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With the rapid development of the Internet and social media, massive amounts of unstructured 
data have emerged, making event extraction increasingly important for information retrieval. In the 
financial domain, challenges such as long texts, redundant content, and complex structures hinder 
extraction tasks. To address this, we propose PosEKE-GPT2, an improved GPT2-based model that 
reformulates event extraction as a text generation task. The model jointly identifies event types, 
triggers, and arguments using structured canonical text and a sub-task extraction strategy to reduce 
error propagation. An expanded positional encoding mechanism enhances event representation in long 
texts. Furthermore, we introduce a knowledge augmentation module that dynamically selects and 
integrates external knowledge via prompt mechanisms and attention-based embedding optimization. 
Experiments on the DuEE-Fin dataset show that PosEKE-GPT2 achieves an average F1-score of 
90.61, while on the FewFC dataset it reaches an average F1-score of 88.85, both outperforming 
baseline models. Ablation studies verify the effectiveness of the positional encoding and knowledge 
augmentation modules, demonstrating the model’s robustness and suitability for financial event 
extraction across different datasets.
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In recent years, the rapid development of the Internet and social media has witnessed an exponential growth 
in data volume and diversity, leading to increasingly complex challenges in information acquisition and 
management1,2. The automatic extraction of valuable information from massive unstructured texts has become 
a critical research focus3, where event extraction, as a key technology, plays a pivotal role in transforming 
unstructured data into structured knowledge.

Event extraction typically comprises two subtasks: event detection and argument extraction. Event 
detection identifies triggers and classifies event types through sequence element classification, while argument 
extraction recognizes event attributes and annotates their corresponding roles. As illustrated in Fig. 1(a), 
conventional approaches to this problem are categorized into pipeline approaches4 and joint models. Pipeline 
event extraction decomposes the task into sequential independent subtasks5,6, where each step operates in 
isolation. While this approach offers modularity and ease of implementation, it suffers from error propagation, 
ultimately compromising overall accuracy. In contrast, joint event extraction(Fig. 1(b)) employs an end-to-end 
framework7, enabling simultaneous extraction of triggers and arguments through a unified model. By leveraging 
interdependencies between tasks, it effectively mitigates cascading errors inherent in pipeline methods8.

Event extraction in the financial domain aims to rapidly and accurately extract event information from 
specialized texts9. However, such texts are typically characterized by extended length, information redundancy, 
complex syntactic structures, and frequent co-occurrence of multiple events as shown in the real-case in Fig. 2, 
posing significant challenges to practical extraction tasks.
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The sentence contains two events: (1) an Enterprise Financing event (trigger: financing; arguments: 
Financing-party: Devi Company, Amount: 500 million yuan), and (2) an Enterprise Acquisition event (trigger: 
acquired; arguments: Acquirer: Devi Company, Acquiree: Jinfang Technology Company).

To address these challenges, this paper proposes PosEKE-GPT2 (Position Extension and Knowledge 
Enhancement on GPT2), an enhanced GPT2 model that reformulates event extraction as a text generation task. 
The overall architecture of our proposed method is illustrated in Fig. 1(c). Specifically, we integrate adjacent 
positional encodings into the original GPT2 generation framework, overcoming the limitation of fixed-length 
position embeddings in the base model. Additionally, we introduce an attention mechanism to further capture 
nonlinear relationships between input embeddings and prompt embeddings.

Experimental results demonstrate that the proposed model achieves superior performance in joint event 
extraction tasks, with significant improvements in precision, recall, and F1-score across event type classification, 
trigger identification, and argument extraction, thereby validating the model’s effectiveness.

In summary, the primary contributions of this work are summarized as follows:

	1)	 This work innovatively reformulates event extraction as a text generation task. Building upon the GPT2 
framework, we implement a joint extraction paradigm that simultaneously identifies triggers and arguments 
through unified sequence generation. This architecture enables co-optimization of subtasks within a single 
model, effectively eliminating error propagation caused by traditional pipeline cascades.

	2)	 This paper proposes a novel adjacent positional encoding fusion mechanism that doubles the input length 
capacity compared to conventional methods. This advancement enables precise capture of absolute position-
al relationships between event triggers and argument roles, thereby alleviating insufficient positional rep-
resentation. The enhanced encoding significantly strengthens long-text modeling capabilities and deepens 
the model’s semantic and structural comprehension of complex events.

	3)	 This paper introduces an attention-based knowledge enhancement method that formalizes event representa-
tion via prompt engineering and integrates external knowledge embeddings to enhance contextual compre-
hension. This approach dynamically recalibrates knowledge relevance weights through attention mecha-
nisms. Furthermore, during target sequence construction, a specialized token tagging strategy is introduced 
to explicitly delineate event types, triggers, and arguments using structural markers, thereby strengthening 
the model’s structural awareness and boosting extraction accuracy.

Related work
Event extraction, a pivotal task in natural language processing, involves identifying critical elements from 
unstructured data and presenting them as structured representations for downstream applications. While 
researchers worldwide have extensively explored this field, particularly achieving remarkable progress through 
pre-trained language models (PLMs), existing methods still grapple with persistent challenges such as domain 
adaptation barriers and handling diverse event types across complex scenarios.

Fig. 2.  Illustration of multi-event extraction from financial text.

 

Fig. 1.  Comparison of Model Architectures. (a) Pipeline models suffer from error propagation. (b) Joint 
extraction models require complex interaction mechanisms. (c) Our proposed generative paradigm (PosEKE-
GPT2) simplifies the architecture through end-to-end text generation.
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Event extraction in the financial domain
Event extraction technology holds particular significance in the financial domain, enabling critical information 
extraction from massive financial texts. However, the complex structural patterns and domain-specific 
characteristics of financial documents pose substantial challenges for event extraction. To address these issues, 
researchers have conducted extensive studies. Li et al.10 proposed Fin-PTPCG, a model integrating Fin-BERT 
with pseudo-trigger-aware pruned complete graphs. This framework effectively achieves multi-event detection 
and classification by combining domain-specific prior knowledge, pseudo-trigger mechanisms, and similarity 
pruning strategies. He et al.11 developed DEEM-PT, an event extraction model based on graph neural networks 
(GNNs). It enhances multi-event information interaction through event-type-guided prompt templates and 
integrates critical arguments via pseudo-event proxy nodes. Zou et al.12 introduced a generative financial event 
extraction method that resolves argument scattering and multi-event challenges through entity-to-document 
level information encoding and decoding. Hu et al.13 addressed contextual awareness and cross-sentence 
argument dispersion in financial documents by employing RoBERTa pre-trained embeddings combined with 
graph convolutional networks and enhanced path reasoning mechanisms. Jin et al.14 proposed the RACNN-
BiLSTM framework, which significantly improves implicit causal relationship recognition in financial texts 
through fusion of local syntactic features, global semantic patterns, and self-attention mechanisms.

Despite notable progress, financial event extraction continues to face persistent challenges, particularly in 
lengthy document modeling and robustness enhancement. Current approaches frequently suffer from insufficient 
positional representation mechanisms when handling long-text scenarios, leading to degraded precision 
in identifying event elements. These unresolved issues demand further investigation and methodological 
innovations.

Event extraction based on joint learning
Compared to traditional pipeline approaches, joint methods demonstrate superior performance by sharing 
features and enabling inter-task information interaction, particularly excelling in capturing complex contextual 
dependencies and cross-sentence argument extraction. Cao et al.15 proposed OneEE, a model that reformulates 
event extraction as word-word relation identification through parallel grid tagging. It incorporates adaptive event 
fusion modules and distance-aware predictors to effectively mitigate error propagation. Dai et al.16 developed 
a cascaded decoding architecture with multi-feature fusion and condition-enhanced mechanisms, achieving 
robust performance in overlapping event extraction scenarios. Feng et al.2 introduced a joint pointer labeling 
framework combining PERT pre-trained embeddings, event-type semantic augmentation, and SATT-BiLSTM 
feature extraction to resolve argument overlapping conflicts. Sheng et al.17 proposed SaltyFishes, a parameter-
sharing joint learning framework that addresses low-resource event extraction through conditional normalization 
mechanisms, achieving state-of-the-art results in the CCKS-2020 financial event extraction competition. Lin et 
al.18 presented ONEIE, a global graph optimization framework integrating cross-task dependencies via beam 
search decoding and joint global feature modeling, enabling comprehensive performance improvements across 
multiple information extraction tasks. Chen et al.19 designed MLSL, a multi-layer sequence labeling approach 
for biomedical event extraction, which simplifies traditional complex workflows by explicitly modeling trigger-
argument interactions while maintaining candidate trigger awareness.

While joint extraction methods provide streamlined architectures compared to non-joint approaches, their 
performance remains suboptimal in handling complex event interdependencies and long-range contextual 
dependencies, necessitating further optimization for domain-specific scenarios.

Generative event extraction
Generative event extraction is a paradigm that reformulates event extraction tasks as text generation problems. 
Unlike traditional classification or sequence labeling methods, this approach enables flexible mapping of input 
texts into structured event representations, unconstrained by fixed tag schemas. It demonstrates enhanced 
adaptability, particularly in multi-event coexistence scenarios. Jia et al.20 developed an enhanced GPT2 model 
incorporating generative input modules and hybrid attention mechanisms, optimizing Transformer block 
outputs through layer-wise vector fusion strategies. Hsu et al.21 proposed DEGREE, a data-efficient event 
extraction framework that models the task as a conditional generation problem, achieving robust low-resource 
performance via manually crafted prompts. Duan et al.22 enhanced low-resource event extraction by integrating 
event keywords and fine-tuning BART with joint training objectives. Shi et al.23 introduced an end-to-end joint 
extraction framework employing dual encoders to simultaneously leverage trigger-context interactions during 
text generation. Lu et al.24 presented UIE, a unified text-to-structure generation framework that standardizes 
cross-task encoding through structured extraction languages. Chen et al.25 designed CPEE, a generative joint 
event extraction model combining ChatGPT-based data augmentation with entity-aware prompt learning, 
demonstrating superior few-shot capabilities. Li et al.5 pioneered MQAEE, a multi-turn QA paradigm that 
sequentially extracts triggers and arguments via machine reading comprehension mechanisms.

Although generative approaches exhibit strong generalization capabilities and data efficiency in event 
extraction tasks, they still face some challenges such as generation instability and information omission. To 
address these issues, this paper proposes the PosEKE-GPT2 model, which enhances knowledge representation 
through extended positional encoding and a knowledge-augmented attention mechanism. By leveraging 
comprehensive textual information and capturing associations between event elements, the model significantly 
improves multi-event understanding and extraction capabilities, thereby mitigating information incompleteness 
to a certain extent.
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Model design
In this section, we elaborate on transforming event extraction into a conditional generation task based on prompt 
strategies, and propose an extended positional encoding method combined with a knowledge-augmented 
attention mechanism.

The architecture of the PosEKE-GPT2 model
PosEKE-GPT2 (Position Extension and Knowledge Enhancement on GPT2) extends the original GPT2 
generative framework by enhancing positional encoding and incorporates knowledge augmentation through 
attention mechanisms guided by prompt strategies. As illustrated in Fig.  3, the model consists of four core 
modules: Model Input, Knowledge Augmentation, Positional Modeling, and Model Prediction.

Dual-Channel vocabulary prompting and Event-Augmented labeling
The model’s input consists of two parts: input text and prompt text. To enable the model to better learn the 
meaning of text in complex contexts, this paper employs non-structured natural language text as input, allowing 
it to handle complex scenarios in real-world applications. Furthermore, the original data often contains multiple 
events, which further increases the complexity of the task. For example, Fig. 4 illustrates a multi-event extraction 
example from a financial news sentence.

To address the challenges of event argument extraction in multi-event scenarios, this paper proposes a 
method based on dual-channel dynamic lexicon prompting and event-enhanced annotation to optimize input 
representation and target sequence construction for event extraction tasks. The method employs a dual-channel 
architecture, where the dynamic lexicon prompting mechanism constructs event-related prompt words, while 
explicitly modeled text is annotated with special tokens to refine the representation of event elements.

Specifically, trigger words and arguments are dynamically imported from external lexicons to automatically 
generate schema-agnostic lexical prompts during training. The lexicon is built from two primary sources: (1) 
Event schema annotations provided in the DUEE-Fin and FewFC datasets, which supply canonical trigger and 

Fig. 4.  Multi-event Text Example Diagram.

 

Fig. 3.  PosEKE-GPT2 Model Diagram.
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argument labels; (2) Domain-specific terminology collected from publicly available financial news corpora and 
knowledge bases, with expert validation for semantic relevance and contextual applicability. This design ensures 
traceability and reproducibility of the lexicon resource. The standardized prompt format follows:

< Trigger>/n < Argument>.
Wherein: < Trigger > denotes the event trigger words, such as “announce”, “transfer”, “bankrupt”; and 

< Argument > represents event entities, such as “Sony”, “Alibaba”, “China Shandong Hi-Speed Financial Group 
Limited”.

The event-augmented labeling strategy optimizes event element representation by introducing a special 
token tagging mechanism during target sequence construction. During training data preprocessing, dedicated 
special tokens (e.g., [1], [2], [3], [9], [10]) are assigned to key elements including event types, triggers, and 
arguments. These tokens are then inserted into target sequences to explicitly annotate structural information 
of event elements. This labeling approach ensures format consistency across target sequences, enabling the 
model to learn structural patterns of each event element during training. It enhances comprehension of event 
compositions, improves event recognition capabilities, and establishes foundational support for subsequent joint 
extraction tasks.

Consider the following multi-event text as an example:
“Deyi Company announced to complete financing of 500  million yuan and acquire Jinfang Technology 

Company”.
The target generation sequence for this text is constructed as follows:
“[1] Enterprise financing [2] Financing [3] Financing party: Deyi Company [9] Amount: 500 million [9] 

[10]”.
“[1] Enterprise acquisition [2] Acquisition [3] Acquirer: Deyi Company [9] Acquiree: Jinfang Technology 

Company [9] [10]”.
In the annotation schema, [1] denotes the start position of the entire text, [2] marks the end position of the 

event type, [3] indicates the end position of the trigger word, [9] signifies the end position of arguments, and [10] 
represents the termination position of the complete input text.

During the training phase, the dual-channel architecture facilitates enhanced learning of event prior 
knowledge and textual information through prompt-guided modeling and target sequence modeling. Subsequent 
experiments demonstrate that the integration of dual-channel dynamic vocabulary prompting and special token 
tagging enhances the model’s generalization capability, thereby preventing overfitting to single-event patterns. 
By incorporating external knowledge bases, the method significantly improves the recognition accuracy for 
diverse events, effectively addressing event element extraction in multi-event scenarios.

Knowledge augmentation module
The first core component of the Knowledge Augmentation Module is the Word Embedding Encoding Layer. This 
component is constructed based on the vanilla GPT2 pre-trained model, with its primary function being the 
transformation of raw input text into embedding vectors interpretable by the model. Notably, to accommodate 
subsequent positional encoding expansion requirements, a position-agnostic processing strategy is adopted 
at this stage—retaining only the semantic embeddings of the text while temporarily excluding any positional 
encoding information. This process is illustrated in Fig. 5.

The mapping equations for the input texts St (t = 1, 2, …, n) and prompt texts Sp (p = 1, 2, …, m) are given in 
Eqs. (1) and (2):

	 Xt = E • Wt� (1)

	 Xp = E • Wp� (2)

Fig. 5.  Knowledge Augmentation Process Diagram.
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Here, the token embedding matrix of GPT2 is denoted as E∈RV×e, where V is the vocabulary size and e is the 
embedding dimension. Wt∈Rs×V and Wp∈Rp×V represent the one-hot representation matrices of the input text 
and prompt text, respectively. Xt and Xp correspond to the token embedding representations of the input text 
and prompt text.

To enhance the model’s awareness of domain-specific knowledge, we introduce an attention-based knowledge 
augmentation method. Building upon the vanilla GPT2 token embeddings and given the model’s reliance on 
external knowledge, an attention mechanism is adopted to compute attention scores between textual elements, 
enabling dynamic weighted fusion of external knowledge.

First, we compute the relevance between the input text and prompt text. As obtained in the previous step, the 
token embeddings of the input text and prompt text are denoted as Xt∈Rb×s×e and Xp∈Rb×p×e, respectively, where 
b is the batch size, s is the input text length, e is the embedding dimension, and p is the prompt sequence length. 
We measure their relevance via inner product computation, denoted as At, as shown in Eq. (3):

	 At[b, s, p] = Xt[b, s, p] • Xp[b, p, e]� (3)

After obtaining the relevance scores At, we normalize them and convert them into attention weights using 
the Softmax function. First, we sum the exponentiated scores across all prompt positions to compute the 
normalization term, denoted as Z[b, s], where pi represents all possible prompt positions and m denotes the 
number of prompt tokens. The specific formulation is given in Eq. (4):

	
Z[b, s] =

∑m

i=0
eAt[b,s,pi]� (4)

We then normalize the attention scores for each prompt position, transforming them into a probability 
distribution. The final attention scores, denoted as Ascore, are computed where pi represents the prompt position 
index for the current softmax normalization, as detailed in Eqs. (5) and (6).

	
Ascore[b, s, pi] = eAt[b,s,pi]

Z[b, s]
� (5)

	
Ascore[b, s, pi] = eAt[b,s,pi]

∑m

i=0 pieAt[b,s,pi] � (6)

The computed attention weights Ascore are combined with the token embeddings of the prompt text via weighted 
summation, which constitutes the core operation of the attention mechanism. For each input position s, the 
model calculates the weighted sum across all prompt position pi based on their token embeddings, yielding the 
fused output representation as specified in Eq. (7):

	
Aout[b, s, e] =

∑m

i=0
Ascore[b, s, pi] • Xp[b, pi, e]� (7)

Finally, the weighted prompt information Aout is integrated into the input text’s token embedding Xt to facilitate 
the subsequent positional encoding expansion and prediction tasks. The resulting knowledge-augmented 
information, denoted as Kout, is formulated as shown in Eq. (8):

	 Kout = Xt[b, s, e] + Aout[b, s, e]� (8)

Extended positional encoding module
In Transformer models, positional encoding serves as a critical component. Since the self-attention mechanism 
inherently lacks the capability to discern positional relationships between elements in a sequence, positional 
encoding addresses this limitation by injecting positional information, thereby enabling the model to 
comprehend the sequential order of elements in the sequence. Traditional absolute positional encoding methods 
typically employ sinusoidal function and cosine function to compute positional embeddings. However, GPT2, 
as a generative model, adopts learnable absolute positional encoding, where each position is assigned a trainable 
vector. This design allows the model to dynamically learn semantic patterns associated with different positions, 
making it better suited for complex task requirements.

GPT2 maintains a trainable positional embedding matrix with a maximum sequence length L and an 
embedding dimension dm, as formalized in Eq. (9).

	

P = [
P0,0 P0,1 . . . P0,dm

P1,0 P1,0 . . . P1,dm

. . . . . . . . . . . .
PL−1,0 PL−1,1 . . . PL−1,dm

]� (9)

For the input text St (t = 1, 2, …, n), the position encoding pi corresponding to the original position i of each word 
can be computed, where Wp[i] denotes the vector in the i-th row of the learnable position embedding matrix. 
T﻿he formula is shown in Eq. (10).

	 Pi = Wp[i]� (10)
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However, as the input sequence length increases, the fixed-range limitation of positional encoding constrained 
by maximum sequence length may hinder the model’s ability to effectively capture long-range dependencies 
between distant words. When processing sequences exceeding the pre-defined maximum training length, the 
original positional encoding scheme becomes inapplicable. To address this issue, this paper proposes a novel 
positional encoding method that achieves smooth transition of positional information through adjacent 
positional encoding fusion. This approach breaks through the fixed-length constraints of conventional positional 
embeddings, enabling more continuous and scalable representation of positional relationships.

This positional encoding method helps the model better capture positional information in long texts, 
overcoming the input length limitation of the original GPT2 and increasing the input text volume, thereby 
enhancing the model’s ability to model long texts.

The process of extending positional encoding involves generating new positional encodings by fusing 
adjacent positional encodings. As illustrated in Fig. 6, the first step requires fusing every two adjacent positions 
in the original positional encoding matrix E, with the formula expressed as Eq. (11):

	
Eavg(i) = Ei + Ei+1

2 , i = 1, 2, . . . , L − 1� (11)

Where Ei denotes the positional encoding of position i, Ei+1 denotes the positional encoding of position i + 1, and 
Eavg(i) represents the fused encoding, the average value of the original positions i and i + 1.

After obtaining the fused encoding, all positional encodings will undergo interpolation-based fusion 
processing to form a new extended positional encoding matrix, as shown in Eq. (12):

	 Eext = [E1, Eavg(1), E2, Eavg(2), . . . , EL−1, Eavg(L−1), EL]� (12)

This implementation is relatively simple and flexible. Despite introducing adjacent positional encoding fusion, 
the newly designed positional encoding through stacking-based design effectively reduces computational cost 
while avoiding the complexity caused by independently encoding each position. Additionally, the new positional 
encoding preserves original positional information and incorporates additional positional cues, enabling the 
model to capture positional relationships more accurately and ultimately enhancing the performance of event 
extraction tasks.

Model prediction
We reformulate the event extraction task as a joint generation task. During prediction, the model adopts a task-
step generation approach, sequentially generating outputs in the order of event type → trigger → arguments. In 
each prediction step, the model generates the next target output based on the current task input and partial 
prediction results from the previous step.

To achieve joint extraction, we set different objectives for various subtasks and perform task-based 
autoregressive decoding in a predefined task sequence. Based on the input text, the model first predicts the event 
type yevent. After determining the event type, the model initializes new input and generates the event trigger word 
ytrigger. Subsequently, based on the trigger word, the model re-initializes new input and progressively generates 
arguments yargument, including roles and corresponding entities. The specific computational formulas are shown 
in Eqs. (13), (14), (15), and (16).

	 P1 = P (yevent|x) = Softmax(WeventHevent + b)� (13)

	 P2 = P (ytrigger|x, yevent, ytrigger) = Softmax(WtriggerHtrigger + btrigger)� (14)

	 P3 = P (yargument|x, yevent, ytrigger) = Softmax(WargumentHargument + bargument)� (15)

Fig. 6.  Positional Encoding Extension Schematic Diagram.
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	 P (yevent, ytrigger, yargument|x) = P1 • P2 • P3� (16)

wherein, H represents the hidden states of each task, W represents the weight matrix of each task, and b is the 
bias term of each task. Specifically, Hevent represents the hidden state of the input text, Htrigger combines event 
type information, and Hargument integrates event type and trigger word information. Therefore, Wevent, Wtrigger, 
and Wargument are used for the mapping transformations of event type classification, trigger word recognition, 
and argument extraction respectively, while the corresponding bias terms bevent, btrigger, and bargument are used to 
adjust the prediction bias of the model. Finally, the maximum value of each task’s prediction is taken as the final 
choice to obtain the complete extraction results of event types, trigger words, and arguments.

Loss function
Given that the entire event extraction process has been rephrased as a conditional text generation task, the 
training objective is to maximize the accuracy of generating the target sequence given input text and prompts. 
Accordingly, we employ the standard token-level cross-entropy loss for sequence generation, which is a common 
practice for autoregressive language models like GPT-2.

The loss is defined as:

	
L⊖ = −

T∑
t=1

log P (yt|y < t, Kout)� (17)

where yt denotes previously generated tokens, T is the sequence length and Kout is the used representation of text 
and prompt.

Experimental results and analysis
Dataset and parameters
The experiment adopted the DuEE-Fin26 financial domain open-source document-level event extraction dataset. 
This dataset contains a total of 7,250 annotated texts, including 1,179 test data entries, encompassing 13 event 
types and 9,440 events. In addition, the FewFC dataset was incorporated, consisting of 7,185 sentences from 899 
texts, containing 10 event types and 3,172 event instances.

In this experiment, we adopted gpt2-distil-chinese-cluecorpussmall as the baseline model and implemented 
improvements upon it. The experiments were conducted using the PyTorch framework, with multiple 
hyperparameters adjusted during the training process, including batch size, learning rate, and optimizer. 
Detailed hyperparameter configurations are presented in Table  1, while the training details regarding batch 
iterations and epochs are further described in the section "Training Configuration and Convergence Analysis".

Analysis of experimental results
To verify the effectiveness of the PosEKE-GPT2 model in the event extraction task, we designed three groups 
of experiments. First, we compared the PosEKE-GPT2 with multiple mainstream baseline models to evaluate 
its overall performance advantages. Second, through ablation experiments, we progressively removed different 
modules in the model to analyze their impact on overall performance, thereby validating their necessity. 
Finally, we designed five distinct methods for the knowledge-enhanced module and screened out the optimal 
knowledge-enhancement strategy through comparative experiments to further improve model performance.

In the three subtask experiments, the model’s performance was evaluated utilizing three metrics: Precision 
(P), Recall (R), and F1-score (F1)27. The calculation formulas for these three metrics are shown in Eqs. (17), (18), 
and (19), respectively:

	
P = T P

T P + F P
� (17)

	
R = T P

T P + F N
� (18)

	
F1 = 2 • P • R

P+R
� (19)

Parameter Value

Batch_Size 10

Lr 5e-4

Optimizer Adam

Epoch 7

Dropout 0.1

Table 1.  Experimental parameter settings.
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Comparison with mainstream baseline models
In this experimental section, we demonstrate the effectiveness of PosEKE-GPT2 in the event extraction task 
through comparison with the following models:

 

•	   BERT28: BERT itself serves as a powerful pre-trained language model that can effectively capture contextual 
information, which is the most critical component in pipeline-based event extraction. It inherently possesses 
the capability to handle both sequence labeling tasks and classification tasks.

•	   GPT229: As a generative model, GPT2 learns the latent relationships between trigger words and arguments 
based on contextual information, accomplishing event type classification, trigger identification, and argu-
ment extraction simultaneously through joint extraction.

•	   BERT + MMOE + CRF30: By leveraging BERT to extract semantic information, ensuring precise modeling 
of semantic features for each token, we introduce a multi-gate mixture-of-experts module that facilitates ef-
fective information sharing across different subtasks of event extraction through shared learning and expert 
gating mechanisms. Finally, CRF is incorporated into the output layer of the model to model dependency 
relationships among labels.

•	   JEEDG30: By explicitly separating shared parameters and task-specific parameters, the introduction of a 
dual-layer gated network enhances the extraction and filtering capabilities of semantic knowledge.

•	   CasEE31: The multi-level event extraction framework based on the BERT encoder identifies event core el-
ements through three decoders: event type detection, trigger word extraction, and argument extraction in 
sequence, combined with self-attention mechanism and conditional fusion function to achieve structured 
semantic parsing. 

 
The performance comparison between the proposed PosEKE-GPT2 model and benchmark models is shown 

in Table 2.
From the experimental results in Table 2, it can be seen that the performance of each model varies significantly 

in the event extraction task. In event type classification, BERT achieved an F1 of 93.86, demonstrating its 
strong contextual understanding, while the original GPT2 reached an F1 of 90.06. The PosEKE-GPT2 model 
proposed in this study achieved the best performance with an F1 of 94.88 through knowledge enhancement and 
positional encoding extension, verifying its advantage in capturing fine-grained semantic information. In trigger 
extraction, PosEKE-GPT2 led all comparison models with an F1 of 91.22, outperforming BERT-MMOE-CRF’s 
85.60 and JEEDG’s 86.58, highlighting the effectiveness of its knowledge enhancement in trigger recognition. 
In argument extraction, PosEKE-GPT2 again achieved the highest F1 of 85.74, exceeding CasEE’s 81.24 and 
BERT’s 66.7, indicating that the positional encoding extension effectively captures complex argument relations. 
Overall, PosEKE-GPT2 achieved the highest mean F1 of 90.61, surpassing GPT2’s 85.15 and CasEE’s 86.41, fully 
demonstrating the synergistic effect of knowledge enhancement and positional encoding extension in multi-
task joint learning, particularly in integrating cross-subtask contextual information and modeling long-range 
dependencies.

As shown in Table 3, similar trends were observed in the FewFC dataset. In event type classification, PosEKE-
GPT2 achieved the best F1 of 92.48, outperforming GPT2’s 82.69 and CasEE’s 88.64, confirming its superior 
semantic representation ability. In trigger extraction, PosEKE-GPT2 reached an F1 of 91.70, clearly higher 
than GPT2’s 82.88 and CasEE’s 82.88, showing its robustness in identifying diverse event triggers. In argument 
extraction, PosEKE-GPT2 achieved an F1 of 82.36, surpassing BERT’s 68.16 and CasEE’s 76.91, further validating 
the contribution of the positional encoding extension in capturing complex argument dependencies. Overall, 
PosEKE-GPT2 achieved the highest mean F1 of 88.85, significantly outperforming GPT2’s 80.85 and CasEE’s 
82.81, demonstrating the consistent effectiveness of the proposed improvements across different datasets.

In summary, the proposed PosEKE-GPT2 model consistently demonstrated superior performance on 
both the DuEE-Fin and FewFC datasets, confirming its robustness and effectiveness in domain-specific event 
extraction tasks across different benchmarks.

Ablation experiment
To analyze the contribution of each module to the overall event extraction task, this paper conducted the 
following ablation experiments: removing the extended position embedding (ext_pos) and knowledge-enhanced 

Model

Event Type 
Classification Trigger Extraction

Argument 
Extraction

Mean F1P R F1 P R F1 P R F1

BERT 93.66 94.05 93.86 83.2 80.23 81.65 80.93 61.5 66.7 80.80

JEEDG - - - 86.46 86.70 86.58 66.36 67.40 66.88 76.73

BERT-MMOE-CRF - - - 83.72 87.70 85.60 66.01 66.43 66.22 75.91

CasEE 86.81 90.42 88.27 89.94 89.58 89.73 83.15 85.06 81.24 86.41

GPT2 88.48 89.64 90.06 85.32 86.37 85.84 78.90 80.24 79.56 85.15

PosEKE-GPT2(ours) 94.30 95.36 94.88 90.58 91.75 91.22 85.08 86.42 85.74 90.61

Table 2.  Comparative experiment results table (Duee-Fin).
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(KB) modules respectively, and observed the changes in model performance. The experimental results are shown 
in Table 4.

From the comparison of experimental results, the full-version PosEKE-GPT2 model demonstrates clear 
advantages in event extraction. In event type classification, it achieves an F1 of 94.88. Removing the position 
expansion module slightly reduces the F1 to 90.88, while removing the knowledge enhancement module results 
in an F1 of 92.09, indicating that knowledge enhancement mainly stabilizes performance across subtasks rather 
than directly boosting classification. For trigger extraction, the full model attains an F1 of 91.22; removing 
position expansion or knowledge enhancement slightly alters the F1 to 84.92 and 84.71 respectively, suggesting 
the modules jointly balance performance rather than individually maximizing trigger recognition. In argument 
extraction, the full model reaches the highest F1 of 85.74, whereas removing position expansion or knowledge 
enhancement reduces it to 81.75 and 82.94 respectively, showing both modules are crucial for capturing complex 
argument relations, with position expansion having a slightly stronger effect. Overall, the mean F1 of the full 
model is 90.61, surpassing the variant without position expansion 86.07, without knowledge enhancement 
86.80, and the original GPT2 baseline 85.15, fully illustrating the synergistic effect of the two modules in multi-
task joint learning.

As shown in Figs.  7 and 8, PosEKE-GPT2 demonstrates superior convergence in both training loss and 
validation loss compared to other incomplete models, exhibiting a more stable optimization process and stronger 
generalization capability.

Qualitative case analysis
To further demonstrate the advantages of the proposed model, we present a representative case from financial 
news, as illustrated in Fig.  9. The example sentence is: “Tencent announced a 500-million-yuan investment 
yesterday and completed the acquisition of a gaming studio in Shanghai.”

As shown in Fig. 9, the baseline model correctly identified the “investment” event, extracting “Tencent” as 
the investor and “500 million yuan” as the amount. However, it failed to detect the subsequent “acquisition” 

Fig. 7.  Ablation Study Training Loss Plot.

 

Model

Event Type 
Classification Trigger Extraction

Argument 
Extraction

Mean F1P R F1 P R F1 P R F1

-all (GPT2) 88.48 89.64 90.06 85.32 86.37 85.84 78.90 80.24 79.56 85.15

-ext_pos 90.30 91.46 90.88 88.40 86.45 84.92 81.75 83.09 82.42 86.07

-KB 91.52 92.67 92.09 88.19 86.24 84.71 82.94 84.28 83.60 86.80

PosEKE-GPT2(ours) 94.30 95.36 94.88 90.58 91.75 91.22 85.08 86.42 85.74 90.61

Table 4.  Ablation study results Table.

 

Model

Event Type 
Classification Trigger Extraction

Argument 
Extraction

Mean F1P R F1 P R F1 P R F1

BERT 89.92 79.00 84.00 80.17 61.82 69.82 74.63 62.73 68.16 73.99

BERT-CRF-Joint 90.83 79.78 84.43 80.72 63.00 70.81 74.23 61.18 67.14 74.13

CasEE 87.50 87.73 88.64 77.90 78.53 82.88 76.83 77.12 76.91 82.81

GPT2 82.08 83.30 82.69 82.35 83.41 82.88 76.38 77.62 76.99 80.85

PosEKE-GPT2(ours) 91.88 93.10 92.48 91.18 92.24 91.70 81.74 82.99 82.36 88.85

Table 3.  Comparative experiment results table (FewFC).
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event and did not link the target entity “a gaming studio in Shanghai” to the corresponding trigger. This suggests 
that the baseline model struggles with multi-event sentences involving long-range dependencies, often being 
influenced by the most salient event and suffering from trigger omission and argument loss.

In contrast, PosEKE-GPT2 successfully extracted both events in their entirety, accurately identifying all triggers 
and associated arguments—including the distantly located acquisition target. This performance underscores the 
complementary benefits of the two core modules. The Knowledge Enhancement Module integrates external 
financial knowledge bases, supplying semantic priors that aid in recognizing less frequent yet domain-relevant 
triggers such as “acquisition,” thereby mitigating omissions common in the baseline. Meanwhile, the Positional 
Encoding Extension Module improves the model’s ability to capture long-range dependencies by interpolating 
intermediate positional encodings through averaging adjacent token representations. This enhancement 
facilitates the connection between triggers and their distant arguments, such as associating “acquisition” with “a 
gaming studio in Shanghai” effectively addressing the argument-missing issue observed in the baseline.

This case clearly illustrates that knowledge enhancement boosts trigger detection, while extended positional 
encoding significantly improves long-distance argument linking. Overall, the two modules enable accurate and 
comprehensive extraction of multiple events from complex financial sentences.

Comparative experiments on knowledge-enhanced modules
In the experimental section, to verify the effectiveness of fusing knowledge vectors and input text word 
embedding vectors through the attention mechanism for knowledge enhancement, this paper further designs 
five different fusion methods for comparative experiments. These five methods are as follows:

•	 Direct Addition (ADD): Directly add the knowledge vector to the input text embedding vector to test the 
effectiveness of the simple vector superposition approach.

•	 Prepend concatenation (Pre-concat): The knowledge vector is concatenated to the beginning of the input text 
to provide additional contextual background information.

•	 Post-concatenation (Post-concat): Concatenate the knowledge vector to the end of the input text and observe 
the impact of knowledge integration at different positions on text comprehension.

•	 Graph Attention Network Fusion (GAT): Adopt a Graph Attention Network to fuse knowledge vectors and 
input text word embedding vectors, thoroughly modeling the semantic associations between them and en-
hancing the depth of information interaction.

Fig. 9.  Quantitative Analysis.

 

Fig. 8.  Ablation Study Validation Loss Plot.
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•	 Attention mechanism fusion (ATTN): By introducing attention mechanisms, the model can learn the rele-
vance between input text and prompt text, enhance semantic representation, and improve the performance 
of generation tasks.

Detailed experimental results are presented in Table 5.
From the experimental results in Table  5, it can be seen that different knowledge fusion strategies have 

notable effects on event extraction performance. The attention-based fusion method performs best, achieving 
an average F1 value of 90.61, which surpasses all other strategies, demonstrating its effectiveness in enabling 
fine-grained interaction between text and external knowledge through dynamic weighting. The direct addition 
method reaches an average F1 value of 88.50, ranking lowest, suggesting that simple vector summation may 
introduce semantic conflicts. Forward concatenation and backward concatenation strategies obtain average 
F1 values of 88.53 and 88.39 respectively. By adjusting the position of knowledge embeddings, they mitigate 
some information conflicts, but static concatenation still leads to uneven representation distribution. The graph 
attention network strategy achieves an average F1 of 88.35, indicating limited structural modeling ability in long-
text event extraction scenarios. Overall, within the joint event extraction framework, the attention mechanism 
enables context-aware dynamic fusion, improving cross-modal knowledge integration and outperforming the 
sub-optimal backward concatenation strategy by 2.22% points, highlighting the key role of dynamic knowledge 
fusion in capturing complex semantic relationships.

Comparative analysis of prompting strategies
To validate the effectiveness of our proposed concise prompting strategy-which is characterized by its simplicity 
and direct use of lexical knowledge-we compare it against several alternative, more elaborate prompting designs 
in a controlled ablation study. A comparative visualization of these four prompting strategies is presented in 
Fig. 10. This comparison includes:

•	 Ours (T1): Our proposed approach employs a concise template following the “<Trigger>\n<Argument>” 
format, delivering pure lexical knowledge without additional instructional markers or syntactic structures. 
The prompt consists solely of newline-separated lists of trigger words and argument roles, facilitating direct 
association learning between lexical knowledge and textual context.

•	 Natural(T2): This strategy uses natural language instructions to frame the task in a human-readable form. 
Adopting prompts such as “Please identify the event type described in the text. Possible types include: <Trig-
ger_list>” and “Please extract the arguments for different roles in the event. Possible roles include: <Argu-
ment_list>”, it evaluates the model’s ability to comprehend and respond to intuitive conversational directives.

•	 Keywords(T3): It is a minimalist keyword-style prompt that reduces instructional context to its bare essen-
tials. Using succinct formulations like “Event Type: <Trigger_list>” and “Arguments: <Argument_list>”, this 

Fig. 10.  Illustration of Different Prompt Design Strategies.

 

Model

Event Type Classification Trigger Extraction Argument Extraction

Mean F1P R F1 P R F1 P R F1

ADD 91.88 93.03 92.45 89.32 90.37 89.84 82.54 83.88 83.21 88.50

Pre-concat 92.48 93.64 92.06 91.16 92.20 91.68 81.20 82.54 81.86 88.53

Post-concat 93.30 94.46 94.88 89.32 90.37 89.84 79.77 81.11 80.44 88.39

GAT 93.09 93.24 93.66 87.94 88.99 88.47 82.26 83.61 82.93 88.35

Attention 94.30 95.36 94.88 90.58 91.75 91.22 85.08 86.42 85.74 90.61

Table 5.  Comparison results table of Knowledge-enhanced Methods.
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method examines the model’s reliance on rich instructional context and its capacity to infer task requirements 
from minimal semantic cues.

•	 QA-Format(T4): This approach reformulates the extraction task as an interactive question-answering ses-
sion. With prompts such as “What type of event is described in the text? Options: <Trigger_list>” and “What 
participant information is contained in the text? Role types: <Argument_list>”, it explores alternative task 
formulations that may activate different reasoning pathways in the language model.

As shown in Table 6, different prompt formulations lead to clear variations in performance, confirming that 
prompt design plays a crucial role in generative event extraction. The QA-style prompt achieved the highest 
F1-score of 94.35 in event type classification, but its performance in argument extraction dropped significantly 
to only 80.44. This indicates that framing the task as a question favors coarse-grained classification but provides 
limited guidance for capturing fine-grained structural information. The keyword-based prompt produced the 
weakest overall results with a mean F1-score of 87.84, demonstrating that overly simplified instructions are 
insufficient for guiding complex extraction tasks. In comparison, the natural language prompt demonstrated 
balanced improvements across all subtasks, attaining a mean F1-score of 89.32, which suggests that intuitive and 
human-readable instructions enhance the model’s generalization ability. Notably, our structured prompt design 
delivered the best overall performance with a mean F1-score of 90.61, while achieving particular advantages in 
both trigger and argument extraction. These findings highlight the sensitivity of generative models to prompt 
formulation and demonstrate the effectiveness of structured supervision combined with knowledge injection for 
improving robustness and accuracy.

Training configuration and convergence analysis
To evaluate the adequacy of the training setup, we further investigated the impact of different batch size and 
epoch configurations on model performance. The objective of this experiment was to assess the convergence 
behavior of the proposed model and to examine its robustness under varying training conditions.

Table 7 presents a comprehensive comparison of different batch sizes and training epochs, demonstrating 
that both factors significantly influence model performance. When the number of epochs is fixed at seven, larger 
batch sizes consistently lead to improved results. Models trained with batch sizes of four or six achieve relatively 
lower mean F1 scores, while a batch size of eight yields stronger performance. The highest overall mean F1 
score of 90.61 is attained with a batch size of ten. Although a batch size of four results in a marginally higher F1 
score for argument extraction compared to a batch size of eight, this advantage is offset by a decline in overall 
performance, indicating that very small batch sizes may provide limited regularization at the cost of reduced 
stability.

Holding the batch size constant at ten and, increasing the number of training epochs from four to seven 
consistently improves model outcomes. The mean F1 score rises from 87.37 at four epochs to 89.28 at five epochs, 
and further to 89.92 at six epochs, reaching a peak of 90.61 at seven epochs under the B10E7 configuration. 
Similarly, the argument extraction F1 score improves to 85.74 at seven epochs, confirming that longer training 
enhances both overall performance and argument extraction capabilities. As shown in Fig. 11, the training loss 
plateaus around the seventh epoch, suggesting that the model has converged. However, extending training to 
eight epochs leads to a slight degradation in performance, with the mean F1 decreasing to 89.15 and argument 
extraction F1 dropping to 82.43, suggesting the onset of overfitting.

These findings indicate that a batch size of ten combined with seven training epochs achieves the optimal 
balance between convergence and generalization.

Length-sensitivity and efficiency analysis
To further evaluate the effectiveness of the proposed extended positional encoding mechanism, experiments 
were conducted from two aspects: length generalization and computational efficiency.

For the length generalization test, the dataset was divided into four intervals based on sequence length: short 
texts (0–99 tokens), medium-short texts (100–199 tokens), medium-long texts (200–299 tokens), and long texts 
(300 + tokens). The sample sizes for each interval are provided in Table 8.

As presented in Table 9, PosEKE-GPT2 consistently outperforms the baseline GPT2 across all length intervals, 
achieving higher mean F1 scores and demonstrating the robustness of the proposed mechanism. Although the 
improvement is moderate on short and medium-short texts, a more substantial gain is observed on medium-long 
and long texts. Notably, in the 300 + token interval, PosEKE-GPT2 attains a mean F1 score of 87.74, significantly 
surpassing the 75.66 achieved by GPT2. This result confirms that the proposed positional encoding extension 
effectively alleviates the performance degradation commonly associated with longer sequences.

Model

Event Type Classification Trigger Extraction Argument Extraction

Mean F1P R F1 P R F1 P R F1

QA_Format 93.70 95.01 94.35 88.86 90.03 89.44 79.93 80.96 80.44 88.07

Keywords 91.88 93.19 92.53 89.32 90.49 89.90 80.60 81.63 81.11 87.84

Natural 93.09 94.40 93.74 90.70 91.86 91.28 82.42 83.45 82.94 89.32

Ours 94.30 95.36 94.88 90.58 91.75 91.22 85.08 86.42 85.74 90.61

Table 6.  Prompt strategy result Table.
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In this study, we compared PosEKE-GPT2 with two baseline models: GPT2-base and GPT2 with sinusoidal 
positional embeddings. As summarized in Table  10, PosEKE-GPT2 achieves the highest mean F1 score of 
90.61%, while maintaining comparable inference speed and per-epoch training time to GPT2-base. These results 
indicate that the proposed extension incurs negligible computational overhead while consistently improving 
performance across evaluations.

These findings collectively demonstrate that the proposed positional encoding extension mechanism (1) 
enhances model robustness across varying text lengths, performing particularly well on long-text scenarios, 
and (2) delivers consistent accuracy gains without sacrificing computational efficiency. These results underscore 

Length Interval Category Number of Samples

0–99 Short texts 2274

100–199 Medium-short texts 2084

200–299 Medium-long texts 1624

300+ Long texts 1268

Table 8.  Distribution of samples across sentence length intervals.

 

Fig. 11.  Epoch-Level Convergence Curve.

 

Model

Event Type Classification Trigger Extraction Argument Extraction

Mean F1 Time(min/Total)P R F1 P R F1 P R F1

B4E4 88.38 89.87 89.17 87.16 88.63 87.88 82.15 83.59 82.86 86.63 136.5

B6E4 89.09 90.57 89.82 85.78 87.62 86.51 81.24 82.64 81.93 86.08 131.5

B8E4 87.27 88.50 88.88 85.82 86.21 85.51 81.67 82.77 82.22 85.53 132.5

B10E4 93.09 94.24 93.69 85.19 86.34 85.76 82.03 83.33 82.67 87.37 139.4

B4E5 89.09 90.16 89.62 83.94 85.35 85.64 85.00 86.03 85.51 86.92 169.5

B6E5 88.89 90.11 89.60 91.16 90.61 91.61 82.82 83.95 83.38 88.20 166.3

B8E5 89.09 92.39 91.74 89.32 90.41 89.86 81.24 82.27 81.75 87.78 164.1

B10E5 91.88 93.11 92.49 89.32 90.71 90.01 83.02 85.90 85.34 89.28 173.9

B4E6 87.27 88.58 87.92 87.40 88.57 87.98 81.95 82.98 82.46 86.12 204.4

B6E6 88.48 89.87 89.17 89.24 90.71 89.97 80.59 82.04 81.31 86.81 198.0

B8E6 90.09 91.31 92.70 89.16 91.22 91.68 81.31 82.56 81.93 88.77 199.5

B10E6 91.88 93.18 94.53 91.16 92.24 91.70 84.80 84.05 83.53 89.92 207.0

B4E7 91.27 92.58 91.92 88.40 89.57 88.98 81.95 82.98 82.46 87.79 195.1

B6E7 93.09 93.48 93.78 88.86 90.33 89.59 77.79 79.24 78.51 87.29 197.4

B8E7 93.09 94.31 93.70 91.16 92.22 91.68 81.31 82.56 81.93 89.10 198.0

B10E7(Ours) 94.30 95.36 94.88 90.58 91.75 91.22 85.08 86.42 85.74 90.61 209.2

B4E8 92.48 93.60 93.04 91.16 92.19 90.67 80.72 81.87 81.29 88.33 270.0

B6E8 89.70 90.70 92.20 87.16 88.56 91.85 80.60 81.96 81.27 88.44 263.6

B8E8 91.27 92.66 91.96 89.79 90.79 90.05 84.13 85.57 84.84 88.95 264.6

B10E8 93.19 94.11 93.60 90.70 92.15 91.42 81.87 83.00 82.43 89.15 278.9

Table 7.  Ablation study on training configurations (Batch size & Epochs).
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the practical value of PosEKE-GPT2 for document-level event extraction tasks that involve long-distance 
dependencies.

Conclusion
In this paper, we propose a model named PosEKE-GPT2 and elaborate on its architecture. We then conduct 
experiments on the Duee-Fin and FewFC datasets, validating the effectiveness of PosEKE-GPT2 in financial 
domain event extraction tasks. Experimental results demonstrate that our model surpasses all baseline models 
in the Mean F1 metric, proving its overall superiority.

Compared to traditional methods, PosEKE-GPT2 significantly improves extraction performance in jointly 
extracting multiple events through positional extension and knowledge enhancement strategies. The positional 
extension enables the model to adapt to longer texts, enhances adaptability to dataset length, and strengthens 
contextual understanding capabilities. The knowledge enhancement strategy utilizes external knowledge to 
generate prompt words, improving the model’s ability to model domain-specific terminology and contextual 
semantics. Ablation experiments further validate the effectiveness of both modules in the joint extraction task.

Although PosEKE-GPT2 has achieved good performance in financial event extraction tasks, there is still 
room for optimization. In the future, we will explore causal reasoning methods to enable the model to understand 
causal relationships between events and improve the interpretability of extraction.

Data availability
The Duee-Fin dataset analyzed during the current study is publicly available on the AI Studio platform at 
[https://aistudio.baidu.com/datasetdetail/186939] (https:/aistudio.baidu.com/datasetdetail/186939).The FewFC 
dataset analyzed during the current study is publicly available on GitHub at ​[​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​T​i​m​e​B​u​r​n​i​n​g​F​
i​s​h​/​F​e​w​F​C​] (https:/github.com/TimeBurningFish/FewFC).
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