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With the rapid development of the Internet and social media, massive amounts of unstructured

data have emerged, making event extraction increasingly important for information retrieval. In the
financial domain, challenges such as long texts, redundant content, and complex structures hinder
extraction tasks. To address this, we propose PosEKE-GPT2, an improved GPT2-based model that
reformulates event extraction as a text generation task. The model jointly identifies event types,
triggers, and arguments using structured canonical text and a sub-task extraction strategy to reduce
error propagation. An expanded positional encoding mechanism enhances event representation in long
texts. Furthermore, we introduce a knowledge augmentation module that dynamically selects and
integrates external knowledge via prompt mechanisms and attention-based embedding optimization.
Experiments on the DUEE-Fin dataset show that PosEKE-GPT2 achieves an average F1-score of

90.61, while on the FewFC dataset it reaches an average F1-score of 88.85, both outperforming
baseline models. Ablation studies verify the effectiveness of the positional encoding and knowledge
augmentation modules, demonstrating the model’s robustness and suitability for financial event
extraction across different datasets.
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In recent years, the rapid development of the Internet and social media has witnessed an exponential growth
in data volume and diversity, leading to increasingly complex challenges in information acquisition and
management"2. The automatic extraction of valuable information from massive unstructured texts has become
a critical research focus®, where event extraction, as a key technology, plays a pivotal role in transforming
unstructured data into structured knowledge.

Event extraction typically comprises two subtasks: event detection and argument extraction. Event
detection identifies triggers and classifies event types through sequence element classification, while argument
extraction recognizes event attributes and annotates their corresponding roles. As illustrated in Fig. 1(a),
conventional approaches to this problem are categorized into pipeline approaches* and joint models. Pipeline
event extraction decomposes the task into sequential independent subtasks™®, where each step operates in
isolation. While this approach offers modularity and ease of implementation, it suffers from error propagation,
ultimately compromising overall accuracy. In contrast, joint event extraction(Fig. 1(b)) employs an end-to-end
framework’, enabling simultaneous extraction of triggers and arguments through a unified model. By leveraging
interdependencies between tasks, it effectively mitigates cascading errors inherent in pipeline methods®.

Event extraction in the financial domain aims to rapidly and accurately extract event information from
specialized texts®. However, such texts are typically characterized by extended length, information redundancy,
complex syntactic structures, and frequent co-occurrence of multiple events as shown in the real-case in Fig. 2,
posing significant challenges to practical extraction tasks.
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Fig. 1. Comparison of Model Architectures. (a) Pipeline models suffer from error propagation. (b) Joint
extraction models require complex interaction mechanisms. (¢) Our proposed generative paradigm (PosEKE-
GPT2) simplifies the architecture through end-to-end text generation.
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Deyi Company announced ‘ the completion of 500 million yuan financing and ‘ acquired Jinfang Technology Company
I I
trigger trigger
financing ‘ acquisition

Fig. 2. Tllustration of multi-event extraction from financial text.

The sentence contains two events: (1) an Enterprise Financing event (trigger: financing; arguments:
Financing-party: Devi Company, Amount: 500 million yuan), and (2) an Enterprise Acquisition event (trigger:
acquired; arguments: Acquirer: Devi Company, Acquiree: Jinfang Technology Company).

To address these challenges, this paper proposes PosEKE-GPT2 (Position Extension and Knowledge
Enhancement on GPT2), an enhanced GPT2 model that reformulates event extraction as a text generation task.
The overall architecture of our proposed method is illustrated in Fig. 1(c). Specifically, we integrate adjacent
positional encodings into the original GPT2 generation framework, overcoming the limitation of fixed-length
position embeddings in the base model. Additionally, we introduce an attention mechanism to further capture
nonlinear relationships between input embeddings and prompt embeddings.

Experimental results demonstrate that the proposed model achieves superior performance in joint event
extraction tasks, with significant improvements in precision, recall, and F1-score across event type classification,
trigger identification, and argument extraction, thereby validating the model’s effectiveness.

In summary, the primary contributions of this work are summarized as follows:

1) This work innovatively reformulates event extraction as a text generation task. Building upon the GPT2
framework, we implement a joint extraction paradigm that simultaneously identifies triggers and arguments
through unified sequence generation. This architecture enables co-optimization of subtasks within a single
model, effectively eliminating error propagation caused by traditional pipeline cascades.

2) This paper proposes a novel adjacent positional encoding fusion mechanism that doubles the input length
capacity compared to conventional methods. This advancement enables precise capture of absolute position-
al relationships between event triggers and argument roles, thereby alleviating insufficient positional rep-
resentation. The enhanced encoding significantly strengthens long-text modeling capabilities and deepens
the model’s semantic and structural comprehension of complex events.

3) This paper introduces an attention-based knowledge enhancement method that formalizes event representa-
tion via prompt engineering and integrates external knowledge embeddings to enhance contextual compre-
hension. This approach dynamically recalibrates knowledge relevance weights through attention mecha-
nisms. Furthermore, during target sequence construction, a specialized token tagging strategy is introduced
to explicitly delineate event types, triggers, and arguments using structural markers, thereby strengthening
the model’s structural awareness and boosting extraction accuracy.

Related work

Event extraction, a pivotal task in natural language processing, involves identifying critical elements from
unstructured data and presenting them as structured representations for downstream applications. While
researchers worldwide have extensively explored this field, particularly achieving remarkable progress through
pre-trained language models (PLMs), existing methods still grapple with persistent challenges such as domain
adaptation barriers and handling diverse event types across complex scenarios.
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Event extraction in the financial domain

Event extraction technology holds particular significance in the financial domain, enabling critical information
extraction from massive financial texts. However, the complex structural patterns and domain-specific
characteristics of financial documents pose substantial challenges for event extraction. To address these issues,
researchers have conducted extensive studies. Li et al.'® proposed Fin-PTPCG, a model integrating Fin-BERT
with pseudo-trigger-aware pruned complete graphs. This framework effectively achieves multi-event detection
and classification by combining domain-specific prior knowledge, pseudo-trigger mechanisms, and similarity
pruning strategies. He et al.!! developed DEEM-PT, an event extraction model based on graph neural networks
(GNNs). It enhances multi-event information interaction through event-type-guided prompt templates and
integrates critical arguments via pseudo-event proxy nodes. Zou et al.'? introduced a generative financial event
extraction method that resolves argument scattering and multi-event challenges through entity-to-document
level information encoding and decoding. Hu et al.!* addressed contextual awareness and cross-sentence
argument dispersion in financial documents by employing RoBERTa pre-trained embeddings combined with
graph convolutional networks and enhanced path reasoning mechanisms. Jin et al.'* proposed the RACNN-
BiLSTM framework, which significantly improves implicit causal relationship recognition in financial texts
through fusion of local syntactic features, global semantic patterns, and self-attention mechanisms.

Despite notable progress, financial event extraction continues to face persistent challenges, particularly in
lengthy document modeling and robustness enhancement. Current approaches frequently suffer from insufficient
positional representation mechanisms when handling long-text scenarios, leading to degraded precision
in identifying event elements. These unresolved issues demand further investigation and methodological
innovations.

Event extraction based on joint learning
Compared to traditional pipeline approaches, joint methods demonstrate superior performance by sharing
features and enabling inter-task information interaction, particularly excelling in capturing complex contextual
dependencies and cross-sentence argument extraction. Cao et al.'®> proposed OneEE, a model that reformulates
event extraction as word-word relation identification through parallel grid tagging. It incorporates adaptive event
fusion modules and distance-aware predictors to effectively mitigate error propagation. Dai et al.!® developed
a cascaded decoding architecture with multi-feature fusion and condition-enhanced mechanisms, achieving
robust performance in overlapping event extraction scenarios. Feng et al.? introduced a joint pointer labeling
framework combining PERT pre-trained embeddings, event-type semantic augmentation, and SATT-BiLSTM
feature extraction to resolve argument overlapping conflicts. Sheng et al.'” proposed SaltyFishes, a parameter-
sharingjointlearning framework that addresses low-resource event extraction through conditional normalization
mechanisms, achieving state-of-the-art results in the CCKS-2020 financial event extraction competition. Lin et
al.!® presented ONEIE, a global graph optimization framework integrating cross-task dependencies via beam
search decoding and joint global feature modeling, enabling comprehensive performance improvements across
multiple information extraction tasks. Chen et al.!” designed MLSL, a multi-layer sequence labeling approach
for biomedical event extraction, which simplifies traditional complex workflows by explicitly modeling trigger-
argument interactions while maintaining candidate trigger awareness.

While joint extraction methods provide streamlined architectures compared to non-joint approaches, their
performance remains suboptimal in handling complex event interdependencies and long-range contextual
dependencies, necessitating further optimization for domain-specific scenarios.

Generative event extraction

Generative event extraction is a paradigm that reformulates event extraction tasks as text generation problems.
Unlike traditional classification or sequence labeling methods, this approach enables flexible mapping of input
texts into structured event representations, unconstrained by fixed tag schemas. It demonstrates enhanced
adaptability, particularly in multi-event coexistence scenarios. Jia et al.2’ developed an enhanced GPT2 model
incorporating generative input modules and hybrid attention mechanisms, optimizing Transformer block
outputs through layer-wise vector fusion strategies. Hsu et al.*! proposed DEGREE, a data-efficient event
extraction framework that models the task as a conditional generation problem, achieving robust low-resource
performance via manually crafted prompts. Duan et al.?> enhanced low-resource event extraction by integrating
event keywords and fine-tuning BART with joint training objectives. Shi et al.** introduced an end-to-end joint
extraction framework employing dual encoders to simultaneously leverage trigger-context interactions during
text generation. Lu et al.> presented UIE, a unified text-to-structure generation framework that standardizes
cross-task encoding through structured extraction languages. Chen et al.>*> designed CPEE, a generative joint
event extraction model combining ChatGPT-based data augmentation with entity-aware prompt learning,
demonstrating superior few-shot capabilities. Li et al.’ pioneered MQAEE, a multi-turn QA paradigm that
sequentially extracts triggers and arguments via machine reading comprehension mechanisms.

Although generative approaches exhibit strong generalization capabilities and data efficiency in event
extraction tasks, they still face some challenges such as generation instability and information omission. To
address these issues, this paper proposes the PosEKE-GPT2 model, which enhances knowledge representation
through extended positional encoding and a knowledge-augmented attention mechanism. By leveraging
comprehensive textual information and capturing associations between event elements, the model significantly
improves multi-event understanding and extraction capabilities, thereby mitigating information incompleteness
to a certain extent.
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Fig. 3. PosEKE-GPT2 Model Diagram.

Chenguang Group obtained an investment of 300 million yuan and successfully acquired
Star Technology, and then reached strategic cooperation with Hongyuan Capital.
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Fig. 4. Multi-event Text Example Diagram.

Model design

In this section, we elaborate on transforming event extraction into a conditional generation task based on prompt
strategies, and propose an extended positional encoding method combined with a knowledge-augmented
attention mechanism.

The architecture of the PosEKE-GPT2 model

PosEKE-GPT2 (Position Extension and Knowledge Enhancement on GPT2) extends the original GPT2
generative framework by enhancing positional encoding and incorporates knowledge augmentation through
attention mechanisms guided by prompt strategies. As illustrated in Fig. 3, the model consists of four core
modules: Model Input, Knowledge Augmentation, Positional Modeling, and Model Prediction.

Dual-Channel vocabulary prompting and Event-Augmented labeling

The model’s input consists of two parts: input text and prompt text. To enable the model to better learn the
meaning of text in complex contexts, this paper employs non-structured natural language text as input, allowing
it to handle complex scenarios in real-world applications. Furthermore, the original data often contains multiple
events, which further increases the complexity of the task. For example, Fig. 4 illustrates a multi-event extraction
example from a financial news sentence.

To address the challenges of event argument extraction in multi-event scenarios, this paper proposes a
method based on dual-channel dynamic lexicon prompting and event-enhanced annotation to optimize input
representation and target sequence construction for event extraction tasks. The method employs a dual-channel
architecture, where the dynamic lexicon prompting mechanism constructs event-related prompt words, while
explicitly modeled text is annotated with special tokens to refine the representation of event elements.

Specifically, trigger words and arguments are dynamically imported from external lexicons to automatically
generate schema-agnostic lexical prompts during training. The lexicon is built from two primary sources: (1)
Event schema annotations provided in the DUEE-Fin and FewFC datasets, which supply canonical trigger and
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argument labels; (2) Domain-specific terminology collected from publicly available financial news corpora and
knowledge bases, with expert validation for semantic relevance and contextual applicability. This design ensures
traceability and reproducibility of the lexicon resource. The standardized prompt format follows:

< Trigger>/n < Argument>.

Wherein: < Trigger >denotes the event trigger words, such as “announce”, “transfer’, “bankrupt”; and
<Argument > represents event entities, such as “Sony”, “Alibaba’, “China Shandong Hi-Speed Financial Group
Limited”.

The event-augmented labeling strategy optimizes event element representation by introducing a special
token tagging mechanism during target sequence construction. During training data preprocessing, dedicated
special tokens (e.g., [1], [2], [3], [9], [10]) are assigned to key elements including event types, triggers, and
arguments. These tokens are then inserted into target sequences to explicitly annotate structural information
of event elements. This labeling approach ensures format consistency across target sequences, enabling the
model to learn structural patterns of each event element during training. It enhances comprehension of event
compositions, improves event recognition capabilities, and establishes foundational support for subsequent joint
extraction tasks.

Consider the following multi-event text as an example:

“Deyi Company announced to complete financing of 500 million yuan and acquire Jinfang Technology
Company”.

The target generation sequence for this text is constructed as follows:

“[1] Enterprise financing [2] Financing [3] Financing party: Deyi Company [9] Amount: 500 million [9]
[10]”

“[1] Enterprise acquisition [2] Acquisition [3] Acquirer: Deyi Company [9] Acquiree: Jinfang Technology
Company [9] [10]”

In the annotation schema, [1] denotes the start position of the entire text, [2] marks the end position of the
event type, [3] indicates the end position of the trigger word, [9] signifies the end position of arguments, and [10]
represents the termination position of the complete input text.

During the training phase, the dual-channel architecture facilitates enhanced learning of event prior
knowledge and textual information through prompt-guided modeling and target sequence modeling. Subsequent
experiments demonstrate that the integration of dual-channel dynamic vocabulary prompting and special token
tagging enhances the model’s generalization capability, thereby preventing overfitting to single-event patterns.
By incorporating external knowledge bases, the method significantly improves the recognition accuracy for
diverse events, effectively addressing event element extraction in multi-event scenarios.

Knowledge augmentation module
The first core component of the Knowledge Augmentation Module is the Word Embedding Encoding Layer. This
component is constructed based on the vanilla GPT2 pre-trained model, with its primary function being the
transformation of raw input text into embedding vectors interpretable by the model. Notably, to accommodate
subsequent positional encoding expansion requirements, a position-agnostic processing strategy is adopted
at this stage—retaining only the semantic embeddings of the text while temporarily excluding any positional
encoding information. This process is illustrated in Fig. 5.

The mapping equations for the input texts S, (t=1, 2, ..., n) and prompt texts » (p=1,2, ..., m) are given in
Egs. (1) and (2):

Xt:E.Wt (1)
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Fig. 5. Knowledge Augmentation Process Diagram.
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Here, the token embedding matrix of GPT2 is denoted as EeRV*¢, where V is the vocabulary size and e is the
embedding dimension. W,R™Y and W €R”" represent the one-hot representation matrices of the input text
and prompt text, respectively. X, and X ) correspond to the token embedding representations of the input text
and prompt text.

To enhance the model’s awareness of domain-specific knowledge, we introduce an attention-based knowledge
augmentation method. Building upon the vanilla GPT2 token embeddings and given the model’s reliance on
external knowledge, an attention mechanism is adopted to compute attention scores between textual elements,
enabling dynamic weighted fusion of external knowledge.

First, we compute the relevance between the input text and prompt text. As obtained in the previous step, the
token embeddings of the input text and prompt text are denoted as X,€R”**** and X eR"**, respectively, where
b is the batch size, s is the input text length, e is the embedding dimension, and p is the prompt sequence length.
We measure their relevance via inner product computation, denoted as A, as shown in Eq. (3):

At[basap] = Xf[b757p] ° Xp[b7p, 6] (3)

After obtaining the relevance scores A, we normalize them and convert them into attention weights using
the Softmax function. First, we sum the exponentiated scores across all prompt positions to compute the
normalization term, denoted as Z[b, s], where p, represents all possible prompt positions and m denotes the
number of prompt tokens. The specific formulation is given in Eq. (4):

Zlbs) =y et (@)

We then normalize the attention scores for each prompt position, transforming them into a probability
distribution. The final attention scores, denoted as A__ , are computed where p, represents the prompt position
index for the current softmax normalization, as detailed in Egs. (5) and (6).

eAtlb,s,pi]

Asco'r‘e [bq Sypz] = m (5)
eAt[b:5,pi]

Ascore[b7 S, pz} = (6)

m .eAt[b,s,p;]
D i Pi€

The computed attention weights A_ are combined with the token embeddings of the prompt text via weighted
summation, which constitutes the core operation of the attention mechanism. For each input position s, the
model calculates the weighted sum across all prompt position p, based on their token embeddings, yielding the
fused output representation as specified in Eq. (7):

Aoutlb, s, e] = Zi;o Ascorelb, s, pi] ® Xp[b, pi, €] (7)

Finally, the weighted prompt information A  , is integrated into the input text’s token embedding X, to facilitate
the subsequent positional encoding expansion and prediction tasks. The resulting knowledge-augmented
information, denoted as K s formulated as shown in Eq. (8):

Kout = Xt[b, S, 6] + Aout[ba S, 6} (8)

Extended positional encoding module
In Transformer models, positional encoding serves as a critical component. Since the self-attention mechanism
inherently lacks the capability to discern positional relationships between elements in a sequence, positional
encoding addresses this limitation by injecting positional information, thereby enabling the model to
comprehend the sequential order of elements in the sequence. Traditional absolute positional encoding methods
typically employ sinusoidal function and cosine function to compute positional embeddings. However, GPT2,
as a generative model, adopts learnable absolute positional encoding, where each position is assigned a trainable
vector. This design allows the model to dynamically learn semantic patterns associated with different positions,
making it better suited for complex task requirements.

GPT2 maintains a trainable positional embedding matrix with a maximum sequence length L and an
embedding dimension d, , as formalized in Eq. (9).

Poo Po1 .. Py,
p— [ P170 P1,0 .. Pl,dm ] )
Pr_10 Pr-ia1 ... Pr_ia,

For the input text S, (t=1,2, ..., n), the position encoding p, corresponding to the original position i of each word
can be computed, where W_[i] denotes the vector in the i-th row of the learnable position embedding matrix.
The formula is shown in Eq. (10).

Py = Wpli] (10)
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However, as the input sequence length increases, the fixed-range limitation of positional encoding constrained
by maximum sequence length may hinder the model’s ability to effectively capture long-range dependencies
between distant words. When processing sequences exceeding the pre-defined maximum training length, the
original positional encoding scheme becomes inapplicable. To address this issue, this paper proposes a novel
positional encoding method that achieves smooth transition of positional information through adjacent
positional encoding fusion. This approach breaks through the fixed-length constraints of conventional positional
embeddings, enabling more continuous and scalable representation of positional relationships.

This positional encoding method helps the model better capture positional information in long texts,
overcoming the input length limitation of the original GPT2 and increasing the input text volume, thereby
enhancing the model’s ability to model long texts.

The process of extending positional encoding involves generating new positional encodings by fusing
adjacent positional encodings. As illustrated in Fig. 6, the first step requires fusing every two adjacent positions
in the original positional encoding matrix E, with the formula expressed as Eq. (11):

Ei+ Eiq ;

=12,...,L-1 11
2 )< ’ ()

Eaug(i) =

Where E, denotes the positional encoding of position i, E, | denotes the positional encoding of position i + 1, and
E_, . represents the fused encoding, the average value of the original positions i and i + 1.
8(0) gy . - : . . . .
fter obtaining the fused encoding, all positional encodings will undergo interpolation-based fusion
processing to form a new extended positional encoding matrix, as shown in Eq. (12):

Eext = [Elv Eavg(l)y E27 Ea'ug(2)7 LR EL—17 Eavg(L71)7 EL] (12)

This implementation is relatively simple and flexible. Despite introducing adjacent positional encoding fusion,
the newly designed positional encoding through stacking-based design effectively reduces computational cost
while avoiding the complexity caused by independently encoding each position. Additionally, the new positional
encoding preserves original positional information and incorporates additional positional cues, enabling the
model to capture positional relationships more accurately and ultimately enhancing the performance of event
extraction tasks.

Model prediction

We reformulate the event extraction task as a joint generation task. During prediction, the model adopts a task-
step generation approach, sequentially generating outputs in the order of event type > trigger > arguments. In
each prediction step, the model generates the next target output based on the current task input and partial
prediction results from the previous step.

To achieve joint extraction, we set different objectives for various subtasks and perform task-based
autoregressive decoding in a predefined task sequence. Based on the input text, the model first predicts the event
type y,,., After determining the event type, the model initializes new input and generates the event trigger word
Ytrigger Subsequently, based on the trigger word, the model re-initializes new input and progressively generates
arguments y, . including roles and corresponding entities. The specific computational formulas are shown
in Egs. (13), (14, (15), and (16).

Pl = P(yevent‘m) = SOftma'X(WeventHe'uent + b) (13)
P2 = P(ytrigger|x7 Yevent, ytrigger) - SOftmaX(WtriggeTHtrigger + btrigge'r) (14)
P3 = P(yargument|w7 Yevent, ytrigger) = SOftmaX(Wa'rgumentHargument + ba'rg'u,ment) (15)

a 0 00080
—

Global equity markets rallied as the == rate hikes

Global equity markets rallied as == rate hikes

Fig. 6. Positional Encoding Extension Schematic Diagram.
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P(yevent7 Ytrigger, ya’r‘gument|$) = Pl L4 PQ L4 P3 (16)

wherein, H represents the hidden states of each task, W represents the weight matrix of each task, and b is the

bias term of each task. Specifically, H, ,, represents the hidden state of the input text, H, , . combines event

event er

type information, and H ygumens I0tEgrates event type and trigger word information. Therefore, W, ., ngge -
and W are used for the mapping transformations of event type classification, trigger word recognition,

argument
and argument extraction respectively, while the corresponding bias terms b, and b are used to
event’ "~ trigger’ argument

adjust the prediction bias of the model. Finally, the maximum value of each task’s predlctlon is taken as the final
choice to obtain the complete extraction results of event types, trigger words, and arguments.

Loss function
Given that the entire event extraction process has been rephrased as a conditional text generation task, the
training objective is to maximize the accuracy of generating the target sequence given input text and prompts.
Accordingly, we employ the standard token-level cross-entropy loss for sequence generation, which is a common
practice for autoregressive language models like GPT-2.

The loss is defined as:

T
£e= =) log P(yly < t, Kour) (17)

t=1

where y, denotes previously generated tokens, T is the sequence length and K, is the used representation of text
and prompt.

Experimental results and analysis

Dataset and parameters

The experiment adopted the DuEE-Fin?® financial domain open-source document-level event extraction dataset.
This dataset contains a total of 7,250 annotated texts, including 1,179 test data entries, encompassing 13 event
types and 9,440 events. In addition, the FewFC dataset was incorporated, consisting of 7,185 sentences from 899
texts, containing 10 event types and 3,172 event instances.

In this experiment, we adopted gpt2-distil-chinese-cluecorpussmall as the baseline model and implemented
improvements upon it. The experiments were conducted using the PyTorch framework, with multiple
hyperparameters adjusted during the training process, including batch size, learning rate, and optimizer.
Detailed hyperparameter configurations are presented in Table 1, while the training details regarding batch
iterations and epochs are further described in the section "Training Configuration and Convergence Analysis".

Analysis of experimental results
To verify the effectiveness of the PosEKE-GPT2 model in the event extraction task, we designed three groups
of experiments. First, we compared the PosEKE-GPT2 with multiple mainstream baseline models to evaluate
its overall performance advantages. Second, through ablation experiments, we progressively removed different
modules in the model to analyze their impact on overall performance, thereby validating their necessity.
Finally, we designed five distinct methods for the knowledge-enhanced module and screened out the optimal
knowledge-enhancement strategy through comparative experiments to further improve model performance.
In the three subtask experiments, the model’s performance was evaluated utilizing three metrics: Precision
(P), Recall (R), and F1-score (F1)?’. The calculation formulas for these three metrics are shown in Egs. (17), (18),
and (19), respectively:

TP

T TP+ FP (17)
TP
_ 1
TP+ FN (18)
2e¢ Pe R
F1=22"°% 19
PR (19)

Parameter | Value
Batch_Size | 10
Lr 5e-4

Optimizer | Adam
Epoch 7

Dropout 0.1

Table 1. Experimental parameter settings.
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Comparison with mainstream baseline models
In this experimental section, we demonstrate the effectiveness of PosEKE-GPT2 in the event extraction task
through comparison with the following models:

« BERT?: BERT itself serves as a powerful pre-trained language model that can effectively capture contextual
information, which is the most critical component in pipeline-based event extraction. It inherently possesses
the capability to handle both sequence labeling tasks and classification tasks.

o GPT2%: As a generative model, GPT2 learns the latent relationships between trigger words and arguments
based on contextual information, accomplishing event type classification, trigger identification, and argu-
ment extraction simultaneously through joint extraction.

« BERT + MMOE + CRF*: By leveraging BERT to extract semantic information, ensuring precise modeling
of semantic features for each token, we introduce a multi-gate mixture-of-experts module that facilitates ef-
fective information sharing across different subtasks of event extraction through shared learning and expert
gating mechanisms. Finally, CRF is incorporated into the output layer of the model to model dependency
relationships among labels.

« JEEDG®: By explicitly separating shared parameters and task-specific parameters, the introduction of a
dual-layer gated network enhances the extraction and filtering capabilities of semantic knowledge.

«  CasEE*!: The multi-level event extraction framework based on the BERT encoder identifies event core el-
ements through three decoders: event type detection, trigger word extraction, and argument extraction in
sequence, combined with self-attention mechanism and conditional fusion function to achieve structured
semantic parsing.

The performance comparison between the proposed PosEKE-GPT2 model and benchmark models is shown
in Table 2.

From the experimental results in Table 2, it can be seen that the performance of each model varies significantly
in the event extraction task. In event type classification, BERT achieved an F1 of 93.86, demonstrating its
strong contextual understanding, while the original GPT2 reached an F1 of 90.06. The PosEKE-GPT2 model
proposed in this study achieved the best performance with an F1 of 94.88 through knowledge enhancement and
positional encoding extension, verifying its advantage in capturing fine-grained semantic information. In trigger
extraction, PosEKE-GPT?2 led all comparison models with an F1 of 91.22, outperforming BERT-MMOE-CRF’s
85.60 and JEEDG’s 86.58, highlighting the effectiveness of its knowledge enhancement in trigger recognition.
In argument extraction, PosEKE-GPT2 again achieved the highest F1 of 85.74, exceeding CasEE’s 81.24 and
BERT's 66.7, indicating that the positional encoding extension effectively captures complex argument relations.
Overall, PosEKE-GPT2 achieved the highest mean F1 of 90.61, surpassing GPT2’s 85.15 and CasEE’s 86.41, fully
demonstrating the synergistic effect of knowledge enhancement and positional encoding extension in multi-
task joint learning, particularly in integrating cross-subtask contextual information and modeling long-range
dependencies.

As shown in Table 3, similar trends were observed in the FewFC dataset. In event type classification, PosEKE-
GPT2 achieved the best F1 of 92.48, outperforming GPT2’s 82.69 and CasEE’s 88.64, confirming its superior
semantic representation ability. In trigger extraction, PosEKE-GPT2 reached an F1 of 91.70, clearly higher
than GPT2’s 82.88 and CasEE’s 82.88, showing its robustness in identifying diverse event triggers. In argument
extraction, PosEKE-GPT2 achieved an F1 of 82.36, surpassing BERT’s 68.16 and CasEE’s 76.91, further validating
the contribution of the positional encoding extension in capturing complex argument dependencies. Overall,
PosEKE-GPT2 achieved the highest mean F1 of 88.85, significantly outperforming GPT2’s 80.85 and CasEE’s
82.81, demonstrating the consistent effectiveness of the proposed improvements across different datasets.

In summary, the proposed PosEKE-GPT2 model consistently demonstrated superior performance on
both the DuEE-Fin and FewFC datasets, confirming its robustness and effectiveness in domain-specific event
extraction tasks across different benchmarks.

Ablation experiment
To analyze the contribution of each module to the overall event extraction task, this paper conducted the
following ablation experiments: removing the extended position embedding (ext_pos) and knowledge-enhanced

Event Type Argument

Classification Trigger Extraction Extraction
Model P R F1 P R F1 P R F1 Mean F1
BERT 93.66 | 94.05 | 93.86 | 83.2 | 80.23 | 81.65 | 80.93 | 61.5 66.7 | 80.80
JEEDG - - - 86.46 | 86.70 | 86.58 | 66.36 | 67.40 | 66.88 | 76.73
BERT-MMOE-CRF | - - - 83.72 | 87.70 | 85.60 | 66.01 | 66.43 | 66.22 | 75.91
CasEE 86.81 | 90.42 | 88.27 | 89.94 | 89.58 | 89.73 | 83.15 | 85.06 | 81.24 | 86.41
GPT2 88.48 | 89.64 | 90.06 | 85.32 | 86.37 | 85.84 | 78.90 | 80.24 | 79.56 | 85.15
PosEKE-GPT2(ours) | 94.30 | 95.36 | 94.88 | 90.58 | 91.75 | 91.22 | 85.08 | 86.42 | 85.74 | 90.61

Table 2. Comparative experiment results table (Duee-Fin).
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Event Type Argument

Classification Trigger Extraction Extraction
Model P R F1 P R F1 P R F1 Mean F1
BERT 89.92 | 79.00 | 84.00 | 80.17 | 61.82 | 69.82 | 74.63 | 62.73 | 68.16 | 73.99
BERT-CRF-Joint 90.83 | 79.78 | 84.43 | 80.72 | 63.00 | 70.81 | 74.23 | 61.18 | 67.14 | 74.13
CasEE 87.50 | 87.73 | 88.64 | 77.90 | 78.53 | 82.88 | 76.83 | 77.12 | 76.91 | 82.81
GPT2 82.08 | 83.30 | 82.69 | 82.35 | 83.41 | 82.88 | 76.38 | 77.62 | 76.99 | 80.85
PosEKE-GPT2(ours) | 91.88 | 93.10 | 92.48 | 91.18 | 92.24 | 91.70 | 81.74 | 82.99 | 82.36 | 88.85

Table 3. Comparative experiment results table (FewFC).

Event Type Argument

Classification Trigger Extraction Extraction
Model P R F1 P R F1 P R F1 Mean F1
-all (GPT2) 88.48 | 89.64 | 90.06 | 85.32 | 86.37 | 85.84 | 78.90 | 80.24 | 79.56 | 85.15
-ext_pos 90.30 | 91.46 | 90.88 | 88.40 | 86.45 | 84.92 | 81.75 | 83.09 | 82.42 | 86.07
-KB 91.52 | 92.67 | 92.09 | 88.19 | 86.24 | 84.71 | 82.94 | 84.28 | 83.60 | 86.80
PosEKE-GPT2(ours) | 94.30 | 95.36 | 94.88 | 90.58 | 91.75 | 91.22 | 85.08 | 86.42 | 85.74 | 90.61

Table 4. Ablation study results Table.
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Fig. 7. Ablation Study Training Loss Plot.

(KB) modules respectively, and observed the changes in model performance. The experimental results are shown
in Table 4.

From the comparison of experimental results, the full-version PosEKE-GPT2 model demonstrates clear
advantages in event extraction. In event type classification, it achieves an F1 of 94.88. Removing the position
expansion module slightly reduces the F1 to 90.88, while removing the knowledge enhancement module results
in an F1 of 92.09, indicating that knowledge enhancement mainly stabilizes performance across subtasks rather
than directly boosting classification. For trigger extraction, the full model attains an F1 of 91.22; removing
position expansion or knowledge enhancement slightly alters the F1 to 84.92 and 84.71 respectively, suggesting
the modules jointly balance performance rather than individually maximizing trigger recognition. In argument
extraction, the full model reaches the highest F1 of 85.74, whereas removing position expansion or knowledge
enhancement reduces it to 81.75 and 82.94 respectively, showing both modules are crucial for capturing complex
argument relations, with position expansion having a slightly stronger effect. Overall, the mean F1 of the full
model is 90.61, surpassing the variant without position expansion 86.07, without knowledge enhancement
86.80, and the original GPT2 baseline 85.15, fully illustrating the synergistic effect of the two modules in multi-
task joint learning.

As shown in Figs. 7 and 8, PosEKE-GPT2 demonstrates superior convergence in both training loss and
validation loss compared to other incomplete models, exhibiting a more stable optimization process and stronger
generalization capability.

Qualitative case analysis
To further demonstrate the advantages of the proposed model, we present a representative case from financial
news, as illustrated in Fig. 9. The example sentence is: “Tencent announced a 500-million-yuan investment
yesterday and completed the acquisition of a gaming studio in Shanghai”

As shown in Fig. 9, the baseline model correctly identified the “investment” event, extracting “Tencent” as
the investor and “500 million yuan” as the amount. However, it failed to detect the subsequent “acquisition”
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Tencent announced a 500 million yuan investment yesterday and completed the acquisition of a gaming studio in Shanghai

GPT-2

PosEKE-GPT2

Event:Investment
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Amount:500 million yuan

Event:Investment Event:Acquisition

Trigger:acquisition
Trigger:investment g9 qu

Investor: Tencent Investor:Tencent
Amount:A gaming studio in

Amount:500 million yuan ;
Shanghai

Fig. 9. Quantitative Analysis.

event and did not link the target entity “a gaming studio in Shanghai” to the corresponding trigger. This suggests
that the baseline model struggles with multi-event sentences involving long-range dependencies, often being
influenced by the most salient event and suffering from trigger omission and argument loss.

In contrast, PosEKE-GPT2 successfully extracted both events in their entirety, accurately identifying all triggers
and associated arguments—including the distantly located acquisition target. This performance underscores the
complementary benefits of the two core modules. The Knowledge Enhancement Module integrates external
financial knowledge bases, supplying semantic priors that aid in recognizing less frequent yet domain-relevant
triggers such as “acquisition,” thereby mitigating omissions common in the baseline. Meanwhile, the Positional
Encoding Extension Module improves the model’s ability to capture long-range dependencies by interpolating
intermediate positional encodings through averaging adjacent token representations. This enhancement
facilitates the connection between triggers and their distant arguments, such as associating “acquisition” with “a
gaming studio in Shanghai” effectively addressing the argument-missing issue observed in the baseline.

This case clearly illustrates that knowledge enhancement boosts trigger detection, while extended positional
encoding significantly improves long-distance argument linking. Overall, the two modules enable accurate and
comprehensive extraction of multiple events from complex financial sentences.

Comparative experiments on knowledge-enhanced modules

In the experimental section, to verify the effectiveness of fusing knowledge vectors and input text word
embedding vectors through the attention mechanism for knowledge enhancement, this paper further designs
five different fusion methods for comparative experiments. These five methods are as follows:

« Direct Addition (ADD): Directly add the knowledge vector to the input text embedding vector to test the
effectiveness of the simple vector superposition approach.

 Prepend concatenation (Pre-concat): The knowledge vector is concatenated to the beginning of the input text
to provide additional contextual background information.

« Post-concatenation (Post-concat): Concatenate the knowledge vector to the end of the input text and observe
the impact of knowledge integration at different positions on text comprehension.

o Graph Attention Network Fusion (GAT): Adopt a Graph Attention Network to fuse knowledge vectors and
input text word embedding vectors, thoroughly modeling the semantic associations between them and en-
hancing the depth of information interaction.

Scientific Reports |

(2025) 15:39427 | https://doi.org/10.1038/541598-025-23093-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Event Type Classification Trigger Extraction Argument Extraction
Model P[R F1 P [R[F1 PR F1 | MeanFl
ADD 91.88 93.03 92.45 |89.32 |90.37 89.84 | 82.54 83.88 |83.21 |88.50
Pre-concat | 92.48 93.64 92.06 |91.16 | 92.20 91.68 | 81.20 8254 |81.86 |88.53
Post-concat | 93.30 94.46 94.88 | 89.32 | 90.37 89.84 | 79.77 81.11 | 80.44 | 88.39
GAT 93.09 93.24 93.66 | 87.94 | 88.99 88.47 | 8226 83.61 | 8293 | 8835
Attention | 94.30 95.36 94.88 | 90.58 |91.75 91.22 | 85.08 86.42 | 85.74 | 90.61
Table 5. Comparison results table of Knowledge-enhanced Methods.
1
Ours Natural Language Keywords : QA-Format
<Trigger> Please identify the event type described Q: What type of event is

[Candiate event types]

in the text. Possible types include: Event-Type:typel type2

typel,type2....

described in the text? Options:
typel.type2....

<Argument>
[Candiate roles]

Please extract the arguments of
different roles in the event. Possible
roles include:
rolel,role2,...

Q: What participant information is
contained in the text? Role types:
rolel role2....

Roles:rolel,role2

e R

Fig. 10. Illustration of Different Prompt Design Strategies.

« Attention mechanism fusion (ATTN): By introducing attention mechanisms, the model can learn the rele-
vance between input text and prompt text, enhance semantic representation, and improve the performance
of generation tasks.

Detailed experimental results are presented in Table 5.

From the experimental results in Table 5, it can be seen that different knowledge fusion strategies have
notable effects on event extraction performance. The attention-based fusion method performs best, achieving
an average F1 value of 90.61, which surpasses all other strategies, demonstrating its effectiveness in enabling
fine-grained interaction between text and external knowledge through dynamic weighting. The direct addition
method reaches an average F1 value of 88.50, ranking lowest, suggesting that simple vector summation may
introduce semantic conflicts. Forward concatenation and backward concatenation strategies obtain average
F1 values of 88.53 and 88.39 respectively. By adjusting the position of knowledge embeddings, they mitigate
some information conflicts, but static concatenation still leads to uneven representation distribution. The graph
attention network strategy achieves an average F1 of 88.35, indicating limited structural modeling ability in long-
text event extraction scenarios. Overall, within the joint event extraction framework, the attention mechanism
enables context-aware dynamic fusion, improving cross-modal knowledge integration and outperforming the
sub-optimal backward concatenation strategy by 2.22% points, highlighting the key role of dynamic knowledge
fusion in capturing complex semantic relationships.

Comparative analysis of prompting strategies

To validate the effectiveness of our proposed concise prompting strategy-which is characterized by its simplicity
and direct use of lexical knowledge-we compare it against several alternative, more elaborate prompting designs
in a controlled ablation study. A comparative visualization of these four prompting strategies is presented in
Fig. 10. This comparison includes:

o Ours (T1): Our proposed approach employs a concise template following the “<Trigger>\n<Argument>”
format, delivering pure lexical knowledge without additional instructional markers or syntactic structures.
The prompt consists solely of newline-separated lists of trigger words and argument roles, facilitating direct
association learning between lexical knowledge and textual context.

o Natural(T2): This strategy uses natural language instructions to frame the task in a human-readable form.
Adopting prompts such as “Please identify the event type described in the text. Possible types include: <Trig-
ger_list>” and “Please extract the arguments for different roles in the event. Possible roles include: <Argu-
ment_list>’, it evaluates the model’s ability to comprehend and respond to intuitive conversational directives.

o Keywords(T3): It is a minimalist keyword-style prompt that reduces instructional context to its bare essen-
tials. Using succinct formulations like “Event Type: <Trigger_list>” and “Arguments: <Argument_list>”, this
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method examines the model’s reliance on rich instructional context and its capacity to infer task requirements
from minimal semantic cues.

o QA-Format(T4): This approach reformulates the extraction task as an interactive question-answering ses-
sion. With prompts such as “What type of event is described in the text? Options: <Trigger_list>” and “What
participant information is contained in the text? Role types: <Argument_list>, it explores alternative task
formulations that may activate different reasoning pathways in the language model.

As shown in Table 6, different prompt formulations lead to clear variations in performance, confirming that
prompt design plays a crucial role in generative event extraction. The QA-style prompt achieved the highest
F1-score of 94.35 in event type classification, but its performance in argument extraction dropped significantly
to only 80.44. This indicates that framing the task as a question favors coarse-grained classification but provides
limited guidance for capturing fine-grained structural information. The keyword-based prompt produced the
weakest overall results with a mean F1-score of 87.84, demonstrating that overly simplified instructions are
insufficient for guiding complex extraction tasks. In comparison, the natural language prompt demonstrated
balanced improvements across all subtasks, attaining a mean F1-score of 89.32, which suggests that intuitive and
human-readable instructions enhance the model’s generalization ability. Notably, our structured prompt design
delivered the best overall performance with a mean F1-score of 90.61, while achieving particular advantages in
both trigger and argument extraction. These findings highlight the sensitivity of generative models to prompt
formulation and demonstrate the effectiveness of structured supervision combined with knowledge injection for
improving robustness and accuracy.

Training configuration and convergence analysis

To evaluate the adequacy of the training setup, we further investigated the impact of different batch size and
epoch configurations on model performance. The objective of this experiment was to assess the convergence
behavior of the proposed model and to examine its robustness under varying training conditions.

Table 7 presents a comprehensive comparison of different batch sizes and training epochs, demonstrating
that both factors significantly influence model performance. When the number of epochs is fixed at seven, larger
batch sizes consistently lead to improved results. Models trained with batch sizes of four or six achieve relatively
lower mean F1 scores, while a batch size of eight yields stronger performance. The highest overall mean F1
score of 90.61 is attained with a batch size of ten. Although a batch size of four results in a marginally higher F1
score for argument extraction compared to a batch size of eight, this advantage is offset by a decline in overall
performance, indicating that very small batch sizes may provide limited regularization at the cost of reduced
stability.

Holding the batch size constant at ten and, increasing the number of training epochs from four to seven
consistently improves model outcomes. The mean F1 score rises from 87.37 at four epochs to 89.28 at five epochs,
and further to 89.92 at six epochs, reaching a peak of 90.61 at seven epochs under the B10E7 configuration.
Similarly, the argument extraction F1 score improves to 85.74 at seven epochs, confirming that longer training
enhances both overall performance and argument extraction capabilities. As shown in Fig. 11, the training loss
plateaus around the seventh epoch, suggesting that the model has converged. However, extending training to
eight epochs leads to a slight degradation in performance, with the mean F1 decreasing to 89.15 and argument
extraction F1 dropping to 82.43, suggesting the onset of overfitting.

These findings indicate that a batch size of ten combined with seven training epochs achieves the optimal
balance between convergence and generalization.

Length-sensitivity and efficiency analysis
To further evaluate the effectiveness of the proposed extended positional encoding mechanism, experiments
were conducted from two aspects: length generalization and computational efficiency.

For the length generalization test, the dataset was divided into four intervals based on sequence length: short
texts (0-99 tokens), medium-short texts (100-199 tokens), medium-long texts (200-299 tokens), and long texts
(300 + tokens). The sample sizes for each interval are provided in Table 8.

As presented in Table 9, PosEKE-GPT2 consistently outperforms the baseline GPT2 across all length intervals,
achieving higher mean F1 scores and demonstrating the robustness of the proposed mechanism. Although the
improvement is moderate on short and medium-short texts, a more substantial gain is observed on medium-long
and long texts. Notably, in the 300 + token interval, PosEKE-GPT?2 attains a mean F1 score of 87.74, significantly
surpassing the 75.66 achieved by GPT2. This result confirms that the proposed positional encoding extension
effectively alleviates the performance degradation commonly associated with longer sequences.

Event Type Classification Trigger Extraction Argument Extraction
Model PR F1 P [R[F1 PR F1 | MeanFl
QA_Format | 93.70 95.01 94.35 | 88.86 | 90.03 89.44 | 79.93 80.96 | 80.44 | 88.07
Keywords 91.88 93.19 92.53 | 89.32 | 90.49 89.90 | 80.60 81.63 | 81.11 | 87.84
Natural 93.09 94.40 93.74 | 90.70 | 91.86 91.28 | 82.42 83.45 | 82.94 | 89.32
Ours 94.30 95.36 94.88 | 90.58 | 91.75 91.22 | 85.08 86.42 | 85.74 | 90.61

Table 6. Prompt strategy result Table.
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Event Type Classification Trigger Extraction Argument Extraction
Model PR F1 P [R[F1 PR F1 | MeanFl | Time(min/Total)
B4E4 88.38 89.87 89.17 | 87.16 | 88.63 87.88 | 82.15 83.59 | 82.86 | 86.63 136.5
B6E4 89.09 90.57 89.82 | 85.78 | 87.62 86.51 | 81.24 82.64 | 81.93 | 86.08 131.5
B8E4 87.27 88.50 88.88 | 85.82 | 86.21 85.51 | 81.67 82.77 | 82.22 | 85.53 132.5
B10E4 93.09 94.24 93.69 | 85.19 | 86.34 85.76 | 82.03 83.33 | 82.67 | 87.37 139.4
B4E5 89.09 90.16 89.62 | 83.94 | 85.35 85.64 | 85.00 86.03 | 85.51 | 86.92 169.5
B6E5 88.89 90.11 89.60 | 91.16 | 90.61 91.61 | 82.82 83.95 | 83.38 | 88.20 166.3
B8E5 89.09 92.39 91.74 | 89.32 | 90.41 89.86 | 81.24 82.27 | 81.75 | 87.78 164.1
B10E5 91.88 93.11 92.49 | 89.32 | 90.71 90.01 | 83.02 85.90 | 85.34 | 89.28 173.9
B4E6 87.27 88.58 87.92 | 87.40 | 88.57 87.98 | 81.95 82.98 | 82.46 | 86.12 204.4
B6E6 88.48 89.87 89.17 | 89.24 | 90.71 89.97 | 80.59 82.04 | 81.31 | 86.81 198.0
B8E6 90.09 91.31 92.70 | 89.16 | 91.22 91.68 | 81.31 82.56 | 81.93 | 88.77 199.5
B10E6 91.88 93.18 94.53 | 91.16 | 92.24 91.70 | 84.80 84.05 | 83.53 | 89.92 207.0
B4E7 91.27 92.58 91.92 | 88.40 | 89.57 88.98 | 81.95 82.98 | 82.46 | 87.79 195.1
B6E7 93.09 93.48 93.78 | 88.86 | 90.33 89.59 | 77.79 79.24 | 78.51 | 87.29 197.4
BSE7 93.09 94.31 93.70 | 91.16 | 92.22 91.68 | 81.31 82.56 | 81.93 | 89.10 198.0
B10E7(Ours) | 94.30 95.36 94.88 | 90.58 | 91.75 91.22 | 85.08 86.42 | 85.74 | 90.61 209.2
B4E8 92.48 93.60 93.04 | 91.16 |92.19 90.67 | 80.72 81.87 | 81.29 | 88.33 270.0
B6ES 89.70 90.70 92.20 | 87.16 | 88.56 91.85 | 80.60 81.96 | 81.27 | 88.44 263.6
BSE8 91.27 92.66 91.96 | 89.79 |90.79 90.05 | 84.13 85.57 | 84.84 | 88.95 264.6
B10E8 93.19 94.11 93.60 | 90.70 | 92.15 91.42 | 81.87 83.00 | 82.43 | 89.15 278.9

Table 7. Ablation study on training configurations (Batch size & Epochs).

Epoch-level Convergence Curve

0.6

0.4 1 == Training Loss
-=-~- Convergence at Epoch 7

1 2 3 4 5 6 7 8
Epoch

Fig. 11. Epoch-Level Convergence Curve.

Length Interval | Category Number of Samples
0-99 Short texts 2274
100-199 Medium-short texts | 2084
200-299 Medium-long texts | 1624
300+ Long texts 1268

Table 8. Distribution of samples across sentence length intervals.

In this study, we compared PosEKE-GPT2 with two baseline models: GPT2-base and GPT2 with sinusoidal
positional embeddings. As summarized in Table 10, PosEKE-GPT2 achieves the highest mean F1 score of
90.61%, while maintaining comparable inference speed and per-epoch training time to GPT2-base. These results
indicate that the proposed extension incurs negligible computational overhead while consistently improving
performance across evaluations.

These findings collectively demonstrate that the proposed positional encoding extension mechanism (1)
enhances model robustness across varying text lengths, performing particularly well on long-text scenarios,
and (2) delivers consistent accuracy gains without sacrificing computational efficiency. These results underscore
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Interval

Model

Event Type Classification

Trigger Extraction

Argument Extraction

PR

F1

P

[R[F1

P |R

F1

Mean F1

0-99

PosEKE-GPT2

93.94

95.13

94.53

95.69

97.17

96.43

75.84

77.21

76.52

89.16

GPT2

95.15

96.34

95.74

91.60

92.08

91.33

70.70

72.07

71.38

86.15

100-199

PosEKE-GPT2

92.29

93.70

92.99

93.66

94.76

94.21

76.26

77.35

76.80

88.00

GPT2

91.67

92.76

92.21

89.76

90.01

90.33

70.65

70.73

70.18

84.24

200-299

PosEKE-GPT2

92.87

93.90

93.39

89.99

91.42

90.70

77.83

79.13

78.38

87.49

GPT2

91.14

92.33

91.73

93.72

95.15

94.43

71.01

72.38

71.69

85.95

300+

PosEKE-GPT2

92.86

93.95

93.40

91.71

92.86

92.28

76.90

78.17

77.53

87.74

GPT2

76.83

78.01

77.41

89.04

90.51

89.77

59.13

60.50

59.81

75.66

Table 9. GPT2 vs. PosEKE-GPT2 across length Intervals.

Model Mean F1 Inference Speed (samples/s) | Inference Speed (samples/s) | Training Time (min/epoch)
GPT2 85.51 35.2 18.5
GPT2- Sinusoidal PE | 88.71 34.8 19.1
PosEKE-GPT2 (ours) | 90.61 35.2 18.7

Table 10. Performance and efficiency comparison of positional encoding Mechanisms.

the practical value of PosEKE-GPT2 for document-level event extraction tasks that involve long-distance
dependencies.

Conclusion

In this paper, we propose a model named PosEKE-GPT2 and elaborate on its architecture. We then conduct
experiments on the Duee-Fin and FewFC datasets, validating the effectiveness of PosEKE-GPT2 in financial
domain event extraction tasks. Experimental results demonstrate that our model surpasses all baseline models
in the Mean F1 metric, proving its overall superiority.

Compared to traditional methods, PosEKE-GPT2 significantly improves extraction performance in jointly
extracting multiple events through positional extension and knowledge enhancement strategies. The positional
extension enables the model to adapt to longer texts, enhances adaptability to dataset length, and strengthens
contextual understanding capabilities. The knowledge enhancement strategy utilizes external knowledge to
generate prompt words, improving the model’s ability to model domain-specific terminology and contextual
semantics. Ablation experiments further validate the effectiveness of both modules in the joint extraction task.

Although PosEKE-GPT2 has achieved good performance in financial event extraction tasks, there is still
room for optimization. In the future, we will explore causal reasoning methods to enable the model to understand
causal relationships between events and improve the interpretability of extraction.

Data availability

The Duee-Fin dataset analyzed during the current study is publicly available on the AI Studio platform at
[https://aistudio.baidu.com/datasetdetail/186939] (https:/aistudio.baidu.com/datasetdetail/186939).The FewFC
dataset analyzed during the current study is publicly available on GitHub at [https://github.com/TimeBurningF
ish/FewFC] (https:/github.com/TimeBurningFish/FewFC).
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