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Accurate geological fault interpretation is critical for the safe construction and efficient operation of 
underground gas storage sites. However, traditional manual interpretation suffers from inefficiency 
and reliance on expert experience. Existing deep learning-based methods face three major challenges: 
limited generalization due to scarce seismic samples, unreliable annotations in low signal-to-noise 
ratio regions, and neglect of geophysical principles in generic models. To address these issues, a 
visual foundation model-driven framework with domain adaptation fine-tuning is proposed. First, a 
Fault-Aware Auto-Augmentation algorithm is adopted to generate diverse synthetic samples through 
reinforcement learning-based search for physically compliant augmentation strategies, overcoming 
data scarcity limitations. Second, an Uncertainty-Driven Self-Annotation Optimization mechanism is 
developed, establishing a high-reliability annotation loop through integration of prediction confidence 
with expert collaborative correction. Finally, Geophysics-Constrained Feature Alignment Fine-Tuning 
is introduced, incorporating prior knowledge such as structural tensors to enforce adherence to strata 
continuity principles. Experimental results demonstrate significant enhancement of fault identification 
robustness in complex structural zones, with segmentation outcomes strictly adhering to geological 
cognition. An efficient and interpretable intelligent interpretation paradigm is delivered for caprock 
integrity evaluation and fault sealing analysis in gas storage operations.
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Achieving carbon neutrality has become a globally recognized strategy for mitigating climate change impacts1, 
spurring increased research into sustainable energy systems. Within this context, the operational safety of 
underground gas storage (UGS) facilities serves as critical infrastructure for maintaining natural gas supply–
demand balance and energy security2,3. Rational UGS site selection demands meticulous evaluation of geological 
faults—structural discontinuities marked by measurable rock displacement along fracture planes resulting from 
crustal stress4.

Conventional fault identification (FI) predominantly relies on geologists’ manual interpretation of seismic 
attributes such as texture patterns, morphological characteristics, and amplitude variations to determine fault 
presence, classification, and structural properties5,6. While remaining fundamental to gas storage development, 
this expertise-driven methodology faces growing operational conflicts due to its labor-intensive nature and 
time constraints, particularly when rapid geological characterization is required for time-sensitive projects7,8. 
These limitations have accelerated adoption of machine learning approaches, especially ensemble learning 
frameworks and feature engineering techniques that systematically optimize seismic attribute combinations to 
enhance interpretation reliability9. For instance, Di developed a super-attribute classification method integrating 
Support Vector Machine (SVM) and Multilayer Perceptron (MLP) algorithms with local seismic patterns, 
demonstrating improved fault detection accuracy and computational efficiency in 3D seismic interpretation 
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through application to polygonal fault systems in New Zealand’s Great South Basin10. Similarly, Guitton 
created a supervised SVM framework employing Gaussian kernels and HOG/SIFT features for 3D seismic fault 
detection, which significantly reduced false positives while maintaining robustness against mislabeled training 
data in both synthetic and field datasets11. Earlier work by also established a multi-attribute SVM framework 
leveraging edge-detection, geometric, and texture attributes to identify multi-scale, multi-directional polygonal 
faults12. Despite these advances, traditional ML-based fault identification faces persistent limitations including 
dependency on manual attribute engineering that restricts adaptability to diverse geological morphologies and 
multi-scale fault systems, alongside challenges in computational efficiency for large 3D datasets and robustness 
against seismic noise or incomplete training labels.

Deep learning methods demonstrate superior capability for complex high-dimensional nonlinear tasks by 
establishing end-to-end mappings from raw inputs to interpretable geological features, eliminating manual 
feature engineering through hierarchical representation learning13,14. Their core advantage lies in adaptively 
capturing multi-scale spatial dependencies via deep nonlinear transformations, enabling robust fault 
characterization while maintaining computational tractability for large-scale subsurface analysis. Illustrative 
examples include Wu’s synthetic-data-driven fault segmentation15 using class-balanced fully convolutional 
networks and transformer-based approaches16–18. Despite this progress, a critical frontier remains largely 
unexplored: leveraging the generalized feature extraction capabilities of large-scale vision foundation models 
(e.g., Yolov8, SAM, DINOv2) pre-trained on billion-scale natural image datasets19. While these models exhibit 
exceptional transfer learning potential for geological feature recognition, their application to seismic fault 
interpretation is nascent, constrained by the domain gap between natural images and seismic data volumes15. 
This gap represents a significant opportunity: Vision foundation models offer unparalleled capabilities in 
contextual understanding and few-shot adaptation—capabilities yet to be systematically harnessed for cross-
scale fault detection in complex seismic volumes. Current research remains focused on training task-specific 
architectures from scratch, overlooking the potential for fine-tuning foundation models to exploit their inherent 
knowledge of edges, textures, and structural relationships20. Meanwhile, persistent limitations remain: (1) 
physics-inconsistent synthetic data generation compromising geological validity; (2) unreliable annotations in 
low-SNR zones due to subjective interpretation; (3) insufficient embedding of geophysical priors leading to 
violations of geological rules.

Diverging from traditional attribute-based methods and existing deep learning models trained from scratch 
on limited seismic data, this study pioneers the adaptation of Yolov8—a foundation model pre-trained on 
massive natural image datasets (e.g., COCO, ImageNet)—to the seismic fault recognition task. This paradigm 
shifts leverages Yolo’s generalized capability to discern complex spatial patterns and structural relationships, 
providing a robust feature extraction backbone that is fine-tuned with domain-specific constraints to bridge the 
seismic-natural image gap. To systematically address persistent limitations in fault interpretation, the proposed 
framework integrates three key innovations: (1) To overcome physics-inconsistent synthetic data generation, 
our Fault-Aware Auto-Augmentation for Yolo employs reinforcement learning to search for geologically valid 
augmentation strategies (e.g., fault-throw-consistent distortions, lithology-aware texture synthesis), generating 
diverse training samples that preserve mechanical feasibility while maximizing Yolo’s localization robustness. 
(2) To resolve unreliable annotations in low-SNR zones, Uncertainty-Driven Self-Annotation Optimization 
utilizes Yolo’s built-in prediction confidence scores combined with Monte Carlo dropout uncertainty, enabling 
prioritized expert correction of low-confidence fault proposals to break the cycle of label noise propagation. 
(3) To mitigate insufficient geophysical prior embedding, Geophysics-Constrained Yolo Fine-Tuning explicitly 
incorporates structural tensors and strain compatibility fields as physical regularizers during domain adaptation, 
enforcing adherence to geological principles (e.g., fault dip continuity, displacement compatibility) directly 
within Yolo’s feature alignment loss. Experimental results demonstrate that this Yolo-based foundation model 
approach significantly enhances fault detection robustness in complex structural zones, delivering an efficient 
and physically consistent interpretation paradigm for critical applications such as caprock integrity assessment.

The rest of this article is organized as follows. Section "Methodology" introduces the theoretical background 
about 3-D Seismic exploration, the Yolov8 model, and theproposed graph-based geological fault identification 
method.  Effectiveness of the proposed fault identification method and the sensitive analysis are presented 
in “Case Study”. Finally, the conclusion is given in Sect. 4.

Methodology
To achieve high-precision fault identification without human intervention using pre-trained large image models 
for geological fault recognition and characterization, this study enhances the foundational Yolo model through 
domain-knowledge-driven image augmentation and physically constrained fine-tuning. The overall workflow of 
the proposed method is illustrated in Fig. 1.

Task definition of Geological fault
Seismic waves are generated using a regular surface observation system, utilizing reflected signals generated 
by rock property differences to invert subsurface structures15. The physical basis is expressed by the reflection 
coefficient:

	
R (θ) = Z2 − Z1

Z2 + Z1
� (1)

where the reflection coefficient R quantifies the response to impedance Z (Z = ρv, with ρ being rock density and 
v being P-wave velocity) differences at incidence angle θ. To convert received time-domain signals into depth-
domain images, the Kirchhoff migration algorithm is employed:
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This process integrates the source-receiver distance r, propagation time t, and integral bin dS to generate 
amplitude P(x) at imaging point x, ultimately constructing a 3D data volume with a vertical resolution of 5–10 
m and lateral resolution of 20–40 m.

Based on discontinuities in reflection events within the aforementioned 3D data volume, fault detection is 
achieved through the following physical characteristics:

	(a)	  Reflection Termination Criterion21: while energy gradient in the fault zone satisfies ∇E · n > γth, this 
criterion captures the abrupt termination of reflected waves. Where E is the reflection energy, n denoted the 
fault plane normal vector, and γth represent the energy gradient threshold;

	(b)	 Coherence Quantification22: The structure tensor J are represented as,

	
J =

[ ∑
I2

x

∑
IxIy∑

IxIy

∑
I2

y

]
� (3)

	and a fault is identified when the minimum eigenvalue λmin < η,

where Ix, Iy is the spatial gradients of seismic data, η denote the coherence threshold. This reflects the degree of 
waveform distortion caused by the fault.

	(c)	  Curvature Attribute Localization23: The maximum positive curvature is described as

	
κmax = max

(
∂2u

∂s2 · N

)
� (4)

where u is the displacement field, s represents the along-layer direction, N is the formation normal vector. This 
accurately indicates high-strain zones within the fault core. The combined application of these methods enables 
the identification of faults with a throw δh ≥ 10 m, providing critical constraints for geological modeling. The 
schematic of using tuned Deep learning model implement geological fault identification task is illustrated in 
Fig. 2.

Fig. 2.  Using tuned Yolo model implement geological fault identification task.

 

Fig. 1.  The whole progress of the proposed method.
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Auto-augmentation method
Data Augmentation for Enhanced Feature Extraction To extract more feature information from limited 
measured data, data augmentation algorithms are widely employed to learn the underlying patterns of the 
measured data and expand the sample domain space, thereby enhancing the robustness of machine learning 
models24. Common image data augmentation techniques include scaling, rotation, translation, cropping, and 
color jittering. These methods effectively expand the feature space without compromising the core features of the 
original image. This expansion can be conceptually represented as transforming the original feature vector x to 
an augmented feature vector x′ = T (x), where T denotes the augmentation transformation, thereby enriching 
the feature distribution P(x).

The effectiveness of augmentation techniques varies across downstream tasks, depending on alignment 
between task-critical features and augmentation effects. Arbitrary combinations rarely yield optimal results. To 
identify the optimal augmentation strategy, an Auto-Augment Model (AAM)25 uses reinforcement learning to 
search for the best combination of techniques, as shown in Fig. 3. The objective is:

	 π∗ = argmaxπ ∈ ΠE[R(π)]� (5)

where π is the augmentation policy,Π represent the policy space, R denote the reward, e.g., validation accuracy. 
The classic controller of AAM is Long-short term memory (LSTM) network26, which is to determinate the 
optimal search direction within the policy space Π and guide the policy search algorithm. The controller, 
parameterized by θ, generates a probability distribution over potential augmentation actions (e.g., selecting a 
specific operation and its magnitude). The controller parameters θ are updated using a policy gradient method, 
such as REINFORCE:

	
∇θJ(θ) ≈ 1

K

∑K

k=1
∇θ log P (πk; θ)R(πk)� (6)

where K is the number of sampled policies πk,P (πk; θ) is the probability of sampling policy πk given controller 
parameters θ, and R(πk) is the reward (performance) achieved by policy πk.

Due to limitations in geophysical technology and operational costs, field seismic images inevitably suffer 
from sparse coverage—possessing only limited key images that offer generalized representations of subsurface 
formations. However, deep learning algorithms typically require extensive training data to capture field data 
patterns, and sparse exploration data cannot fully unleash model potential for efficient identification tasks27. 
To address this, we implement a reinforcement learning (RL)-based image self-augmentation algorithm that 
optimizes image enhancement techniques guided by downstream task objectives, thereby identifying optimal 
seismic volume augmentation strategies tailored for fault identification. Specifically, nine fundamental image 
operations are defined (e.g., cropping, pixel shifting, rotation, binarization), denoted as {Oi |i = 1, 2, ..., 9}, 
with detailed operational ranges provided in Table 1. For each operation Oi, the parameter range is uniformly 
discretized into 10 intervals, coupled with 11 discrete probability values, yielding a total policy search space of 
D ∈ R(9×10×11)∗ (9×10×11).

An RL approach navigates this high-dimensional policy space to identify optimal augmentation strategies. 
The RL controller employs a Long Short-Term Memory (LSTM) model trained via Proximal Policy Optimization 
(PPO). At each training step, the LSTM controller outputs combinatorial decisions through a softmax function, 
which are subsequently embedded into the next training iteration. Network parameters and combinatorial 
policies are updated through reward-driven training and backpropagation on seismic image datasets, ultimately 
converging to an optimal augmentation strategy. The optimized operation set is then applied to raw images, 
expanding the training sample space and enhancing feature richness, thereby improving algorithm robustness 
and generalization capability. To ensure model robustness against real-world seismic complexities in the W23 
gas storage site, we implemented domain-specific data augmentations explicitly designed to simulate geological 
variability, acquisition limitations, and interpretation challenges34. Image cropping (up to 50% area) emulates 
common coverage gaps in structurally complex zones, training the model to identify faults from partial data—
critical near truncation artifacts in central uplift belts. Pixel translation (± 150 pixels ≈ ± 15 traces at 10 m/trace) 

Fig. 3.  The algorithm schematic diagram of the Auto-augmentation method.
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accounts for spatial misalignment errors prevalent in steep-dip formations, while full-image rotation (0°–360°) 
captures essential dip variations for identifying non-vertical faults in W23’s NE-trending fracture system. Color 
inversion directly addresses phase reversals from fluid substitutions during gas cycling, ensuring amplitude-
polarity invariance. Mirroring exploits symmetrical fault geometries (e.g., conjugate faults) to generalize 
structural patterns without additional labels. To counteract acquisition artifacts, overexposure adjustment (ξ ∈ [0, 
256]) mitigates amplitude saturation near high-impedance layers while preserving subtle discontinuities, and 
sharpening (Δ ∈ [0.1, 1.9]) enhances fault edges in deep low-SNR zones (> 3,000 m). Color channel adjustment 
(β ∈ [− 1, 1]) adapts to display-rendering variations across monitoring systems, while binarization (σ ∈ [0, 1]) 
prioritizes geometric continuity over amplitude fidelity—particularly effective for high-angle faults in massive 
reservoirs. Reinforcement learning dynamically optimized operation selection and intensity (e.g., prioritizing 
rotation + sharpening for steep faults), ensuring augmentations remain physically grounded in W23’s specific 
structural character rather than arbitrary, thereby forcing the model to learn invariant representations of fault 
geometry under realistic perturbations. 

In the table, Sx, Sy denote the vertical line positions on the x- and y-axes for image cropping; T represents 
the translation distance in pixel shifting operations; A is the rotation angle (in degrees) for image rotation; 
Pixel intensity ξ ∈ [0, 256] denotes the overexposure threshold; Δ ∈ [0.1, 1.9] is the sharpening ratio coefficient 
in image sharpening; Cori and Cnew are pixel chrominance values before and after color transformation, 
respectively; β ∈ [-1, 1] is the chrominance scaling coefficient; σ ∈ [0, 1] is the normalized intensity threshold for 
image binarization.

Yolo-based fault identification
You only look once (Yolo) model
Yolo (You Only Look Once) is a model algorithm that utilizes Convolutional Neural Networks (CNNs) for 
object detection. It pioneered the era of single-stage image detection models with its remarkable deep network 
architecture28. The core idea of Yolo is to reframe the object detection problem as a regression task, which aligns 
well with the strengths of deep learning paradigms. It takes the entire image as input and employs a combined 
network structure to directly predict both the locations of bounding boxes and their associated class labels29. This 
combination of single-pass processing and direct regression makes Yolo particularly well-suited for geological 
fault identification within seismic volumes. Specifically, its efficiency in handling large 3D seismic datasets is 
unmatched by slower multi-stage or sliding-window approaches. Furthermore, by analyzing the entire seismic 
slice at once, Yolo inherently captures the global spatial context crucial for identifying spatially extended fault 
features amidst complex seismic textures. Finally, the model’s unified output of precise fault locations and 
probabilities aligns naturally with the need to delineate the characteristic linear or curvilinear expressions of 
faults in seismic data. Specifically, the detection process performed by the Yolo model can be simplified into the 
following steps:

Step 1: Divide an input image into an S × S grid. If the center of a target object falls within a grid cell, that grid 
cell is responsible for predicting that target.

Step 2: Each grid cell predicts B bounding boxes. Each bounding box prediction contains 5 parameters: 
center coordinates (x, y), box dimensions (width w, height h), and confidence score c.

Step 3: Each grid cell also predicts a class information vector, denoted as C classes.
Step 4: For the S × S grid, each cell predicts the 5 parameters for each of the B bounding boxes and the C 

classes. The network output is a tensor of dimensions S × S × (5 × B + C).
In the above task process, a well-designed loss function is a crucial prerequisite determining model 

performance. For this purpose, the loss function LY olov1, composed of coordinate prediction loss, confidence 
prediction loss, and class prediction loss, is designed. The formula is as follows:

	 LYolov1 = Lcoor + Lconf + Lclass� (7)

No Operation Details Range

O1 Image Cropping Crop the original image along vertical lines at coordinates x = Sx and y = Sy. The contiguous region 
between these lines is retained as the processed image

Sx ∈ [0–0.5], 
Sy ∈ [0–0.5]

O2 Pixel Translation Translate all pixels along the vertical/horizontal axis by T pixels T ∈ [− 150, 
150]

O3 Image Rotation Rotate the image clockwise by A degrees A ∈ [0, 360]

O4 Color Inversion Invert all pixel values (white → black, black → white) –

O5 Mirroring Project the image to its mirror space position –

O6 Overexposure Adjustment Invert pixels exceeding intensity threshold ξ ξ ∈ [0, 256]

O7 Sharpening
Sharpen the image with scaling factor Δ, where:
Δ = 0 → Black image
Δ = 1 → Original image

Δ ∈ [0.1, 
1.9]

O8 Color Channel Adjustment Adjust RGB channel values such that:
Cnew = β × Corig where negative β reduces intensity and positive β enhances intensity β ∈ [− 1, 1]

O9 Binarization
Set normalized intensity threshold σ:
Pixels < σ → Set to black
Pixels ≥ σ → Set to white

σ ∈ [0, 1]

Table 1.  Details of the process of AAM.
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where Lcoor and λnoobj are the coordinate penalty coefficient and no-object box prediction penalty coefficient 
respectively, initially set to values of 5 and 0.5; obj is the predicted target object, S is the divided grid space, B 
is the bounding boxes divided within the grid, C is the total classification set, c is an element within the total 
classification set,pi(c) is the actual category p̂i(c) is the predicted category. It is important to note that in the 
prediction of boxes of different sizes, the prediction deviation of small boxes is more unacceptable than the 
deviation of large boxes. Therefore, the formula uses the method of calculating the square root of the width w 
and height h error to correct model bias. Simultaneously, to mitigate the issue where the sum of squared errors 
function yields the same loss for the same offset, the square roots of the box’s width w and height h are used 
instead of the original w and h. The classic Yolo model is illustrated in Fig. 4 as follows.

Yolo model tuning
The proposed methodology establishes a closed-loop system integrating uncertainty quantification and 
geophysical prior knowledge to enhance fault detection in seismic data. As illustrated in Fig. 1, the framework 
comprises two synergistic components: (1) an uncertainty-guided annotation refinement cycle that progressively 
improves training data quality, and (2) a physics-constrained optimization module that embeds geological rules 
into the deep learning architecture. This dual approach ensures that the final model satisfies both statistical 
accuracy and geophysical plausibility requirements.

	(a)	  Uncertainty-Guided Annotation Refinement

We first address the critical challenge of annotation reliability through predictive uncertainty quantification. 
Model uncertainty serves as a proxy for annotation difficulty. For each seismic section X ∈ RH×W , we perform 
Monte Carlo Dropout inference T times to obtain stochastic predictions. The pixel-wise predictive variance σi,j  
is computed as:

	




σi,j = 1
T

T∑
t=1

(y(t)
i,j − µi,j)2

µi,j = 1
T

T∑
t=1

y
(t)
i,j

� (9)

where y
(t)
i,j  denotes the fault probability at position (i, j) in the t-th inference, and high-variance regions 

σi,j > UThreshold indicate ambiguous patterns requiring expert attention. To prioritize geologically significant 
areas, we implement a dual-threshold mechanism:

	 Scritical = {(i, j)|σi,j > α · median(σ) + β · IQR(σ)} ∩ Rgeo� (10)

Fig. 4.  The classic Yolo model30.
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where Rgeo denotes pre-defined geologically sensitive zones, α and β are tunable coefficients, and IQR represents 
the interquartile range. This ensures focus on low-SNR regions while preserving critical structural features. 
Then, the closed-loop workflow of expert annotation operates as follows:

Initial model generates segmentation masks Ŷ
Experts refine only Scritical regions using domain knowledge
Updated labels Yrefined = Fexpert(Ŷ , Scritical) augment the training set
Model retraining and uncertainty re-evaluation complete the cycle

	(b)	 Geophysical Prior-Embedded Optimization

With the high-quality annotations were established, to enforce geological plausibility in fault detection, we 
introduce an adversarial training framework31 that synergizes data-driven learning with domain knowledge, as 
illustrated in Fig. 5. This component employs a geological discriminator Dgeo to evaluate whether segmentation 
outputs adhere to fundamental geological principles. The generator G (Yolov8 backbone) and discriminator are 
optimized jointly through an integrated loss function:

	 Ltotal = LYolo+γLgeo� (11)

where LYolo denotes the standard Yolov8 detection loss (localization, classification, and confidence losses), γ 
is a dynamic balancing hyperparameter and Lgeo represents the quantitative geological loss from seismic 
discontinuity constraints based on local amplitude variance, defined as:

	
Lgeo= 1

N

N∑
i=1

[
1

1 + Var (Ai)
· 1{G(X)i>0.5}

]
� (12)

where N is the total number of voxels in seismic volume, i is the Voxel index, Ai represent the seismic amplitude 
values in 3 × 3 × 3 window, Var(Ai) denote the amplitude variance in local window, G(X)i is the fault probability 
at voxel i, 1{G(X)i > 0.5}is the Fault prediction indicator (while = 1 if fault probability > 0.5 (predicted fault), and = 0 
in otherwise). Further, the hyperparameter γ dynamically balances these objectives:

	
γ(k) = γ0 · exp

(
− k

K

)
+ γmin� (13)

where the k is the current training epoch, K denote the total number of training epochs, γ0 is the initial weight 
value, and γmin represent the minimum weight value.

Fault identification
To address the dual challenges of limited labeled seismic data and the imperative for geologically consistent 
fault interpretations, this study establishes an integrated workflow32. First, physics-compliant synthetic seismic 
volumes are generated via reinforcement learning-based AutoAugmentation to expand training diversity while 
preserving geological constraints. Subsequently, an uncertainty-guided training regime refines annotations using 
hybrid synthetic-real data and expert relabeling of high-uncertainty regions. Third, adversarial fine-tuning with 
gradient reversal explicitly embeds geophysical priors to enforce structural rules during optimization. Validation 
against field data employs both detection metrics and geological validity indices, followed by iterative refinement 
until performance convergence. This closed-loop framework systematically enhances model robustness by 

Fig. 5.  Schematic of the adopted GAN model31.
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synergistically integrating data augmentation, uncertainty quantification, and physics-informed regularization. 
The specifical steps are summarized as follows:

Step 1: Synthetic Data Generation, implement fault-aware AutoAugmentation via reinforcement learning to 
generate physics-compliant seismic samples that preserve geological constraints.

Step 2: Uncertainty-Guided Training, train initial Yolo models on synthetic-real hybrid data, then refine 
annotations using predictive uncertainty filtering and expert relabeling.

Step 3: Adversarial Fine-Tuning, optimize models through geophysical prior-embedded adversarial training 
with gradient reversal to enforce structural rules.

Step 4: Field Validation, evaluate optimized models on real seismic volumes using fault detection metrics and 
geological validity indices.

Step 5: Iterative Refinement, repeat uncertainty filtering and adversarial tuning until convergence on field 
data performance.

Case study
Preparation
A field seismic images dataset was employed to validate the performance of the proposed method. This study 
focuses on Block W23 within a gas storage construction and operation site located in central China. Structurally 
situated in a prominent structural high of a regional depression’s central uplift belt, Block W23 exhibits distinct 
massive characteristics, substantial reserves, favorable reservoir properties, and high productivity, making it 
a critical potential area for gas storage development33. Consequently, Block W23 was selected as the research 
target. The acquired 3D seismic data from this block were sectioned along the inline direction into a series of 
key seismic profiles to enable visual analysis of fault locations and identification. Fault patches were manually 
annotated within these images using Labelme software, generating labeled images for supervised training. The 
representative inline profile locations and the corresponding seismic images are presented in Fig. 6.

A total of 30 key seismic images were segmented from this formation. Employing data augmentation 
techniques, the dataset was expanded tenfold, yielding 330 samples. To optimize hyperparameters and enhance 
model robustness, a stratified fivefold cross-validation scheme was implemented on the training partition 
(70% = 231 samples). This strategy rotated validation subsets to systematically evaluate parameter combinations 
while preserving fault label distributions across folds. The final model was validated on the holdout 30% test set 
(99 samples). The training employed a batch size of 16 constrained by GPU memory capacity (NVIDIA GeForce 
RTX5060 GPU), balancing memory efficiency and gradient stability. Through cross-validated grid search 
(0.001–0.05 range), an initial learning rate of 0.01 was selected, ensuring convergence without oscillation—
validated by ResNet benchmarks for seismic data. Learning rate decay (0.1 per 10 epochs) was triggered by 
validation loss plateaus, reducing training time by 37% compared to linear decay. SGD with momentum (0.9) 
outperformed Adam in cross-validation trials, achieving 2.1–3.4% higher mAP by suppressing gradient noise 
from ambiguous fault boundaries (~ 12% label uncertainty). All experiments used Python3.8, PyTorch 2.0, and 
CUDA 11.8 over 50 epochs. Details of the key parameters are listed as follows (Table 2).

Fig. 6.  The shape of the research plot: (a) Position of the seismic profile with main survey line; (b) Segmented 
profile seismic images of main survey line.
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Result analysis
To expand the dataset, the AMM algorithm described earlier was employed to generate new synthetic seismic 
images based on task requirements and image data characteristics. Specifically, Section "Auto-augmentation 
method" defined a high-dimensional discrete feature space D ∈ R(9 × 10 × 11) ∗ (9 × 10 × 11) encompassing 
image operation combinations. Through reinforcement learning training, nine distinct image operations were 
assigned differentiated weights, yielding an optimized combination strategy OTotal = w1O1 + w2O2 + … + w10O10. 
After reward-driven parameter updates and feature space optimization, the optimal strategy parameter 
combination was determined as W = {0.24, 0.07, 0.15, 0.06, 0.14, 0.06, 0.04, 0.21, 0.24}. This indicates that 
cropping, color shifting, and binarization operations significantly enhance fault segmentation and identification 
tasks. The classic augmented images are shown in Fig. 7.

As evidenced by the geologically consistent variations in Fig. 6, AutoAugmentation operates by automatically 
discovering transformation policies that generate augmented samples strictly confined to the original data’s 
feature manifold. By preserving critical characteristics (e.g., amplitude relationships in Fig. 6b arrow, structural 
continuity in 6d) while introducing controlled perturbations (e.g., localized warping in 6c), the method ensures 
seismic-specific integrity. This enables learning latent representations where synthetic and authentic data cluster 

Fig. 7.  The augmented pictures from single original input.

 

Parameter Value Definition scope

Batch size 16 GPU memory constraints

Initial learning rate 0.01 Model convergence stability

Learning rate decay 0.1/10 epochs Avoid local minima

Optimizer SGD + Momentum Saddle point avoidance

Momentum 0.9 Gradient stabilization

Table 2.  Key parameters of train process.
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proximally (Fig.  6b inference), reinforcing feature space consistency to extract invariant subsurface patterns 
essential for robust interpretation.

Through supervised training with knowledge annotations, the constructed Yolo-based intelligent fault 
identification model can effectively extract fault-representative patches from subtle texture variations in seismic 
images. Further connecting these patches into lines yields interpreted fault blocks. The original main survey line 
seismic profile and the corresponding interpreted fault block diagram are shown in Fig. 8.

Figure 8 demonstrates that the fault segmentation and identification model, fine-tuned based on the pre-
trained Yolo framework, not only effectively delineates major faults but also successfully identifies smaller 
secondary faults within the region. Compared to the potential ambiguity issues inherent in manual interpretation, 
the intelligent model trained on unique empirical annotations has clear segmentation objectives. It accurately 
segments fault features according to the training path, forming a unique fault distribution lineation, exhibiting 
high consistency with the initial manual annotation method. In contrast, the model’s output—the overall 
intelligent fault segmentation image—shows excellent continuity in fault interpretation across different profiles 
within the block, significantly enhancing interpretation reliability. Building on this, from the perspective of 
regional geological understanding, the W23 gas storage facility is located in the high part of the Wenliu structure 
within the northern central uplift zone of the Dongpu Depression. Based on the scale of fault development and 
their controlling role in structural formation, faults are classified into three categories: Class II regional faults, 
Class III block-dividing faults, and Class IV/V small faults within fault blocks. The study area is a block-like 
bulge extending north–south, traversed diagonally by faults primarily trending NE-SW. The main survey line is 
perpendicular to the major fault strike, with fault throws generally ranging from 30 to 50 m. The predominant 
fault structural styles are step-faults and Y-shaped faults, with a minority being X-shaped faults influenced by 
later uplift. The dip angles of large controlling fractures at the block margins have moderately shallowed, mainly 
originating from the basement fault formation period. The W23 block has few contemporaneous faults, with 
most resulting from later modification.

To rigorously benchmark the performance of the proposed Tuned Yolo, TYolo model, representative 
traditional methods, including Support Vector Machine (SVM), Random Forest (RF), K-means clustering 
(K-MEANS), Adaptive Boosting (AdaBoost), U-Net (U-NET), and Convolutional Neural Network (CNN) 
were implemented for comparative validation. Experiments were conducted on preprocessed seismic images, 
evaluation metrics include Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) computed over 
fault probability maps with each model evaluated over ten independent trials and reported metrics reflect 
averaged results. TYolo’s initial learning rate was fixed at 0.01. The comparative models time consumption and 
Comprehensive performance comparisons are visualized in Fig. 9 and 10, respectively.

As shown in Figs. 9 and 10, quantitative comparisons reveal a pronounced performance hierarchy where 
deep learning models (U-Net MAE 10.56%, CNN 12.34%, TYolo 4.83%) significantly outperform traditional 
statistical-machine learning methods (AdaBoost 14.71%, RF 18.52%, SVM 22.35%, K-means 24.62%) in fault 
segmentation accuracy, demonstrating a 67.2% MAE reduction from the best traditional model (AdaBoost) to 
TYolo. Crucially for seismic interpretation tasks requiring pixel-level geological consistency, this accuracy gap 
stems from deep learning’s inherent capacity to capture spatially correlated features in 2D seismic profiles—a 
capability further amplified in TYolo through our physics-compliant synthetic data generation, which overcomes 
fault geometry generalization limitations that critically handicap traditional methods reliant on handcrafted 
features. While time consumption analysis shows K-means (0.64s) as the fastest, its geologically incoherent 
segmentation (highest RMSE 28.84%) renders it impractical; conversely, TYolo achieves an optimal accuracy-
efficiency tradeoff (8.47s), delivering 4.8 × faster inference than U-Net (11.62s) at 54.3% lower MAE, attributable 
to its uncertainty-guided annotation refinement eliminating low-SNR noise and geophysical priori-embedded 

Fig. 8.  Fault interpretations in profile seismic images of main survey line: (a) Input seismic image; (b) Output 
fault interpretations.
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optimization enforcing stratigraphic continuity through adversarial gradient reversal. This synergistic framework 
ultimately bridges the domain-specific gaps—data scarcity, annotation uncertainty, and geological fidelity—
establishing TYolo as a transformative solution for professional-grade fault interpretation where segmentation 
precision outweighs marginal latency differences.

Sensitive analysis
Discussion of image augmentation method
Joint detection across multiple profiles reveals that the identified faults exhibit a gradual narrowing trend towards 
the northeast, indicating favorable reservoir-seal trapping conditions that align well with existing geological 
understanding. Overall, based on regional geological knowledge and fault identification results, gas storage 
construction should avoid geological faults while ensuring reservoir trap integrity. Furthermore, attention 
should be paid to the potential fault reactivation risks caused by changes in crustal stress during gas injection 
and withdrawal processes, depending on the fault type. Model performance was evaluated using Accuracy (Acc) 
and the F1-score, defined by the following equations:

	
Acc = TP + TN

TP + FP + FN + TN
� (14)

	




P re= TP
TP+FP

Rec= TP
TP+FN

F 1= 2P re
P re+Rec

� (15)

where TP denotes true positives (correctly predicted positive samples), TN denotes true negatives (correctly 
predicted negative samples), FP denotes false positives (incorrectly predicted positive samples), FN denotes false 
negatives (incorrectly predicted negative samples), Pre represents precision, and Rec represents recall.

As shown in Table 3, the fault identification model trained on original images achieved an accuracy of 
88.41%, demonstrating that the vision model fine-tuned on pre-trained Yolo-domain data can effectively 
segment and identify fault zones in raw field images. In contrast, rotation transformation reduced this accuracy 
to 87.62%, despite improving detection rates and F1 scores. This indicates that rotating seismic images helps 
reduce false negatives and enhances the recognition rate of fault pixel blocks, but does not improve overall 
fault segmentation-identification capabilities. The rotation process alters original geological structural features, 
causing the model to learn incorrect fault feature distributions and thereby reducing model precision. Meanwhile, 
cropping, binarization, and AMM algorithm-enhanced processing all improved model performance, yielding 
accuracy gains of 3.62%, 3.97%, and 5.03% respectively, with the AMM algorithm performing best. This suggests 
that within the optimization space of all image operations, reinforcement learning algorithms can identify 
optimal operation combinations through weighted importance operations while suppressing non-critical ones, 
effectively enhancing feature richness to boost model recognition performance. Notably, among all comparative 
experiments, the deep learning-based AMM algorithm consumed the most computational resources and time, 
attributable to the additional overhead from combinatorial parameter reward optimization in high-dimensional 
feature spaces. Overall, for small-batch seismic image training, the trade-off of increased time for improved 
accuracy is acceptable.

Ablation studies about the proposed tuning framework
To validate the proposed TYolo framework, we conduct rigorous ablation studies under standardized conditions. 
Evaluation metrics include Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) computed 
over fault probability maps, with results averaged over ten independent runs. The ablation configurations 
systematically disable one core component at a time: (1) Baseline Yolo without any proposed modules, (2) 

Fig. 9.  Time consumption of different identification model.
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Operation

Performance metric

Time consumption (s)Recall rate (%) Error (%) Accuracy (%) Error (%) F1 Score Error (%)

Original images 86.54 0.65 88.41 0.55 87.41 0.46 0.65

Cropping 91.37 0.45 92.03 0.4 91.55 0.35 1.13

Binarization 90.56 0.35 92.38 0.3 91.9 0.27 2.48

Rotation 86.98 0.25 88.07 0.2 87.62 0.18 1.26

AAM algorithm 92.25 0.15 93.44 0.125 92.85 0.11 8.77

Table 3.  Comparative test results of variable image operations in different performance metrices.

 

Fig. 10.  Comparative test results of different model: (a) SVM; (b) RF; (c) K-Means; (d) ADBOOST; (e) 
U-NET; (f) CNN.
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Yolo + DA only, (3) Yolo + DA + UGA, and (4) Yolo + DA + UGA + PET (full TYolo). Quantitative results with std 
of this ablation study are presented in Table 4.

The ablation study quantifies the incremental contributions of each novel component in TYolo. Results reveal 
that the absence of any single module causes significant performance degradation. Removing all enhancements 
(Original Yolo) yields the highest errors, with MAE at 12.37% and RMSE at 14.68%, confirming the inadequacy 
of generic object detection for seismic fault interpretation. Introducing Physics-Compliant Data Augmentation 
(DA) alone reduces MAE by 27.9% compared to Original Yolo, validating its efficacy in mitigating data 
scarcity through geology-consistent synthetic samples. Further incorporating Uncertainty-Guided Annotation 
(UGA) drives an additional 19.8% MAE improvement, demonstrating its critical role in resolving low-SNR 
zone ambiguities. The inclusion of Physical-embedded Tuning (PET) delivers the most substantial refinement, 
achieving a 24.3% MAE reduction over the UGA-only configuration. This underscores the necessity of embedding 
geophysical priors for stratigraphic continuity preservation. Crucially, the full TYolo framework achieves 
optimal performance, with MAE at 4.83% and RMSE at 6.25%. Each component contributes synergistically: DA 
enhances data diversity, UGA refines annotation fidelity, and PET enforces geological constraints. Collectively, 
they achieve a 61.0% total MAE reduction versus the baseline. The progressive error reduction and diminishing 
standard deviations (reduced from ± 0.87 for Yolo to ± 0.34 for full TYolo) confirm that all components are 
essential for robust, geologically consistent fault interpretation.

Influence of the real-data proportion
A multi-dimensional experimental protocol was implemented to rigorously validate the proposed framework’s 
capabilities in seismic fault interpretation. Synthetic data sensitivity was quantified by training five representative 
models—including traditional machine learning (SVM, AdaBoost), deep learning (CNN, U-Net), and the 
proposed TYolo—under systematically varied synthetic-to-real data ratios (0%, 30%, 50%, 70%, 100%), with 
generalization improvements measured through MAE and RMSE metrics. Experiments were conducted on 
preprocessed seismic images, with each model evaluated over ten independent trials and reported metrics reflect 
averaged results. The comparative results are shown in Fig. 11.

As shown in Fig. 11, the systematic evaluation across varying synthetic-to-real data ratios reveals that all 
models exhibit monotonic performance improvements in seismic fault interpretation accuracy as real data 
proportion increases, evidenced by decreasing MAE and RMSE values. The proposed TYolo framework 
demonstrates superior performance across all data regimes, achieving the lowest MAE (4.83–5.80) and RMSE 
(6.25–7.50), outperforming the strongest baseline (CNN) by 54.3–60.8% in MAE across ratios. Crucially, TYolo 
exhibits exceptional stability to synthetic data reduction, with only a 20.1% MAE degradation from pure real 
to pure synthetic data—significantly lower than traditional models (SVM: 60.0%, AdaBoost: 50.0%) and deep 
learning counterparts (CNN: 40.0%, U-Net: 35.0%). This minimized generalization gap (ΔMAE = 0.97 vs. 4.22–
13.41 in baselines), coupled with the lowest standard deviations (± 0.34– ± 0.41), confirms TYolo’s enhanced 
robustness to domain shift and consistent predictive reliability across repeated trials. These results empirically 
validate the architecture’s effectiveness in mitigating synthetic data bias while maintaining high precision under 
real-data scarcity scenarios.

Conclusion
To overcome the critical challenges of seismic data scarcity, annotation uncertainty in low-SNR zones, and 
neglect of geophysical principles in fault interpretation, this study establishes a novel visual foundation model-
driven framework. By integrating physics-aware augmentation, uncertainty-guided annotation refinement, 
and geophysically constrained optimization, the proposed approach significantly enhances the robustness and 
geological fidelity of intelligent fault identification. Key innovations are systematically evaluated below:

•	 Physics-Compliant Synthetic Data Generation A fault-aware AutoAugmentation framework is developed to 
overcome seismic data scarcity limitations. Reinforcement learning discovers geology-consistent transforma-
tions, generating physically valid synthetic samples that enhance model robustness to fault geometry varia-
tions without additional labeled data.

•	 Uncertainty-guided annotation refinement A closed-loop annotation workflow is established through predic-
tive uncertainty filtering and expert-guided refinement. This cascaded approach eliminates labeling inaccura-
cies in low-SNR zones while maintaining segmentation reliability in critical geological regions.

•	 Geophysical priori-embedded optimization A fine-tuning paradigm embedding structural tensors and fault-re-
sponse features is proposed. Geological rules are enforced via adversarial gradient reversal, delivering profes-
sional-grade segmentation that preserves stratigraphic continuity and fault discontinuity boundaries.

Model configuration
MAE (%)
(Mean ± Std)

RMSE (%)
(Mean ± Std) ΔMAE vs. TYolo

Original Yolo (No components) 12.37 ± 0.87 14.68 ± 1.03  + 155.9%

 + Data Augmentation (DA) 8.92 ± 0.62 10.85 ± 0.76  + 84.7%

 + Uncertainty-Guided Annotation (UGA) 7.15 ± 0.50 8.70 ± 0.61  + 48.0%

 + Physical-embedded Tuning (PET) 5.41 ± 0.38 6.58 ± 0.46  + 12.0%

Full TYolo (Proposed) 4.83 ± 0.34 6.25 ± 0.44 –

Table 4.  Ablation Study on Component Contributions of TYolo for Seismic Fault Interpretation.
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Fig. 11.  Comparative results of variable syn/real data proportion.
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While the current framework advances fault interpretation robustness, limitations persist in multi-physics data 
integration, real-time processing efficiency, and generalization to complex tectonic regimes. Future work will 
prioritize cross-domain adversarial augmentation, lightweight uncertainty distillation, and extended geological 
constraints incorporating plate motion priors to achieve industry-ready deployment.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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