinical workflows,
we also compared TAS-LRS to orthogonal testing platforms where matched data were available. Current PGx
genotyping technologies largely rely on microarrays or short-read sequencing, and therefore we included both
in our evaluation. We observed that TAS-LRS achieved high concordance rates (> 95%) and outperformed
other platforms in 13 of the 20 genes assessed. As expected, microarrays showed the greatest limitations in
resolving PGx diplotypes, consistent with prior reports?. It is important to note that we used the [llumina Global
Screening Array v3 (GSAv3) chip, which is not specifically optimized for pharmacogenomic applications, and
that newer arrays and PGx-focused designs may offer better performance. Nonetheless, microarrays inherently
depend on prior knowledge of which variants to interrogate and are limited in their ability to discover novel
alleles. Conversely, short-read sequencing performed better than microarrays but showed substantial variability
across analysis pipelines. Among the evaluated algorithms, DRAGEN achieved the highest concordance, albeit
with lower callability, a trade-off that could potentially be improved through further algorithmic refinement.
Other notable short-read genotyping tools, such as Aldy 4> and Cyrius*®, were not included in this evaluation
but warrant future benchmarking. Overall, short-read algorithms use read-level evidence constrained by known
allele definitions to enhance accuracy, but phasing remains limited, as it often depends on computational
reconstruction guided by known haplotype structures, an approach that is less accurate when novel or rare
variant combinations are present. In contrast, long-read sequencing improves direct phasing of complex
diplotypes and detection of novel allele configurations at the individual level. For example, we resolved previously
uncharacterized phasing patterns in NAT2, CYP2B6 and DPYD that were not captured by short-read approaches.
Collectively, our findings align with those reported by Barthélémy et al. (2023)?*, who conducted a comparison
of PacBio HiFi and Illumina short-read sequencing across a panel of pharmacogenes, and demonstrated that
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long-read sequencing not only improved haplotype resolution but also enabled accurate detection of structural
variants, such as complex CYP2D6 rearrangements and UGTIA 1 promoter repeats, that were miscalled or missed
entirely by short-read methods. Recent developments in pangenome references and graph-based genotyping
may further improve SV detection in such challenging regions. In particular, the draft human pangenome has
been shown to improve SV calling at clinically relevant loci such as CYP2D6 using long-reads**. Furthermore,
it is worth noting that our study was based on a relatively well-characterized sample set, with only three clinical
specimens included. The frequency of novel or population-specific alleles is likely to be higher in routine clinical
cohorts. For instance, in a previous study of approximately 1,800 Singaporean individuals of Chinese, Malay,
and Indian ancestry, we found that ~ 1% carried potentially novel CYP2D6 haplotypes based on short-read
whole-genome sequencing’. As long-read sequencing is applied to more diverse populations, we anticipate the
discovery of additional novel variants that may have clinical relevance in pharmacogenomic decision-making.

In addition to enabling high-resolution PGx genotyping, TAS-LRS generates off-target reads that can be
leveraged for genome-wide imputation. Imputation from low-pass sequencing is well established in the context
of short-read data, and here we apply similar approaches to off-target signal from long-read sequencing®!. Our
results show that imputation accuracy from TAS-LRS off-target reads is comparable to that of short-read low-pass
sequencing and exceeds that of microarrays, particularly for rare variants with a minor allele frequency (MAF)
below 1%. This expands the utility of the assay beyond targeted PGx testing, enabling additional applications such
as Polygenic Risk Score (PRS) development. Supporting this potential, Nakamura et al. (2024)** demonstrated
that PRSs derived from off-target long-read data in 33 hereditary cancer patients achieved accuracy comparable
to those calculated from short-read sequencing. Altogether, these findings highlight the added value of adaptive
sampling over conventional targeted sequencing methods, which typically rely on fixed panels enriched through
PCR amplification or hybridization-based capture workflows that require custom library preparation. In
contrast, adaptive sampling allows flexible updates to target content via simple BED file modifications, avoiding
the need to redesign or reorder panels. This reduces wet-lab complexity, hands-on time, and consumable costs,
and positions TAS-LRS as a versatile platform adaptable to a range of clinical contexts, including primary care,
oncology, cardiovascular disease, and psychiatry.

In conclusion, our work demonstrates a robust clinical implementation of PGx testing using adaptive-
sampling-based long-read sequencing. TAS-LRS combines accurate detection of small and structural variants,
phasing without the need for parental data, and the ability to identify novel alleles, which are critical capabilities
for PGx implementation given the complexity of pharmacogenes and the importance of haplotype resolution
in predicting drug response. Beyond analytical performance, the simplicity and flexibility of the TAS-LRS
protocol make it well suited for mainstream clinical adoption. Unlike fixed-panel assays, TAS-LRS allows rapid
reconfiguration of target content without extensive redesign of experimental protocols, while simultaneously
generating genome-wide data suitable for imputation. From DNA extraction to final report generation, the
TAS-LRS workflow can typically be completed within 3 to 4 days, with faster turnaround possible for smaller
batches or with higher parallelization. This positions TAS-LRS as a flexible platform that bridges targeted
testing and broader genomic analysis, making it particularly compelling for national screening programs where
both clinical relevance and research utility are priorities. In this context, and looking ahead, a unified assay
integrating pharmacogenomics, polygenic risk, and monogenic variant analysis with potential for regulatory
annotation through methylation profiling could enable comprehensive risk stratification from a single sample. A
2021 study of 450,000 patients estimated that one in seven pathogenic variants are technically challenging using
current short read-based technologies®®. These include complex rearrangements, small CNVs and genes with
pseudogenes®® which may benefit from the use of long-read data. It is estimated that there are more than 1000
genes present in genomic loci that are inaccessible due to high sequence complexity or repetitiveness*®, including
genes that are clinically relevant. To address these limitations, targeted long-read panels have been developed for
challenging genes such as SMN1/2, associated with spinal muscular atrophy, GBA, associated with Gaucher and
Parkinson’s disease, and PMS2, associated with Lynch Syndrome?’. In practice, the improved diagnostic yield of
long-read sequencing has also been demonstrated in a recent study on a rare disease cohort of 41 families where
long-reads were able to identify diagnostic variants in 11 individuals, enabling the diagnoses of 3 individuals
who were undiagnosed by short-read sequencing*®. In addition to enhanced phasing and alignment, this study
also leveraged methylation profiles derived from the same long-read data for improved diagnostic performance.
While long-read sequencing has historically been limited by cost, adaptive sampling enables multiplexing to
reduce per-sample expenses. In this study, we demonstrated three-sample multiplexing, with four-sample runs
already feasible and robust using current protocols. With further scaling and improved throughput, the cost
of TAS-LRS could approach that of short-read whole-genome sequencing and may undercut combined short-
read PGx panel and array workflows, especially as efforts to support five or more samples per run continue.
Ultimately, the choice between long-read and short-read technologies will depend on context, scale, and clinical
need; however, our findings demonstrate that long-read sequencing has matured beyond a research tool and
now represents a viable option for clinical pharmacogenomics at scale.

Materials and methods

End-to-end workflow for pre-emptive PGx testing

Our pre-emptive PGx workflow follows four main steps: (i) pre-test consultation (optional), (ii) sample
preparation and sequencing, (iii) bioinformatics analysis and reporting, and (iv) post-test consultation (Fig. 1).
As this study focuses on generating evidence for implementation in a clinical laboratory, steps 1 and 4 were not
performed but details are included below for completeness.
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Pre-test consultation (optional)

The patient eligibility assessment is a critical step in the TAS-LRS workflow to ensure appropriate test use.
Eligibility criteria comprise excluding patients with conditions that may interfere with DNA integrity, such as
recent blood transfusions or stem cell transplants, as well as those with impaired liver function, including patients
with autoimmune hepatitis or a history of liver transplantation. For eligible patients, pre-test consultation is
optional and offered based on institutional policy or clinician discretion. When provided, it includes counselling
on the scope of PGx testing, potential actionable findings, and implications for medication management.
Informed consent is obtained prior to sample collection.

Sample Preparation and sequencing
Sample preparation and sequencing follow the standard ONT laboratory workflow, optimized for multiplexing,
as summarized in Supplementary Fig. 8. The detailed protocol is described below.

Whole blood extraction Whole blood samples were collected in K2EDTA tubes (VACUETTE) with a mini-
mum volume of 3 mL. DNA was extracted from 300 pL of whole blood using the Monarch Genomic DNA Puri-
fication Kit (New England Biolabs), following the manufacturer’s protocol for non-nucleated mammalian whole
blood with several modifications to accommodate the increased requirements for input volume for long-read
sequencing (Supplementary Fig. 9): (i) the lysis mastermix was scaled up threefold, and the lysis incubation time
was extended to 25 min; (ii) after lysis, samples were split into two parts, with 1.5x the volume of binding buffer
added per part; (iii) following binding, DNA from both fractions was concentrated into a single spin column
and processed through the standard washing steps; and (iv) a double elution with preheated elution buffer was
performed to maximize recovery. DNA vyield and purity were assessed using the Nanodrop 2000, with a mean
yield of 46.53 ng/uL across all samples.

To meet the yield requirement for TAS-LRS 3-plex (>100 ng/uL), the extracted genomic DNA (gDNA)
was further concentrated using Solid-Phase Reversible Immobilization (SPRI) beads from MGI Tech Co., Ltd.
(Supplementary Fig. 10). Note that a lower DNA input is feasible at alternative plexities, and this is currently
under investigation. A 2x volume of SPRI beads was added, and DNA was eluted in 30 pL of elution buffer. Final
DNA quantification was performed using the 1x double-stranded DNA (dsDNA) High Sensitivity Qubit Assay
(Thermo Fisher Scientific), yielding a mean concentration of 108.3 ng/uL per sample.

Genomic DNA shearing Genomic DNA from cell lines and extracted blood samples was mechanically sheared
to an average fragment length of 23 kb. DNA concentration was measured using the 1x dsDNA High Sensitivity
Qubit Assay (Thermo Fisher Scientific), while fragment size distribution was assessed with the Agilent Genomic
DNA kit on the Tapestation (Agilent).

Library preparation and sequencing Genomic DNA samples underwent library preparation following the
ONT Ligation Sequencing gDNA - Native Barcoding Kit 24 V14 protocol. The process included end-repair,
native barcoding, and adapter ligation. Samples were pooled in sets of three, with 800 ng or 1000 ng of input per
sample. The final libraries yielded a mean of 56.69 fmol (> 35 fmol) per pool.

Sequencing was performed on the PromethION Flow Cell R10 (M version) using the P2 Solo Sequencer
(MinION release 24.02.16). The library was divided into three portions and loaded in a tapered manner across
three time points. At the first time point, the initial portion of the library was loaded, and sequencing began
in whole-genome mode (without adaptive sampling), to monitor QC (N50 within the expected range). After
one hour, adaptive sampling was activated. A custom BED file was used to define the target regions (N = 326).
Each region was extended by 20 kb upstream and downstream, and overlapping regions were merged into non-
redundant intervals using bedtools*’, covering a total of 1.3% of the human genome. At the second time point
(20-24 h after sequencing began, or when fewer than 2000 pores remained active), the flow cell was washed
following ONT’s Flow Cell Wash Kit protocol, and the second portion of the library was loaded. At the third time
point (40-48 h), the second portion of the library was retrieved, and merged with the third portion. The flow cell
was washed and reloaded with the mixed library. This loading strategy achieved a mean on-target sequencing
depth of 25.2x per sample and an average enrichment ratio of 8.5x. The mean on-target N50 post-sequencing
was 7,889 bp (Supplementary Table 3).

Quality control Details of the QC metrics applied throughout the workflow are provided in Supplementary
Table 10.

Bioinformatics analysis and reporting

Bioinformatics analysis and variant interpretation utilize a combination of third-party and in-house tools
for basecalling, read mapping, variant calling, and pharmacogenomic annotation (Supplementary Fig. 11).
Additionally, the workflow includes genome-wide imputation from off-target signals. Detailed descriptions of
each step are provided below.

Basecalling and read mapping PODS5 files were basecalled using Dorado v0.8.1 in either high-accuracy (HAC)
or super-accuracy (SUP) mode with the corresponding models (dna_r10.4.1_e8.2_400bps_HAC@v5.0.0 or
SUP@v5.0.0). Reads from the initial 1-hour WholeGenome Sequencing (WGS) and subsequent adaptive sam-
pling were filtered for Q-scores > 10. Passing reads were demultiplexed using Dorados demux function, then
combined per sample and mapped to the GRCh38 reference genome using Minimap2 v2.22.

Summary statistics were generated from unmapped BAM files using Dorados summary function and
processed with custom scripts. Summary metrics for the 1-hour WGS and adaptive sampling stages are presented
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in Supplementary Tables 3a and 3b, respectively. N50 values were estimated using Cramino v0.14.5% after
subsetting reads into on-target and off-target regions. Median coverage depths for these regions were calculated
using mosdepth v0.3.6°%.

Genotyping of target pharmacogenes Small variants Small variants (SNPs and indels) were called using Clair3
v1.0.5 with either the r1041_e82_400bps_hac_v500 or r1041_e82_400bps_sup_v500 model, as appropriate, and
subsequently phased using WhatsHap v2.22. For depth of coverage analysis, SUP base-called HG005 CRAM
files were merged and then randomly downsampled using samtools v 1.15.1 with the --subsample command
to generate CRAM files at target coverages. Three replicates per target coverage were generated prior to Clair3
v1.0.5 variant calling.

Structural variants For all pharmacogenes except CYP2D6, gene-level copy number was estimated by normal-
izing the mean on-target depth across each region of interest to the overall mean across all on-target regions.
Coverage was calculated using mosdepth v0.3.6 with the --no-per-base option and 100 bp non-overlapping
windows.

For hybrid genes (e.g., CYP2D6/CYP2D7, CYP2A6/CYP2A?7), hybrid detection was performed by classifying
reads based on distinguishing variants catalogued in PharmVar v6.2.2 or reported by Chen et al. (2021). In
brief, for each read, the number of variants supporting a conversion were counted in exons and introns with
gene-distinguishing variants. If at least half the variants supporting a specific gene of origin were present, the
corresponding intron/exon was assigned according to the corresponding origin (e.g. from CYP2D6 or CYP2D7).
For each read, the region (exon/intron number) and type of transition (e.g. CYP2D6 to CYP2D7 or reverse)
was identified. If at least 3 reads supporting the same switch were identified, potential haplotypes were assigned
based on existing PharmVar classifications (Supplementary Fig. 12).

Due to the complex structural variability of CYP2Dé, including common duplications, deletions, and gene
conversions with CYP2D?7, its structural analysis is described in detail in a dedicated section.

Star-alleles Based on the Variant Call Format (VCF) calls, star alleles for CYP2B6, CYP2C19, CYP2C9, CYP3A4,
CYP3A5, CYP4F2, DPYD, G6PD, NUDT15, SLCOIBI1, TPMT and UGTIAI were assigned using PharmCAT?>?
version 2.2.3 with CPIC allele definitions v1.22.2 and star alleles for NAT2, CYP2C8 and ABCBI were assigned
using PyPGx version 0.25.0%%. Definitions for NAT2 were updated according to PharmVar (accessed: 2024-09-
10).

HLA typing HLA calls were made using HLA-LA> version 1.0.3 applying a threshold cutoff of 0.95.

CYP2D6 calling An in-house developed caller was used to resolve diplotype calls in CYP2D6. As shown in
Supplementary Fig. 12, for CYP2D6, reads mapping to positions 42,001,498 to 42,255,865 on GRCh38 chromo-
some 22 were extracted. As a first step, reads corresponding to potential hybrid alleles, if detected, were removed.
The remaining non-hybrid alignments were used as input for Clair3 (v1.0.9), with a reference VCF contain-
ing CYP2D6 variants of interest, and for NanoCaller (v3.6.0). Variant calls from Clair3 and NanoCaller were
then merged before phasing using WhatsHap (v2.2). The resulting phased VCF was processed with PharmCAT
(v2.2.3) using the “--research-mode cyp2d6,combination” flag, which enables the calling of both full and partial
CYP2D6 diplotypes. Partial diplotypes were only considered in cases where hybrid genes or structural variants
were detected, as these are known to reduce variant calling accuracy in the region. When multiple diplotype can-
didates shared the same PharmCAT match score, the diplotype with the numerically lower star allele designation
was reported, along with a warning indicating that multiple interpretations were possible.

Following initial star allele assignment, gene copy number was refined. Duplications were flagged if
reads supporting duplication of the CYP2D6-like downstream region (REP6) were detected. In cases where
a duplication or more than two star alleles, including hybrids, were identified, diplotypes were resolved by
identifying the WhatsHap-assigned haplogroup most frequently associated with structural features (e.g. REP6 or
REP7) and then identifying the star allele most frequently assigned to the same haplogroup to link the structural
feature to the appropriate star allele. If direct evidence was insufficient, the haplotype background associated
with REP6 or REP7 was inferred to determine likely combinations of hybrid and non-hybrid star alleles or
duplications. For duplications involving non-identical star alleles, B-allele frequencies of heterozygous SNPs
that differentiate between the alleles were used to estimate copy number. In brief, based on the potential star
alleles, allele frequencies of key distinguishing SNPs were fetched and star alleles associated with the higher allele
frequencies were assumed to be duplicated and copy numbers assigned accordingly. For duplications involving
identical star alleles, copy number was estimated from normalized read depth. Deletions were called if at least
one read spanning a known deletion breakpoint in the CYP2D6 region was detected, or if the region spanning
positions 42,125,000 to 42,135,000 showed a normalized copy number below 1.5.

As described in the “Structural variants” section, regions of reads mapping to CYP2D6 were classified as
originating from CYP2D6 or CYP2D7 based on distinguishing variants. Reads showing a switch between the two
homologs were classified as hybrids, and assigned star alleles based on switch position, per PharmVar definitions.

Warnings were issued in the following cases: (1) multiple potential diplotypes detected, (2) a partial genotype
was reported, (3) copy number estimates from read depth were not supported by structural variant signature
reads, or (4) unexpected genotype combinations were observed, suggesting reduced call quality.
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Imputation Genome-wide genotype imputation was performed in HG005 samples using GLIMPSE2 v2.0.0%!
and a reference panel comprising 2504 high-coverage samples from the 1000 Genomes Project. Whole-genome
CRAM files from earlier processing steps were utilized as input.

Post-test consultation

The final report includes diplotype calls interpreted into metabolizer phenotypes based on PharmGKB
guidelines®, along with actionable recommendations from consortia such as CPIC>® and DPWG?’. Results are
compiled into a structured PDF for physician review, forming the basis for post-test consultation, where findings
are communicated to the patient and integrated into their treatment plan (example report: Supplementary File

1).

Validation samples

Genome in a Bottle (GIAB) gDNA samples were obtained from the National Institute of Standards and
Technology (NIST). Additional cell line gDNA samples from the GeT-RM program were sourced from the
Coriell Institute for Medical Research.

CAP (College of American Pathologists) samples were obtained from previous CAP PGx surveys. These
samples were previously analysed in house and submitted to CAP for verification of results, and the verified
results were used as a truth set benchmark.

Whole blood samples were obtained from the Molecular Diagnostic Laboratory at Tan Tock Seng Hospital
(TTSH), Singapore. Genotype results were based on specific variants detected using microarray technology
(Axiom).

For the interference study, a subset of whole blood samples was spiked with >4.5 mg/dL of triglycerides
(Merck) to simulate conditions of hyperlipidaemia or elevated blood triglyceride levels, in accordance with the
Ministry of Health’s 2016 Hyperlipidaemia Guidelines.

Performance evaluation
Reference data sources used to evaluate calling performance at the variant, diplotype and phenotype levels are
described below and summarized in Supplementary Table 11.

LOD study - variant calling performance for SNPs and indels
For small variants (SNPs and indels), hard-filtered Genomic Variant Call Format (gVCF) calls generated by
DRAGEN v4.2.7 (available at https://registry.opendata.aws/ilmn-dragen-1kgp) were processed using the
GenotypeGVCFs module from GATK v4.5.0.0°® to extract variants of interest. These were then compared to
Clair3 variant calls using custom in-house scripts.

Performance metrics used in our analysis are defined as follows:

« Callability: The proportion of loci with successfully obtained genotype calls relative to the total number of
loci evaluated.

« Genotype concordance: The proportion of loci with accurate genotype calls among those that were success-
fully genotyped.

o Analytical sensitivity: The proportion of variant sites that were correctly detected.

o Analytical specificity: The proportion of non-variant sites that were correctly identified.

« Precision: The proportion of correctly genotyped variants relative to the total number of variants reported.

False negative and false positive calls were manually reviewed. All metrics were calculated on a per-sample basis,
and confidence intervals around the mean values were estimated using Student’s ¢-test.

LOD study - Variant calling performance for SVs
Expected SVs were determined using GeT-RM diplotype calls for CYP2D6 and StellarPGx diplotype calls for
CYP2A6. In cases where discrepancies between reference and observed calls were noted, results were manually
reviewed to confirm the SV status.

Calls for deletions, duplications, and hybrid alleles were classified as:

« True positives if the expected SV was correctly identified by the pipeline for a given sample,
o False negatives if no SV was called when one was expected, and.
« False positives if an SV was called when none was expected.

For CYP2A6, *46 alleles (3> UTR conversions) were considered hybrid alleles and evaluated accordingly.
Additionally, a *47 allele (a CYP2A7:CYP2A6 hybrid consisting of exons 1-8 from CYP2A?7) that was classified
by the pipeline as *4 (gene deletion) was still considered concordant with the expected SV.

Performance metrics were calculated using calls from both genes across all samples and sequencing runs.

Confidence intervals were estimated according to the method described by Newcombe and Altman®.

Accuracy study - Diplotype concordance in pharmacogenes with complex allele definitions

For HG001, HG01190, NA18861, NA18966, NA19174 and NA19226, GeT-RM calls for CYP2A6, CYP2B6,
CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP3A4, CYP4F2, DPYD, NAT2, SLCOIBI and TPMT from the
consolidated GeT-RM table dated 20,240,418 996! were used as a truth set. For HG00337, HG005, HG01097,
HGO01572 and HG03259 diplotype calls were compared against PyPGx diplotypes based on dragen v4.2.7
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generated CRAM files. For NAT2, diplotype definitions were compared taking into account the differences
between previous and current allele definitions.

For all samples, ABCB1, G6PD, NUDTI15 and UGTIAI calls were compared against PyPGx calls and
HLA-A and HLA-B calls were compared against calls from optitype v1.3.5°2 based on dragen v4.2.7-generated
Compressed Reference-Aligned Mapping (CRAM) files.

Calls were classified as concordant if matching to the truth set. When not matching, calls were considered
improved if the TAS-LRS-based call agreed with evidence from manual checks based on IGV plots or based
on consensus calls from other programs (see Accuracy study - Diplotype calling performance across multiple
testing platforms below).

Accuracy study - phenotype concordance in pharmacogenes with complex allele definitions

Phenotypes were classified as “Concordant to reference” if TAS-LRS-based calls matched the expected phenotype
based on the truth sets described above. To account for differences due to an improvement in diplotype calls, calls
were classified as “Concordant with updated call” if the reported phenotype matched the expected phenotype
based on improved diplotype calls and calls were classified as “indeterminate due to insufficient information” if a
phenotype could not be assigned due to a no call for the diplotype or if a call could not be assigned due to the lack
of sufficient information on Copy Number Variation (CNV) to distinguish from samples with indeterminate
calls due to the underlying diplotype not having a known phenotype.

Accuracy study - diplotype calling performance across multiple testing platforms

Orthogonal short-read data Star allele and HLA calls from DRAGEN v4.2.7 were obtained from the Illu-
mina DRAGEN 1000 Genomes Project dataset (https://registry.opendata.aws/ilmn-dragen-1kgp; accessed 16
February 2025), except for sample HG005, for which calls were derived using DRAGEN v4.0.3. For PyPGx and
StellarPGx comparisons, diplotype calls were generated by processing the corresponding CRAM files from the
same dataset using PyPGx (v0.25.0)% and StellarPGx (v1.2.7)% .

Orthogonal microarray data For microarray calls, star alleles and genotypes were called from the Illumina
Global Screening Array v3, as previously described?’.

Calls were considered matching if they were concordant with results from manual inspection of long-
read IGV plots or consistent with consensus calls across multiple tools. The percentage of matching calls was
calculated as the total number of concordant calls divided by the total number of calls. Callability was defined
as the proportion of successfully generated calls relative to the total number of samples evaluated. Both metrics
were aggregated across all samples and sequencing runs, and confidence intervals were calculated using the
method described by Newcombe and Altman®.

Precision study - Reproducibility and repeatability

Assay precision was assessed by evaluating both reproducibility and repeatability of the performance metrics
described in "LOD study - Variant calling performance for SNPs and indels". Reproducibility was determined
by analyzing inter- and intra-run variability across HG001 and HG005 samples sequenced in three independent
runs. Repeatability was assessed by reanalyzing the same runs starting from the basecalling step. Variability was
quantified by calculating the coefficient of variation (CV) for each performance metric.

Imputation accuracy

To compare imputation accuracy, FASTQ files from five replicates of HG005—generated on the MGI DNBSeq
T7 platform —were aligned to the GRCh38 reference genome using DRAGEN-GATK v1.3.0 and subsequently
downsampled to 2x coverage to match the average off-target depth of HG005 TAS-LRS samples (N=4).
Imputation was performed using GLIMPSE v2.0.0 as described above.

For microarray data, variant calls from five replicates of HG005—generated using the Infinium Global
Screening Array v3 (Illumina)—were phased with Eagle v2.4.1 and imputed using Minimac4 v1.0.3 with the
1000 Genomes Project reference panel.

Imputation concordance (R?) was assessed using the GLIMPSE2_concordance script from the GLIMPSE
v2.0.0 package, with the following parameters: “--gt-val --min-tar-gp 0.8 --ac-bins 1 5 10 20 50 100 200 500 1000
2000 3202”. Genome-wide NIST reference calls were used as the truth set for benchmarking.

Data availability

The data supporting the findings of this study are available within the article and its supplementary materials.
The underlying sequencing datasets to the European Genome-Phenome Archive (EGA) under study accession
number EGAS50000001116. The contact person for data access is the corresponding author, and data access
requests will be handled through the EGA portal.
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