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Exploring soliton solutions and
dynamical features of three
dimensional Gardner Kadomtsov
Petviashvili equation

Amjad Hussain'*!, Muhammad Zeeshan', Muhammad Junaid U Rehman? & Adil Jhangeer®*

In this paper, the dynamical features and soliton structures of the Gardner-Kadomtsov-Petviashvili
equation in three dimensions are looked at. The Jacobi elliptic function method yields wave solutions
that display distinct behaviors based on parameter variations. We reformulate the system into a planar
dynamical system via the Galilean transformation for further analysis.Phase portraits are depicted by
adjusting the bifurcation parameters, while periodic and super nonlinear periodic wave solutions are
portrayed using numerical simulations. Furthermore, quasi-periodic and chaotic behavior is depicted
by varying the external forcing term and using tools such as Lyapunov exponents, Poincaré maps, and
sensitivity analysis. Changes in frequency and amplitude strongly influence the system’s dynamics,
offering insights that can improve predictions, enhance control methods, and optimize model
performance.

Keywords (3+1)-dimensional Gardner-Kadomtsov-Petviashvili equation, Soliton solutions, Jacobi elliptic
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The investigation of the dynamical features of partial differential equations (PDEs) via different dynamics tools,
such as bifurcation theory and sensitivity analysis, is ongoing. Such investigations play a prime role in the
study of complex phenomena in optical systems, quantum physics, and fluid dynamics. Although considerable
progress has been achieved, chaos in complex systems is still far from fully comprehended by any researcher!.
The detection of chaos in nonlinear systems requires appropriate analytical techniques with phase portraits,
bifurcation diagrams, power spectrum analysis, nonlinear time series analysis, Poincaré maps, and Lyapunov
exponents, some of which may provide appropriate insight into the particular situation of the systems under
study. Due to this complexity, a strong analysis will often adopt multiple methodologies, ensuring an in-
depth understanding of this system®>. Recently, several dynamic properties of different PDEs have attracted
much attention because most of these equations admit localized solutions called solitons, among other forms
of traveling waves. In this respect, the analysis of bifurcation and chaos theory is complementary, since the
former investigates how changes in parameters affect stability and spatial patterns, while the latter points out
the thresholds beyond which instability and chaotic behavior arise®”. Together, these methods shed light on
the interplay between stability and chaos®~®, which is important to understand the underlying dynamics of
nonlinear systems. Moreover, related non-linear equations are often studied using bifurcation analysis and
chaos detection methods!”~!°. For example, the bifurcation and chaotic behaviors of the KdV-MKdV equations’
have been studied in detail and provide important information about complex wave phenomena. However,
the study of soliton solutions to non-linear systems is equally important, as it has many applications in science
and engineering. Soliton solutions help us to understand the complex behavior of nonlinear systems. The
significance of soliton solutions in several physical contexts, such as wave propagation and optical systems, has
been highlighted in earlier research!?-!4,

The Gardner equation models internal waves in stratified fluids and has applications in plasma physics'®
and Bose-Einstein condensates'. The multi-dimensional Gardner-KP equation is vital in ocean engineering,
describing nonlinear internal waves on ocean shelves. Studies have shown its role in governing dispersive surface
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waves near critical depths®, dispersive shock waves through the cylindrical Gardner equation?!, and solitary
wave solutions?. In addition, elliptic and traveling wave solutions?® and solitons have been developed using
the Hirota bilinear method?%. The (3 + 1)-dimensional Gardner-KP equation is an extended form of the (2 +
1)-dimensional Gardner-KP equation?>%6, which serves as the primary focus of this study.

The (3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili (Gardner-KP) equation, a notable
nonlinear partial differential equation, serves as an important model for examining soliton dynamics and
chaotic phenomena:

(Wo + 60Ty — 60 Wy + 17 Wouo)  + (Vs + Vee) =0, (1)

where p = £1and U = U(¢, 5, &, o) is the real field representing the amplitude of the wave, o is the temporal
component, and ¢, 3, £ are the spatial components.

Equation (1) models the evolution of the nonlinear wave amplitude ¥(¢, 8, £, 0) in a multidimensional
medium. The terms appearing in (1) have the following physical meanings:

o W,: temporal change of the wave amplitude.

o 6WW,: quadratic nonlinearity representing wave steepening effects.

o —6W=W,: cubic nonlinearity accounting for higher-order nonlinear interactions.

o Theterm 12 W 444 is used for dispersive behavior caused by waves spreading and dispersing in the ¢ direction
and v? controls how much dispersion there is.

o p(Upp + Wee), that describes wave modulation in 8 and € directions and p = £1 shows if this is dispersion
or anti-dispersion.

Despite the numerous existing works on lower-dimensional Gardner-KP equations, they seem to lack
comprehensive coverage of the (3+1)-dimensional case, particularly in terms of its explicit soliton solutions
and intricate soliton dynamics. It is complicated to study the influence of various features in systems that are
nonlinear, and such analysis usually requires sophisticated methods to show chaos and supernonlinear waves.
We address these gaps by employing the Jacobi elliptic function method to derive new exact solutions and by
investigating various aspects of the nonlinear model, as it is significant for ocean engineering, plasma physics,
and wave studies.

Consequently, this paper aims to derive soliton solutions by the JEF technique?” and to analyze the dynamics?®
of the (3 + 1)-dimensional Gardner-KP equation. This research is centred on achieving two key objectives The
first one is to derive exact soliton solutions of the (3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili
(Gardner-KP) equation using the efficient JEF technique, and the second is to investigate its nonlinear dynamics
through advanced analytical tools, including chaos detection methods, Lyapunov exponents, Poincaré maps,
sensitivity analysis, and phase plane analysis. These methods offer a systematic framework for investigating the
equation’s shift from regular behavior to chaotic dynamics.

By using a thorough methodology to reveal the soliton dynamics and nonlinear features of the
(3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili (Gardner-KP), this study expands and
improves upon previous research. By examining the chaotic and bifurcation aspects of the system, this work
fills in knowledge gaps in the study of solitons and opens the door to more extensive applications in science and
engineering.

Findings from this problem are very different from results obtained in earlier studies based on lower-
dimensional Gardner-KP equations*!. Unlike previous works, we highlight new and complex dynamical
behaviors and additional, richer soliton structures of the (3+1)-dimensional model. The soliton solutions found
using the Jacobi elliptic function method reveal new ways that pulses can interact and take shape, which are
more advanced than what was seen in traditional results. Stability tests show that the results remain reliable even
when changing parameters, and further analysis using phase portraits and Lyapunov exponents reveals complex
stability patterns, different levels of chaos and additional features not seen in lower dimensions. This comparison
shows how significant the effects of multidimensional nonlinear wave propagation are and highlights the main
Gardner-KP equations used in this research, which help both the theory and practical applications.

The structure of this paper is as follows: The first part uses the Jacobi elliptic method to find the soliton
solutions of the (3+1)-dimensional Gardner-KP equation. In the second part, the dynamic behaviour of the same
model is analyzed using various tools, such as phase portraits, bifurcation analysis, and Lyapunov exponents, to
investigate its chaotic and quasiperiodic dynamics.

Soliton Solution of the (3 + 1)-dimensional Gardner-KP equation by JEF Technique
Jacobi elliptic functions, first described by Carl Gustav Jacob Jacobi in 1827, are periodic functions derived as the
inverses of elliptic integrals. They are essential in areas such as mathematical physics, nonlinear dynamics and
differential equations. The main Jacobi elliptic functions are sn(z|m), cn(z|m), and dn(z|m). They are defined
in terms of a parameter m, which is called the elliptic modulus, and they show how the amplitude of the elliptic
integral is related to its arguments. Because they are periodic and relate to each other, they are like trigonometric
functions in elliptic geometry. This gives us many ways to solve hard math and science problems®. The detailed
description of the method is provided in?’.
We use the following transformation:

(¢, 5,6,0) =T(x), where x =0bi¢+ b2+ bs§+ co, )

which defines a traveling wave solution, where
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o b1, bz, bs are wave numbers corresponding to spatial directions ¢, 3, and &, representing the direction and
wavelength of the wave.
o cis the wave speed in time, governing how fast the wave profile moves.

This transformation reduces the partial differential equation (1) to an ordinary differential equation (ODE)
in x:

(b3 + cb1 + pub3) Y 4 6b3 (YY) — 6b7 (27 ()% + T2Y") + 261" = 0, 3)

facilitating the analysis of soliton solutions propagating in multiple spatial dimensions.
Upon the JEF method, we take the solution of Eq. (3) in the following form:

T(x) =Y _ kG ()

Next, by virtue of the homogeneous balancing principle, that is balancing the highest-order derivative term with
the nonlinear term, we get N = 1, so the solution simplifies to

Y(x) = ko + k1G(x), (4)

where ko and k; are the constants and the function G(x) satisfy the followingg ansatz

G'(0) = \[r1 + 126200 + 5 G,

By substituting (4) into equation (3), we derive a system of equations. We solve this system using the computational
software Maple to obtain the following parameter values.
p=p, c=c, v=v, ko=%, ki=k, bi=bi, by=by, bs=bs,
1 2ub3 +2b3+3b% +2(cby)

ri=r, =X e 7 (5)
1
2k?
T3 = 22
Family 1: When the parameters are definedasr1 = 1,72 = —(1 + 62), and 5 = 262, the wave profile can

be derived from analyzing G (x), where the function is expressed using the Jacobi elliptic sine function, sn(x;, 9):

T (x) = ko + k1sn(x, 9).
Specifically, in this case, the wave profile simplifies to

1
Nﬂ:5+th®-

As the parameter ¢ approaches 1, the shock wave profile transitions into the following form, represented using
the hyperbolic tangent function:

1
T(x) = 5 + k1 tanh(x).

To further generalize this result, we can express the shock wave profile as follows:
1
U (¢, B,8,0) = 3 + k1 tanh(big + b2 8 + b3 + co). (6)

Family 2: Consider the parameters r; = 762(1 — (52), ro =262 -1, and r3 = 2. By choosing
G(x) = ds(x, 9), we derive a periodic wave profile given by:

1
ﬂm:5+hﬁu@-

When the parameter § approaches 1, the wave profile transitions into the following form involving the hyperbolic
cosecant function:

1
T(x) = 5 + k1 csch(y).
This result can be further generalized for a multidimensional scenario, where the wave profile is expressed as:

(¢, 8,8,0) = % + k1 csch(b1 + baf3 + bsé + co).
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Family 3: When the parameters are defined as r, = 1 — 52,79 =2 — 62, and 73 = 2, the periodic wave
profile can be derived by analyzing G(x) = c¢s(x, d). This leads to the expression:

1
00 = 5 + b cs(x.5):
As the parameter 6 approaches the limiting case of § — 1, the profile transforms into:

1
T(x) = 5 + k1 coth(x).

Extending this into a multidimensional framework, the wave profile is given by:

V(e B,€,0) = % + k1 coth(bi¢p + b2 + bs€ + co).

Family 4: For the parameters r; =1 — 62,10 =262 — 1, and r3 = —262, the periodic wave structure can
be described by analyzing G(x) = cn(x, §) The resulting wave form is:

1
T(x) = 5 + ki en(x, 9)

In the special case where § — 1, the wave profile transitions to the following form involving the hyperbolic
secant function:

1
T(x) = 5 + k1 sech(y).

Moreover, the generalized multidimensional form of the wave profile is expressed as:

1
U (¢, B, 0) = §—|—k1 sech(b1¢ + b2 B + bs€ + co). (7)
Family 5: For the parameters r1 = 52 —1, 7o =2—62% and r3 = —2, the periodic wave profile can be
determined by analyzing G(x) = dn(x, J). The expression for the wave profile is given by:
1
T() = 5 + k1 dn(x; o).

In the limiting case as § — 1, the wave profile simplifies to the hyperbolic secant form:
1
T(x) = 3 + k1 sech(x).

Furthermore, the wave profile can be extended into a multidimensional representation as follows:

(6, 5,6,0) = 3 + b sech(big + ba + bat + o).

2_ 2 . . .
Family 6: For the parameters 71 = i, ro =2 5 2 and 75 = %, the double-periodic wave structure is

sn(x.9)

described by analyzing G(x) = 125008 -

The resulting wave form is:

1 kisn(x,9)
T == 4 —2
=35 T a0
In the special case where § — 1, the wave profile becomes:

1 kltanh( b1¢+bg,8+b3.£+ca)
2 1+sech(bid+ baff + b3€ +co)’

(g, B,8,0) = (8)

2 2_ 2 . . .
Family 7: For the parameters r1 = %, ro = ‘572, and 73 = %, the double-periodic wave structure is

sn(x,9)

described by analyzing G(x) = TZdn(x5) - 1he resulting wave form is:

1 k1sn(x,9)
T =5+ G001 Lan(e )"

T2

In the special case where § — 1, the wave profile transitions to:
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_ 1 ktanh()
TOO =5+ IF sech(y)’
U(6,5,6,0) = L 4 P tanh(b1d + bafi +bst + co)

2 1z4sech( bi¢+ b+ bs€é +co)’

1-62)? 5241
e R

is described by analyzing G(x) = cn(x, ) = dn(x, 6). The resulting wave form is:

Family 8: For the parameters 7, = andrs3 = — %, the double-periodic wave structure

T(x) = % + k1(en(x, d) = dn(x, 9)).

In the special case where § — 1, the wave profile becomes:
1
T(x) =3 + ki1 (sech(x) £ sech(x)).

U(op, B,&,0) :% + ki(sech(bi¢p + b2 + bs€ + co) £ sech( b1gp + b2 + b3 + co)).

Family 9: For the parameters r1 = 524_1 , T = 522‘” ,and 3 = 522_ L, the double-periodic wave structure is
described by analyzing G(x) = &227%. The resulting wave form is:
1 kidn(x,9)
T(x) = = + L0
o) 2 + 1+ sn(x,9d)

In the special case where 6 — 1, the wave profile transitions to:

1 k1 sech(x)
T(x) ==+ ——F5~.
() 2 + 1 £ tanh(x)
1 klsech( b1¢+b2,3+b35+00')
1\ == .
(¢.8,60) =5+ 73 tanh( b1 + b2f + bsé + co)
Family 10: For the parameters r; = %, ro = 1_252 ,and 3 = 1_252 , the double-periodic wave structure
is described by analyzing G(x) = %. The resulting wave form is:
1 kien(x,9)
T(x) ==+ —5—=%.
o) 21 +sn(x,0)

In the special case where § — 1, the wave profile transitions to:

1 k1 sech(x)
T(x) == + ———=22_,
() 2 + 1 £ tanh(x)
1 k1 sech( b1¢ + b2 + b3€ + co)
v == .
(6:8,6,0) =5 & T tanh( 0160 T baB + bst + o)
Family 11: For the parameters r; = i, ro = %, andrs = %, the double-periodic wave structure

is described by analyzing G(x) = %. The resulting wave form is:

k1sn(x,9)
dn(x, d) £ en(x,9)

T(p.6,60) =5 +

In the special case where § — 1, the wave profile becomes:

_ L1, fatanh(y)
T0) = 2 + sech(x) £ sech(x)"
k1 tanh( b1 + b2 + b3€ + co)

sech( b1 + ba3 + b3€ + co) & sech( b1 + baB + bsé + co)’

(g, 6,60) =5+ ©

Family 12: For the parameters r1 = 0, 72 = 0, and r3 = 2, the rational structure is described by analyzing
G(x) = %. The resulting wave form is:
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In the special case where § — 1, the expression remains:

k1D
(b1g + b2+ b3 +co)’

W, 6,60) = 5 +

Famil¥ 13: For the parameters r; = 0, r2 = 1, and r3 = 0, the rational structure is described by analyzing
G(x) = 5 + De*. The resulting wave form is:

1
T(x) = 3 + b1 DeX.
In the special case where § — 1, the expression remains:

1
U(p,B,6,0) = 3 + by Del bro+b2Btbstter)

Analyzing physical dynamics through visualization

We employ visual representations for the novel soliton structures of the non-linear Gardner-KP equation . These
pictures show the newly calculated waveform solutions in the form of graphs. The solutions include hyperbolic,
trigonometric, and rational forms from different Familys. The physical interpretation of these solutions is
facilitated by simulations conducted using the symbolic computation software Mathematica. Soliton structures
that can be recognized include double periodic waves, shock wave solutions, kink-shaped solitons, solitary or
bell-shaped solitons, and periodic wave soliton solutions. Each has its set of physical properties. The shock wave
soliton solution is shown in Fig. 1, the bell-shaped soliton solution is shown in Fig. 2, and the kink type, which
shows the smooth transition of soliton solutions, is shown in Figs. 3 and 4.

To provide physical insight, these various soliton solutions correspond to real nonlinear wave phe-nomena
observed in fluids and plasma. For example, shock wave solutions model abrupt changes in wave amplitude
analogous to physical shock fronts, while bell-shaped solitary waves represent stable waves as they can propagate
without distortion and are localized. Kink solitons describe smooth transitions with changing state of waves
and are akin to stable domains found in many media. Thus, these solutions outline both valuable mathematical
patterns and important meanings related to oceanography, plasma physics and nonlinear wave propagation.

Shock wave profile

We evaluate the features of the shock wave solutions described by equation (6). As seen in Fig. 1, the wave is
shaped in a certain manner for these selected parameter values. The extreme change in the gradient illustrates
the common nonlinear steepening seen in shock effects that happen in fluids and plasmas.

Bell-shaped soliton
The wave solution in the form of a bell-shaped soliton appears in Fig. 2. Such a profile remains fixed in shape as
it travels, which is common with nonlinear waves, like internal waves found in fluids.

Kink-type soliton
Smooth changes from one wave state to another are seen in Figs. 3 and 4 from the kink-type soliton solutions.
They show how stable wave motions, like a front, frequently appear in various physical situations.

——

-1.0 - -0.5 B U 0.5 - 1.0 ¢

10

(a) 3D Wave Profile. (b) 2D Wave Profile.

Fig. 1. Wave Profile Visualization of the equation (6) with parameters k1 = 2, by = 10, b2 = 5, b3 = —10,
and ¢ = 3.Figures generated using Mathematica Version 13.3.1.0 (Wolfram Research, Champaign, IL, USA; htt
ps://www.wolfram.com/mathematica/).
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(a) 3D wave profile. (b) 2D wave profile.

Fig. 2. Wave Profile Visualization of equation (7) with parameters k1 = 2, b; = 10, b = 5, b3 = —10, and
¢ = 3.Figures generated using Mathematica Version 13.3.1.0 (Wolfram Research, Champaign, IL, USA; https://
www.wolfram.com/mathematica/).

(a) 3D wave profile. (b) 2D wave profile.

Fig. 3. Wave Profile Visualization of equation (8) with parameters k1 = 2, b1 = 10, b2 = 5, b3 = —10, and
¢ = 3.Figures generated using Mathematica Version 13.3.1.0 (Wolfram Research, Champaign, IL, USA; https://
www.wolfram.com/mathematica/).

Numerical stability analysis of the obtained soliton solutions
For stability, a small amplitude-scaled Gaussian perturbation is added to the above-plotted soliton profile, and
these perturbations are observed over time. The perturbation magnitude was evaluated by calculating the norm
of the difference between the perturbed and original soliton solutions at various time instances. Every soliton
solution showed a decrease in perturbation norm, as the table presented in Table 1 shows, indicating that each
soliton is locally stable to small perturbations. Hence, it can be said that solitons are stable when focused on their
immediate surrounding points in the solution space®®3!.

The local stability means that soliton solutions are being considered very close to their exact values. It does
not rule out that other types of dynamics and even chaotic dynamics can develop at the larger scales discussed
further in the dynamical section.

Dynamical analysis of Gardner-Kp equation

Studying the dynamics of the (3+1)-dimensional Gardner-KP equation helps explain the stability of solitons in
real situations. Phase portraits, Lyapunov exponents, and Poincaré maps explain how the waves behave, staying
the same or sometimes changing to chaos or complex patterns. Seeing these dynamics clearly helps explain how
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(a) 3D wave profile. (b) 2D wave profile.
Fig. 4. Wave Profile Visualization of equation (9) with parameters k1 = 2, b; = 10, b2 = 5, b3 = —10, and

¢ = 3.Figures generated using Mathematica Version 13.3.1.0 (Wolfram Research, Champaign, IL, USA; https://
www.wolfram.com/mathematica/).

0.00 0.495 0.561 0.384 2.699
1.01 0.299 0.339 0.232 1.629
2.02 0.180 0.204 0.140 0.983
3.03 0.109 0.123 0.084 0.593
4.04 0.066 0.074 0.051 0.358
5.05 0.040 0.045 0.031 0.216
6.06 0.024 0.027 0.019 0.130
7.07 0.014 0.016 0.011 0.079
8.08 0.009 0.010 0.007 0.047
9.09 0.005 0.006 0.004 0.029

Table 1. Perturbation norms ||AU;||2 of the plotted soliton solutions at selected times.

nonlinear waves change, connect, and travel in materials such as fluids and plasma. For such an analysis, we
integrate Equation (3) twice to get

yr_ 2 T34 3 T2+MT:O
v2b? V22 v2b} '
Letting vy = 22 Ly = 732. and a3z = “bg’%ﬂ we obtain
veby v2by veb3

T — a1 T? + a2 Y? + 3T = 0.
Finally, we apply the Galilean transformation to get
Y =0, I"'=o1Y®— Y% —asT, (10)
The equilibrium points of (10) are determined by letting
T =0 and I'=0.
These conditions, when substituted in (10) yield:
I'=0 and a1T3 — azT2 —a3Y =0,

which on solving, results in
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+ /a2 +4
F—=0 and Y=o, 2ZV@T7NG

20[1

The system has three equilibrium points: Eo (Yo, 0), E1(Y1,0), and E2(Y2,0), where

Ty — oo — /& +4a1a3'

2
2
20{1

o2 + /a2 + daia:
T0:O7 le 2 2 1 37
1

2«

The Jacobian matrix for the system (10) can be expressed as

0 AN
I (T3, T) = (Sal—r? 2T — as 0) ,1=0,1,2.

Let M (Y3, 0) be the coeflicient matrix of the linearized system at the equilibrium point (T, 0):

0 1
M(Y;,0) = (3a1”ff — 20T — as 0) '

At the equilibrium point (Y5, 0), we define the determinant J and trace T" of matrix M. The determinant .J is
given by:

J = (3 + QQQT — 30(1T2,

and the trace T' = 0.
The eigenvalues of the matrix M are determined by solving the characteristic equation:

|[M — Max2| =0,
which simplifies to
)\2 — (30(1T~; — 20&2T~; — 053) =0.

Thus, the eigenvalues of M are:

A2 = £1/301 T2 — 2007 — s

These eigenvalues depend on the parameters a1, a2, and as, as well as the equilibrium points (5, 0). It is
important to note that the parameters a1, a2, and a3 are related to system parameters, such as v, b1, be, bs, ¢,
and p.

The stability of the critical points (Y;, 0) can be analyzed based on Table 2.

As the system (10) is a three-parameter planar dynamical system, with the stability of the system depending
on the values of parameters o1, a2, and az. The behavior of the system is further investigated by analyzing the
bifurcations in the phase portraits of (10) as the parameter values change.

Phase portraits

Phase portraits are graphical representations of a dynamical system’s trajectories in its phase space, showing how
the system evolves over time based on initial conditions. They provide insight into the stability and behavior of
equilibria, periodic orbits, and chaotic dynamics .

« Case 1: When a1, aig, and a3 are all positive, the system has three equilibrium points: Eq (0, 0) and E1 +. The
point Fy acts as a center, while the points F1_ and E1 4 are identified as saddle points (Fig. 5-a).

o Case 2: In this case, a1 is positive, a2 is negative , a3 is also positive. The system exhibits equilibrium points
Ey(0,0) and Ez+. Here, Ey is a center, while F»>_ and Eo act as saddle points. (Fig. 5-b)

o Case 3: If, a1 is negative, a2 is positive , azg is negative, the system has equilibrium points E5(0, 0) and Es+.
The equilibrium Ey becomes a saddle point, while F3 and F3_ are centers (Fig. 6-a).

Condition Eigenvalue Nature | Equilibrium Type | Stability

J<0 Real, opposite signs | Saddle Point Always unstable

J>0,T?—4J >0 Real, same sign Node Stable if 7" < 0, unstable if 7" > 0
J>0,T? —4J <0,T # 0 | Complex conjugates | Focus Stable if 7" < 0, unstable if " > 0
J>0,T=0 Pure imaginary Center Neutrally stable (closed orbits)

J = 0, Poincaré index = 0 Degenerate Zero Point / Cusp | Indeterminate

Table 2. Stability classification of equilibrium points based on the Jacobian matrix.
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saddle point saddle point

1 2
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(a) Phase plot for scenario (5a). (b) Phase plot for scenario (5b).

Fig. 5. Graphical representations of the system’s phase space dynamics (10).
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Fig. 6. Graphical representations of the system’s phase space dynamics (10).

o Case 4: If all parameters are negative (a1, a2, a3 < 0), the system contains equilibrium points E (0, 0) and
E4+. In this configuration, Ey is a saddle point, while E4— and E4 are centers (Fig. 6-b).

o Case5: If, o1 is negative, o is positive , azs is also Positive , only one equilibrium point: Eo (0, 0), which acts
as a center (Fig. 7-a)

« Case 6: If, 1 is negative, a2 is negative , vz is also Positive , the system has only E (0, 0) as an equilibrium
point. This point is identified as a center (Fig. 7-b)

o Case 7:If, a1 is positive, avz is positive , a3 is negative, the system has only E(0, 0) as an equilibrium point.
This equilibrium point functions as a saddle (Fig. 8-a).

« Case 8: Finally when, a is positive, s is negative , a3 is negative the system again has only Eo(0, 0) as an
equilibrium point. Here, Ey is classified as a saddle (Fig. 8-b).

Hamiltonian dynamics
In classical mechanics, Hamilton’s equations describe systems of the form:

dY dar
— =U(T,I — =V(,T
dX U( ) )7 dX V( ) )7

A system is Hamiltonian if a function H (T, T") exists such that:

_OH . 9H

U=%r V= "ar

This function H (Y, T") is referred to as the Hamiltonian32.

Definition 1 A system is Hamiltonian if it satisfies:
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Fig. 8. Graphical representations of the system’s phase space dynamics (10).
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Equations describing the system qualify as Hamiltonian if they meet this condition:

o (@Y, o (@) _,
oY \ dx or \dx )

The corresponding Hamiltonian function is:

2 «
H(T,T) = % SRR S S

Definition 2 For a critical point (Yo, I'0), the discriminant is:
Q(Y,T) = Hyr - Hrr — (Hvyr)?.

Case 1: When the determinant (Yo, o) is positive, the critical point may be identified as either a local
maximum or a local minimum.

Case 2: When the determinant (Yo, I'o) is negative, the critical point corresponds to a saddle point.

Case 3: If (Yo, o) = 0, further analysis is needed.

Proposed results from Table (3) and Table (4)
Result 1: For a1 > 0, az > 0, and a3 + 4a1as > 0, the system defined by equation (10) has stable center at
(0,0) and saddle points at:
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For selecting a1, a2, and acz Equilibrium points | Eigenvalues | Classifications
(-0.62, 0) +1.18 Unstable saddle
a1 = 1,a2 = 1, a3 = 1 Figure 5(a) (0,0) +i Stable center
(1.62,0) +1.9 Unstable saddle
(-1.62,0) +1.9 Unstable saddle
a1 =1, = —1, az = 1 Figure 5(b) (0,0) +4 Stable center
(0.62,0) +1.18 Unstable saddle
(-1.62,0) +1.91 Stable center
a; = —1,a = 1, a3 = —1 Figure 6(a) (0, 0) +1 Unstable saddle
(0.62,0) +1.18i Stable center
(-0.62,0) +1.18i Stable center
a1 = —1,as = —1, a3 = —1 Figure 6(b) | (0, 0) +1 Unstable saddle
(1.62,0) +1.9i Stable center
a1 = —1,a2 = 1, a3z = 1 Figure 7(a) (0,0) +4 Stable center
a1 = —1, a2 = —1, ag = 1 Figure 7(b) (0, 0) +4 Stable center
a1 = 1,az = 1, a3 = —1 Figure 8(a) (0, 0) +1 Unstable saddle
a1 = 1,as = —1,ag = —1 Figure 8(b) (0,0) +1 Unstable saddle

Table 3. Phase Portraits classifications for different values of a1, a2, and as.

For selecting a1, a2, and acz Equilibrium points (Ei, 0) | €2(Ei, 0) | Classifications
(-0.62,0) -1.39 Saddle-node
a; =l,as=1l,a3 =1 (0,0) 1 Stable center
(1.62,0) -3.63 Saddle-node
(-1.62,0) -3.63 Saddle-node
a; =l,as=—-1l,az3 =1 (0,0) 1 Center-node
(0.62,0) -1.39 Saddle-node
(-1.62,0) 3.63 Center-node
a; = —1l,as =1,a3 = —1 (0,0) -1 Saddle-node
(0.62,0) 1.39 Center-node
(-0.62, 0) 1.39 Center-node
a; = —1,as = —1,a3 = —1 | (0,0) -1 Saddle-node
(1.62,0) 3.63 Center-node
a; =—l,as =1,a3 =1 (0,0) 1 Center-node
a; =—1l,as=—-1,azg =1 (0,0) 1 Center-node
a; =1, =1,a3 = —1 (0,0) -3.63 Saddle-node
a; =1, =—-1,a3 = —1 (0,0) -1 Saddle-node

Table 4. Equilibrium Point Classifications of the System (10) Under Different Parameter Choices for a1, a2,
and a3

s + /a2 + daqas
2 2 ! 370 and
2001 2011

az — /a2 + daras 0

)

These points represent different dynamical behaviors. Additionally, periodic orbits are observed around the
center, and a homoclinic orbit exists at the origin.

Result 2: When a1 < 0, az < 0, and a% + 4aas > 0, the system has one saddle point at (0,0) and two
centers located at:

as + /a2 + daras 0 and az — /a2 + daras 0
, n

2001 201 ’

This configuration results in a homoclinic orbit around the origin, as well as a family of periodic orbits. These
structures point to the presence of periodic, solitary, and breaking wave solutions in the system’s dynamics.
Result 3: For a3 + 4aias > 0and aras < 0, the system has a center point at:
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Fig. 10. Supernonlinear periodic wave solutions of dynamical system (10) for &1 = —1, a2 = —1 and
a3 = 1.

az — /a2 4+ danas 0

2041 ’

This center point is accompanied by two saddle points, one at the origin and another at

@z + /a3 +daras

2&1 ’

This configuration leads to a series of periodic orbits near the center, alongside a homoclinic orbit at the origin.
The system exhibits a variety of periodic, solitary, and breaking wave solutions.

Result 4: When a3 + 4ajas < 0, the system has a single equilibrium point at (0,0). This point is saddle if
a3 < 0,and a center if a3 > 0. The system also shows a series of bounded open orbits, supporting periodic and
breaking wave solutions.

Result 5: When a3 + 4a;1 a3 = 0, the system defined by equation (10) has one center point at (0, 0) and one

saddle point at
a2
—.,0].
(2041’ )

Wave solutions of the dynamical system

To find all possible super-nonlinear wave solutions, we need to figure out all the super-nonlinear paths for system
(10) by changing the physical parameters a1, a2, and 3. By systematically adjusting parameters, we illustrate
both periodic and super-periodic wave solutions. These results, shown in Figs. 9 and 10, clearly demonstrate that
the system can support different types of nonlinear wave behaviors.

Our results clearly show that there are nonlinear periodic wave solutions, as seen in Fig. 9, which shows
waves that repeat over time due to nonlinear effects in the system. Additionally, super-nonlinear periodic wave
solutions, shown in Fig. 10, are a more complicated type of solution that features stronger nonlinear interactions
and more complex wave shapes than regular nonlinear periodic waves. These findings point out the many
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Fig. 11. The 3D and 2D phase portraits of the system (11) forax = —1, a2 = 1, a3 = 149 = 0.6 and
7 =1.6.

(@) 3D Quasi-Periodic Dynamics (b) 2D Quasi-Periodic Dynamics

Fig. 12. The 3D and 2D phase portraits of the system (11) for for s = —1, 2 = 1, a3 = 14p = 2.5 and
T=23.

aspects and levels of detail within the system under study, giving profound insight into the formation of super-
nonlinear waves.

Analysis of quasi-periodic behaviour
In this section, we study the quasiperiodic patterns of the considered model. We explore the quasi-periodic
dynamics of the system under three distinct parameter sets, visualizing the results using 2D and 3D phase
portraits alongside corresponding time series plots. These visualizations provide a complete view of how the
system’s behavior is controlled by parameter change, with subtle interactions between more than one frequency
and their impact on stability and predictability.

The perturbed form of Eq (10) after inserting the periodic term Ag cos(7t) is:

T =0, I"=a1T?—aY?—azY + Agcos(rt), (11)

where Ao is the amplitude and 7 is the frequency of the external forcing.

The results shown in Figs. 11, 12, and 13 for each set of parameters have the defining characteristics of
quasi-periodic behavior: bounded but non-repeating orbits for the 2D and 3D plots. This analysis highlights
the system’s sensitivity to parameter changes and captures the intricate, deterministic patterns that govern its
behavior. These results are necessary to advance our understanding of nonlinear dynamical systems and their
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Fig. 13. The 3D and 2D phase portraits of the system (11) for for an = —1, a2 = 1, a3 = 14 = 4 and
7= 0.

Time Lyap Expl | Lyapunov Exp2
0.1000 0.1008 —0.1008
0.2000 0.9533 —0.9533
0.5000 0.2450 —0.2460
10.0000 | 0.1235 —0.1235
15.0000 | 0.3231 —0.3231
20.0000 | 0.1815 —0.1815
30.0000 | 0.1625 —0.1625
40.0000 | 0.1420 —0.1420
50.0000 | 0.1549 —0.1548
60.0000 | 0.1156 —0.1156
80.0000 | 0.1140 —0.1140
100.0000 | 0.1028 —0.1028

Table 5. Temporal Variation of Lyapunov Exponents.

potential for applications in real systems. The quasi-periodic patterns that were noted highlight the intricate
dynamics of the system, opening the way for a detailed study of chaos through Lyapunov exponent analysis.

Quantitative insights into dynamical system behavior using Lyapunov exponents

Lyapunov exponents are the fundamental quantities that characterize the stability and chaos of dynamical
systems. A positive Lyapunov exponent signals exponential divergence of close trajectories, suggesting chaos,
while a negative one suggests convergence to a stable state. The results in Table 5 show how the Lyapunov
exponents change over time for the system being studied, and Fig. 14 also supports its chaotic behavior with the
highest positive Lyapunov exponent of 0.9533. This indication highlights the sensitivity of the system to changes
in parameters and initial conditions, giving quantitative verification of the occurrence of chaos. These findings
are significant in comprehending the inherent dynamics of nonlinear systems and their potential applications in
optimization and control.

Poincaré analysis for detecting quasi-periodic and chaotic behaviors

The Poincaré map is a powerful mathematical and visualization technique for analyzing nonlinear dynamical
systems. We demonstrate its usefulness in this paper by its capability to distinguish between quasi-periodic
and chaotic behavior. Figure 15-a shows a quasi-periodic motion with &1 = —1, 2 = 1, a3 = 1, Ag = 0.09,
and 7 = 1.2, where the points form a closed and repeating pattern in the Poincaré map. This pattern indicates
regularity and stability in the system. In contrast, Fig. 15-b shows chaotic movement when a1 = —1, a2 =1,
a3 =1, Ag = 0.8,and 7 = 1.2, where the scattered points show randomness and how small changes at the start
can lead to different outcomes. The results highlight the role of Poincaré maps in identifying complex system
behavior and transitions. The results demonstrate how the system reacts to changes in parameters and confirm
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Fig. 15. Poincaré maps for the dynamical system (11).

100

Dynamics of the Lyapunov exponent for the model (11) for the parameters values of
a1 = —1,o0 = —1l,a3 = —1, Ag = 0.2 and 7 = 0.86.

I'(t)

(b) Chaotic motion

that this technique is helpful for studying nonlinear dynamics, such as in improving and managing industrial
processes.

Sensitivity analysis
Sensitivity analysis is the powerful technique that enables one to examine how changes in the input or model
parameters alter the output of a system; this provides critical insights into its behavior’*34. The results depicted
in Figs. 16, 17 and 18) clearly illustrate the system’s sensitivity to initial conditions, confirming the presence
of chaotic behavior. These graphs highlight the fundamental aspect of chaos—extreme sensitivity to initial
conditions—observed for specific parameter values.

Using the initial conditions outlined in Table 6, we systematically examine how perturbations influence the
behavior of the perturbed dynamical system ((11)). The findings underscore the intricate interplay between
system parameters and initial states, demonstrating the critical role of sensitivity analysis in uncovering the rich

dynamics of chaotic systems

Interpretation of results and applications

28

The results from this research have greatly contributed to increasing knowledge on Gardner-KP type equations.

Most previous studies have dealt with (2+1)-dimensional Gardner-KP and related equations

20-22,25,26

, mainly

investigating simple soliton patterns such as single solitons, lumps and breathers. On the other hand, this study
on the (3+1)-dimensional Gardner-KP equation reveals various soliton profiles, like double periodic waves,
shock waves and kink-type solitons.

A thorough study of the system here discovers new kinds of stability and leads to chaotic behavior that past
studies have rarely described. It is evident from this that (3+1)-dimensional models are better for reflecting the

various aspects of nonlinear waves in physical systems.

Multiple fields could make use of the outcomes from this work.

o Ocean Engineering plays a role by studying how internal waves travel along the ocean’s shelves and impact

movement of sediments and shaping of coasts.
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Fig. 16. Sensitivity plot for the perturbed dynamical system given in equation ((11)), using the specified
parameters and initial conditions outlined in the table.
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Fig. 17. Sensitivity plot for the perturbed dynamical system given in equation ((11)), using the specified
parameters and initial conditions outlined in the table.

« Exploring wave distributions in plasma which cover solitary pulses and shock waves important for energy
processes.

« how solitons behave in optical fibers, necessary for securing the digital signal of communication systems.

 Bose-Einstein Condensates with their self-organizing nature help us study nonlinear waves and their stability
in quantum fluids.

Overall, this study broadens the application of Gardner-KP models in several scientific fields by adding concepts
and explanations for practical use.

Conclusion

We investigated the non-linear (3 + 1)-dimensional KP-Gardner equation, focusing on its soliton solutions and
dynamical behaviors. Using the Jacobi elliptic method, we derived soliton solutions that illustrate the equation’s
rich nonlinear wave dynamics. These solitons provide valuable insights into wave transmission dynamics, with
applications in various fields of physics and engineering. We conducted the dynamical analysis using the phase
plane analysis, which provided a detailed classification of phase portraits based on orbital structures. Sensitivity
analysis results were presented to highlight the system’s dependence on parameter variations. We used the
Runge-Kutta (RK) method to solve the model, which indicated the existence of both supernonlinear and
nonlinear periodic wave patterns. We further explored the effects of physical constants on quasi-periodic and
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Fig. 18. Sensitivity plot for the perturbed dynamical system given in equation ((11)), using the specified
parameters and initial conditions outlined in the table.

Initial conditions data
Dynamical system Type | Figure | Blue Curve | Red Curve
System ((11)) 16 (1.2,0.2) (1.3,0.3)
System ((11)) 17 (1.5,0.5) (1.6,0.6)
System ((11)) 18 (2,0.6) (2.1,0.6)

Table 6. Parametric values for sensitivity analysis.

chaotic patterns within the perturbed dynamical system. To confirm chaotic behavior, Lyapunov exponents were
calculated, Poincaré sections were plotted, and sensitivity analysis was performed. Changes in the frequencies
and strengths of outside disturbances greatly affect the system’s unpredictable, chaotic behavior, as these analyses
revealed. The results have profound implications for applications in engineering, fiber optics, and other scientific
disciplines, where nonlinear models are critical to advancing theoretical and practical innovations.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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