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The Internet of Medical Things (IoMT) enables continuous collection and transmission of healthcare 
data through interconnected networks of patient wearables and other devices. This capability 
transforms traditional healthcare systems into data-rich environments. However, this also brings 
privacy concerns because of the widespread distribution of health data across multiple healthcare 
systems. Such concerns, including data breaches and privacy violations, become paramount when 
aggregating data into a centralized location for analytical purposes. Therefore, this paper proposes a 
novel privacy-preserving framework designed with a three-layer protection mechanism for distributed 
healthcare analytics on encrypted data. This framework mitigates the risk of data breaches while 
balancing data privacy with model accuracy tradeoffs. First, fully homomorphic encryption (FHE) 
is introduced to encrypt healthcare data. This mechanism enables analytical computations while 
mitigating the risk of data breaches. Building on this, we develop a distributed FHE framework that 
eliminates the need for centralized data storage and supports iterative learning through continuous 
model updates as new data become available. Furthermore, we propose a distributed ensemble 
learning architecture that leverages parallel processing to accelerate the generation of consensus 
models for healthcare analytics. Experimental results from real-world intensive care unit (ICU) case 
studies show that the proposed framework effectively protects data privacy while maintaining the 
performance of analytical models. Moreover, compared with individual departmental models, the 
proposed privacy-preserving framework achieves the highest accuracy of 84.6%. These findings 
highlight the potential of a federated privacy-preserving framework to avoid centralized data storage 
and support collaborative analytics in data-rich healthcare environments.
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Internet of Medical Things (IoMT) is revolutionizing digital technology in the healthcare sector. By integrating 
various patient wearables, medical devices, and networking components, smart healthcare systems collect, 
process, and generate enormous amounts of health-related data. The International Data Corporation predicts 
that there will be approximately 41.6 billion connected IoT devices to produce about 79.4 zettabytes of data by 
20251. As such, this transformation has turned traditional health systems into data-rich environments and offers 
an unprecedented opportunity to develop innovative analytical methods and tools. For example, a recurrence 
analysis approach is introduced to support automatic, image-guided identification of invasive ductal carcinoma 
in breast cancer2. Further, a two-level framework is designed to support data-driven clinical decisions for breast 
cancer treatment3.

While IoT technologies offer transformative benefits, there is an increasing interest in the protection of data 
privacy, particularly in different departments of healthcare systems like intensive care units (ICUs). ICU is a data-
rich environment where critically ill patients are continuously monitored by advanced devices, enabling rapid 
risk assessments through both conventional methods and emerging machine learning approaches for mortality 
prediction and patient stratification. However, this increased connectivity raises significant privacy concerns 
due to expanded data transmission and the growing complexity of cyber-attacks. Patients’ healthcare data often 
contain highly sensitive information (e.g., blood pressure and temperature readings). As such, patients are 
understandably reluctant to permit healthcare units to share their health histories. The HIPAA Journal reports a 
concerning trend of data breaches in the healthcare sector, with 5887 incidents affecting at least 500 records each 
between 2009 and 2023. These incidents have compromised approximately 519.94 million healthcare records, 
exceeding 150% of the United States population. In 2023 alone, the healthcare industry experienced an average 
of nearly two significant data breaches daily, exposing around 364,570 records per day4. IBM’s 2023 Cost of a 
Data Breach Report reveals that the average cost of a healthcare data breach in the United States has risen sharply 
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to $10.93 million. This result marks a concerning 53% increase over the past three years5. This rise reflects not 
only the financial impact but also the potential harm to patient trust and the integrity of healthcare systems. 
Without robust privacy protections, the expansion of IoMT could result in compromised patient confidentiality 
and reduced willingness to engage with smart healthcare.

In the current paradigm of large-scale healthcare analytics, data from various independent units or 
departments within hospitals are often aggregated into a centralized platform to derive broader insights and 
enhance predictive accuracy. However, this integration is challenging and leads to a complex structure of 
governance where stringent privacy controls are needed. For example, in 2017, the WannaCry ransomware 
attack disrupted England’s National Health Service, affecting about one-third of trusts, cancelling thousands of 
appointments, and incurring an estimated £92 million in service disruption and remediation costs6. As such, 
there are significant roadblocks to data sharing. For example, aggregating raw data across multiple units or 
departments into a centralized location raises concerns over data breaches, patient confidentiality, and strict 
regulatory compliance such as the General Data Protection Regulation (GDPR) in Europe7 and the Health 
Insurance Portability and Accountability Act (HIPAA) in the United States8. These regulations demand rigorous 
protection around patient data.

To address privacy concerns in healthcare systems, several standard protocols such as ISO/IEC 291009 have 
been established to enhance the protection of data privacy. The term “personally identifiable information (PII)” 
refers to any data that identify an individual. Based on the level of sensitivity, user data are commonly classified 
into three types: sensitive personal data, general data, and statistical data. Sensitive personal data requires the 
strictest privacy measures. In contrast, general and statistical data need moderate protection because they are 
mainly for research or analysis purposes. The PII owners have full control over their data. On the other hand, PII 
processors, typically units or departments, are granted permission by PII owners to access and utilize their data 
for specific tasks. The processors might, under certain conditions and with the owners’ agreement, share data 
with third parties for particular functions. If unauthorized use occurs, both the processors and any third parties 
involved are held accountable for any breaches in data handling. To reduce the risk of identity disclosure and 
privacy violations, organizations may use privacy mechanisms such as anonymization and pseudonymization 
when processing personal data10. Besides, Krall et al. also present a gradient-based mechanism with differential 
privacy and assess its ability to mitigate malicious attacks in ICUs11.

Overall, healthcare systems currently face significant challenges in maintaining data privacy. First, the 
widespread use of traditional machine learning models often requires centralized data collection and storage, 
which greatly increases the risk of data breaches. Second, patients are frequently hesitant to share their raw 
data due to privacy concerns, which complicates efforts for collaborative decision-making. Lastly, although the 
adoption of encryption technologies such as the Advanced Encryption Standard (AES) can be used to protect 
data privacy during storage, they limit the computational capabilities available for processing the encrypted 
data. Hence, it is difficult to exchange data across units for analytical purposes. This situation poses a critical 
challenge: How can we enable effective analytical computing across distributed datasets owned by different units 
or individual patients while protecting data privacy?

Hence, this paper proposes a novel privacy-preserving framework designed with a three-layer protection 
mechanism for distributed healthcare analytics on encrypted data. This framework mitigates the risk of data 
breaches while balancing data privacy with model accuracy tradeoffs. First, fully homomorphic encryption (FHE) 
is introduced to encrypt healthcare data to enable analytical computation while mitigating the likelihood of data 
breaches. After decryption, the outputs are identical to those obtained by applying the same computations to the 
unencrypted data. Second, a distributed version of FHE framework is developed to obviate the requirement for 
centralized data storage and enable iterative learning with model updates as new data become available. Third, 
we present a distributed ensemble learning architecture for healthcare analytics that employs parallel processing 
to accelerate consensus model generation. Finally, a real-world ICU case study is conducted to evaluate and 
validate the practical applicability and effectiveness of the proposed privacy-preserving framework. Experimental 
results from real-world case study show that the proposed framework enables the effective deployment of FHE 
to healthcare domain, which reduces costs associated with data breaches. Moreover, the proposed framework 
ensures that the quality of decision-support systems is maintained and provides scalable solutions for privacy-
preserving analytics. Both encrypted and unencrypted models perform identically across all metrics, including 
accuracy, precision, recall, and F1 score.  Furthermore, the proposed framework outperforms individual 
departmental models, achieving 84.6% accuracy, 87.3% recall, 83.4% precision, and 85.31% F1 score.

Results
Experimental design
The rapid advancement of IoMT has created data-rich environments in healthcare systems. Among these, the 
ICU stands out as a critical department where patients recovering from life-threatening injuries and illnesses 
require constant monitoring by medical staff. In such high-stakes settings, the development of early and reliable 
predictive tools for critical medical conditions is necessary to enhance patient care12. As such, a prediction 
model for ICU mortality is urgently needed to support timely decision-making. In this case study, we employed 
logistic regression as the predictive model due to its robustness and interpretability in binary outcome prediction, 
specifically predicting ICU mortality. Also, we consider five distinct departments across different healthcare 
systems, each independently managing its own dataset. Importantly, data collected from each department are 
de-identified and share the same format. However, collaborative efforts to develop a predictive ICU mortality 
model raise data privacy concerns and pose a significant challenge.

In this study, real-world ICU data were obtained from the Multiparameter Intelligent Monitoring in Intensive 
Care (MIMIC) II Clinical Database, a resource created to support research in intelligent monitoring for critical 
care patients13. This dataset contains records for 4,000 de-identified patients, each documenting 48 h of ICU 
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stays across various departments, including coronary care, cardiac surgery recovery, medical ICU, and surgical 
ICU. Also, this dataset includes associated clinical outcomes, indicating either in-hospital death or survival. 
Previous studies focused on integrating all data into a centralized platform for predictive modeling14. In 
contrast, this investigation assumes segregated data storage across departments in different healthcare systems. 
In this case study, there are five independent hospitals collaborating without sharing raw data. Each hospital 
maintains de-identified data but adopts a common variable dictionary for ICU mortality prediction. We assume 
participating hospitals align on a shared schema and then apply light harmonization and preprocessing (same 
feature set, common normalization range, and the same class-rebalancing pipeline) before encrypted training. 
This reflects what collaborating ICUs typically do in practice, which is collecting similar variables for the shared 
task and standardizing them enough to enable joint analysis without exchanging raw records. Each of the five 
departments, labeled as departments 1 through 5, holds a distinct dataset with varying numbers of patient 
records: 500, 700, 1100, 1000, and 700 data points, respectively. ICU mortality data are sequentially collected 
as patients are treated in each department. The prediction model is iteratively updated when new data become 
available.

Prior to federated training, the collaborating ICUs first agreed on a common data dictionary and a 
deterministic preprocessing script. First, feature selection and preprocessing were carried out following the 
approach proposed by Chen et al.15. Next, data normalization was performed to ensure the input variables 
ranged between − 1 and 1. Third, the observed outcomes are highly imbalanced, with 3,446 negative (survival) 
and 554 positive (in-hospital death) instances. This imbalance can lead to machine learning models exhibiting 
high accuracy but low recall, precision, and F1 scores. This trend indicates a bias toward the majority class. To 
address this issue, data were balanced using the BorderlineSMOTE16 and Tomek-Links17 techniques to result in 
around 3,400 data points for each class. The ring dimension of FHE is 16,384, the total coefficient modulus is 218 
bits (e.g., [60, 40, 40, 40, 38]), and the security level is 128 bits.

Subsequently, due to limitations of the FHE algorithm, certain equations (e.g., Sigmoid function in logistic 
regression) cannot be directly performed. As a result, a polynomial approximation is employed to approximate 
the Sigmoid function. Coefficients are obtained by minimizing the maximum approximation error on [− 6,6] via 
Remez exchange. Various polynomial orders are compared to determine the most suitable approximation based 
on performance metrics and computational efficiency. The polynomial approximations considered in this case 
study are as follows:

•	 Cubic polynomial approximation σ3 (z)
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Performance metrics such as accuracy, recall, precision, and F1 score are then obtained from a non-private 
framework, which serves as a baseline to measure the model performance and risk in predicting patient 
mortality. Next, the proposed privacy-preserving framework is then implemented to allow comparisons against 
a non-private framework. This study further evaluates the integration of ensemble learning within the proposed 
privacy-preserving framework in terms of both computational efficiency and model performance. Finally, the 
framework’s ability to protect data privacy is discussed in detail.

Approximation of sigmoid function
First, polynomial approximation functions of varying orders are adopted to approximate the Sigmoid function, 
with each order impacting the approximation accuracy. As shown in Fig. 1, we compare the Sigmoid function 
with polynomial approximations of three different orders over the domain from − 6 to 6. A cubic polynomial 
provides a rough approximation of the Sigmoid function, while higher-order polynomials yield more accurate 
approximations that closely resemble the Sigmoid curve. Next, this study evaluates the predictive performance 
by comparing the use of the Sigmoid function with these three polynomial approximations. The comparison 
focuses on the following key metrics: accuracy, precision, recall, and F1 score.

As shown in Fig. 2a, the machine learning model with Sigmoid function achieves the highest accuracy at 
approximately 81.2%. In comparison, accuracies with cubic, quintic, and septic polynomial approximations are 
slightly lower, at 80.7%, 81%, and 81.1%, respectively. It may be noted that the accuracy difference between 
cubic and quintic approximations is more significant than that between the quintic and septic approximations. 
Precision results, shown in Fig. 2b, follow a similar trend. The Sigmoid function yields the highest precision 
at 80%, while the cubic, quintic, and septic polynomial approximations achieve 79.1%, 79.5%, and 79.7%, 
respectively. Precision gradually improves as the polynomial order increases. However, as shown in Fig.  2c, 
the Sigmoid function does not yield the highest recall. Instead, quintic polynomial approximation achieves the 
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highest recall at 84.6%. This result indicates that this machine learning algorithm with the quintic polynomial 
approximation is particularly effective at identifying positive cases and minimizing the number of false negatives. 
Subsequently, F1 scores are compared in Fig. 2d. The Sigmoid function again achieves the highest F1 score at 
82.1%, slightly surpassing scores of 81.7% for cubic, 81.9% for quintic, and 82% for septic approximations. In 
conclusion, while the quintic polynomial approximation is effective at identifying the most positive instances, it 
produces a relatively high number of false positives, which leads to lower precision.

Besides, as shown in Fig.  3, when considering computational efficiency, the machine learning algorithm 
using the Sigmoid function directly takes less than 1 s to execute one iteration. However, if data are encrypted 
by FHE and polynomial approximations are used to simulate the Sigmoid function, computation time increases. 
Specifically, the cubic, quintic, and septic polynomial approximations require around 33, 43, and 54  s per 
iteration, respectively. Given the similarity in model performance between quintic and septic approximations 
observed in previous experiments, this study selects the quintic polynomial approximation for estimating the 
Sigmoid function. This choice balances the tradeoff between model performance and computational efficiency.

Comparative analysis of the proposed model with versus without FHE
We then evaluate and validate the impact of data encryption and computational operations on prediction 
performance. Specifically, we compare the performance of a machine learning model using a quintic polynomial 
approximation under two scenarios: one with FHE and the other without FHE. Experimental results show 
that both models perform identically across all metrics, achieving an accuracy of 81%, a precision of 79.5%, 
a recall of 84.6%, and an F1 score of 81.9%. There is no significant performance difference. As a result, the 

Fig. 2.  Performance comparison among sigmoid function and three polynomial approximations under 
different metrics of (a) accuracy, (b) precision, (c) recall, and (d) F1 score. Polynomial approximations show 
varying impacts on performance, with higher-order polynomials improving most metrics.

 

Fig. 1.  The comparison among sigmoid function and three different degree polynomial approximations over 
the domain from − 6 to 6. Higher-order polynomials yield more accurate approximations.
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proposed privacy-preserving framework does not compromise model performance when FHE is leveraged to 
protect data privacy. Besides, Table 1 reports the per-site, per-round communication cost. The unencrypted 
baseline exchanges about 2.2 KB and adds less than one millisecond. With FHE encryption, the round trip rises 
to approximately 727 KB, which corresponds to roughly 58 ms of transfer time per round. This increase reflects 
the larger encrypted data yet remains modest at typical hospital link speeds.

Impact of ensemble learning on computational time and model performance
FHE, while providing strong data privacy protection, is also characterized by significant computational 
complexity. To address this challenge, we compare the computational efficiency of our proposed distributed 
ensemble learning architecture with a serial-computing version of the predictive model. The computational 
time required is directly influenced by the number of sub-models within the ensemble; in our evaluation, we 
considered configurations ranging from 1 to 15 sub-models. As shown in Fig. 4, the serial-computing version 
is used as the baseline, defined as 100%, and when only one sub-model is used, the system operates in a serial-
computing mode. The experiential results indicate that computational time decreases as the number of sub-
models increases; however, beyond 7 sub-models, the rate of improvement in computational time begins to slow 
considerably, even as additional sub-models are added.

In contrast, Fig. 5 shows the changes in prediction performance with an increasing number of sub-models. 
First, as the number of sub-models grows, there is a notable improvement in accuracy. However, beyond 7 sub-
models, accuracy gains stabilized, with accuracy increasing from 81.4% to 84.5%, representing a 3% improvement 
compared to a single main model. We also compare precision and recall across various numbers of sub-models. 
As shown in Fig. 5b and c, the performance stabilizes when the number of sub-models exceeds 7, with a precision 
of around 84% and a recall of approximately 87%, albeit performance varies when the number of sub-models 
is fewer than 7. Notably, with 5 sub-models, the precision is the highest among the various configurations. 
However, the recall at this configuration is relatively low. This indicates that, although the ensemble model with 5 

Fig. 4.  Computational time from series-computing (1 sub-model) to distributed ensemble models (2 to 
15 sub-models) with FHE in federated learning. When the number of sub-models exceeds 7, the rate of 
improvement slows.

 

Setting Bytes per site per round Added time per round

Unencrypted model 2.2 KB  < 1 ms

Proposed framework ≈ 727 KB ≈ 58 ms

Table 1.  Communication overhead per site per round during federated training.

 

Fig. 3.  Comparison of computational time among sigmoid function and three polynomial approximations. 
Higher-order polynomials increase running time.
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sub-models demonstrates high reliability in positive predictions, it misses a substantial portion of actual positive 
cases. As such, a trade-off exists between precision and recall when the number of sub-models is set to 5. Lastly, 
Fig. 5d shows the comparison of F1 scores as the number of sub-models grows. Overall, the F1 score reflects the 
trends seen in precision and recall. When the sub-model count surpasses 7, the F1 score stabilizes and reaches 
the highest value at approximately 85%. Therefore, 7 sub-models are selected as the optimal configuration to 
provide a balance between computational efficiency and model performance.

Performance comparison between privacy-preserving framework and local departmental 
models
Furthermore, we compare the performance of the proposed privacy-preserving framework employing 7 sub-
models with individual models developed by departments 1 through 5. Notably, each department independently 
trained its own model using only local data. Predictive performance is evaluated using metrics including 
accuracy, precision, recall, and F1 score. Figure 6a shows accuracy variations among these 6 machine learning 
models. The proposed framework yields the highest accuracy at 84.6%, outperforming individual departmental 
models. It is worth noting the variation in performance among departments 1 to 5; for example, the model of 
department 2 has an accuracy that is 7% higher than department 1. This indicates significant differences in model 
performance when relying on isolated datasets. Figure 6b and c further show differences in precision and recall 
among different models. Experimental results indicate that the proposed framework is more effective in correctly 
identifying positive cases and minimizing false negatives. Specifically, the proposed framework achieves a recall 
of approximately 87.3% and a precision of around 83.4%. When departments collaborate through federated 
learning, recall and precision improve by up to 10.8% and 6.2%, compared to independent models. Lastly, 
Fig. 6d presents F1 score comparisons, which balance precision and recall. The proposed framework consistently 
achieves the highest F1 score of 85.31%. In contrast, independent models developed by departments 1 to 5 
record F1 scores of 78.42%, 82.7%, 81.51%, 81.59%, and 81.9%, respectively. These results highlight the superior 
performance of proposed privacy-preserving framework in maintaining a balanced prediction performance 
among different departments of healthcare systems.

Resistance to attacks
To mitigate cyberattacks, including offline attempts and cryptanalytic attacks, the proposed framework reduces 
the likelihood of data exposure. For offline attacks such as dictionary and brute-force guessing, the framework 
uses cryptographically secure generation of public–private key pairs and long key sizes. This enlarges the search 
space to a level where key guessing becomes practically infeasible and the success probability is negligible; for 
cryptanalytic attacks, the framework isolates each site with its own independent key pair. Keys are not fixed or 
shared across factories. Under known-plaintext and chosen-ciphertext models, this key isolation limits cross-site 
exposure and makes it harder for an attacker to recover sensitive data from intercepted ciphertexts.

Privacy analysis and comparison
Last, the proposed privacy-preserving framework is compared with alternative privacy-preserving paradigms 
such as differential privacy (DP), indistinguishability under chosen-plaintext (IND-CPA), chosen-ciphertext 

Fig. 5.  Comparison of accuracy, recall, precision, and F1 score across different ensemble sizes (2 to 15). 
Performance stabilizes as the number of sub-models exceeds 7.
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(IND-CCA), and secure multi-party computation (MPC). DP protects individuals by adding calibrated noise 
to query results. This guarantee is attractive when many parties need summary statistics. However, the cost is 
accuracy. Noise lowers fidelity and tight privacy budgets limit repeated analyses. In our study, computations run 
on encrypted data and return exact results after decryption, so model utility is preserved.

Classical encryption notions such as IND-CPA and IND-CCA secure data at rest and in transit, but they 
do not support learning on ciphertexts. Our framework enables training and inference directly over encrypted 
records, so collaborating units never decrypt each other’s data. This expands the role of encryption from passive 
protection to active analytics while keeping confidentiality guarantees. MPC allows parties to compute jointly 
without sharing raw inputs, yet general MPC protocols incur heavy interaction and communication rounds and 
can be difficult to compose for end-to-end pipelines. Here, each site trains locally on its own encrypted data and 
shares only encrypted model updates for aggregation. This design avoids the round-trip patterns common in 
general MPC and keeps the programming interface close to standard training.

Taken together, the framework delivers three advantages against the state of the art. First, exact model utility 
without DP-induced noise during learning; second, stronger functionality than classical IND-CPA/IND-CCA 
storage/transport encryption because analytics proceed on encrypted data; third, lower interaction complexity 
than general MPC by using local encrypted training with lightweight update sharing.

Three‑layer data protection in collaborative healthcare analytics
As shown in Fig. 7, the proposed privacy-preserving framework is designed to mitigate the severe consequences 
of data breaches, even in the event of a successful cyberattack on the system. First, under layer 1 protection, 
segregated data storage ensures that a breach in one unit (or department within the hospital) only exposes raw 
data from that specific unit. Data from other units remain secure due to segregated data storage. Second, under 
layer 2 protection, a hacker would only have access to encrypted data. Without the corresponding private keys, 
hackers cannot interpret the encrypted patient data. Third, under layer 3 protection, should any data exposure 
occur, hackers could access only encrypted data and model parameters from a single unit because the model 
training process is distributed across facilities. Thus, the proposed framework greatly lowers the risk of data 
breaches in collaborative healthcare analytics and allows multiple departments to work together securely on 
predictive model development without compromising the patient data privacy.

Discussion and conclusions
Fully homomorphic encryption (FHE) stands as a key technology for secure computation and has evolved to 
become practically applicable in real-world use. This encryption method enables arithmetic computations to 
be performed directly on encrypted data without requiring decryption. As such, data privacy is protected from 
potential risks during processing. Initially proposed in the 1970s by Rivest et al., FHE was long considered 
either impractical or prohibitively complex for real-world implementation18. A major breakthrough occurred 
in 2009 when Gentry introduced the first viable FHE scheme. This scheme was capable of handling arithmetic 
computations on encrypted data. Gentry not only presented this initial FHE scheme but also developed a 

Fig. 6.  Comparison of the proposed framework and independent models from 5 departments across (a) 
accuracy, (b) precision, (c) recall, and (d) F1 score. The federated model consistently outperforms individual 
models.
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methodology to transform a partially homomorphic encryption scheme with limited evaluation capacity into a 
fully homomorphic one19.

Following Gentry’s work, there has been a surge in research and development efforts aimed at enhancing 
homomorphic encryption. This has led to the creation of several advanced FHE schemes, notably including the 
Brakerski-Gentry- Vaikuntanathan (BGV)20, Fan-Vercauteren (FV)21, and Cheon-Kim-Kim-Song (CKKS)22. 
Each contributes to the diversification and advancement of FHE technologies. FHE now has a wide range of 
applications across various domains. In machine learning, FHE enables privacy-preserving computation, 
supporting applications from simple linear regression models23 to complex tasks like encrypted neural network 
inference24. In the healthcare sector, FHE enhances data privacy in analysis, as seen in its integration with the 
k-means algorithm to investigate disease risk factors25.

However, integrating FHE into federated learning for smart healthcare systems remains in its early stages, 
with limited exploration of its potential benefits. The healthcare sector, now more than ever, calls upon the 
development of privacy-preserving frameworks. This research gap highlights an urgent need to develop FHE-
enhanced federated learning approaches and establish multi-layer protection of data privacy.

In this study, we assume that each participating hospital has sufficient computational resources to support FHE, 
that all partners treat data privacy as the primary objective, and that our threat model centers on cyber-attacks 
against healthcare data and analytics pipelines. Under this setting, the case study shows a clear trade-off between 
privacy and cost. When privacy leads, the goal is to minimize overhead in time, money, and computational 
resources while keeping protections intact. These results suggest concrete changes for practice. Privacy should 
not be managed as a single number in a table; it protects real patients. Hospitals should reorganize data storage 
and usage to reflect this priority. For example, using privacy-preserving analytics by default, restricting access 
paths, and reviewing retention and reuse policies so that secondary analysis does not weaken protections. 
Although the proposed framework can protect data privacy, time and cost are the main constraints at present. 
Although we reduce overhead where possible, running encrypted analytics across sites still demands additional 
runtime and operational effort, which we plan to lower with engineering advances and resource sharing.

Beyond implementation of the proposed framework in ICUs, it has broader implications for healthcare 
systems at large. By enabling secure, privacy-preserving collaborative analytics, it can improve decision-making 
and resource allocation across various healthcare domains, which are from chronic disease management to 
emergency response and beyond. Furthermore, the proposed framework is readily adaptable to existing 
healthcare IT infrastructures. It facilitates integration with electronic health record systems and other digital 
platforms. As healthcare institutions increasingly recognize the value of data-driven insights, adopting such a 
framework can enhance inter-institutional collaboration, improve patient outcomes, and resist cyber threats. 
The results of this investigation show the potential of proposed framework to protect patient privacy while 
driving innovation in healthcare analytics.

For the general clinical practice, we summarize who benefits from this work, how they benefit, and how we 
will reach them.

	1.	 ICU clinical teams benefit from more consistent mortality prediction and patient stratification across sites 
while keeping data private, supporting earlier recognition of high-risk patients.

	2.	 Hospital departments and enterprise IT/security benefit from collaborative model development without mov-
ing raw data, a reduced breach blast-radius through segregated storage, encryption, and distributed training, 
and lower compliance risk.

	3.	 Health information exchanges and multi-center consortia benefit from a hub that aggregates encrypted model 
updates only, enabling cross-site learning with minimal handling of identifiable data.

	4.	 Patients and advocacy groups benefit from stronger privacy protection with maintained model performance, 
which can strengthen trust in data-driven care.

We will first release a reproducible specification pack with preprocessing templates, parameter settings, and 
synthetic examples. Second, we can share implementation guides and webinars for ICU leads, chief information 

Fig. 7.  Flow diagram of the proposed privacy-preserving framework.
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officers (CIOs), and chief information security officers (CISOs) through professional societies. Third, a short 
technical brief can be published for health-IT vendors and standards groups to assist integration. Last, we can 
provide a plain-language summary and results at clinical informatics and healthcare analytics venues for patient 
communities.

Outside healthcare, the proposed privacy-preserving framework can generalize to other regulated and data-
sensitive domains. Representative use cases include financial services for cross-institution fraud detection and 
credit risk modeling; manufacturing and supply chains for federated quality analytics and predictive maintenance 
across plants26; energy and utilities for load forecasting and grid anomaly detection from encrypted smart-
meter data. In each case, parties agree on a common data dictionary and deterministic preprocessing, compute 
encrypted updates locally, and fuse sub-models into a consensus model to balance accuracy and computational 
cost while reducing breach exposure.

FHE introduces notable computational cost yet remains important for protecting patient data privacy across 
clinical narratives, imaging, laboratory results, and continuous monitoring data. In healthcare, confidentiality 
is a core requirement rather than a preference. When exposure risks carry operational and reputational 
consequences, a privacy preserving framework is warranted despite higher computational demand. This 
rationale supports strategic investment in data protection, since the value of protecting sensitive data exceeds the 
additional resources required for computation. This study characterizes the resource implications of alternative 
protection strategies and affirms the centrality of privacy in healthcare practice. Efficiency can be improved within 
federated learning through algorithmic designs that streamline encrypted processing, hardware acceleration, 
and large-scale parallelization frameworks such as MapReduce, which together can reduce processing time 
while maintaining privacy.

The security of our privacy-preserving framework relies on the RLWE assumption. RLWE enjoys worst-
case-to-average-case reductions from standard problems on ideal lattices (e.g., approximate shortest vector 
problem (SVP)/shortest independent vectors problem (SIVP)) and is conjectured hard against both classical 
and quantum attackers. This hardness underpins CKKS schemes; with conservative choices of parameters of 
FHE, it supports the targeted 128-bit security level.

This study acknowledges that there are several models such as neural network can be adopted to predict 
ICU mortality. Here, logistic regression is selected as a demonstrative model to evaluate the proposed privacy-
preserving framework. A key challenge is that the sigmoid is not directly computable on encrypted data, so 
we replace it with a low-degree polynomial approximation that runs under encryption with minimal loss of 
accuracy. More generally, we would like to demonstrate a practical rule. When any model equation cannot be 
directly computed on encrypted data, it can be substituted with a tractable approximation while preserving the 
model’s intent. Future work may consider to further extend the proposed privacy-preserving framework to other 
machine learning model.

Differential privacy27 provides a formal guarantee that the inclusion or exclusion of any individual in the 
dataset cannot be reliably inferred. In future work, we will further investigate combining differential privacy with 
our framework, for example adding calibrated noise to model updates before homomorphic encryption. This 
multi-layer defense is intended to strengthen privacy protection while preserving model utility.

In summary, this paper proposes a novel privacy-preserving framework designed with a three-layer 
protection mechanism for distributed healthcare analytics on encrypted data. With the mechanism of federated 
learning and FHE, the proposed framework eliminates the centralized data storage requirements. Instead, model 
development is decentralized and operates entirely on encrypted data. Additionally, the proposed framework 
leverages an ensemble learning approach to enhance both computational efficiency and model performance to 
ensure the system can handle complex, distributed datasets while maintaining high levels of privacy protection.

Methods
This paper proposes a novel privacy-preserving framework designed with a three-layer protection mechanism 
for distributed healthcare analytics on encrypted data. The proposed framework comprises the following three 
components:

Computation on encrypted data
FHE enables analytical computations to be performed directly on encrypted data. Thus, the proposed framework 
mitigates the risk of data breaches and preserves patient privacy throughout the analytical process.

Decentralized on‑site learning
The proposed framework employs decentralized model training across multiple healthcare units without the 
need to exchange raw data. Each unit trains its model locally and shares only model updates with a central 
server. This federated learning design in smart healthcare systems ensures that sensitive patient data remain 
confidential while still enabling collaborative analytics.

Collective intelligence of models
To enhance computational efficiency and model performance, ensemble learning is utilized within a parallel 
computing architecture. Multiple sub-models are trained simultaneously and then integrated into a consensus 
model. This parallelism accelerates the computational process and provides scalable analysis of large-scale 
healthcare data.

As shown in Fig. 7, the interactive workflow of these layers ensures that raw data are never exchanged between 
units, while still allowing continuous model refinement and enhanced predictive performance. Integrated 
interaction between data segregation, FHE encryption, and federated ensemble learning forms the backbone of 
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a privacy-preserving framework for healthcare analytics. The workflow is determined by problem constraints in 
distributed healthcare system.

Segregated data storage
In the context of IoMT, healthcare data are collected from diverse sources, including wearable devices, sensors, 
and medical equipment, and are distributed across different units or departments of healthcare systems. Notably, 
a single unit only provides care to a small number of patients, while different units often treat diverse patient 
populations. For instance, one pediatric unit may primarily handle a small pool of cases, while the other focuses 
on specific patients with chronic conditions. This variation results in distributed data that reflect only specific 
patient populations. As such, units are left with a limited perspective on broader healthcare trends and patient 
conditions. To obtain a comprehensive view of healthcare trends and patient conditions, collaboration among 
multiple units across healthcare systems is needed. However, such collaboration introduces significant concerns 
regarding data privacy, especially when sharing sensitive patient data.

Data storage is crucial for protecting data privacy and enabling efficient operations. Currently, segregated 
data storage is a common structure where each unit or department across healthcare systems retains full control 
over its dataset. Data are stored independently. This structure supports a high level of data privacy protection 
because each unit enforces its privacy protocols to minimize the risk of unauthorized access. However, while 
segregated data storage helps protect data privacy, the potential for data-driven collaboration across multiple 
independent healthcare systems is limited. Units face challenges in coordinating care because isolated datasets 
prevent comprehensive patient records from being assembled. Such limitations reduce insights that could 
improve diagnostics, treatments, and patient outcomes. As a result, while effective for privacy, segregated data 
storage hinders the broader goals of an integrated healthcare system.

On the other hand, aggregated data storage is another structure where multiple units across healthcare systems 
contribute to a unified, collaboratively managed dataset. In this setup, data storage responsibilities are shared 
among all participating units or departments. This structure enables access to a more extensive dataset that can 
reveal patterns and insights across patient populations. Aggregated data storage supports more effective disease 
tracking, personalized treatment strategies, and improved diagnostics. However, this structure poses unique 
challenges in maintaining patient privacy because of the increasing level of complexity when multiple units have 
access to the same dataset. Without privacy-preserving mechanisms such as data encryption, anonymization 
techniques, and controlled access protocols, patients’ sensitive data are at risk. The balance between maximizing 
the value of shared data and protecting data privacy remains a pressing concern in IoMT.

To address these challenges, it is imperative to develop a privacy-preserving framework for distributed 
learning in healthcare systems. Such a framework can enable units across healthcare systems to collaborate 
on data analytics while protecting sensitive patient data. As shown in Fig. 8, the proposed privacy-preserving 
framework consists of three-layer protection. Patient data from various devices and sensors are standardized and 
de-identified at each healthcare unit to ensure that data remain localized and compliant with privacy requirements. 
(Layer 1: Data Segregation). These segregated data are then encrypted by FHE to enable analytical computation 
without decryption and mitigate the likelihood of data breaches (Layer 2: Data Encryption). The encryption layer 
interacts with the decentralized learning layer, where federated learning is employed to collaboratively train 
machine learning models across multiple units. In this process, each unit processes its encrypted data locally 
and transmits only model updates to a central server. These updates are then integrated using ensemble learning 
techniques, which combine the strengths of multiple sub-models into a consensus model. (Layer 3: Decentralized 
Learning). The interactive workflow of these layers ensures that raw data are never exchanged between units, 
while still allowing continuous model refinement and enhanced predictive performance. Integrated interaction 
between data segregation, FHE encryption, and federated ensemble learning forms the backbone of a privacy-
preserving framework for healthcare analytics.

Computation on encrypted data
FHE, a novel encryption technique, goes a step further by allowing computations to be conducted directly on 
encrypted data. As a form of asymmetric encryption, two distinct keys are utilized: a public key (pk) and a private 
key (sk). Notably, the public key is to encrypt the raw data, and the private key is to decrypt it. A significant 

Fig. 8.  Three-layer privacy protection of the proposed framework.
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advantage of FHE is that, upon decryption, the results of these computations are identical to those obtained by 
performing on raw data. This capability allows data processing and analysis while preserving data privacy.

As shown in Fig. 9, there are K departments in the healthcare system. Department k independently manages 
its data [X, Y](k), where X denotes the matrix of input variables, and Y is the matrix of output values in the 
process of healthcare analytics. Each department k owns its key pair, including the public key pk(k) and the 
private key sk(k). Upon data collection, department k encrypts the raw data using pk(k) into [Xe, Ye](k). 
Notably, this encrypted data can only be decrypted by department k, which holds the corresponding private key 
sk(k). When department k conducts analytical computation such as addition or multiplication on encrypted 
data, FHE ensures that the operations yield accurate results. For instance, if an addition operation is defined as 
F (xe, ye) =xe+ye, decrypting the result with the sk(k) produces the same outcome as x+y. Similarly, for a 
multiplication operation defined as F (xe, ye) =xe × ye, decrypting the result yields an outcome identical to 
x × y.

In the proposed framework, each unit or department k of healthcare systems generates a key pair, including 
a private key sk(k) and a public key pk(k), following the assumption of Ring Learning with error (RLWE)28. 
Define

	 R=Z [X]/(Xn+1) � (1)

as the cyclotomic ring, where n is a power of two and Z [X] is defined as the polynomial ring with integer 
coefficients. The residue ring Rq=Zq [X] / (Xn+1) operates with coefficients modulo q. Key generation utilizes 
polynomials in the form 

(
a(k), b(k)= −s(k) · a(k)+e

)
 . Per the RLWE assumption, b(k) is indistinguishable 

from uniformly random elements in Rq  when a(k) is selected uniformly at random from Rq , s(k) is drawn 
from Rq , and e is sampled from a uniform distribution over Rq . The fundamental settings of FHE algorithm 
are outlined below.

•	 Private key setup: For each unit k, the private key sk(k) is defined as:

	 sk(k)=
(
1, s(k)) # � (2)

•	 Public key setup: The public key pk(k) of unit k is defined by the following equation:

	 pk(k)=
(
b(k), a(k)) =

(
−s(k) · a(k)+e, a(k)) � (3)

•	 Encryption Enc (·): The FHE takes a raw data x(k) and the public key pk(k) from unit k as input and outputs 
an encrypted data x(k)

e  as follows:

Fig. 9.  FHE in IoMT.
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x(k)
e = Enc

(
pk(k), x(k)) =

(
x(k), 0

)
+pk(k)

=
(
x(k)−s(k) · a(k)+e, a(k))

=
(

c
(k)
0 , c

(k)
1

) � (4)

•	 Decryption Dec (·): The FHE decryption process takes the encrypted data x(k)
e  and the private key sk(k) as 

input and generates a decrypted data x̃(k) as follow:

	

x̃(k) = Dec
(
sk(k), x(k)

e

)

= c
(k)
0 +c

(k)
1 · s(k)

=
(
x(k)−s(k) · a(k)+e

)
+a(k) · s(k)

=x(k)+e

≈x(k)

� (5)

Two key properties of FHE are described below:

•	 Additive homomorphism Add (·): Suppose unit k has two data point x(k) and y(k), which are encrypted as 
follows:

	
x

(k)
e = Enc

(
pk(k), x(k)) =

(
c

(k)
x,0, c

(k)
x,1

)
� (6)

	
y

(k)
e =Enc

(
pk(k), y(k)) =

(
c

(k)
y,0, c

(k)
y,1

)
� (7)

to mitigate the risk of data breaches while computing data analysis. When an addition operation is demanded, 
the encrypted sum of x(k)

e  and y(k)
e  is calculated as follows:

	

Add
(
x(k)

e , y(k)
e

)
=x(k)

e +y(k)
e

=
(

c
(k)
x,0, c

(k)
x,1

)
+

(
c

(k)
y,0, c

(k)
y,1

)

=
(

c
(k)
x,0+c

(k)
y,0, c

(k)
x,1+c

(k)
y,1

) � (8)

	 When the result of Add
(

x
(k)
e +y

(k)
e

)
 is decrypted by sk(k), the outcome is the same as the addition of raw 

data x(k)+y(k), as shown below:

	

Dec
(
sk(k), Add

(
x(k)

e , y(k)
e

))
=

(
c

(k)
x,0 + c

(k)
y,0

)
+

(
c

(k)
x,1 + c

(k)
y,1

)
· sk(k)

=
(

c
(k)
x,0 + c

(k)
x,1 · sk(k)

)
+

(
c

(k)
y,0 + c

(k)
y,1 · sk(k)

)

=
(
x(k) + e

)
+

(
y(k) + e

)
≈ x(k) + y(k)

� (9)

•	 Multiplicative homomorphism Multi (·): Conversely, if unit k has one encrypted data x(k)
e  and performs mul-

tiplication by a non-sensitive real number t, which does not need encryption, the multiplication function is 
defined as follows:

	

Multi
(
x(k)

e , t
)

= x(k)
e · t

=
(

c
(k)
x,0, c

(k)
x,1

)
· t

=
(

c
(k)
x,0 · t, c

(k)
x,1 · t

)� (10)

When the private key sk(k) is utilized to decrypt this result, the decryption yields:
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Dec
(
sk(k), Multi

(
x(k)

e , t
))

= c
(k)
x,0 · t+c

(k)
x,1 · t · sk(k)

= t ·
(

c
(k)
x,0+c

(k)
x,1 · sk(k)

)

= t ·
(
x(k)+e

)

= t · x(k)+t · e

≈ t · x(k)

� (11)

Furthermore, if data x(k) and y(k) are sensitive and used in the multiplication function, unit k has to encrypt 
them as x(k)

e  and y(k)
e . The multiplication function for two encrypted data is defined as follows:

	

Dec
(
sk(k), Multi

(
x(k)

e , y(k)
e

))

= Dec
(
sk(k), x(k)

e

)
· Dec

(
sk(k), y(k)

e

)

=
(

c
(k)
x,0+c

(k)
x,1 · s(k)

)
·
(

c
(k)
y,0+c

(k)
y,1 · s(k)

)

= c
(k)
x,0 · c

(k)
y,0+

(
c

(k)
x,0 · c

(k)
y,1+c

(k)
x,1 · c

(k)
y,0

)
· s(k)+c

(k)
x,1 · c

(k)
y,1 · s(k)2

= d0+d1 · s(k)+d2 · s(k)2

� (12)

Here, it is important to note that Dec (·) is typically a quadratic polynomial. However, as shown in the above 

equation, Dec
(

sk(k), Multi
(

x
(k)
e , y

(k)
e

))
 now becomes a cubic polynomial. As a result, relinearization 

ReLin (·)29 is adopted to make Dec
(

sk(k), Multi
(

x
(k)
e , y

(k)
e

))
 still be a quadratic polynomial. The 

relinearization process is defined as follows:

	
(d′

0, d′
1) = ReLin

(
Multi

(
x

(k)
e , y

(k)
e

))
� (13)

where d′
0+d′

1 · s(k)=d0+d1 · s(k)+d2 · s(k)2. Consequently, the decryption of relinearized result yields:

	
Dec

(
sk(k), ReLin

(
Multi

(
x

(k)
e , y

(k)
e

)))
≈ x(k)y(k) � (14)

Federated learning and predictive analytics
IoMT leverages vast, diverse, and high-quality data to enhance healthcare capabilities. However, collaboration 
among multiple units or departments introduces a risk of data breaches. To mitigate this risk, a federated learning 
framework offers an effective solution by circumventing the need for centralized data storage. Models are trained 
locally at each unit to keep data securely within its original environment. This decentralized framework enhances 
data privacy while still supporting the benefits of collaborative learning. This research introduces a federated 
learning framework tailored to the IoMT context to increase data utility while protecting privacy.

As shown in Fig. 10, a network of K departments collaborate across healthcare systems. Each department 

stores its own dataset, denoted as D(k)=
(

x(k)
i , y

(k)
i

)
, where i=1, . . . , N (k). Here, x(k)

i  represents the ith 

input vector for department k, y(k)
i  corresponds to the ith output, and N (k) specifies the total amount of data 

at department k. Each department securely stores its data and further develops machine learning models. 
Variations in patient demographics, hospital resources, and other factors contribute to differences in datasets 

Fig. 10.  The framework of federated learning in IoMT.
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across departments. Subsequently, a consensus model synthesizes the insights from these individual models to 
create a unified machine learning model.

In a multi-entity collaboration setting, this research illustrates the federated learning framework by utilizing 
logistic regression as an example in healthcare systems. First, each unit or department encrypts its raw data as 
follows:

	 Enc
(
pk(k), x(k)) =x(k)

e , Enc
(
pk(k), y(k)) =y

(k)
e � (15)

Here, the logistic regression is defined as

	 log
(

p
1−p

)
=x(k)

e β(t−1)T � (16)

where p represents the probability of outcome y=1, x(k)
e  is the encrypted input vector from the kth unit, β(t−1) 

denotes the parameters vector updated for t − 1 times. Notably, p
(

x(k)
e ,β

)
 is defined as the probability of 

outcome y=1 on the given encrypted input x(k)
e  and the model parameters β. After rearranging the above 

equation, we can have

	
p

1−p
= ex(k)

e β(t−1)T � (17)

	
p = ex(k)

e β(t−1)T

1+ex(k)
e β(t−1)T � (18)

	
1 − p = 1

1+ex(k)
e β(t−1)T � (19)

The model parameters are estimated through maximum likelihood estimation (MLE), defined as the joint 
probability density of healthcare data from unit k conditioned on a given set of model parameters. Therefore, the 
joint likelihood function for the training data from unit k is defined as

	

likelihood (β) =
∏

n:yn=1

p
(
x(k)

e,n,β
) ∏

n:yn=0

[
1−p

(
x(k)

e,n,β
)]

=
N(k)∏
n=1

p
(
x(k)

e,n,β
)yn [

1−p
(
x(k)

e,n,β
)]1−yn

� (20)

Taking the logarithm transforms products into sums as follows:

	

l (β) = log likelihood (β)

=
N(k)∑
n=1

[
yn log p

(
x(k)

e,n,β
)

+ (1 − yn) log
(
1 − p

(
x(k)

e,n,β
))]

=
N(k)∑
n=1

ynx(k)
e,nβ

T − log
(

1 + ex
(k)
e,nβT

)
� (21)

The objective of MLE is to determine the optimal parameter set β∗ of model that maximizes the log-likelihood 
function:

	
max
β∗

l (β) = max
β∗

∑N(k)

n=1 ynx(k)
e,nβ

T − log
(

1+ex(k)
e,nβT

)
� (22)

Model parameters β are iteratively updated as follows:

	

βt
0 = βt−1

0 − α
∂β

∂β0
= βt−1

0 − α
1

N (k)

N(k)∑
n=1

p
(
x(k)

e,n,β
)

− yn

βt
1 = βt−1

1 − α
∂β

∂β1
= βt−1

1 − α
1

N (k)

N(k)∑
n=1

(
p

(
x(k)

e,n,β
)

− yn

)
· xe,n,1

βt
W = βt−1

W − α
∂β

∂βW
= βt−1

W − α
1

N (k)

N(k)∑
n=1

(
p

(
x(k)

e,n,β
)

− yn

)
· xe,n,W

� (23)
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Due to the constraints of FHE, directly implementing the Sigmoid function is infeasible. To address this 
challenge, a polynomial approximation σr (z) is employed to approximate the sigmoid function:

	
σr (z) ≈ 1

1+e−z
� (24)

where r represents the polynomial’s order, and z is the input to the Sigmoid function. The polynomial 
approximation allows the use of the Sigmoid function within FHE constraints. As such, the proposed framework 
can support secure computation while preserving the essential properties of the original function.

Ensemble learning in smart healthcare systems
FHE provides a high level of data privacy protection by enabling computations directly on encrypted data. 
However, this privacy protection comes with a significant computational burden due to the intensive mathematical 
operations involved. To address this trade-off, a distributed ensemble learning structure is designed in the 
proposed framework to both reduce computation time and enhance model performance.

Ensemble learning combines multiple sub-models to create a more robust machine learning model. 
Specifically, bootstrap aggregating (bagging) is employed to enhance model performance by integrating 
outcomes from several sub-models. In bagging, multiple versions of models are trained on different bootstrap 
samples of training data, and their outcomes are integrated to produce a final result. This distributed learning 
structure reduces the computational load for each sub-model by distributing the training process across multiple 
nodes. By leveraging distributed computing resources, the overall computation time can be reduced, as each 
model is trained in parallel. Additionally, using various training sets improves model accuracy and robustness 
by reducing variance and minimizing overfitting.

As shown in Fig. 11, we propose a distributed ensemble learning framework for smart healthcare systems. 
In this framework, K departments collaborate, and the consensus model comprises S sub-models. Each 
department’s dataset is divided into S subsets, corresponding to the number of models in the consensus 
framework. Each subset of data trains a specific sub-model; for instance, subset s from department k is used 
to train sub-model s. As a result, this approach allows each sub-model to process only 1/s of the total data, 
distributing the computational load across multiple nodes. Once all sub-models are trained, their outputs are 
combined using a majority voting mechanism to determine the final prediction.

Each logistic regression sub-model computes the probability of the positive class using the sigmoid function:

	
ps (xe) = exeβT

s

1+exeβT
s

� (25)

where βs denotes the parameters vector for sub-model s. Each sub-model assigns a binary label based on a 
threshold, which is typically defined as 0.5:

	
ŷs =

{ 1, if ps (xe) ≥ 0.5
0, if ps (xe) < 0.5 � (26)

The final ensemble prediction ŷens is determined via majority voting as

Fig. 11.  The framework of ensemble learning within the cooperation across multiple departments.
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ŷens =

{
1, if

S∑
s=1

ŷs ≥ S
2

0, otherwise
� (27)

Alternatively, this can be written using the indicator function as

	
ŷens = arg max

y∈{0,1}

S∑
s=1

I (ŷs = y) � (28)

This approach allows healthcare system to reduce computational overhead by parallelizing the training process 
across nodes while maintaining high prediction accuracy.
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