
Deep segmentation of 3+1D radar
point cloud for real-time roadside
traffic user detection
Savankumar Bhanderi 1, Shiva Agrawal 2 & Gordon Elger 1,2

Smart cities rely on intelligent infrastructure to enhance road safety, optimize traffic flow, and
enable vehicle-to-infrastructure (V2I) communication. A key component of such infrastructure is
an efficient and real-time perception system that accurately detects diverse traffic participants.
Among various sensing modalities, automotive radar is one of the best choices due to its robust
performance in adverse weather and low-light conditions. However, due to low spatial resolution,
traditional clustering-based approaches for radar object detection often struggle with vulnerable
road user detection and nearby object separation. Hence, this paper proposes a deep learning-based
3 + 1D radar point cloud clustering methodology tailored for smart infrastructure-based perception
applications. This approach first performs semantic segmentation of the radar point cloud, followed by
instance segmentation to generate well-formed clusters with class labels using a deep neural network.
It also detects single-point objects that conventional methods often miss. The described approach
is developed and experimented using a smart infrastructure-based sensor setup and it performs
segmentation of the point cloud in real-time. Experimental results demonstrate 95.35% F1-macro
score for semantic segmentation and 91.03% mean average precision (mAP) at an intersection over
union (IoU) threshold of 0.5 for instance segmentation. Further, the complete pipeline operates at
43.61 frames per second with a memory requirement of less than 0.7 MB on the edge device (Nvidia
Jetson AGX Orin). We will release the RoadsideRadar dataset along with the code implementation of
this work at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​b​h​a​n​d​​e​r​i​s​a​​v​a​n​/​r​o​​a​d​s​i​d​e​​-​r​a​d​a​r​​-​s​e​g.

Keywords  3D automotive radar, RoadsideRadar dataset, Deep learning, Intelligent roadside infrastructure,
Intelligent transportation system, Radar point cloud, Real-time perception, Smart infrastructure

Intelligent roadside infrastructure-based perception is an emerging research direction within the field of
intelligent transportation systems (ITS) due to its potential to realize safe and robust connected mobility through
cooperative perception1,2. These systems utilize sensors mounted on roadside infrastructure for achieving
efficient, reliable, and real-time environmental perception3,4. The most prominently used sensor in these systems
is the low-cost RGB camera due to its real-time high-performance object detection and segmentation ability5–7.
However, their sensing ability degrades considerably during adverse weather and poor lighting conditions. Lidar
sensors can overcome these limitations but are unable to deliver real-time scene understanding while also being
one of the costliest8. Combining the complementary strengths of different sensor modalities by multi-sensor
fusion is another method for realizing robust perception. Early fusion approaches operate by combining the raw
data from the sensors to achieve richer scene representations but require precise calibration and synchronization.
Late fusion, in contrast, integrates the outputs from independent object detectors. While multi-sensor fusion
can provide more robust perception, it also increases the overall cost and complexity of the system9. Another
rather unexplored solution is the next generation 3 + 1D mmWave automotive radar, which provides much
denser point clouds compared to the previous 2 + 1D versions. The additional 1D in both versions refers to
Doppler velocity. The radars are used heavily in the autonomous driving field for improving the advanced driver
assistance system (ADAS) functions10,11 due to their robustness in adverse weather conditions and long-range
sensing ability. Additionally, the sparse nature of the radar point clouds requires significantly less computational
resources compared to for example the dense point clouds from the lidar sensor. This aligns perfectly with the
real-time requirement of the edge devices on the infrastructure-based perception setups.

1Institute of Innovative Mobility (IIMo), Research Group Sensor Technology and Data Fusion for Environmental
Perception, Technische Hochschule Ingolstadt, Ingolstadt 85049, Germany. 2Applied Center Connected Mobility
and Infrastructure, Fraunhofer IVI, Ingolstadt 85049, Germany. email: savankumar.bhanderi@thi.de

OPEN

Scientific Reports | (2025) 15:38489 1| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports

http://orcid.org/0000-0001-7257-6736
http://orcid.org/0000-0001-8633-341X
http://orcid.org/0000-0002-7643-7327
https://github.com/bhanderisavan/roadside-radar-seg
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-23019-6&domain=pdf&date_stamp=2025-11-1

The perception ability of vehicle on-board sensors is limited by range and occlusions, which can be enhanced
by flexible location and pose of infrastructure sensors to increase the on-road safety of traffic participants12,13. The
information from the roadside perception sensors can be shared with passing vehicles in real-time using vehicle-
to-everything (V2X) communication for cooperative driving automation14. Furthermore, the infrastructure
sensors contribute to traffic flow optimization by automated traffic light control15,16, cooperative maneuver
planning17, traffic surveillance, traffic monitoring, emergency vehicle prioritization, providing warnings to road
users, and many more. Albeit the above-mentioned advantages, the research on perception algorithms for such
systems is still limited, and confined on the whole to the monocular camera and lidar sensors1,2.

In this work, the suitability of automotive radar sensors in the smart roadside infrastructure-based perception
task is evaluated through a novel deep learning-based radar point cloud segmentation pipeline. In particular,
multi-layer perceptron (MLP) and self-attention mechanisms are used in this work for performing semantic and
instance segmentation of key road users such as pedestrians, bicycles, motorcycles, cars, and buses. An example
of such a system is presented in Fig. 1, where a 3 + 1D radar sensor is mounted on a static infrastructure for
detecting various road users.

The key contributions in this paper are listed below.

•	 A novel deep learning-based 3+1D radar point cloud segmentation architecture for efficient clustering and
object detection of road users for static roadside radar sensor.

•	 Optimization of the segmentation model based on experimental data collected using the Continental ARS548
infrastructure radar sensor. The RoadsideRadar dataset used in this study is made publicly available to en-
courage further research.

•	 Implementation and testing of the complete pipeline using the robot operating system (ROS)18 on the edge
device for real-time performance.

The remainder of this paper is organized as follows. The “Literature Review” Section focuses on current works
utilizing machine learning on automotive radar point cloud data. The sensor setup and the dataset used in this
work are described in the “Dataset” Section. The “Methodology” Section details the proposed methodology and
section “Experiments and Results” provides the implementation details along with experimentation and results.
Finally, Section “Conclusion and Future Work” concludes the paper and highlights possible future work.

Literature review
This section provides a comprehensive summary of the state of research on machine learning applied to
automotive radar point clouds. Considering the lack of research utilizing automotive radar sensors in an
infrastructure-based setting, the related works on autonomous driving are discussed.

Semantic segmentation
The traditional methods of scene understanding with automotive radar sensors combined clustering with a
subsequent cluster classification step to realize object detection on point cloud data19–21. These approaches
employ DBSCAN algorithm to cluster raw radar detection points followed by a handcrafted feature generation
process for each cluster. Subsequently, these feature vectors are classified using various classifiers such as random
forests, long short-term memory (LSTM)19, support vector machines (SVM)20, and recurrent neural networks

Fig. 1 .  A concept of roadside perception using automotive radars.

Scientific Reports | (2025) 15:38489 2| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

(RNN)21. These methods deliver suboptimal performance due to their inherent dependency on the accuracy of
clustering algorithms and manual feature selection.

Another group of research utilizes pioneering works of PointNet22 and PointNet++23 to realize efficient
feature extraction for semantic segmentation. For example, Cennamo et al.24 compared PointNet and PointNet++
for moving pedestrian classification using radar point clouds. The same authors provide a neural network
architecture for semantic segmentation of 2 + 1D radar point clouds in25. In another work, Schumann et al.26
adapted PointNet++ to segment the dynamic 2 + 1D radar point clouds in 6 distinct semantic categories.

Following the recent success of self-attention27 in the computer vision and natural language processing (NLP)
domain, some works have adapted it to work with radar point clouds. For instance, Yu et al.28 incorporated
self-attention module from point transformer network29 with PointNet to perform semantic segmentation on
high density simulated 3D radar point clouds. Radar Transformer30 is another classification network that is
constructed entirely using self-attention modules. Furthermore, Zeller et al.31 proposed an encoder-decoder
structured network that uses self-attention based up-sampling and down-sampling to accurately perform single
scan segmentation of dynamic radar reflections. Similar work is done in32 where a velocity transformer layer is
introduced to facilitate the separation of static and moving objects.

Instance segmentation
Schumann et al.33 proposed a complete pipeline for scene understanding to detect both static and dynamic
objects simultaneously. Static objects are segmented using a convolutional neural network (CNN) on a radar cross
section (RCS) histogram grid map from accumulated radar frames. For dynamic objects, an RNN predicts class
probabilities and direction vectors, shifting points for better semantic instance alignment. Instance proposals are
then generated and classified using PointNet++. Similar approaches with center shift vectors and class-specific
clustering are done in34,35. In36, Yuan36 enhanced a U-Net inspired backbone with attention blocks for efficient
per-point feature extraction. The instance formation was done using a class-based DBSCAN clustering of the
foreground points.

Palffy et al.37 enhanced instance segmentation by combining pre-CFAR radar cubes with 3 + 1D radar point
clouds. Small regions in the radar cube are cropped based on post-CFAR point cloud locations and processed
with a 3D CNN for feature extraction to perform semantic segmentation. Again, class-specific DBSCAN is used
for instance formation. In38, panoptic segmentation is achieved on 3 + 1D radar point clouds using PointNet
and MLPs. The per-point features are augmented with the azimuth value of each point to facilitate instance id
prediction. Zeller et al.39 separated static and moving instances by temporally integrating radar point clouds
from previous frames with a sequential attentive feature encoding module.

Although significant progress has been made in perception using vehicle-mounted radar sensors, these
approaches cannot be directly transferred to roadside radar because of the fundamental differences in the resulting
point clouds characteristics. For example, object motion relative to a stationary radar differs significantly from
ego-motion–compensated measurements, and occlusion patterns are inverted. A roadside radar often observes
traffic participants laterally, rather than from behind. Moreover, vehicle-mounted perception typically prioritizes
near-field detection for driver assistance, whereas infrastructure-mounted radars cover larger areas. The fixed
nature of roadside radars further enables the use of background subtraction algorithms to segment static road
users, which cannot be used with vehicle-mounted sensors. A thorough analysis of the current literature reveals
the lack of research on using automotive radar for intelligent roadside perception. In addition, static road users
are often overlooked and real-time capabilities of the algorithms are seldom evaluated.

Dataset
The RoadsideRadar dataset used in this work is an extended version of the INFRA-3DRC dataset40. The
original INFRA-3DRC dataset is enriched with radar frames in adverse weather and poor lighting conditions.
Furthermore, the frames with groups and parking spots are removed from the dataset. The statistical properties
of the resulting dataset, along with the roadside sensor setup are elaborated in this section.

Measurement setup
The data is collected using a Continental ARS548 3 + 1D radar sensor42 mounted at the height of approximately
3.5 meters on the measurement setup shown in Fig. 2. Further details of the measurement setup are provided
in15,16. Data is collected from two different locations in the city of Ingolstadt, Germany by placing the sensor
setup on one side of the road and stored on the disk using the ROS framework.

The locations were chosen to cover two specific geographical conditions suitable for roadside environment
perception: 1) a straight road, and 2) a pedestrian crossing intersection. The collected data was post-processed
and labeled using the methodology highlighted in41. This method requires accurate radar-camera spatial
calibration, which was performed following the approach described in43. Since the labeling method in41
provides annotations only within the radar-camera overlapping field of view, radar points outside this region
were discarded. For this work, only the radar data is used for object detection tasks, and images are used for
visualization purposes only. It should be noted that the ARS548 radar sensor provides an interface to extract
3 + 1D point cloud data only, and the low-level data formats described in44 are not accessible. As a result, only
the point cloud data is used in this work, which is obtained through the standard signal processing done within
the sensor itself. This sensor limitation often results in the loss of information about static road users during the
conversion from the low-level signal representation to the sparse point cloud. Consequently, there are frames
where the radar sensor fails to deliver points from vulnerable road users (VRUs) even when they are present in
the scene. These frames are not considered in the dataset.

Scientific Reports | (2025) 15:38489 3| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Dataset statistics
Each radar detection point is labeled as one of 6 distinct semantic classes: background, person, bicycle, motorcycle,
car and bus.The radar sensor additionally delivers numerous false positives, noise points, and reflections from
static surfaces that are irrelevant for object detection. All these detection points that remain after background
subtraction are aggregated into a single background semantic category. In this work, a road user is annotated as
static if it has zero velocity and was not present at the time of background detection, as explained in41.

The final dataset comprises 5399 frames of annotated radar point clouds, with over 228k labeled radar
reflection points and 13292 object instances.

This results in an average of 2.47 annotated objects in each frame. 70% of the frames are used for training,
and the remaining 30% are equally divided between validation and testing. Details about the class distribution of
the labeled objects in each split are given in Table 1. Further information about the number of static and dynamic
points per class is provided in Table 2.

Person Bicycle Motorcycle Car Bus

Static points 285 638 78 2370 0

Dynamic points 5797 8556 920 20,543 17,535∑
6082 9194 998 22,913 17,535

Table 2.  Static and dynamic labeled points per class in the dataset.

Total points Total objects

Train Val Test Train Val Test

Person 4297 896 889 1920 408 392

Bicycle 6517 1403 1274 2723 578 544

Motorcycle 679 140 179 214 47 53

Car 15,964 3337 3612 3786 785 880

Bus 12,483 2420 2632 680 145 137

Background 119,099 26,746 25,507 – – –∑
159,039 34,093 34,942 9323 1963 2006

Table 1.  Summary of the dataset.

Fig. 2.  Smart roadside infrastructure-based sensor setup41 used in this work.

Scientific Reports | (2025) 15:38489 4| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Methodology
Figure 3 highlights the overview of the proposed pipeline for obtaining semantic and instance segmentation on
3 + 1D automotive radar point clouds using a roadside sensor setup. Each detection point Dk in the radar point
cloud is a row vector such that,

	 Dk ∈ R(1×5)(k ∈ 1, . . . , n),

and it can be expressed as:

	 Dk = [rk θk γk vd,k σk]T ,

where rk , θk , γk , σk , and vd,k represents range, azimuth angle, elevation angle, RCS, and radial Doppler velocity
respectively. Before further processing, the Cartesian coordinates (x, y, z) are computed from the polar values,
and the velocity components vx and vy are derived from the Doppler velocity. Additionally, a unique index is
assigned to each point to track its order through various processing stages.

To begin with, the raw point cloud from the sensor is passed through a preprocessing step, where the points
with implausible Doppler velocity are removed and the field of view is aligned. The minimum and maximum
values used for this purpose are shown in Table 3.

These values were obtained through a thorough analysis of the statistical distribution of each radar feature.
The filtered point cloud is then divided into static and dynamic clouds using a Doppler velocity threshold. Static
cloud is subjected to 3D radar background subtraction to remove noise and obtain static foreground detection
points, as explained in41. The resulting foreground points, along with dynamic points form the input to the
neural network model, marked with the model input block in Fig. 3. The model input is a point cloud containing
N points, with each point having 6 features, namely x, y, z, vx, vy , and σ. For efficient and stable training of the
neural networks, each input feature is normalized using the minmax normalization method45. The network first
performs semantic segmentation on the model input point cloud, resulting in a class label and score assigned to
each point. The per-point class labels, along with the per-point features and model input point cloud are further
utilized to obtain instances using the self-attention mechanism.

Semantic segmentation
The goal of semantic segmentation is to predict a semantic class label for each point in the input point cloud from
a set of distinct categories. To achieve this goal, the following challenges must be addressed: (1) The point cloud
is unordered set of points, meaning that the algorithm must satisfy the permutation invariance property (i.e. the
output of the algorithm must not change with respect to the order of points in the input), (2) The inference time

x (m) y (m) z (m) vd (m/s)

Minimum value 0 −80 −4 −25
Maximum value 100 80 1 25

Table 3.  Minimum and maximum values for field of view alignment.

Fig. 3.  Overview of the proposed pipeline. The semantic and instance segmentation are performed
sequentially. Multi-layer perceptrons and self-attention mechanisms are used for semantic and instance
segmentation respectively.

Scientific Reports | (2025) 15:38489 5| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

of the algorithm must be low enough to satisfy real-time constraint, and (3) The input point cloud is sparse in
nature with limited information, an efficient feature extraction method must be implemented.

To tackle the aforementioned challenges, a combination of MLPs and global max pooling is used as depicted
in Fig. 4. The MLPs perform local feature extraction using a fully connected layer, and the global max pooling
aggregates global context from the entire input point cloud, thereby maintaining the permutation invariance
of the point clouds. The structure is inspired by the pioneering work of PointNet22, which is generally used
for indoor part classification and segmentation. The input to the semantic segmentation block is an array of
normalized points, and it outputs per-point class, scores, and per-point features to be used in the next stage. The
block diagram of the semantic segmentation network is shown in Fig. 4.

The normalized 6 dimensional input point cloud is first forwarded to a shared MLP which transforms the
input to 64 dimensional feature space. Note that the original version of PointNet uses two transformation
networks called (T-Net), which predicts an (N × N) transformation matrix. The output of the first T-Net is
used to project input points to its canonical representation before extracting features, and the output of the
second T-Net is used for feature alignment in higher dimensional latent space. This is particularly useful when
the input is a dense point cloud such as the data in indoor object segmentation and part segmentation, but it
does not hold any logical ground for sparse point clouds such as radar data where there is no clear concept of the
canonical representation of the entire scene.

Unsurprisingly, the experiments showed that using any of these T-Nets in the algorithm increases the network
parameters without affecting the overall performance. Hence, the T-Nets are omitted and the shared MLPs are
adjusted for 64 dimensional local features extraction on sparse radar point clouds.

The 64 dimensional per point local features are further mapped to a 512 dimensional feature space using an
additional block of MLP. At this stage, the per-point features are represented with a matrix of shape (N × 512),
where N denotes the number of points. A column-wise global max pooling operation is applied to this matrix,
resulting in a single global feature vector with shape (1 × 512). It is repeated N times along the rows to form a
global feature matrix of shape (N × 512) and concatenated with the per point 64 dimensional local features to
obtain a combined feature representation of shape (N × (64 + 512)). The global pooling operation serves two
purposes: 1) it embeds global context in the learning process, and 2) it ensures that the network is permutation
invariant. Subsequently, a segmentation head applies a set of fully connected layers to the combined feature
matrix, resulting in an (N × C) semantic matrix, where C denotes the number of classes in the dataset (in this
work, it is 6). This matrix represents per-point class-wise logits (pre-activation values), which are passed through
a softmax activation layer to convert the logits into probabilities. The final class labels and confidence scores are
determined based on the maximum a posteriori probability rule.

These per-point class labels along with class scores and 64 dimensional per point local features are forwarded
to the next block of the processing pipeline where the instances are formed using a self-attention-based algorithm.

Instance segmentation
After performing semantic segmentation, i.e. a per point class label for each point is obtained, the next step in the
processing is to utilize this additional information to generate clusters of points that are reflected from the same
object, also known as the instance segmentation. To address the challenge that the number of road users (i.e.
instances) is not known beforehand, a similarity learning based instance segmentation algorithm is designed, as
presented in Fig. 5. It utilizes a modified version of the self-attention27 mechanism for instance separation. The
algorithm takes three inputs, namely (1) per point class labels and scores from the previous section, (2) per point
64 dimensional local features from the previous section, and (3) the model input point cloud described in the
previous section. It outputs a list of instances (objects) with class labels.

Fig. 4.  Semantic segmentation network. The architecture used shared MLPs for feature extraction, and is
inspired by PointNet22.

Scientific Reports | (2025) 15:38489 6| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

As shown in Fig. 5, the instance segmentation algorithm is composed of three parts: (1) grouping, (2) pairwise
similarity computation, and (3) the instance formation. In the grouping stage, a list of M probable candidate
groups is generated such that all points in a given group share a common predicted class label. It uses the per-
point class labels along with the local features and model input cloud for candidate group generation. The entire
process is shown as a block diagram in Fig. 6, and the pseudo-code is provided in Algorithm 1.

Fig. 6.  Candidate group generation for instance segmentation.

Fig. 5.  Instance segmentation network. The architecture uses the self-attention mechanism for learning
pairwise similarity in the feature space.

Scientific Reports | (2025) 15:38489 7| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 1.  Candidate group generation algorithm.

First, the per-point 64 dimensional local features obtained from the semantic segmentation block are
concatenated with the per-point normalized spatial coordinates (x, y, z) from the model input cloud. The
inclusion of x, y, and z in the features serve as additional information during the similarity learning process,
enabling better instance separation.

Next, the per point class labels are used to split the concatenated features into M arrays, where the ith array
has a shape of (Ni × (64 + 3)). Here, Ni is the number of points in the array, 64 is the dimension of local per-
point features obtained from semantic segmentation, and 3 represents per-point normalized spatial coordinates.
Each of these arrays is regarded as one candidate group. It should be noted that the number of points (Ni)
varies across the groups. A group is generated for each unique predicted class label except for the background
class (class label 0) because the concept of instances does not apply to it. Furthermore, the total number of
formulated groups (M) depends on the number of unique predicted class labels in the semantic segmentation
output, meaning that the maximum value it can take is the number of distinct foreground class labels (5) in the
dataset. In addition, groups are not generated when there is only one unique prediction point for a given class,
but such points are considered as instances with one radar reflection.

The next step is to calculate a pairwise similarity matrix for each of the M candidate groups using a modified
self-attention mechanism. The self-attention27 is a common technique in many neural networks to capture the
inter-dependencies between different elements of the input sample. It first projects the input to three distinct
matrices, famously known as the Keys (K), Queries (Q), and Values (V), using three linear layers. Then the
attention weights (scores) are computed using a scaled dot product between Queries (Q) and Keys (K), and
the resulting matrix is passed to softmax activation for row-wise normalization. The scaling factor

√
dk is used

in the self-attention mechanism to prevent the attention scores from becoming too large, leading to stability
during training. These weights are used to take a weighted sum of the Values (V), leading to a new set of feature
vectors where each point’s representation is enhanced by the information from other points it attends to. The
mathematical formulation of self-attention is given in Section 3.2.1 of27.

In this work, the self-attention mechanism is modified to model the similarity between a pair of radar points,
given that both points belong to the same class. The self-attention weights resulting from the scaled dot product
of Queries (Q) and Keys (K) can be viewed as pairwise similarity scores representing the degree of similarity
between a pair of elements. If the attention score between the elements (i, j) is high, it suggests that there exists
a stronger relationship between these points. It is important to note that this work focuses on evaluating the
relationships between pairs of points, and not on aggregating or combining their feature information. This task
does not require generating new feature representations for each point based on its relationship with other
points, which is the purpose of using the Values matrix. Therefore, the attention weights are considered as an
end goal for measuring the similarity between points, and the Values (V) are not computed in this work. This
decision simplifies the model and reduces the computational complexity.

Furthermore, the standard self-attention uses softmax activation on the attention weights to calculate the
importance of each input element on other elements to ensure that the attention weights for each point (row)
sum to 1. This means that the sum contribution of all points in calculating an enhanced representation of a
given point should not exceed 1. This is useful in contexts where the model needs to make a relative comparison
among all points, such as in NLP where the relationship between different words in a sentence is modeled.
However, it is not useful in this work because here the task is determining the similarity between pairs of points,

Scientific Reports | (2025) 15:38489 8| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

specifically evaluating whether they belong to the same road user. In this case, an independent, binary-like
decision about the similarity between pairs of points is needed. Therefore, the softmax activation is replaced by
the sigmoid activation, which provides a straightforward way to determine whether two points are likely from
the same road user without needing to normalize across other points.

Algorithm 2.  Instance formation algorithm.

Considering the above-mentioned modifications, one self-attention weight map (also referred to as a pairwise
similarity map) is calculated for each of the M candidate groups. For a given group with Ni radar points, the
similarity map Ssym ∈ R(Ni×Ni) is made symmetric by averaging across the diagonal before further processing.
Furthermore, the lower triangle and the diagonal of the matrix Ssym is zeroed for faster computation. In the
next step, the Ssym matrix is converted into a binary matrix for instance extraction. First, the maximum values
in each column are replaced with 1 if it is greater than 0.5 and all other values in the same column are replaced
with zero. The resulting binary similarity map has either zero or exactly one element in each column with the
value of 1. This resolves an ambiguity in instance assignment where one or more points are probable candidates
for two or more instances. At this stage, the diagonal elements of the similarity matrix is set to 1 to simplify
further processing. This process is illustrated in Fig. 7. The ambiguity case is highlighted with yellow color.

For each row (point) in the binary similarity matrix, the index locations of the columns which has a similarity
of 1 with the current row (point) can be obtained. This can be interpreted as the current point and the points
with a similarity of 1 with the current point belong to the same instance. Instances can be formed using these
index locations and the raw radar point cloud. The processing for the current row is skipped if its index is
already assigned to an instance. These indices are used to query the model input point cloud and construct actual
instances of the 3D radar point cloud with class labels. The predicted score of an instance is calculated as the

Scientific Reports | (2025) 15:38489 9| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

mean of the scores of all points that belong to the instance. The pseudo-code for the instance extraction process
using candidate groups is shown in Algorithm 2.

Experiments and results
This section provides the implementation details of the proposed method along with the quantitative and
qualitative results of the best-performing model on a test set. Ablation studies and experiments are also provided.

Implementation
The training was conducted in an end-to-end manner on a machine equipped with a single NVIDIA RTX 4090
GPU using PyTorch46 library. The network comprises 164K trainable parameters, with a memory size of 0.628
MB. The network was trained for 100 epochs. One epoch takes approximately 90 s to process, including data
loading, training, and validation. The dataset imbalance was addressed by using a weighted categorical cross-
entropy loss for the semantic segmentation task. For instance segmentation task, binary cross entropy loss (BCE)
was calculated for each candidate group and averaged to obtain a scalar value. The mathamatical formulation of
the loss functions are given below.

	 Ltotal = λsem_seg · Lsem_seg + λinst_seg · Linst_seg � (1)

where Ltotal is the total scalar loss value for a single radar frame, λsem_seg is the weight assigned to semantic
segmentation task (1 is used in this work), λinst_seg is the weight assigned to similarity learning (instance
segmentation) task (2 is used in this work), Lsem_seg is the classification loss for a single radar frame, and
Linst_seg is the similarity loss for a single radar frame.

	
Lsem_seg = − 1

N

∑
n∈N

∑
c∈C

wc · ync · log(ŷnc), wc = M

C · Mc
� (2)

where N is the number of points in a radar frame, C is the total number of classes in the dataset, wc is the loss
weight for the class c, ŷnc is the predicted probability of point n belonging to class c, ync is a binary indicator that
is 1 if class label c is the ground truth class label for point n, M is the total number of points in the entire training
dataset, C is the number of classes, Mc is the number of points belonging to class c in the dataset, and wc is the
class-specific loss weight for class c.

	
Linst_seg = 1

M

∑
i∈G

LBCEi , LBCE = − 1
N

∑
n∈N

[yn · log(ŷn) + (1 − yn) · log(1 − ŷn)]� (3)

where M is the total number of instance formation candidate groups, LBCEi is the binary cross entropy loss for
the group i, N is the total number of points in an instance formation group, yn is the ground truth class label for
the point n, and ŷn is the predicted probability of point n belonging to the positive class.

The radar point cloud contains a varying number of points across different timestamps, which poses a
challenge in training the neural network models using mini-batch gradient descent. This challenge was addressed
by using the packing and padding functionality provided by the PyTorch46 library. During the max pooling
operation, the sequence is padded with the value of negative infinity, which effectively ignores the padded points
while calculating the max value for each feature.

The process of packing and padding is illustrated in Fig. 8a. The ground truth similarity maps are generated
dynamically based on the output of the semantic segmentation branch. An example ground truth similarity map
with two ground truth instances is shown in Fig. 8b. The first instance (shown in red) consists of points with
indices (1,3,5) and the second instance(shown in blue) consists of points with indices (2,4). The most important
training parameters are given in Table 4.

Fig. 7.  Instance formation from predicted similarity map. Left to right: predicted pairwise similarity map
Ssym ∈ R(Ni×Ni) (made symmetric by averaging across the diagonal), bottom triangle zeroing, per-column
max thresholding, instance generation.

Scientific Reports | (2025) 15:38489 10| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Performance evaluation
The performance of the proposed method was evaluated on a dedicated test set. For semantic segmentation, the
confusion matrix for best-performing architecture on the test set is presented in Fig. 9, where the majority of
correct predictions are concentrated along the diagonal, indicating strong overall performance in detecting true
positive radar points. Particularly, the background has the highest correct classifications (24, 987), though there
are some incorrect predictions, with 294 background instances predicted as car and 135 as bus. Additionally, 24
person, 30 car, and 33 bus points were incorrectly classified as background. Such errors in predictions could be
attributed to the similarities in radar signatures between static objects and other classes. Furthermore, static
objects with low velocities can easily be confused with background. The class-wise and macro averaged F1
scores are shown in Table 5. Overall, the network achieves a F1 score of 95.35%, indicating the model’s effective
performance across diverse classes.

For instance level evaluation, a commonly used metric is the mean average precision (mAP), which utilizes
a specific intersection over union (IoU) threshold for assigning ground truth to predictions. For 3D point-
based algorithms, IoU is calculated on point sets instead of areas or volumes as described in47. For radar point
clouds, 0.3 and 0.5 are the most prominently used IoU thresholds47. In addition to these thresholds, the proposed
network is evaluated at an IoU of 0.75. Furthermore, the COCO AP formula48 is used for calculating the overall
mAP, which considers the individual class average precision (AP) at a range of IoU thresholds between 0.5 and
0.95 for ensuring optimization across different levels of detection difficulty. The resulting statistics for each class
along with the macro average are provided in Table 5. In the table, the F1 score is calculated at a per-point level as
explained previously and the remaining metrics are calculated at an instance level. Furthermore, the AP i refers
to average precision at an IoU threshold of i, and AP without a superscript follows the COCO AP formula. The
mAP for each column except the F1 score is highlighted in the average row.

At the lowest IoU threshold of 0.30, the model achieves a high mAP of 93.36%, indicating the effective
instance separation with moderate overlap between predicted and ground truth objects. This performance is
maintained at the IoU = 0.5, though there is a slight decrease of ≈ 2% in the AP, and reduces noticeably at
the IoU threshold of 0.75 with an AP of 81.47%. This highlights the increased challenges of achieving higher

Parameter Value

Batch size 64

Optimizer Adam

Learning rate 0.0003

Weight decay 0.0002

Gradient clipping 3

Normalization LayerNorm

Activation LeakyReLU

LR scheduler ReduceLROnPlateau

Table 4.  Training parameters.

Fig. 8.  Data preparation for training.

Scientific Reports | (2025) 15:38489 11| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

overlap for instance segmentation. The COCO mAP shows consistent performance across all classes, suggesting
the model maintains reasonable accuracy across various levels of overlap without overfitting to a specific IoU
threshold. A closer analysis of the class-specific AP values reveals that the drop in mAP with increasing IoU
can be mainly attributed to the bus class AP, which consistently has the lowest AP among all classes for all IoU
thresholds. This is likely due to a vast difference in the length of the busses in the dataset.

The qualitative results of the proposed approach are highlighted in Figs. 10 and 11. In both figures, individual
detection points in the ground truth and semantic segmentation are colored with class-specific colors: goldenrod
for bus, purple for car, salmon for person, deepskyblue for bicycle, and cadetblue for motorcycle class. The
ground truth class labels are marked using actual annotation files, and the instance segmentation class labels
are obtained using the network output. Furthermore, reflections from individual objects in the instance
segmentation prediction are marked with a unique color for better interpretation of multiple road users of the
same class. Please note that images are shown for visualization purposes only.

In Fig. 10, the network predictions are shown in the bird’s-eye view, where the network efficiently
predicts moving as well as static road user instances. This performance is maintained even in the case of the
underrepresented motorcycle class and poor lighting conditions, as seen in the second row of the figure. In
the last row, the network fails to detect a car at a distance of 80 meters, marked with a red bounding box in the
image. A closer inspection of the last sample reveals a false positive bicycle (bicycle 02) instance. It is labeled as
background in ground truth even though it is clearly visible in the reference image. Further investigation in the
raw point cloud indicated the errors in ground truth annotations (marked with a red circle in ground truth).

F 1 AP.30 AP.50 AP.75 AP

Background 98.78 – – – –

Person 96.13 94.80 92.67 84.10 84.83

Bicycle 96.65 94.28 92.44 84.73 85.16

Motorcycle 89.18 95.73 91.03 85.27 82.83

Car 94.85 94.33 93.00 77.73 76.90

Table 5 .  Performance evaluation results. Semantic segmentation task (per point level) is evaluated using the
F1 score. Instance segmentation task is evaluated using AP at varying IoU thresholds. The value of each metric
is reported in %. Bold shows the overall performance averaged across classes.

Fig. 9 .  Confusion matrix obtained through the test set.

Scientific Reports | (2025) 15:38489 12| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The results shown in Fig. 10 are analysed in the bird’s-eye view, where the elevation value of each point
is considered as zero. To better understand the network predictions, Fig. 11 displays some examples of the
network’s outputs projected onto the image plane, where the elevation of radar points is better visualized. Each
column represents one sample. In the second and third columns, there is one false positive point from car 02
and bus 02 respectively. Additionally, the second column demonstrates an inherent limitation of the radar sensor
where there is no reflection point from one of the bicycles.

Fig. 10 .  Network predictions visualized in the bird’s-eye view where the elevation values are considered as
zero. The reference images are shown for visualization only. The background points are marked with smaller
size and grey color for better visualization. See text for details regarding point colors.

Scientific Reports | (2025) 15:38489 13| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Comparison with different methods
The comparison of various methods is provided in Table 6. The PointNet22 model was modified to perform
semantic segmentation on 3 + 1D radar point cloud data. Specifically, the input dimension of the PointNet
segmentation network was adjusted from 3 to 6 to accommodate the additional features provided by the radar
sensor. Additionally, the number of points in each radar frame was fixed to train the model with higher batch
sizes. All other parameter values were kept the same as in the default architecture of the PointNet segmentation
network provided in22.

In another implementation, DBSCAN49 clustering and PointNet classification network22 were used
sequentially for obtaining instance segmentation results. Note that this implementation does not provide
semantic segmentation of the input point cloud. For clustering, five-dimensional input features were considered,

Input fields F1 mAP.50 mAP.75 mAP

[x, y] 77.20 53.85 40.00 40.60

[x, y, vd, rcs] 92.56 84.26 67.88 66.99

[x, y, vx, vy, rcs] 93.25 87.86 72.96 71.42

[x, y, z] 89.44 76.01 64.15 64.10

[x, y, z, vd] 94.73 87.11 72.99 73.72

[x, y, z, vd, rcs] 95.14 88.31 78.62 77.16

[x, y, z, vx vy] 95.34 89.41 81.21 79.35

[x, y, z, vx, vy, rcs] 95.35 91.03 81.46 80.01

Table 7.  Evaluation results on various combinations of the input features. The value of each metric is reported
in %. Bold highlights the best performing combination of the input features.

Method F1 mAP.50 mAP.75 mAP

PointNet22 90.12 − − −

DBSCAN49 + PointNet22 − 72.60 67.70 66.90

PointNet22 + DBSCAN49 90.12 81.96 76.70 74.80

PointNet22 + Instance formation 90.12 84.60 79.80 78.68

This work 95.35 91.03 81.46 80.01

Table 6 .  Comparison of various approaches. The values of each metric is reported in %. Bold highlight the
best performing model for each evaluation metric.

Fig. 11 .  Network predictions projected on image plane where the differences in elevation is clearly visible.
The images are shown for visualization purpose only. The background points are marked with smaller size and
green color for better visualization. See text for details regarding point colors.

Scientific Reports | (2025) 15:38489 14| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

which included 3 spatial dimensions along with 2 Cartesian velocity components. The DBSCAN was configured
with min_points set to 2, and search_radius set to a uniform value of 3 in each dimension. The resulting
clusters were classified using the classification variant of the PointNet model.

Two additional combinations were explored that provide both semantic as well as instance segmentation
results. In both methods, the aforementioned modified segmentation network of PointNet was used for
obtaining semantic segmentation of the radar point clouds, leading to the identical F1 score as shown in Table
6. For instance segmentation, the first method employed a class-specific DBSCAN clustering algorithm while
the second approach used the instance formation algorithm proposed in this paper. Unsurprisingly, the latter
approach outperformed the former by ≈ 4% in terms of mAP. The proposed method performed the best with
80.01% mAP.

Ablation studies
Table 7 highlights the impact of different input radar features on the neural network’s performance. As expected,
the combination (x, y) yields the lowest mAP of 40.60%, which is increased by ≈ 23.5% when the elevation
(z) dimension is added to 2D information. Further enhancement is observed when extending the 2D spatial
coordinates with Doppler velocity (vd) and rcs, which boosts the mAP to 66.99%. Transforming the radial
velocity to Cartesian coordinates (vx, vy) provides an additional improvement, increasing the mAP to 71.42%.
Additional gains are seen with the integration of radial velocity and elevation information, leading to an mAP
of 73.72% with the feature set (x, y, z, vd). Again, dissolving vd to vx and vy further improves the mAP by
≈ 6%.

Incorporating rcs in the feature set (x, y, z, vd) leads to a 4% increment in the AP. Finally, the highest mAP
of 80.01% is achieved with the feature set (x, y, z, vx, vy, rcs), surpassing all considered combinations of
the input features.

Runtime evaluation
For runtime evaluation, the entire pipeline shown in Fig. 3 was implemented in ROS18 for real-time inference
on an edge device (Nvidia Jetson AGX Orin50). The inference was conducted with the batch size of 1. The time
taken for the entire process, starting from raw data acquisition to the radar object list creation was calculated
for numerous scenes with varying numbers of road users and averaged to asses the real-time capability of the
system. Furthermore, the time taken by each component was also measured in a similar fashion. The resulting
values are shown in Table 8, where the CPU and GPU runtimes of two devices are compared for the proposed
method.

The overall runtime of the entire pipeline is 22.93 milliseconds on an edge device with GPU, and the deep
learning model takes only 17.33 milliseconds. Implementing the pipeline on the same device with CPU suggests
a significant increase in semantic segmentation time. In contrast, the instance segmentation time reduces when
using CPU instead of GPU for both devices. This is due to the fact that the semantic segmentation mainly
consists of MLP operations, which are implemented using PyTorch nn.Module class. The parallel processing
of the GPU is much faster in carrying out these operations compared to the CPU. On the other hand, the only
neural network operation involved in instance segmentation is the similarity computation using attention, the
rest of the process comprises general-purpose computations, including frequent data manipulation and control
sequences like for loops. These operations cannot be easily parallelized, leading to longer inference time on GPU
compared to CPU.

Conclusion and future work
In this work, a robust deep learning-based object detection pipeline using point cloud segmentation for the
roadside 3 + 1D automotive radar sensor is proposed. The network has been trained and evaluated on an
extended version of the INFRA-3DRC dataset. The proposed method achieves high values of 91.03% for
object level mAPIoU=0.5 and 95.35% for point level F1 score, demonstrating the effectiveness of deep learning
applied to roadside radar perception. In addition, the network performance remained robust across various IoU
thresholds, as verified by 80.01% COCO mAP. The experiments showed that the additional height information
provided by the radar sensor significantly boosts the performance. Moreover, the average inference time of the
entire perception pipeline, including the deep learning model, on an edge device (Nvidia Jetson AGX Orin) is
22.93 ms, resulting in a high frame rate of 43.61 frames per second. This highlights that the proposed method
can perform real-time scene understanding on an edge device with limited computation.

Hardware Data Proc. Sem. Seg. Inst. Seg.
∑

Hz

GPU

 Nvidia AGX Orin 5.60 3.28 14.05 22.93 43.61

 Nvidia RTX 4090 1.84 1.08 2.24 5.16 193.80

CPU

 Nvidia AGX Orin 4.50 24.56 9.67 38.73 25.82

 AMD Ryzen 5975WX 2.20 1.21 1.35 4.76 210.08

Table 8.  Inference timing of various components in the proposed perception pipeline. The values in all
columns except Hz are reported in milliseconds.

Scientific Reports | (2025) 15:38489 15| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The future work includes implementing object tracking using statistical filters to smooth the fluctuation in
per-frame detection results and enlarging the dataset by covering more geographical locations with a variety of
road users.

Data availability
The dataset generated and/or analysed during the current study are available at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​b​h​a​n​d​​e​r​i​s​a​​v​
a​n​/​r​o​​a​d​s​i​d​e​​-​r​a​d​a​r​​-​s​e​g.

Received: 26 July 2025; Accepted: 3 October 2025

References
	 1.	 Bai, Z. et al. Infrastructure-based object detection and tracking for cooperative driving automation: A survey. In 2022 IEEE

Intelligent Vehicles Symposium (IV), 1366–1373, https://doi.org/10.1109/IV51971.2022.9827461 (2022).
	 2.	 Creß, C., Bing, Z. & Knoll, A. C. Intelligent transportation systems using roadside infrastructure: A literature survey. IEEE Trans.

Intell. Transport. Syst. https://doi.org/10.1109/tits.2023.3343434 (2023).
	 3.	 Shan, M. et al. Demonstrations of cooperative perception: Safety and robustness in connected and automated vehicle operations.

Sensors (Basel, Switzerland) 21 (2020).
	 4.	 Guerrero-Ibáñez, J., Zeadally, S. & Contreras-Castillo, J. Sensor technologies for intelligent transportation systems. Sensors. ​h​t​t​p​s​:​

/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​s​1​8​0​4​1​2​1​2​​​​ (2018).
	 5.	 Zhang, C. et al. A roadside cooperative perception system with multi-camera fusion at an intersection. In 2023 IEEE 26th

International Conference on Intelligent Transportation Systems (ITSC), 642–649, https://doi.org/10.1109/ITSC57777.2023.10422029
(2023).

	 6.	 Rezaei, M., Azarmi, M. & Mir, F. M. P. Traffic-net: 3d traffic monitoring using a single camera. arXiv preprint arXiv:2109.09165
(2021).

	 7.	 Zheng, Z. et al. A complex roadside object detection model based on multi-scale feature pyramid network. Sci. Rep. 15, 15992.
https://doi.org/10.1038/s41598-025-99544-1 (2025).

	 8.	 Sun, P., Sun, C., Wang, R. & Zhao, X. Object detection based on roadside lidar for cooperative driving automation: A review.
Sensors. https://doi.org/10.3390/s22239316 (2022).

	 9.	 Yeong, D. J., Panduru, K. & Walsh, J. Exploring the unseen: A survey of multi-sensor fusion and the role of explainable ai (xai) in
autonomous vehicles. Sensors. https://doi.org/10.3390/s25030856 (2025).

	10.	 Fan, L. et al. 4d mmwave radar for autonomous driving perception: A comprehensive survey. IEEE Trans. Intell. Vehicles 9, 4606–
4620. https://doi.org/10.1109/TIV.2024.3380244 (2024).

	11.	 Zhou, Y. et al. Towards deep radar perception for autonomous driving: Datasets, methods, and challenges. Sensors. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​
/​1​0​.​3​3​9​0​/​s​2​2​1​1​4​2​0​8​​​​ (2022).

	12.	 Borba, T. D., Vaculín, O., Marzbani, H. & Jazar, R. N. Increasing safety of automated driving by infrastructure-based sensors. IEEE
Access 11, 94974–94991. https://doi.org/10.1109/ACCESS.2023.3311136 (2023).

	13.	 Agrawal, S. & Elger, G. Concept of infrastructure based environment perception for in2lab test field for automated driving. In 2021
IEEE International Smart Cities Conference (ISC2), 1–4, https://doi.org/10.1109/ISC253183.2021.9562894 (2021).

	14.	 Tsukada, M., Oi, T., Kitazawa, M. & Esaki, H. Networked roadside perception units for autonomous driving. Sensors (Basel,
Switzerland) 20 (2020).

	15.	 Agrawal, S., Song, R., Doycheva, K., Knoll, A. & Elger, G. Intelligent roadside infrastructure for connected mobility. In Klein, C. et
al. (eds.) Smart Cities, Green Technologies, and Intelligent Transport Systems, 134–157 (Springer Nature Switzerland, Cham, 2023).

	16.	 Agrawal., S. et al. Concept of smart infrastructure for connected vehicle assist and traffic flow optimization. In Proceedings of the
8th International Conference on Vehicle Technology and Intelligent Transport Systems - VEHITS, 360–367, ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​2​0​/​0​
0​1​1​0​6​8​8​0​0​0​0​3​1​9​1​​​​​. INSTICC (SciTePress, 2022).

	17.	 Hirata, M. et al. Roadside-assisted cooperative planning using future path sharing for autonomous driving. In 2021 IEEE 94th
Vehicular Technology Conference (VTC2021-Fall), 1–7, ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​1​1​0​9​/​​V​T​C​2​0​​2​1​-​F​a​l​​l​5​2​9​2​8​​.​2​0​2​1​.​​9​6​2​5​3​2​4 (2021).

	18.	 robotics, O. Ros - robot operating system (2024).
	19.	 Schumann, O., Wöhler, C., Hahn, M. & Dickmann, J. Comparison. of random forest and long short-term memory network

performances in classification tasks using radar. In,. Sensor Data Fusion: Trends, Solutions. Applications (SDF) 1–6, 2017. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​S​D​F​.​2​0​1​7​.​8​1​2​6​3​5​0​​​​ (2017).

	20.	 Bai, J., Long, K., Li, S., Huang, L. & Dong, L. Multi-objective classification of three-dimensional imaging radar point clouds:
Support vector machine and pointnet. SAE International Journal of Connected and Automated Vehicles (2021).

	21.	 Scheiner, N., Appenrodt, N., Dickmann, J. & Sick, B. Radar-based road user classification and novelty detection with recurrent
neural network ensembles. 2019 IEEE Intelligent Vehicles Symposium (IV) 722–729 (2019).

	22.	 Charles, R. Q., Su, H., Kaichun, M. & Guibas, L. J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 77–85, https://doi.org/10.1109/CVPR.2017.16 (2017).

	23.	 Qi, C. R., Yi, L., Su, H. & Guibas, L. J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural
Inform. Process. Syst. 30 (2017).

	24.	 Cennamo, A., Kaestner, F. & Kummert, A. Towards pedestrian detection in radar point clouds with pointnets. In Proceedings of the
2021 International Conference on Machine Vision and Applications, 1–7, https://doi.org/10.1145/3459066.3459067 (Association for
Computing Machinery, New York, NY, USA, 2021).

	25.	 Cennamo, A., Kaestner, F. & Kummert, A. A neural network based system for efficient semantic segmentation of radar point
clouds. Neural Process. Lett. 53, 3217–3235 (2021).

	26.	 Schumann, O., Hahn, M., Dickmann, J. & Wöhler, C. Semantic segmentation on radar point clouds. In 2018 21st International
Conference on Information Fusion (FUSION), 2179–2186, https://doi.org/10.23919/ICIF.2018.8455344 (2018).

	27.	 Vaswani, A. et al. Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017).
	28.	 Yu, A., Wei, W., Wang, P., Yuan, H. & Liu, Y. Improving millimeter-wave radar target recognition using self-attention and multi-

layer feature fusion network. In 2023 4th China International SAR Symposium (CISS), 1–6, ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​C​I​S​S​6​0​1​3​6​.​2​0​2​
3​.​1​0​3​8​0​0​1​4​​​​ (2023).

	29.	 Zhao, H., Jiang, L., Jia, J., Torr, P. H. & Koltun, V. Point transformer. In Proceedings of the IEEE/CVF international conference on
computer vision, 16259–16268 (2021).

	30.	 Bai, J. et al. Radar transformer: An object classification network based on 4d mmw imaging radar. Sensors (Basel, Switzerland) 21
(2021).

	31.	 Zeller, M., Behley, J., Heidingsfeld, M. & Stachniss, C. Gaussian radar transformer for semantic segmentation in noisy radar data.
IEEE Robot. Automat. Lett. 8, 344–351. https://doi.org/10.1109/LRA.2022.3226030 (2023).

Scientific Reports | (2025) 15:38489 16| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

https://github.com/bhanderisavan/roadside-radar-seg
https://github.com/bhanderisavan/roadside-radar-seg
https://doi.org/10.1109/IV51971.2022.9827461
https://doi.org/10.1109/tits.2023.3343434
https://doi.org/10.3390/s18041212
https://doi.org/10.3390/s18041212
https://doi.org/10.1109/ITSC57777.2023.10422029
https://doi.org/10.1038/s41598-025-99544-1
https://doi.org/10.3390/s22239316
https://doi.org/10.3390/s25030856
https://doi.org/10.1109/TIV.2024.3380244
https://doi.org/10.3390/s22114208
https://doi.org/10.3390/s22114208
https://doi.org/10.1109/ACCESS.2023.3311136
https://doi.org/10.1109/ISC253183.2021.9562894
https://doi.org/10.5220/0011068800003191
https://doi.org/10.5220/0011068800003191
https://doi.org/10.1109/VTC2021-Fall52928.2021.9625324
https://doi.org/10.1109/SDF.2017.8126350
https://doi.org/10.1109/SDF.2017.8126350
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1145/3459066.3459067
https://doi.org/10.23919/ICIF.2018.8455344
https://doi.org/10.1109/CISS60136.2023.10380014
https://doi.org/10.1109/CISS60136.2023.10380014
https://doi.org/10.1109/LRA.2022.3226030
http://www.nature.com/scientificreports

	32.	 Zeller, M. et al. Radar velocity transformer: Single-scan moving object segmentation in noisy radar point clouds. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), 7054–7061, https://doi.org/10.1109/ICRA48891.2023.10161152
(2023).

	33.	 Schumann, O., Lombacher, J., Hahn, M., Wöhler, C. & Dickmann, J. Scene understanding with automotive radar. IEEE Trans.
Intell. Vehicles 5, 188–203. https://doi.org/10.1109/TIV.2019.2955853 (2020).

	34.	 Liu, J. et al. Deep instance segmentation with automotive radar detection points. IEEE Trans. Intell. Vehicles 8, 84–94. ​h​t​t​p​s​:​/​/​d​o​i​.​o​
r​g​/​1​0​.​1​1​0​9​/​T​I​V​.​2​0​2​2​.​3​1​6​8​8​9​9​​​​ (2023).

	35.	 Xiong, W. et al. Contrastive learning for automotive mmwave radar detection points based instance segmentation. In 2022 IEEE
25th International Conference on Intelligent Transportation Systems (ITSC), 1255–1261 (IEEE, 2022).

	36.	 Yuan, Q. Semantic-based clustering for 3d instance segmentation in sparse radar point clouds. In 2023 International Conference on
Algorithms, Computing and Data Processing (ACDP), 209–216, https://doi.org/10.1109/ACDP59959.2023.00041 (2023).

	37.	 Palffy, A., Dong, J., Kooij, J. F. & Gavrila, D. M. Cnn based road user detection using the 3d radar cube. IEEE Robot. Automat. Lett.
5, 1263–1270 (2020).

	38.	 Siddhartha, S., Wang, G. & Dutta, B. Panoptic segmentation for automotive radar point cloud. In 2022 IEEE Radar Conference
(RadarConf22), 1–6, ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​1​1​0​9​/​​R​a​d​a​r​​C​o​n​f​2​2​​4​8​7​3​8​.​​2​0​2​2​.​9​​7​6​4​2​1​8 (2022).

	39.	 Zeller, M. et al. Radar instance transformer: Reliable moving instance segmentation in sparse radar point clouds. IEEE Trans.
Robot. (2023).

	40.	 Agrawal, S. & Bhanderi, S. Infra-3drc dataset, https://doi.org/10.24406/fordatis/297 (2024).
	41.	 Agrawal, S., Bhanderi, S. & Elger, G. Semi-automatic annotation of 3d radar and camera for smart infrastructure-based perception.

IEEE Access 12, 34325–34341. https://doi.org/10.1109/ACCESS.2024.3373310 (2024).
	42.	 Continental. Ars548 rdi. ​h​t​t​p​s​:​​​/​​/​c​o​n​t​​i​-​e​n​g​i​n​e​e​r​i​​n​​g​.​c​​o​​m​/​c​o​m​p​​o​n​e​n​​t​​s​/​​a​r​s​​-​​5​4​8​-​r​d​i​/.
	43.	 Agrawal, S., Bhanderi, S., Doycheva, K. & Elger, G. Static multitarget-based autocalibration of rgb cameras, 3-d radar, and 3-d lidar

sensors. IEEE Sensors J. 23, 21493–21505. https://doi.org/10.1109/JSEN.2023.3300957 (2023).
	44.	 Srivastav, A. & Mandal, S. Radars for autonomous driving: A review of deep learning methods and challenges. IEEE Access 11,

97147–97168. https://doi.org/10.1109/ACCESS.2023.3312382 (2023).
	45.	 Sharma, V. A study on data scaling methods for machine learning. Int. J. Glob. Acad. Sci. Res. https://doi.org/10.55938/ijgasr.v1i1.4

(2022).
	46.	 Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. CoRR abs/1912.01703 (2019). .
	47.	 Scheiner, N., Kraus, F., Appenrodt, N., Dickmann, J. & Sick, B. Object detection for automotive radar point clouds – a comparison.

AI Perspectives 3 (2021).
	48.	 Lin, T.-Y. et al. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,

Switzerland, September 6-12, 2014, Proceedings, Part V 13, 740–755 (Springer, 2014).
	49.	 Ester, M. et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd 96, 226–231 (1996).
	50.	 Corporation, N. Nvidia jetson orin- edge computing device (2024).

Author contributions
Conceptualization, S.B. and S.A.; methodology, S.B.; validation, S.B; investigation, S.B.; data curation, S.B., S.A.;
writing— original draft preparation, S.B.; writing—review and editing, S.A., G.E.; visualization, S.B.; supervi-
sion, S.A, G.E.; project administration, G.E.; funding acquisition, G.E. All authors have read and agreed to the
published version of the manuscript. All authors reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. The research work is supported by the Bavarian
Ministry of Economic Affairs, Regional Development and Energy (StMWi), Germany in the project “INFRA
- Intelligent Infrastructure” and Open Access Publication is supported by the Fund of Technische Hochschule
Ingolstadt (THI).

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

Scientific Reports | (2025) 15:38489 17| https://doi.org/10.1038/s41598-025-23019-6

www.nature.com/scientificreports/

https://doi.org/10.1109/ICRA48891.2023.10161152
https://doi.org/10.1109/TIV.2019.2955853
https://doi.org/10.1109/TIV.2022.3168899
https://doi.org/10.1109/TIV.2022.3168899
https://doi.org/10.1109/ACDP59959.2023.00041
https://doi.org/10.1109/RadarConf2248738.2022.9764218
https://doi.org/10.24406/fordatis/297
https://doi.org/10.1109/ACCESS.2024.3373310
https://conti-engineering.com/components/ars-548-rdi/
https://doi.org/10.1109/JSEN.2023.3300957
https://doi.org/10.1109/ACCESS.2023.3312382
https://doi.org/10.55938/ijgasr.v1i1.4
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Deep segmentation of 3+1D radar point cloud for real-time roadside traffic user detection
	﻿Literature review
	﻿Semantic segmentation
	﻿Instance segmentation

	﻿Dataset
	﻿Measurement setup
	﻿Dataset statistics

	﻿Methodology

