
Exploring soliton solutions and 
dynamical features of three 
dimensional Gardner Kadomtsov 
Petviashvili equation
Amjad Hussain1, Muhammad Zeeshan1, Muhammad Junaid U Rehman2 & Adil Jhangeer3,4

In this paper, the dynamical features and soliton structures of the Gardner-Kadomtsov-Petviashvili 
equation in three dimensions are looked at. The Jacobi elliptic function method yields wave solutions 
that display distinct behaviors based on parameter variations. We reformulate the system into a planar 
dynamical system via the Galilean transformation for further analysis.Phase portraits are depicted by 
adjusting the bifurcation parameters , while periodic and super nonlinear periodic wave solutions are 
portrayed using numerical simulations. Furthermore, quasi-periodic and chaotic behavior is depicted 
by varying the external forcing term and using tools such as Lyapunov exponents, Poincaré maps, and 
sensitivity analysis. Changes in frequency and amplitude strongly influence the system’s dynamics, 
offering insights that can improve predictions, enhance control methods, and optimize model 
performance.
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The investigation of the dynamical features of partial differential equations (PDEs) via different dynamics tools, 
such as bifurcation theory and sensitivity analysis, is ongoing. Such investigations play a prime role in the 
study of complex phenomena in optical systems, quantum physics, and fluid dynamics. Although considerable 
progress has been achieved, chaos in complex systems is still far from fully comprehended by any researcher1. 
The detection of chaos in nonlinear systems requires appropriate analytical techniques with phase portraits, 
bifurcation diagrams, power spectrum analysis, nonlinear time series analysis, Poincaré maps, and Lyapunov 
exponents, some of which may provide appropriate insight into the particular situation of the systems under 
study. Due to this complexity, a strong analysis will often adopt multiple methodologies, ensuring an in-
depth understanding of this system2,3. Recently, several dynamic properties of different PDEs have attracted 
much attention because most of these equations admit localized solutions called solitons, among other forms 
of traveling waves. In this respect, the analysis of bifurcation and chaos theory is complementary, since the 
former investigates how changes in parameters affect stability and spatial patterns, while the latter points out 
the thresholds beyond which instability and chaotic behavior arise4,5. Together, these methods shed light on 
the interplay between stability and chaos6–8, which is important to understand the underlying dynamics of 
nonlinear systems. Moreover, related non-linear equations are often studied using bifurcation analysis and 
chaos detection methods17–19. For example, the bifurcation and chaotic behaviors of the KdV-MKdV equations9 
have been studied in detail and provide important information about complex wave phenomena. However, 
the study of soliton solutions to non-linear systems is equally important, as it has many applications in science 
and engineering. Soliton solutions help us to understand the complex behavior of nonlinear systems. The 
significance of soliton solutions in several physical contexts, such as wave propagation and optical systems, has 
been highlighted in earlier research10–14.

The Gardner equation models internal waves in stratified fluids and has applications in plasma physics15 
and Bose-Einstein condensates16. The multi-dimensional Gardner-KP equation is vital in ocean engineering, 
describing nonlinear internal waves on ocean shelves. Studies have shown its role in governing dispersive surface 
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waves near critical depths20, dispersive shock waves through the cylindrical Gardner equation21, and solitary 
wave solutions22. In addition, elliptic and traveling wave solutions23 and solitons have been developed using 
the Hirota bilinear method24. The (3 + 1)-dimensional Gardner-KP equation is an extended form of the (2 + 
1)-dimensional Gardner-KP equation25,26, which serves as the primary focus of this study.

The (3+1)-dimensional nonlinear Gardner–Kadomtsov–Petviashvili (Gardner-KP) equation, a notable 
nonlinear partial differential equation, serves as an important model for examining soliton dynamics and 
chaotic phenomena:

	
(
Ψσ + 6ΨΨϕ − 6Ψ2Ψϕ + ν2Ψϕϕϕ

)
ϕ

+ µ (Ψββ + Ψξξ) = 0,� (1)

where µ = ±1 and Ψ = Ψ(ϕ, β, ξ, σ) is the real field representing the amplitude of the wave, σ is the temporal 
component, and ϕ, β, ξ are the spatial components.

Equation  (1) models the evolution of the nonlinear wave amplitude Ψ(ϕ, β, ξ, σ) in a multidimensional 
medium. The terms appearing in (1) have the following physical meanings:

•	 Ψσ : temporal change of the wave amplitude.
•	 6ΨΨϕ: quadratic nonlinearity representing wave steepening effects.
•	 −6Ψ2Ψϕ: cubic nonlinearity accounting for higher-order nonlinear interactions.
•	 The term ν2Ψϕϕϕ is used for dispersive behavior caused by waves spreading and dispersing in the ϕ direction 

and ν2 controls how much dispersion there is.
•	 µ(Ψββ + Ψξξ), that describes wave modulation in β and ξ directions and µ = ±1 shows if this is dispersion 

or anti-dispersion.

Despite the numerous existing works on lower-dimensional Gardner-KP equations, they seem to lack 
comprehensive coverage of the (3+1)-dimensional case, particularly in terms of its explicit soliton solutions 
and intricate soliton dynamics. It is complicated to study the influence of various features in systems that are 
nonlinear, and such analysis usually requires sophisticated methods to show chaos and supernonlinear waves. 
We address these gaps by employing the Jacobi elliptic function method to derive new exact solutions and by 
investigating various aspects of the nonlinear model, as it is significant for ocean engineering, plasma physics, 
and wave studies.

Consequently, this paper aims to derive soliton solutions by the JEF technique27 and to analyze the dynamics28 
of the (3 + 1)-dimensional Gardner-KP equation. This research is centred on achieving two key objectives The 
first one is to derive exact soliton solutions of the (3+1)-dimensional nonlinear Gardner–Kadomtsov–Petviashvili 
(Gardner-KP) equation using the efficient JEF technique, and the second is to investigate its nonlinear dynamics 
through advanced analytical tools, including chaos detection methods, Lyapunov exponents, Poincaré maps, 
sensitivity analysis, and phase plane analysis. These methods offer a systematic framework for investigating the 
equation’s shift from regular behavior to chaotic dynamics.

By using a thorough methodology to reveal the soliton dynamics and nonlinear features of the 
(3+1)-dimensional nonlinear Gardner–Kadomtsov–Petviashvili (Gardner-KP), this study expands and 
improves upon previous research. By examining the chaotic and bifurcation aspects of the system, this work 
fills in knowledge gaps in the study of solitons and opens the door to more extensive applications in science and 
engineering.

Findings from this problem are very different from results obtained in earlier studies based on lower-
dimensional Gardner-KP equations24. Unlike previous works, we highlight new and complex dynamical 
behaviors and additional, richer soliton structures of the (3+1)-dimensional model. The soliton solutions found 
using the Jacobi elliptic function method reveal new ways that pulses can interact and take shape, which are 
more advanced than what was seen in traditional results. Stability tests show that the results remain reliable even 
when changing parameters, and further analysis using phase portraits and Lyapunov exponents reveals complex 
stability patterns, different levels of chaos and additional features not seen in lower dimensions. This comparison 
shows how significant the effects of multidimensional nonlinear wave propagation are and highlights the main 
Gardner-KP equations used in this research, which help both the theory and practical applications.

The structure of this paper is as follows: The first part uses the Jacobi elliptic method to find the soliton 
solutions of the (3+1)-dimensional Gardner-KP equation. In the second part, the dynamic behaviour of the same 
model is analyzed using various tools, such as phase portraits, bifurcation analysis, and Lyapunov exponents, to 
investigate its chaotic and quasiperiodic dynamics.

Soliton Solution of the (3 + 1)-dimensional Gardner-KP equation by JEF Technique
Jacobi elliptic functions, first described by Carl Gustav Jacob Jacobi in 1827, are periodic functions derived as the 
inverses of elliptic integrals. They are essential in areas such as mathematical physics, nonlinear dynamics and 
differential equations. The main Jacobi elliptic functions are sn(z|m), cn(z|m), and dn(z|m). They are defined 
in terms of a parameter m, which is called the elliptic modulus, and they show how the amplitude of the elliptic 
integral is related to its arguments. Because they are periodic and relate to each other, they are like trigonometric 
functions in elliptic geometry. This gives us many ways to solve hard math and science problems29. The detailed 
description of the method is provided in27.

We use the following transformation:

	 Ψ(ϕ, β, ξ, σ) = Υ(χ), where χ = b1ϕ + b2β + b3ξ + cσ,� (2)

which defines a traveling wave solution, where
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•	 b1, b2, b3 are wave numbers corresponding to spatial directions ϕ, β, and ξ, representing the direction and 
wavelength of the wave.

•	 c is the wave speed in time, governing how fast the wave profile moves.

This transformation reduces the partial differential equation (1) to an ordinary differential equation (ODE) 
in χ:

	 (µb2
3 + cb1 + µb2

2)Υ′′ + 6b2
1(ΥΥ′)′ − 6b2

1(2Υ(Υ′)2 + Υ2Υ′′) + ν2b4
1Υ′′′′ = 0,� (3)

facilitating the analysis of soliton solutions propagating in multiple spatial dimensions.
Upon the JEF method, we take the solution of Eq. (3) in the following form:

	
Υ(χ) =

N∑
l=1

klG
l(χ).

Next, by virtue of the homogeneous balancing principle, that is balancing the highest-order derivative term with 
the nonlinear term, we get N = 1, so the solution simplifies to

	 Υ(χ) = k0 + k1G(χ),� (4)

where k0 and k1 are the constants and the function G(χ) satisfy the followingg ansatz

	
G′(χ) =

√
r1 + r2G2(χ) + r3

2 G4(χ).

By substituting (4) into equation (3), we derive a system of equations. We solve this system using the computational 
software Maple to obtain the following parameter values.

	




µ = µ, c = c, v = v, k0 = 1
2 , k1 = k1, b1 = b1, b2 = b2, b3 = b3,

r1 = r1, r2 = − 1
2 × 2µb2

2+2µb2
3+3b2

1+2(c·b1)
v2b2

1
,

r3 = 2k2
1

v2 .

� (5)

Family 1: When the parameters are defined as r1 = 1, r2 = −(1 + δ2), and r3 = 2δ2, the wave profile can 
be derived from analyzing G(χ), where the function is expressed using the Jacobi elliptic sine function, sn(χ, δ):

	 Υ(χ) = k0 + k1 sn(χ, δ).

Specifically, in this case, the wave profile simplifies to

	
Υ(χ) = 1

2 + k1 sn(χ, δ).

As the parameter δ approaches 1, the shock wave profile transitions into the following form, represented using 
the hyperbolic tangent function:

	
Υ(χ) = 1

2 + k1 tanh(χ).

To further generalize this result, we can express the shock wave profile as follows:

	
Ψ(ϕ, β, ξ, σ) = 1

2 + k1 tanh(b1ϕ + b2β + b3ξ + cσ).� (6)

Family 2: Consider the parameters r1 = −δ2(1 − δ2), r2 = 2δ2 − 1, and r3 = 2. By choosing 
G(χ) = ds(χ, δ), we derive a periodic wave profile given by:

	
Υ(χ) = 1

2 + k1 ds(χ, δ).

When the parameter δ approaches 1, the wave profile transitions into the following form involving the hyperbolic 
cosecant function:

	
Υ(χ) = 1

2 + k1 csch(χ).

This result can be further generalized for a multidimensional scenario, where the wave profile is expressed as:

	
Ψ(ϕ, β, ξ, σ) = 1

2 + k1 csch(b1ϕ + b2β + b3ξ + cσ).
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Family 3: When the parameters are defined as r1 = 1 − δ2, r2 = 2 − δ2, and r3 = 2, the periodic wave 
profile can be derived by analyzing G(χ) = cs(χ, δ). This leads to the expression:

	
Υ(χ) = 1

2 + k1 cs(χ, δ).

As the parameter δ approaches the limiting case of δ → 1, the profile transforms into:

	
Υ(χ) = 1

2 + k1 coth(χ).

Extending this into a multidimensional framework, the wave profile is given by:

	
Ψ(ϕ, β, ξ, σ) = 1

2 + k1 coth(b1ϕ + b2β + b3ξ + cσ).

Family 4: For the parameters r1 = 1 − δ2, r2 = 2δ2 − 1, and r3 = −2δ2, the periodic wave structure can 
be described by analyzing G(χ) = cn(χ, δ) The resulting wave form is:

	
Υ(χ) = 1

2 + k1 cn(χ, δ).

In the special case where δ → 1, the wave profile transitions to the following form involving the hyperbolic 
secant function:

	
Υ(χ) = 1

2 + k1 sech(χ).

Moreover, the generalized multidimensional form of the wave profile is expressed as:

	
Ψ(ϕ, β, ξ, σ) = 1

2 + k1 sech(b1ϕ + b2β + b3ξ + cσ).� (7)

Family 5: For the parameters r1 = δ2 − 1, r2 = 2 − δ2, and r3 = −2, the periodic wave profile can be 
determined by analyzing G(χ) = dn(χ, δ). The expression for the wave profile is given by:

	
Υ(χ) = 1

2 + k1 dn(χ, δ).

In the limiting case as δ → 1, the wave profile simplifies to the hyperbolic secant form:

	
Υ(χ) = 1

2 + k1 sech(χ).

Furthermore, the wave profile can be extended into a multidimensional representation as follows:

	
Ψ(ϕ, β, ξ, σ) = 1

2 + k1 sech(b1ϕ + b2β + b3ξ + cσ).

Family 6: For the parameters r1 = 1
4 , r2 = δ2−2

2 , and r3 = δ2

2 , the double-periodic wave structure is 

described by analyzing G(χ) = sn(χ,δ)
1±dn(χ,δ) . The resulting wave form is:

	
Υ(χ) = 1

2 + k1 sn(χ, δ)
1 ± dn(χ, δ) .

In the special case where δ → 1, the wave profile becomes:

	
Ψ(ϕ, β, ξ, σ) = 1

2 + k1 tanh( b1ϕ + b2β + b3ξ + cσ)
1 ± sech(b1ϕ + b2β + b3ξ + cσ) .� (8)

Family 7: For the parameters r1 = δ2

4 , r2 = δ2−2
2 , and r3 = δ2

2 , the double-periodic wave structure is 

described by analyzing G(χ) = sn(χ,δ)
1±dn(χ,δ) . The resulting wave form is:

	
Υ(χ) = 1

2 + k1 sn(χ, δ)
(δ2 + 1)(sn(χ, δ)1 ± dn(χ, δ)) .

In the special case where δ → 1, the wave profile transitions to:
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Υ(χ) = 1

2 + k1 tanh(χ)
1 ± sech(χ) .

	
Ψ(ϕ, β, ξ, σ) = 1

2 + k1 tanh( b1ϕ + b2β + b3ξ + cσ)
1 ± sech( b1ϕ + b2β + b3ξ + cσ) .

Family 8: For the parameters r1 = − (1−δ2)2

4 , r2 = δ2+1
2 , and r3 = − 1

2 , the double-periodic wave structure 
is described by analyzing G(χ) = cn(χ, δ) ± dn(χ, δ). The resulting wave form is:

	
Υ(χ) = 1

2 + k1(cn(χ, δ) ± dn(χ, δ)).

In the special case where δ → 1, the wave profile becomes:

	

Υ(χ) =1
2 + k1(sech(χ) ± sech(χ)).

Ψ(ϕ, β, ξ, σ) =1
2 + k1(sech(b1ϕ + b2β + b3ξ + cσ) ± sech( b1ϕ + b2β + b3ξ + cσ)).

Family 9: For the parameters r1 = δ2−1
4 , r2 = δ2+1

2 , and r3 = δ2−1
2 , the double-periodic wave structure is 

described by analyzing G(χ) = dn(χ,δ)
1±sn(χ,δ) . The resulting wave form is:

	
Υ(χ) = 1

2 + k1 dn(χ, δ)
1 ± sn(χ, δ) .

In the special case where δ → 1, the wave profile transitions to:

	

Υ(χ) =1
2 + k1 sech(χ)

1 ± tanh(χ) .

Ψ(ϕ, β, ξ, σ) =1
2 + k1 sech( b1ϕ + b2β + b3ξ + cσ)

1 ± tanh( b1ϕ + b2β + b3ξ + cσ) .

Family 10: For the parameters r1 = 1−δ2

4 , r2 = 1−δ2

2 , and r3 = 1−δ2

2 , the double-periodic wave structure 

is described by analyzing G(χ) = cn(χ,δ)
1±sn(χ,δ) . The resulting wave form is:

	
Υ(χ) = 1

2 + k1 cn(χ, δ)
1 ± sn(χ, δ) .

In the special case where δ → 1, the wave profile transitions to:

	

Υ(χ) =1
2 + k1 sech(χ)

1 ± tanh(χ) .

Ψ(ϕ, β, ξ, σ) =1
2 + k1 sech( b1ϕ + b2β + b3ξ + cσ)

1 ± tanh( b1ϕ + b2β + b3ξ + cσ) .

Family 11: For the parameters r1 = 1
4 , r2 = (1−δ2)2

2 , and r3 = (1−δ2)2

2 , the double-periodic wave structure 

is described by analyzing G(χ) = sn(χ,δ)
dn(χ,δ)±cn(χ,δ) . The resulting wave form is:

	
Υ(ϕ, β, ξ, σ) = 1

2 + k1 sn(χ, δ)
dn(χ, δ) ± cn(χ, δ) .

In the special case where δ → 1, the wave profile becomes:

	
Υ(χ) = 1

2 + k1 tanh(χ)
sech(χ) ± sech(χ) .

	
Ψ(ϕ, β, ξ, σ) = 1

2 + k1 tanh( b1ϕ + b2β + b3ξ + cσ)
sech( b1ϕ + b2β + b3ξ + cσ) ± sech( b1ϕ + b2β + b3ξ + cσ) .� (9)

Family 12: For the parameters r1 = 0, r2 = 0, and r3 = 2, the rational structure is described by analyzing 
G(χ) = D

χ . The resulting wave form is:

	
Υ(χ) = 1

2 + k1D

χ
.
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In the special case where δ → 1, the expression remains:

	
Ψ(ϕ, β, ξ, σ) = 1

2 + k1D

( b1ϕ + b2β + b3ξ + cσ) .

Family 13: For the parameters r1 = 0, r2 = 1, and r3 = 0, the rational structure is described by analyzing 
G(χ) = 1

2 + Deχ. The resulting wave form is:

	
Υ(χ) = 1

2 + b1Deχ.

In the special case where δ → 1, the expression remains:

	
Ψ(ϕ, β, ξ, σ) = 1

2 + b1De( b1ϕ+b2β+b3ξ+cσ).

Analyzing physical dynamics through visualization
We employ visual representations for the novel soliton structures of the non-linear Gardner-KP equation . These 
pictures show the newly calculated waveform solutions in the form of graphs. The solutions include hyperbolic, 
trigonometric, and rational forms from different Familys. The physical interpretation of these solutions is 
facilitated by simulations conducted using the symbolic computation software Mathematica. Soliton structures 
that can be recognized include double periodic waves, shock wave solutions, kink-shaped solitons, solitary or 
bell-shaped solitons, and periodic wave soliton solutions. Each has its set of physical properties. The shock wave 
soliton solution is shown in Fig. 1, the bell-shaped soliton solution is shown in Fig. 2, and the kink type, which 
shows the smooth transition of soliton solutions, is shown in Figs. 3 and 4.

To provide physical insight, these various soliton solutions correspond to real nonlinear wave phe-nomena 
observed in fluids and plasma. For example, shock wave solutions model abrupt changes in wave amplitude 
analogous to physical shock fronts, while bell-shaped solitary waves represent stable waves as they can propagate 
without distortion and are localized. Kink solitons describe smooth transitions with changing state of waves 
and are akin to stable domains found in many media. Thus, these solutions outline both valuable mathematical 
patterns and important meanings related to oceanography, plasma physics and nonlinear wave propagation.

Shock wave profile
We evaluate the features of the shock wave solutions described by equation (6). As seen in Fig. 1, the wave is 
shaped in a certain manner for these selected parameter values. The extreme change in the gradient illustrates 
the common nonlinear steepening seen in shock effects that happen in fluids and plasmas.

Bell-shaped soliton
The wave solution in the form of a bell-shaped soliton appears in Fig. 2. Such a profile remains fixed in shape as 
it travels, which is common with nonlinear waves, like internal waves found in fluids.

Kink-type soliton
Smooth changes from one wave state to another are seen in Figs. 3 and 4 from the kink-type soliton solutions. 
They show how stable wave motions, like a front, frequently appear in various physical situations.

Fig. 1.  Wave Profile Visualization of the equation (6) with parameters k1 = 2, b1 = 10, b2 = 5, b3 = −10, 
and c = 3.Figures generated using Mathematica Version 13.3.1.0 (Wolfram Research, Champaign, IL, USA; ​h​t​t​
p​s​:​/​/​w​w​w​.​w​o​l​f​r​a​m​.​c​o​m​/​m​a​t​h​e​m​a​t​i​c​a​/​​​​​)​.​​​​
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Numerical stability analysis of the obtained soliton solutions
For stability, a small amplitude-scaled Gaussian perturbation is added to the above-plotted soliton profile, and 
these perturbations are observed over time. The perturbation magnitude was evaluated by calculating the norm 
of the difference between the perturbed and original soliton solutions at various time instances. Every soliton 
solution showed a decrease in perturbation norm, as the table presented in Table 1 shows, indicating that each 
soliton is locally stable to small perturbations. Hence, it can be said that solitons are stable when focused on their 
immediate surrounding points in the solution space30,31.

The local stability means that soliton solutions are being considered very close to their exact values. It does 
not rule out that other types of dynamics and even chaotic dynamics can develop at the larger scales discussed 
further in the dynamical section.

Dynamical analysis of Gardner-Kp equation
Studying the dynamics of the (3+1)-dimensional Gardner-KP equation helps explain the stability of solitons in 
real situations. Phase portraits, Lyapunov exponents, and Poincaré maps explain how the waves behave, staying 
the same or sometimes changing to chaos or complex patterns. Seeing these dynamics clearly helps explain how 

Fig. 3.  Wave Profile Visualization of equation (8) with parameters k1 = 2, b1 = 10, b2 = 5, b3 = −10, and 
c = 3.Figures generated using Mathematica Version 13.3.1.0 (Wolfram Research, Champaign, IL, USA; ​h​t​t​p​s​:​/​/​
w​w​w​.​w​o​l​f​r​a​m​.​c​o​m​/​m​a​t​h​e​m​a​t​i​c​a​/​​​​​)​.​​​​

 

Fig. 2.  Wave Profile Visualization of equation (7) with parameters k1 = 2, b1 = 10, b2 = 5, b3 = −10, and 
c = 3.Figures generated using Mathematica Version 13.3.1.0 (Wolfram Research, Champaign, IL, USA; ​h​t​t​p​s​:​/​/​
w​w​w​.​w​o​l​f​r​a​m​.​c​o​m​/​m​a​t​h​e​m​a​t​i​c​a​/​​​​​)​.​​​​
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nonlinear waves change, connect, and travel in materials such as fluids and plasma. For such an analysis, we 
integrate Equation (3) twice to get

	
Υ′′ − 2

ν2b2
1

Υ3 + 3
ν2b2

1
Υ2 + µb2

3 + cb1 + µb2
2

ν2b4
1

Υ = 0.

Letting α1 = 2
ν2b2

1
, α2 = 3

ν2b2
1

 and α3 = µb2
3+cb1+µb2

2
ν2b4

1
 we obtain

	 Υ′′ − α1Υ3 + α2Υ2 + α3Υ = 0.

Finally, we apply the Galilean transformation to get

	 Υ′ = Γ, Γ′ = α1Υ3 − α2Υ2 − α3Υ,� (10)

The equilibrium points of (10) are determined by letting

	 Υ′ = 0 and Γ′ = 0.

These conditions, when substituted in (10) yield:

	 Γ = 0 and α1Υ3 − α2Υ2 − α3Υ = 0,

which on solving, results in

Time t ∥∆U1∥2 ∥∆U2∥2 ∥∆U3∥2 ∥∆U4∥2

0.00 0.495 0.561 0.384 2.699

1.01 0.299 0.339 0.232 1.629

2.02 0.180 0.204 0.140 0.983

3.03 0.109 0.123 0.084 0.593

4.04 0.066 0.074 0.051 0.358

5.05 0.040 0.045 0.031 0.216

6.06 0.024 0.027 0.019 0.130

7.07 0.014 0.016 0.011 0.079

8.08 0.009 0.010 0.007 0.047

9.09 0.005 0.006 0.004 0.029

Table 1.  Perturbation norms ∥∆Ui∥2 of the plotted soliton solutions at selected times.

 

Fig. 4.  Wave Profile Visualization of equation (9) with parameters k1 = 2, b1 = 10, b2 = 5, b3 = −10, and 
c = 3.Figures generated using Mathematica Version 13.3.1.0 (Wolfram Research, Champaign, IL, USA; ​h​t​t​p​s​:​/​/​
w​w​w​.​w​o​l​f​r​a​m​.​c​o​m​/​m​a​t​h​e​m​a​t​i​c​a​/​​​​​)​.​​​​
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Γ = 0 and Υ = 0,

α2 ±
√

α2
2 + 4α1α3

2α1
.

The system has three equilibrium points: E0(Υ0, 0), E1(Υ1, 0), and E2(Υ2, 0), where

	
Υ0 = 0, Υ1 =

α2 +
√

α2
2 + 4α1α3

2α1
, Υ2 =

α2 −
√

α2
2 + 4α1α3

2α1
.

The Jacobian matrix for the system (10) can be expressed as

	
Jm(Υi, Γi) =

( 0 1
3α1Υ2

i − 2α2Υi − α3 0

)
, i = 0, 1, 2.

Let M(Υi, 0) be the coefficient matrix of the linearized system at the equilibrium point (Υi, 0):

	
M(Υi, 0) =

( 0 1
3α1Υ2

i − 2α2Υi − α3 0

)
.

At the equilibrium point (Υi, 0), we define the determinant J  and trace T  of matrix M . The determinant J  is 
given by:

	 J = α3 + 2α2Υ − 3α1Υ2,

and the trace T = 0.
The eigenvalues of the matrix M  are determined by solving the characteristic equation:

	 |M − λI2×2| = 0,

which simplifies to

	 λ2 − (3α1Υi − 2α2Υi − α3) = 0.

Thus, the eigenvalues of M  are:

	 λ1,2 = ±
√

3α1Υ2
i − 2α2Υi − α3.

These eigenvalues depend on the parameters α1, α2, and α3, as well as the equilibrium points (Υi, 0). It is 
important to note that the parameters α1, α2, and α3 are related to system parameters, such as ν, b1, b2, b3, c, 
and µ.

The stability of the critical points (Υi, 0) can be analyzed based on Table 2.
As the system (10) is a three-parameter planar dynamical system, with the stability of the system depending 

on the values of parameters α1, α2, and α3. The behavior of the system is further investigated by analyzing the 
bifurcations in the phase portraits of (10) as the parameter values change.

Phase portraits
Phase portraits are graphical representations of a dynamical system’s trajectories in its phase space, showing how 
the system evolves over time based on initial conditions. They provide insight into the stability and behavior of 
equilibria, periodic orbits, and chaotic dynamics .

•	 Case 1: When α1, α2, and α3 are all positive, the system has three equilibrium points: E0(0, 0) and E1±. The 
point E0 acts as a center, while the points E1− and E1+ are identified as saddle points (Fig. 5-a).

•	 Case 2: In this case, α1 is positive, α2 is negative , α3 is also positive. The system exhibits equilibrium points 
E0(0, 0) and E2±. Here, E0 is a center, while E2− and E2+ act as saddle points. (Fig. 5-b)

•	 Case 3: If, α1 is negative, α2 is positive , α3 is negative, the system has equilibrium points E3(0, 0) and E3±. 
The equilibrium E0 becomes a saddle point, while E3+ and E3− are centers (Fig. 6-a).

Condition Eigenvalue Nature Equilibrium Type Stability

J < 0 Real, opposite signs Saddle Point Always unstable

J > 0, T 2 − 4J ≥ 0 Real, same sign Node Stable if T < 0, unstable if T > 0

J > 0, T 2 − 4J < 0, T ̸= 0 Complex conjugates Focus Stable if T < 0, unstable if T > 0

J > 0, T = 0 Pure imaginary Center Neutrally stable (closed orbits)

J = 0, Poincaré index = 0 Degenerate Zero Point / Cusp Indeterminate

Table 2.  Stability classification of equilibrium points based on the Jacobian matrix.
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•	 Case 4: If all parameters are negative (α1, α2, α3 < 0), the system contains equilibrium points E0(0, 0) and 
E4±. In this configuration, E0 is a saddle point, while E4− and E4+ are centers (Fig. 6-b).

•	 Case 5: If, α1 is negative, α2 is positive , α3 is also Positive , only one equilibrium point: E0(0, 0), which acts 
as a center (Fig. 7-a)

•	 Case 6: If, α1 is negative, α2 is negative , α3 is also Positive , the system has only E0(0, 0) as an equilibrium 
point. This point is identified as a center (Fig. 7-b)

•	 Case 7: If, α1 is positive, α2 is positive , α3 is negative, the system has only E0(0, 0) as an equilibrium point. 
This equilibrium point functions as a saddle (Fig. 8-a).

•	 Case 8: Finally when, α1 is positive, α2 is negative , α3 is negative the system again has only E0(0, 0) as an 
equilibrium point. Here, E0 is classified as a saddle (Fig. 8-b).

Hamiltonian dynamics
In classical mechanics, Hamilton’s equations describe systems of the form:

	
dΥ
dχ

= U(Υ, Γ), dΓ
dχ

= V (Υ, Γ),

A system is Hamiltonian if a function H(Υ, Γ) exists such that:

	
U = ∂H

∂Γ , V = −∂H

∂Υ .

This function H(Υ, Γ) is referred to as the Hamiltonian32.

Definition 1  A system is Hamiltonian if it satisfies:

Fig. 6.  Graphical representations of the system’s phase space dynamics (10).

 

Fig. 5.  Graphical representations of the system’s phase space dynamics (10).
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∂U

∂Υ + ∂V

∂Γ = 0.

Equations describing the system qualify as Hamiltonian if they meet this condition:

	

∂

∂Υ

(
dΥ
dχ

)
+ ∂

∂Γ

(
dΓ
dχ

)
= 0.

The corresponding Hamiltonian function is:

	
H(Υ, Γ) = Γ2

2 − α1

4 Υ4 + α2

3 Υ3 + α3

2 Υ2.

Definition 2  For a critical point (Υ0, Γ0), the discriminant is:

	 Ω(Υ, Γ) = HΥΥ · HΓΓ − (HΥΓ)2.

Case 1: When the determinant Ω(Υ0, Γ0) is positive, the critical point may be identified as either a local 
maximum or a local minimum.

Case 2: When the determinant Ω(Υ0, Γ0) is negative, the critical point corresponds to a saddle point.
Case 3: If Ω(Υ0, Γ0) = 0, further analysis is needed.

Proposed results from Table (3) and Table (4)
Result 1: For α1 > 0, α3 > 0, and α2

2 + 4α1α3 > 0, the system defined by equation (10) has stable center at 
(0, 0) and saddle points at:

Fig. 8.  Graphical representations of the system’s phase space dynamics (10).

 

Fig. 7.  Graphical representations of the system’s phase space dynamics (10).
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(
α2 +

√
α2

2 + 4α1α3

2α1
, 0

)
and

(
α2 −

√
α2

2 + 4α1α3

2α1
, 0

)

These points represent different dynamical behaviors. Additionally, periodic orbits are observed around the 
center, and a homoclinic orbit exists at the origin.

Result 2: When α1 < 0, α3 < 0, and α2
2 + 4α1α3 > 0, the system has one saddle point at (0, 0) and two 

centers located at:

	

(
α2 +

√
α2

2 + 4α1α3

2α1
, 0

)
and

(
α2 −

√
α2

2 + 4α1α3

2α1
, 0

)

This configuration results in a homoclinic orbit around the origin, as well as a family of periodic orbits. These 
structures point to the presence of periodic, solitary, and breaking wave solutions in the system’s dynamics.

Result 3: For α2
2 + 4α1α3 > 0 and α1α3 < 0, the system has a center point at:

For selecting α1, α2, and α3 Equilibrium points (Ei, 0) Ω(Ei, 0) Classifications

α1 = 1, α2 = 1, α3 = 1

(-0.62, 0) -1.39 Saddle-node

(0, 0) 1 Stable center

(1.62, 0) -3.63 Saddle-node

α1 = 1, α2 = −1, α3 = 1

(-1.62, 0) -3.63 Saddle-node

(0, 0) 1 Center-node

(0.62, 0) -1.39 Saddle-node

α1 = −1, α2 = 1, α3 = −1

(-1.62, 0) 3.63 Center-node

(0, 0) -1 Saddle-node

(0.62, 0) 1.39 Center-node

α1 = −1, α2 = −1, α3 = −1

(-0.62, 0) 1.39 Center-node

(0, 0) -1 Saddle-node

(1.62, 0) 3.63 Center-node

α1 = −1, α2 = 1, α3 = 1 (0, 0) 1 Center-node

α1 = −1, α2 = −1, α3 = 1 (0, 0) 1 Center-node

α1 = 1, α2 = 1, α3 = −1 (0, 0) -3.63 Saddle-node

α1 = 1, α2 = −1, α3 = −1 (0, 0) -1 Saddle-node

Table 4.  Equilibrium Point Classifications of the System (10) Under Different Parameter Choices for α1, α2, 
and α3

 

For selecting α1, α2, and α3 Equilibrium points Eigenvalues Classifications

α1 = 1, α2 = 1, α3 = 1 Figure 5(a)

(-0.62, 0) ±1.18 Unstable saddle

(0, 0) ±i Stable center

(1.62, 0) ±1.9 Unstable saddle

α1 = 1, α2 = −1, α3 = 1 Figure 5(b)

(-1.62, 0) ±1.9 Unstable saddle

(0, 0) ±i Stable center

(0.62, 0) ±1.18 Unstable saddle

α1 = −1, α2 = 1, α3 = −1 Figure 6(a)

(-1.62, 0) ±1.9i Stable center

(0, 0) ±1 Unstable saddle

(0.62, 0) ±1.18i Stable center

α1 = −1, α2 = −1, α3 = −1 Figure 6(b)

(-0.62, 0) ±1.18i Stable center

(0, 0) ±1 Unstable saddle

(1.62, 0) ±1.9i Stable center

α1 = −1, α2 = 1, α3 = 1 Figure 7(a) (0, 0) ±i Stable center

α1 = −1, α2 = −1, α3 = 1 Figure 7(b) (0, 0) ±i Stable center

α1 = 1, α2 = 1, α3 = −1 Figure 8(a) (0, 0) ±1 Unstable saddle

α1 = 1, α2 = −1, α3 = −1 Figure 8(b) (0, 0) ±1 Unstable saddle

Table 3.  Phase Portraits classifications for different values of α1, α2, and α3.

 

Scientific Reports |        (2025) 15:37175 12| https://doi.org/10.1038/s41598-025-22968-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

(
α2 −

√
α2

2 + 4α1α3

2α1
, 0

)

This center point is accompanied by two saddle points, one at the origin and another at

	

(
α2 +

√
α2

2 + 4α1α3

2α1
, 0

)

This configuration leads to a series of periodic orbits near the center, alongside a homoclinic orbit at the origin. 
The system exhibits a variety of periodic, solitary, and breaking wave solutions.

Result 4: When α2
2 + 4α1α3 < 0, the system has a single equilibrium point at (0,0). This point is saddle if 

α3 < 0, and a center if α3 > 0. The system also shows a series of bounded open orbits, supporting periodic and 
breaking wave solutions.

Result 5: When α2
2 + 4α1α3 = 0, the system defined by equation (10) has one center point at (0, 0) and one 

saddle point at

	

(
α2

2α1
, 0

)
.

Wave solutions of the dynamical system
To find all possible super-nonlinear wave solutions, we need to figure out all the super-nonlinear paths for system 
(10) by changing the physical parameters α1, α2, and α3. By systematically adjusting parameters, we illustrate 
both periodic and super-periodic wave solutions. These results, shown in Figs. 9 and 10, clearly demonstrate that 
the system can support different types of nonlinear wave behaviors.

Our results clearly show that there are nonlinear periodic wave solutions, as seen in Fig. 9, which shows 
waves that repeat over time due to nonlinear effects in the system. Additionally, super-nonlinear periodic wave 
solutions, shown in Fig. 10, are a more complicated type of solution that features stronger nonlinear interactions 
and more complex wave shapes than regular nonlinear periodic waves. These findings point out the many 

Fig. 10.  Supernonlinear periodic wave solutions of dynamical system (10) for α1 = −1, α2 = −1 and 
α3 = 1.

 

Fig. 9.  Nonlinear periodic wave solutions of dynamical system (10) for α1, α2, α3 > 0.
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aspects and levels of detail within the system under study, giving profound insight into the formation of super-
nonlinear waves.

Analysis of quasi-periodic behaviour
In this section, we study the quasiperiodic patterns of the considered model. We explore the quasi-periodic 
dynamics of the system under three distinct parameter sets, visualizing the results using 2D and 3D phase 
portraits alongside corresponding time series plots. These visualizations provide a complete view of how the 
system’s behavior is controlled by parameter change, with subtle interactions between more than one frequency 
and their impact on stability and predictability.

The perturbed form of Eq (10) after inserting the periodic term A0 cos(τt) is:

	 Υ′ = Γ, Γ′ = α1Υ3 − α2Υ2 − α3Υ + A0 cos(τt),� (11)

where A0 is the amplitude and τ  is the frequency of the external forcing.
The results shown in Figs.  11, 12, and 13 for each set of parameters have the defining characteristics of 

quasi-periodic behavior: bounded but non-repeating orbits for the 2D and 3D plots. This analysis highlights 
the system’s sensitivity to parameter changes and captures the intricate, deterministic patterns that govern its 
behavior. These results are necessary to advance our understanding of nonlinear dynamical systems and their 

Fig. 12.  The 3D and 2D phase portraits of the system (11) for for α1 = −1, α2 = 1, α3 = 1A0 = 2.5 and 
τ = 3.

 

Fig. 11.  The 3D and 2D phase portraits of the system (11) for α1 = −1, α2 = 1, α3 = 1A0 = 0.6 and 
τ = 1.6.
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potential for applications in real systems. The quasi-periodic patterns that were noted highlight the intricate 
dynamics of the system, opening the way for a detailed study of chaos through Lyapunov exponent analysis.

Quantitative insights into dynamical system behavior using Lyapunov exponents
Lyapunov exponents are the fundamental quantities that characterize the stability and chaos of dynamical 
systems. A positive Lyapunov exponent signals exponential divergence of close trajectories, suggesting chaos, 
while a negative one suggests convergence to a stable state. The results in Table 5 show how the Lyapunov 
exponents change over time for the system being studied, and Fig. 14 also supports its chaotic behavior with the 
highest positive Lyapunov exponent of 0.9533. This indication highlights the sensitivity of the system to changes 
in parameters and initial conditions, giving quantitative verification of the occurrence of chaos. These findings 
are significant in comprehending the inherent dynamics of nonlinear systems and their potential applications in 
optimization and control.

Poincaré analysis for detecting quasi-periodic and chaotic behaviors
The Poincaré map is a powerful mathematical and visualization technique for analyzing nonlinear dynamical 
systems. We demonstrate its usefulness in this paper by its capability to distinguish between quasi-periodic 
and chaotic behavior. Figure 15-a shows a quasi-periodic motion with α1 = −1, α2 = 1, α3 = 1, A0 = 0.09, 
and τ = 1.2, where the points form a closed and repeating pattern in the Poincaré map. This pattern indicates 
regularity and stability in the system. In contrast, Fig. 15-b shows chaotic movement when α1 = −1, α2 = 1, 
α3 = 1, A0 = 0.8, and τ = 1.2, where the scattered points show randomness and how small changes at the start 
can lead to different outcomes. The results highlight the role of Poincaré maps in identifying complex system 
behavior and transitions. The results demonstrate how the system reacts to changes in parameters and confirm 

Time Lyapunov Exp1 Lyapunov Exp2

0.1000 0.1008 −0.1008

0.2000 0.9533 −0.9533

0.5000 0.2450 −0.2460

10.0000 0.1235 −0.1235

15.0000 0.3231 −0.3231

20.0000 0.1815 −0.1815

30.0000 0.1625 −0.1625

40.0000 0.1420 −0.1420

50.0000 0.1549 −0.1548

60.0000 0.1156 −0.1156

80.0000 0.1140 −0.1140

100.0000 0.1028 −0.1028

Table 5.  Temporal Variation of Lyapunov Exponents.

 

Fig. 13.  The 3D and 2D phase portraits of the system (11) for for α1 = −1, α2 = 1, α3 = 1A0 = 4 and 
τ = 6.
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that this technique is helpful for studying nonlinear dynamics, such as in improving and managing industrial 
processes.

 Sensitivity analysis
Sensitivity analysis is the powerful technique that enables one to examine how changes in the input or model 
parameters alter the output of a system; this provides critical insights into its behavior33,34. The results depicted 
in Figs. 16, 17 and 18) clearly illustrate the system’s sensitivity to initial conditions, confirming the presence 
of chaotic behavior. These graphs highlight the fundamental aspect of chaos—extreme sensitivity to initial 
conditions—observed for specific parameter values.

Using the initial conditions outlined in Table 6, we systematically examine how perturbations influence the 
behavior of the perturbed dynamical system ((11)). The findings underscore the intricate interplay between 
system parameters and initial states, demonstrating the critical role of sensitivity analysis in uncovering the rich 
dynamics of chaotic systems28.

Interpretation of results and applications
The results from this research have greatly contributed to increasing knowledge on Gardner-KP type equations. 
Most previous studies have dealt with (2+1)-dimensional Gardner-KP and related equations20–22,25,26, mainly 
investigating simple soliton patterns such as single solitons, lumps and breathers. On the other hand, this study 
on the (3+1)-dimensional Gardner-KP equation reveals various soliton profiles, like double periodic waves, 
shock waves and kink-type solitons.

A thorough study of the system here discovers new kinds of stability and leads to chaotic behavior that past 
studies have rarely described. It is evident from this that (3+1)-dimensional models are better for reflecting the 
various aspects of nonlinear waves in physical systems.

Multiple fields could make use of the outcomes from this work.

•	 Ocean Engineering plays a role by studying how internal waves travel along the ocean’s shelves and impact 
movement of sediments and shaping of coasts.

Fig. 15.  Poincaré maps for the dynamical system (11).

 

Fig. 14.  Dynamics of the Lyapunov exponent for the model (11) for the parameters values of 
α1 = −1,α2 = −1,α3 = −1 , A0 = 0.2 and τ = 0.86.

 

Scientific Reports |        (2025) 15:37175 16| https://doi.org/10.1038/s41598-025-22968-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


•	 Exploring wave distributions in plasma which cover solitary pulses and shock waves important for energy 
processes.

•	 how solitons behave in optical fibers, necessary for securing the digital signal of communication systems.
•	 Bose-Einstein Condensates with their self-organizing nature help us study nonlinear waves and their stability 

in quantum fluids.

Overall, this study broadens the application of Gardner-KP models in several scientific fields by adding concepts 
and explanations for practical use.

Conclusion
We investigated the non-linear (3 + 1)-dimensional KP-Gardner equation, focusing on its soliton solutions and 
dynamical behaviors. Using the Jacobi elliptic method, we derived soliton solutions that illustrate the equation’s 
rich nonlinear wave dynamics. These solitons provide valuable insights into wave transmission dynamics, with 
applications in various fields of physics and engineering. We conducted the dynamical analysis using the phase 
plane analysis, which provided a detailed classification of phase portraits based on orbital structures. Sensitivity 
analysis results were presented to highlight the system’s dependence on parameter variations. We used the 
Runge-Kutta (RK) method to solve the model, which indicated the existence of both supernonlinear and 
nonlinear periodic wave patterns. We further explored the effects of physical constants on quasi-periodic and 

Fig. 17.  Sensitivity plot for the perturbed dynamical system given in equation ((11)), using the specified 
parameters and initial conditions outlined in the table.

 

Fig. 16.  Sensitivity plot for the perturbed dynamical system given in equation ((11)), using the specified 
parameters and initial conditions outlined in the table.
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chaotic patterns within the perturbed dynamical system. To confirm chaotic behavior, Lyapunov exponents were 
calculated, Poincaré sections were plotted, and sensitivity analysis was performed. Changes in the frequencies 
and strengths of outside disturbances greatly affect the system’s unpredictable, chaotic behavior, as these analyses 
revealed. The results have profound implications for applications in engineering, fiber optics, and other scientific 
disciplines, where nonlinear models are critical to advancing theoretical and practical innovations.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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