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Interindividual variation in biological responses to physiological stimuli is a widely recognized 
phenomenon. However, effective computational tools for identifying the individual-specific 
mechanisms remain limited. We present the bioreaction–variation network, a graph neural network 
(GNN) model designed to infer hidden molecular and physiological relationships underlying such 
variation in experimental biological data. To ensure applicability at a laboratory scale, the model was 
trained on a domain-specific corpus constructed from approximately 65 K published studies containing 
the keyword “skeletal muscle”. The architecture comprises five layers with a multi-head attention 
mechanism and a multi-layer perceptron, enabling the model to capture both local topological features 
and directional dominance between connected nodes. The GNN was trained to learn relationships from 
experimental models to target features, as well as among target features. Using real experimental 
input consisting of differential gene expression data from mouse skeletal muscle subjected to acute 
exercise, the model successfully inferred individualized networks, identifying both common and unique 
paths across individuals based on input experimental context. These results demonstrate the model’s 
capacity to extract interpretable, individual-specific biological connectivity patterns. The proposed 
framework serves as a proof of concept for customizable, context-based GNN inference designed to 
address biological variation at the individual level.
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Deep understanding of interindividual variation, including sex differences, in responses to physiological stimuli 
such as exercise, nutrition, aging, and pathological conditions is a critical step toward promoting lifelong health 
and enhancing the quality of human life. The Dunedin Multidisciplinary Health and Development Study, a 
longitudinal birth cohort study of individuals born in 1972–1973, has revealed substantial variability in the 
pace of aging among participants1,2. It further suggests that early-life psychological and nutritional exposures 
may induce long-term alterations in epigenetic mechanisms that contribute to interindividual differences in 
aging trajectories. Despite these findings, the processes by which such interindividual variation emerge and 
develop across the lifespan remain poorly understood. While regular physical activity is widely recognized for its 
beneficial effects on human health, it is also well documented that considerable variability exists in the outcomes 
of exercise interventions. For instance, Bamman et al.3 demonstrated that individuals exhibit heterogeneous 
responses to resistance training and can be categorized as extreme-, modest-, or non-responders, with these 
variations not attributable to sex or age. Similar variability has been reported in response to endurance training. 
Ross et al.4 reviewed data demonstrating that maximal oxygen consumption increased by only 7% in the lowest 
responder, whereas the highest responder exhibited an increase of 118% following 24  weeks of treadmill-
based endurance training. Furthermore, Bonafiglia et al.5 quantitatively identified meaningful interindividual 
differences in trainability by calculating the standard deviation of individual response (SDIR). They proposed 
that true variability exists when the SDIR exceeds the smallest worthwhile change, defined as 0.2 times the 
standard deviation of a control group. Using this criterion, they confirmed significant interindividual variation 
in the adaptive increases of skeletal muscle citrate synthase activity and capillary density after 4 weeks of cycling 
exercise training. Collectively, these studies confirm the existence of substantial biological diversity in response to 
external stimuli. Nevertheless, the underlying mechanisms that give rise to such interindividual variation remain 
largely elusive. This gap in knowledge may be attributed to the inherent complexity of the biological systems 
involved, which arises from their multifactorial and person-specific nature, posing a substantial challenge to 
identifying the determinants of individual responsiveness.
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Recent advances in artificial intelligence (AI) have enabled in silico analyses to uncover complex patterns 
and high-dimensional relationships across biological datasets. In bioinformatics, deep learning models trained 
on genome-wide multi-omics data have been successfully applied to infer the regulatory logic of transcriptional 
control and to identify key molecular drivers of disease. For example, Xi et al.6 developed a neural network 
that integrates transcription factor expression with chromatin accessibility at cis-regulatory elements using a 
multi-head self-attention mechanism, enabling accurate prediction of gene expression and classification of cell 
states from single-cell multi-omics data, as well as the identification of candidate regulatory factors in type 
2 diabetes. In single-cell and spatial omics, recent advances in AI-driven methods have established a range 
of graph- and generative-model approaches. Graph neural networks (GNNs) have been applied to quantify 
network rewiring across conditions, prioritize candidate regulators, and capture both short- and long-range 
cell–cell interactions in spatial transcriptomics7,8. Multi-view and path-based frameworks have enabled the 
integration of inter- and intra-cellular signaling, allowing gene-expression imputation and the inference of 
ligand–gene regulatory relationships at single-cell resolution9. In addition, graph-based models using single-
cell ATAC-seq data have been developed to reconstruct higher-order 3D chromatin compartment structures, 
while dual-topology graph convolutional networks have improved unsupervised clustering of heterogeneous 
transcriptomes10,11. Beyond GNNs, diffusion-based generative models have been introduced to generate virtual 
transcriptomic profiles, offering applications in drug-response prediction12. Together, these advances illustrate 
how deep learning architectures are increasingly capable of modeling both the structural and functional variation 
underlying complex cellular systems. While these AI-based models provide significant insights into cellular-
level variation and regulation, a deeper understanding of interindividual biological variations, particularly 
in response to physiological stimuli, requires a broader, macro-scale modeling approach. Such a model must 
integrate molecular networks and physiological parameters with environmental influences that encompass both 
biological and physiological factors, enabling individualized inference on a mechanistic basis.

To investigate the biological mechanisms underlying interindividual variation, it is essential to move beyond 
static representations of biological systems and consider the dynamic, context-dependent relationships among 
molecular and physiological factors. While canonical pathway databases such as KEGG have been widely used 
to interpret high-throughput data by identifying enriched signaling pathways, these static maps often fail to 
reconcile inconsistencies observed in empirical studies. For instance, experimentally validated changes in 
gene expression or protein abundance may not align with expected pairwise interactions suggested by public 
databases. In several cases, only one component of a canonical interaction pair shows significant regulation, 
whereas the other remains unchanged, suggesting that the activation of biological pathways is conditional 
and context-specific. Such discrepancies likely stem from heterogeneity in experimental conditions, including 
differences in tissue types, environmental stimuli, or subject-specific physiological states. To address these 
limitations, we propose that a dynamic biological network, in which multiple, potentially conflicting factor 
relationships inferred from diverse experimental contexts are allowed to coexist and interact, is required for 
accurately modeling individual-specific biological responses. In this study, we present a novel deep learning 
architecture based on a GNN, designed to infer individualized mechanisms of "bioreaction-variation" — a term 
that refers to the interindividual variation in biological responses to physiological stimuli. Our GNN framework 
integrates both molecular-level and physiological-level nodes and is capable of identifying the most plausible 
mechanistic pathways that explain observed data under specific experimental contexts. Furthermore, the 
model is also designed to be implementable at a laboratory scale, with a minimized structure that facilitates 
targeted inference for specific tissues or physiological functions. This design enables context-aware inference of 
individualized biological networks, thereby offering a scalable and mechanistically interpretable approach for 
elucidating complex interindividual variation.

Methods
Overview of bioreaction-variation network
The present study introduces a bioreaction-variation network constructed using a GNN framework designed to 
capture the relationships between experimental models and corresponding physiological or biological parameters, 
as well as the interactions among these parameters. The GNN architecture comprises two core components: 1) a 
Model-to-Target interaction layer, which learns the associations between experimental conditions and observed 
outcomes, and 2) a Target-to-Target interaction layer, which models the interrelationships among the measured 
parameters themselves. All training data were curated from published experimental studies, with each parameter 
represented as a change or difference induced by a specific experimental intervention. This structure enables the 
model, upon input of new experimental data, including detailed conditions and observed parameter changes, to 
infer relevant biological pathways that mechanistically link experimental conditions and observed physiological 
responses, enabling individualized interpretation based on patterns learned from previously published studies.

Training data collection
A total of 65,096 published studies were obtained from PubMed Central. These articles were identified by first 
searching PubMed with the keyword “skeletal muscle”, and subsequently filtering for those available as free full 
text in PubMed Central. The main texts of the selected articles were processed using the GPT-4o-mini model to 
extract relevant experimental contexts. Each study was summarized into a structured format following a fixed 
JSON schema (Table 1). Each JSON entry represented a discrete experimental unit, capturing the details of the 
experimental model, the physiological or molecular parameters analyzed, and the direction of change.

Input data
The input data refer to practical datasets used to perform inference with the trained model. In this study, model 
performance was initially validated using virtual input data constructed to simulate biologically plausible 
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scenarios (see Supplementary data.zip online). Additionally, inference was conducted using real experimental 
data (see Supplementary data.zip online), derived from RNA sequencing results of individual mouse skeletal 
muscle samples. These datasets were originally reported in our previous publication13 and have been deposited 
on the official journal website associated with that article. To assess interindividual variability, fold changes in 
gene expression between exercised and non-exercised control mice were calculated across all possible pairwise 
combinations of individuals. For example, expression profiles of exercise #1 were compared independently to 
those of control #1, #2, and #3. Genes exhibiting differential responses to exercise were selected based on the 
following criterion: at least one exercised mouse showed an average fold change in gene expression greater than 
twofold when compared to all control mice, while the remaining exercised mice exhibited either changes below 
the twofold threshold or responses in the opposite direction. A total of 15 genes met this criterion and were used 
for individualized inference in downstream analyses (see Supplementary Fig. S1 online).

Embedding
To encode experimental context into vector representations, BioBERT (ver. 1.1)14 was used to tokenize the 
descriptive elements of each study. Graph construction was performed using PyTorch Geometric (ver. 2.6.1)15, 
in which nodes were defined based on the “model main” categories (model nodes) and individual “target” entries 
(target nodes) extracted from each publication. To support node-level learning, node embeddings were also 
aggregated into mean vectors representing the average features across identical model or target nodes, thereby 
capturing generalizable node representations across the dataset. Further details on the embedding procedures 
are provided in the Supplementary Methods online.

GNN model learning
GNN training was conducted using a five-layer architecture (Fig.  1). Full implementation details, including 
preprocessing scripts and model training code, are available via the GitHub repository (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​
/​f​u​m​i​k​​a​w​a​n​o​​-​l​a​b​/​B​​i​o​r​e​a​c​​t​i​o​n​-​V​​a​r​i​a​t​i​o​n​-​N​e​t​w​o​r​k). To capture Model-to-Target interactions, the first layer 
employed a multi-head Graph Attention Convolution (GATConv) mechanism16,17 to compute attention weights 
(attn_W) for each target node. Model and target features, initially encoded as 768-dimensional BioBERT-based 
embeddings, were linearly transformed into 2,048-dimensional representations composed of 8 attention heads 
with 256 hidden dimensions per head.

	 m̃i = BNm (Wmmi) , t̃j = BNt (Wttj) ,� (1)

where mi ∈ R768 denotes the feature of a model node i, and tj ∈ R768 denotes the feature of a target node j. 
After reshaping, each is split into H attention heads of dimension d.

	 uij = eij [1 : 768] − eij [769 : 1536], aij = Weuij ,� (2)

Attribute Description

PMID Article ID provided in PubMed

Species The species used in the experiment using the common name

Age The age or weeks old at the time of the experiment

Sex The biological sex of the subject

Biosample_main The type of tissue or cells used in the experiment

Biosample_detail Additional details about the biosample, such as tissue or cell name

Experiment_type The experimental level, e.g., in vivo, in vitro, ex vivo, case study

Model_main The main physiological stimulus used in the experiment

Model_detail1 The first level of details, such as specific stimulus type

Model_detail2 Further details, such as intensity, dosage, duration, or frequency

Model_detail3 Additional specific experimental conditions if necessary

Timepoint Chronological point at which the sample was collected for analysis

Targets

 Target The specific name of the measured factor

 Molecule_type Specify the type of molecule, e.g., protein, mRNA

 Analysis_main The primary measurement method, e.g., western blotting, PCR

 Analysis_detail Additional details about the measurement method

 Relation The type of observed change, e.g., increase, decrease

 Change The degree of change in percentage or fold change

 Significance The statistical significance using p-values

 Control The control group used for comparison in “relation”

Table 1.  Attributes and descriptions for data collection. Descriptions shown in this table are excerpts from 
the actual prompts used in the GPT-4o-mini model for attribute formatting. Note: The attribute was filled by 
“none”, if applicable answer did not meet in the article.
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Fig. 1.  GNN model training overview. The graph neural network (GNN) model was trained to capture both 
Model-to-Target and Target-to-Target interactions through a structured, layer-wise architecture. Layer 1 
employed a multi-head Graph Attention Convolution (GATConv) to compute attention weights (attn_W) for 
each Target node based on associated Model nodes. These attention weights are learnable parameters that allow 
the model to assign dynamic importance to each model-target interaction. The mechanism operated across 8 
attention heads, each with a 256-dimensional hidden space. Here, x denotes the 768-dimensional feature vector 
of a Target node, aggregated as the mean of all features assigned to the same target entity. Layers 2 to 5 focused 
on Target-to-Target interactions through a multi-layer perceptron (MLP). Layer 2 applied a fully connected 
(FC) transformation with batch normalization (BN) and ReLU activation, preserving the feature dimension at 
2,048. Layer 3 sequentially encoded the feature vector via three FC-BN-ReLU blocks, progressively reducing 
the dimensionality from 2,048 to 256. Layer 4 captured local structural dependencies by computing message 
passing, defined as the difference between the mean feature vector of neighboring nodes (xn) and the current 
node’s feature (xj). This layer also included an FC-BN-ReLU block. Layer 5 inferred pairwise domination 
between connected Target nodes. The domination weight (dom_W) was calculated as the sigmoid of the 
feature distance between the mean feature of a target node (xi) and the incoming feature vector from another 
node (ej). Two FC-BN-ReLU blocks were used in this layer as well. All learnable parameters including FC, BN, 
and attn_W are shown in red.
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where eij ∈ R1536 denotes the edge attribute vector between model node i and target node j.
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Three types of attention coefficients are computed. The model-to-target attention (m → t) quantifies the 
contribution of a model node to a target node via edge attributes. The model-to-target feature reinforcement 
(m → n) indicates how strongly a model node should amplify the original feature of the target node. The target 
self-attention (t) captures the degree to which the target node’s own feature is emphasized relative to the edge 
attributes.
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Each edge-level message zij  is formed by, for every head h, taking a weighted sum of the projected target feature 
and the edge attribute using the three attention coefficients, and then concatenating the H head-wise results.

	
x(1)

j = 1
|EMT (j)|

∑
(i,j)∈EMT (j)

zij .� (5)

For each target node j, the updated node feature x(1)
j  is the simple mean of the edge-level messages zij  over all 

incoming edges (i, j) ∈ EMT .
Subsequent layers (Layers 2–5) implemented a multi-layer perceptron (MLP) to capture Target-to-Target 

interactions.

	 x(2)
j = ReLU (BN(2)

1 (W(2)
1 x(1)

j )), W(2)
1 ∈ R2048×2048.� (6a)

The second layer scales all target node features while preserving their dimensionality, ensuring consistent scaling 
across nodes without altering the representation size.
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The third layer encodes the feature stepwise from 2,048 to 256 dimensions, producing the final representation 
Xj  used in subsequent layers.

The fourth layer was designed to model local topological structure via message passing. Message passing in 
the training process was defined as the difference between a given target node’s feature and the average feature of 
its input neighbors, as derived from the original training data.

	

µj = 1
|NT T (j)|

∑
i∈NT T (j)

Xi, ∆xj = ReLU (BNx (Wx (µj − Xj))) ,

Mj = Xj + ∆xj .

� (7)

Here, NT T (j) denotes the set of target nodes directly connected to target node j within the target–target 
graph. The term µj  represents the mean feature vector of the neighbors of j, and ∆xj  is the predicted message 
passing update, obtained as the difference between the neighbor mean and the node’s own representation after 
transformation and normalization. Finally, Mj  is defined as the updated representation of node j, where xj  is 
augmented with the message passing it would receive if the entire network were activated.
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The teacher signal ∆̂xj  is derived directly from edge attributes. Specifically, the averaged edge difference vector 
ej  is linearly transformed using a weight matrix W(orth)

e , which is initialized as an orthogonal matrix and kept 
fixed during training. This transformation also projects the teacher signal into a 256-dimensional space, thereby 
matching the dimensionality of the model-predicted update ∆xj . This design ensures that the teacher signal 
provides a stable and unbiased reference for message passing, independent of the model’s parameter updates.

The fifth layer modeled pairwise dominance among target nodes using a domination weight.

	 di→j = ∥Aj − Ai→j∥2, Wi→j = σ (β(di→j − d0)) .� (9)

Here, Wi→j  denotes the domination weight, representing how strongly the feature representation of node j 
depends on the input from node i.
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|N (j)|

∑
i∈N (j)
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For each target node j, the domination weights from all connected neighbors i ∈ N (j) are computed and 
averaged to form the aggregated weight W j . The resulting Dteacher

j  provides the teacher signal for domination, 
serving as the fixed reference in the supervised learning of dominance.

	 Dout
j = ReLU (BN2 (W2 ReLU(BN1(W1Mj)))) .� (11)

The domination output is the final model prediction of the GNN model learning, obtained by transforming the 
updated node representation. This vector represents the learned dominance distribution over the connected 
nodes.

	 Dom(i → j) := (Dout
j )i, i ∈ N (j).� (12a)

	 i ≻ j iff (Dout
j )i > (Dout

j )j .� (12b)

Here, the pairwise domination relation Dom(i → j) is defined as the i-th component of the model-predicted 
domination output vector for the target node j, Dout

j . In practice, for each target node j, the domination scores 
for all connected neighbors i ∈ N (j) are computed and employed during network exploration; an oriented edge 
i → j is preferred when Dom(i → j) exceeds Dom(j → i).

The training loss was computed as the mean squared error (MSE) between the model-predicted outputs and 
the corresponding teacher signals: the message passing updates in the fourth layer (message passing loss) and 
the final dominance vectors in the fifth layer (domination loss).

	
Lmessage = 1

|T |
∑
j∈T

∥∆xj − ∆̂xj∥2
2.� (13)

	
Ldom = 1

|T |
∑
j∈T

∥Dout
j − Dteacher

j ∥2
2.� (14)

	 Ltotal = 2.0Lmessage + 0.1Ldom.� (15)

The learning was formulated under the assumption that the entire network is activated, such that every node 
receives input signals as if all physiological stimuli were simultaneously present. Under this condition, the 
message passing loss evaluates the accuracy of the predicted influence from proximal biological factors, which 
enables the model to reconstruct local subgraph structures. Importantly, when the whole network is assumed 
to be activated, the node features obtained after message passing can be interpreted as reflecting the inherent 
positioning of each node within the biological system. The domination loss further evaluates the consistency 
of edge directionality, providing a quantitative criterion for embedding competitive up- and downstream 
relationships among parameters that were simultaneously analyzed within individual studies. By jointly 
optimizing these two losses, the model learns node features and directional connectivity in a manner that reflects 
their functional positions in the global biological network.

Model optimization was performed using Adam optimizer18 with a learning rate of 0.001, and backpropagation 
was carried out over 50 or 200 total epochs. To mitigate gradient bias, total loss was computed as a weighted sum 
of the two loss components: message passing loss × 2.0 and domination loss × 0.1 (Eq. 15). Final trained models 
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are publicly available at Google Cloud Storage (​h​t​t​p​s​:​​/​/​s​t​o​r​​a​g​e​.​g​o​​o​g​l​e​a​p​​i​s​.​c​o​​m​/​s​k​e​l​​e​t​a​l​_​m​​u​s​c​l​e​/​​s​m​_​v​1​​/​g​n​n​_​m​​o​
d​e​l​/​g​​n​n​_​m​o​d​​e​l​_​f​i​n​a​l​.​p​t for 200-epoch model and gnn_model_final_50epoch.pt for 50-epoch model).

Network inference
To infer individual-specific hidden pathways, network traversal was performed based on user-provided input data 
comprising experimental model metadata and observed target parameters. These inputs, formatted consistently 
with the training data structure, were embedded into 768-dimensional feature vectors using BioBERT, following 
the same preprocessing pipeline used during model training. To initiate the inference process, cosine similarity 
was computed between the input model vector and all model embeddings in the training dataset. The top five 
most similar model nodes were selected, and their directly connected target nodes were identified as primary 
targets, serving as start nodes for subsequent traversal (Step 1 in Fig. 2). The aim was to reconstruct viable paths 
from these start nodes to goal nodes, which corresponded to the target features present in the user-provided 
input. In Step 2, all possible directed paths between the identified start and goal nodes were enumerated based 
on the GNN-learned edge connectivity between target nodes. This yielded a candidate path space representing 
potential mechanistic routes through the network. In Step 3, path refinement was performed by selecting the 
most contextually relevant edges at each intermediate node. When multiple edges existed between the same 
node pair (i.e., same source and target nodes but differing feature contexts), the edge whose source feature was 
most similar to the preceding target node, as determined by cosine similarity, was selected. This ensured feature 
continuity across the reconstructed path.

In Step 4, message passing was performed from each primary node through candidate paths, and the 
propagated features at the goal nodes were compared with the input goal features. The subsets of paths that 
minimized this discrepancy were iteratively selected using a greedy beam-style procedure. The final output 
corresponds to the best combination of paths whose averaged predictions most accurately reproduced the input 
goal features. Mathematically, this procedure can be described as follows.

For each primary node Ti with feature vector xTi ∈ Rd, an attention-based scalar weight was applied to 
initialize the node representation:

	 x̂Ti = αTi xTi , αTi ∈ R.� (16)

Here, αTi ∈ R denotes the attention-derived weight, and x̂Ti  represents the adjusted primary feature used to 
start the propagation.

Message passing along a candidate path p : v0 → v1 → · · · → vL(v0 = Ti, vL = g) was implemented as a 
multiplicative update. At each step l = 1, . . . , L, the node feature was updated according to

Fig. 2.  Network inference overview. Step 1: The top five models in the training dataset most similar to the 
input model (based on model feature similarity) were identified. The target nodes directly connected to these 
models were then designated as primary nodes, serving as the starting points for network inference. Step 2: 
Using the trained GNN model, all candidate paths were explored from the primary nodes (start nodes) toward 
the input target nodes, which served as the goal nodes. Step 3: For each source–target node pair along the 
paths, the optimal edge was selected from a pool of candidate edges. The edge selection criterion required that 
the source node of the current edge closely matched the target node of the previous edge in the sequence (i.e., 
en-1[tgt] ≈ en[src]), thereby ensuring topological continuity toward the goal node. Step 4: Message passing was 
applied along each candidate path. For the first target node, the attention weight (attn_W) from the connected 
model node was applied. Subsequent nodes received propagated signals scaled by the sigmoid-transformed 
Euclidean norm of the previous node’s feature (i.e., σ(║xn║2)). The predicted feature of each goal node 
(xgoal) was obtained at the end of the path. The best combination of paths was selected for each goal node by 
minimizing the Euclidean distance between the predicted node feature and the actual input feature across all 
possible path combinations.
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= sltel ,
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(
α

(∥∥x(l−1)
vl−1
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2

− β
))

.
� (17)

In this formulation, el = (vl−1 → vl, ml) is the selected edge, tel ∈ Rd is its target-side feature, and sl is a 
scalar intensity determined by the norm of the preceding node feature. The constants c > 0, α > 0, and β ∈ R 
regulate the scaling and nonlinearity applied through the sigmoid function.

The prediction obtained at the goal node g from a single path p was expressed as

	 x̂g (p) = x(L)
vL

.� (18)

This corresponds to the propagated feature obtained after traversing the entire path.
During the best-combination search, subsets of candidate paths were iteratively selected for each goal node. 

For a subset Sg ⊆ Pg , the aggregated prediction was defined as

	

x̄g (Sg) = 1
|Sg|

∑
p∈Sg

x̂g (p).� (19)

This aggregation involves only the paths in the selected subset Sg  and serves as the basis for evaluating agreement 
with the input goal feature.

The discrepancy between the aggregated predictions and the input goal features was quantified by the loss

	

L (S) =
∑

g∈Ggoal

∥xg (Sg) − yg∥2
2 ,� (20)

where yg  is the input goal feature and S = {Sg}g∈Ggoal
 represents the collection of selected subsets across all 

goals.
The subsets were updated by adding the candidate path p that minimized the squared error of the already-

selected paths q ∈ S
(t)
g  augmented with p, at each iteration:

	

p⋆ = arg min
p∈Pg\S

(t)
g

∥∥∥∥∥∥∥
1∣∣∣S(t)

g

∣∣∣ + 1




∑

q∈S
(t)
g

x̂g (q) + x̂g (p)


 − yg

∥∥∥∥∥∥∥

2

2

,

S(t+1)
g = S(t)

g ∪ {p⋆} .

� (21)

This procedure was repeated until no further improvement was achieved or the maximum beam width Kg  was 
reached. The final subsets for each goal, denoted S(final)

g , were collected into

	 S⋆ = {S(final)
g | g ∈ Ggoal},� (22)

which was defined as the best combination. This output represents the path subsets whose averaged predictions 
most accurately reproduced the input goal features.

Steps 3 and 4 were embedded in a genetic algorithm framework using the DEAP library19. Each candidate 
path generated in Step 2 was treated as an individual. Fitness was evaluated as a weighted combination of loss 
and diversity, the latter reflecting the uniqueness of nodes and path topology. Path selection employed the 
Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II), with mutation applied to 20% of individuals per 
generation. Mutation involved random substitution of an edge within a path, followed by structural repair using 
the same edge selection strategy described in Step 2 and 3. If the mutation resulted in higher loss, the original path 
configuration was retained. Given that the initial path candidates were exhaustively constructed and optimized 
during Steps 2 and 3, the evolutionary loop was iterated twice, solely to confirm that no further improvement 
in fitness metrics could be achieved. All source code and execution details for the network inference procedure 
are available at the associated GitHub repository (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​f​u​m​i​k​​a​w​a​n​o​​-​l​a​b​/​B​​i​o​r​e​a​c​​t​i​o​n​-​V​​a​r​i​a​t​i​o​n​-​N​
e​t​w​o​r​k).

Analysis of individualized networks
To identify individual-specific pathways, inferred GNN outputs for each exercised mouse (n = 3) were compared 
against all non-exercised controls (n = 3). For each exercised mouse, individual networks were constructed 
by aggregating all predicted paths obtained from pairwise comparisons with each control mouse. A common 
network was then defined as the set of paths shared across all three individual networks, while unique 
networks were obtained by subtracting the common network from each individual’s network. To assess overall 
reconstruction accuracy, message passing loss was calculated for each goal node and averaged across the network. 
In addition, among non-primary and non-goal nodes, the most frequently occurring source node across all 
inferred networks was identified. For this node, the contribution of each connected target node was assessed 
by referencing the message passing loss of the specific path (i.e., evolutionary algorithm-derived individual) in 
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which the corresponding edge was included. This provided a direct measure of each target node’s involvement in 
the reconstruction of input-derived goal node features within individualized networks.

Results
Overview of training data
The training graph was constructed from a total of 27,155 model nodes and 84,723 target nodes. These nodes 
were interconnected by 383,225 model-to-target edges and 2,475,502 target-to-target edges. Node frequency 
distributions are summarized in the Supplementary data.xlsx online. Briefly, the most frequently represented 
experimental models included exercise, high-fat diet feeding, sarcopenia, aging, muscle injury, electrical 
stimulation, type 2 diabetes, Duchenne muscular dystrophy, diabetes, and isometric contraction. Frequently 
analyzed target nodes encompassed IL-6, myogenin, MyoD, TNFα, PGC-1α, creatine kinase, insulin, myosin 
heavy chain, MuRF1, and atrogin1.

During model training, the domination loss decreased more rapidly than the message passing loss (see 
Supplementary Fig. S3 online), a trend that was accounted for by applying differential weighting to these two 
components in the total loss function. When equal weights were assigned, the message passing loss plateaued 
early in the training process, limiting further optimization. Although the domination loss approached a 
minimum around 50 epochs, the message passing loss continued to decline steadily, reducing the difference 
between the two losses from 0.269 at epoch 50 to 0.228 at epoch 200. These results indicate that training for 200 
epochs did not result in overfitting and that both 50-epoch and 200-epoch models were retained for downstream 
inference to assess potential differences in generalization.

Validation of model with virtual input data
To evaluate the inference performance of the trained GNN model, two types of virtual input datasets were 
constructed that differed only in the biological sex of the subjects, with all other experimental conditions held 
constant. In the networks inferred from the model trained over 50 epochs, key nodes such as myosin heavy 
chain I, myonuclei, and VO₂ max were frequently identified in both male and female datasets; however, the 
surrounding edge structures differed noticeably between sexes (Fig. 3). Similar nodes were also retrieved from 

50 epochs (male) 200 epochs (male)
Mean dist. = 0.0882 Mean dist. = 0.1044

50 epochs (female) 200 epochs (female)
Mean dist. = 0.0871 Mean dist. = 0.0998

Fig. 3.  Model validation using virtual input data. Network graphs illustrate all inferred paths based on virtual 
input data in which the only differing attribute was the biological sex of the subjects. Model training was 
performed for either 50 or 200 epochs. The message passing loss was calculated for the best combination of 
inferred paths associated with each goal node, and these values were averaged to produce the mean distance 
(mean dist.).
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the model trained over 200 epochs, but no clear improvement was observed in the mean distance (average 
message passing loss) compared to the 50-epoch model, suggesting that inference performance had already 
stabilized by that point.

Network inference with real experimental data
To investigate individualized transcriptional responses to exercise, we reanalyzed skeletal muscle RNA sequencing 
data from exercised and non-exercised mice (n = 3 each) previously reported in our study13. Differentially 
expressed genes between exercised and non-exercised conditions were used to construct input features, which 
were then inferred through the trained GNN models (trained for either 50 or 200 epochs). Because the contextual 
input for the experimental model (e.g., exercise protocol, species, tissue) was identical across the three exercised 
mice, the same primary nodes were consistently identified. However, the inferred networks showed marked 
interindividual variation in the structure and composition of intermediate and goal nodes (Fig.  4). These 
differences were reflected in the mean message passing loss, which varied across individuals. Notably, inference 
using the 200-epoch trained model yielded lower average loss values in all individuals compared to the 50-epoch 
model, indicating improved network reconstruction performance.

Given the superior performance of the 200-epoch model, we proceeded to identify common and unique 
network paths among individuals using this model. A path was defined as a complete sequence of connected 
nodes from a primary node to a goal node. A total of 27 paths were commonly found across all three individuals, 
involving key nodes such as AKT, creatine kinase, FOXO3A, mitochondrial morphology, OPA1, and UQCRC2 
as intermediate nodes (Fig. 5a, b). Unique networks were obtained by subtracting this common network from 
each individual’s network (Fig. 5c). For example, Exer #1 exhibited 65 unique paths, of which 21 overlapped with 
Exer #2 and 22 with Exer #3 (Fig. 5a). Exer #2 and Exer #3 shared 35 paths (Fig. 5a), indicating that, among the 
three exercised mice analyzed, these two mice shared similar characteristics in the individual-specific regulatory 
mechanisms governing transcriptional responses to exercise. PageRank centrality was calculated to analyze the 
nodes structuring the GNN shown in Fig. 4 (see Fig. 6 and Supplementary data.xlsx online). OPA1 was the 
most frequently observed node across individuals. IL-6 and MFN2 were highly ranked in Exer #1 and Exer 
#2, whereas glutamate and PGC-1α showed higher centrality in Exer #3. COXIV was also frequently detected, 
being common to Exer #1 and Exer #3. Hierarchical clustering further revealed that these three individuals were 
differentially classified based on their centralities.

To further explore key regulatory factors potentially explaining interindividual variation, we focused on 
intermediate source nodes, excluding primary and goal nodes, and identified those with the highest frequency 
across all individuals. UQCRC2 emerged as the most recurrent source node in the inferred networks. This 
high recurrence indicated that UQCRC2 contributed most consistently to distinguishing the hidden network 
structures across individuals. Figure 7 illustrates the target nodes connected to UQCRC2 in each individual. 
UQCRC2 formed unique edges to citrate synthase, RPS6, cytochrome c, ANXA2, UQCRC1, CD36, MYH7, 
MYHC2A, and SIRT3 exclusively in Exer #1. While Exer #2 and Exer #3 shared several downstream nodes, edges 
from UQCRC2 to triglycerides and free fatty acids were specific to Exer #2, whereas P70S6K, CKMT2, ACTN3, 
and MYOZ1 were strongly associated with Exer #3. All edges identified from both common and unique paths 
are listed in the Supplementary data.xlsx online, along with the message passing loss of the paths in which each 
edge is included.

Discussion
This study presents a GNN model capable of inferring latent networks that reflect individual-specific responses 
to physiological stimuli. The model was trained on a dataset constructed from published studies retrieved using 
the keyword “skeletal muscle”. As of July 2025, approximately 258,000 articles are indexed under this keyword, of 
which 104,000 are available as free full-text articles via PubMed Central. Our training dataset included 65,096 of 
these articles, covering more than one-fourth of the accessible literature on skeletal muscle.

The predominant experimental models extracted from these publications—such as exercise, high-fat diet, 
sarcopenia, aging, muscle injury, electrical stimulation, type 2 diabetes, and Duchenne muscular dystrophy—
indicate that the dataset reflects biologically relevant contexts closely tied to skeletal muscle research. 
Accordingly, the extracted parameters and target nodes largely comprised skeletal muscle-related molecules 
and physiological outcomes. Notably, the model was designed to integrate both molecular and physiological 
parameters. Among the physiological parameters, non-muscle-related parameters such as VO2 max, blood 
glucose, and plasma hormone levels were also included, allowing the reconstruction of networks that reflect 
both intracellular signaling and systemic physiological outcomes. Rather than focusing solely on inferring 
molecular cascades, the model learned connections between parameters that frequently co-occur across 
diverse experimental contexts. This architecture enables the exploration of novel, individualized routes from 
experimental models to observed phenotypes. This capability is likely supported by the model’s global network 
structure, which connects parameters across distinct publications through shared nodes and feature similarities. 
As demonstrated by the inference with virtual input data (Fig. 3), even a single biological difference, such as 
sex, led to the identification of markedly distinct hidden networks. These results highlight the model’s ability to 
adaptively explore individualized paths.

The model’s inference behavior was influenced by the domination weight learned during training, as edge 
selection was strongly biased by the learned domination-based relationships between nodes. One key difference 
between the 50- and 200-epoch models appears to lie in the edge directionality and path structure, which became 
increasingly refined with extended training. Validation using virtual input data demonstrated that the 50-epoch 
model was sufficient to reconstruct the network, likely due to the simplicity of the input, which included only 
two goal nodes (Fig. 3). In contrast, inference using real biological input data showed improved performance 
with the 200-epoch model, presumably because the input was more complex, containing unchanged or noisy 
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parameters, thereby requiring deeper learning to refine edge relevance and directionality (Fig. 4). The 200-epoch 
model successfully identified intermediate factors, such as AKT, creatine kinase, FOXO3A, mitochondrial 
morphology, OPA1, and UQCRC2, as common nodes among individuals from the input of 15 gene expression 
results (Fig. 5). To further evaluate the model performance, we also compared the results of inference using 
this model with those obtained from DAVID functional annotation analysis20. With same 15 input genes, only 
terms such as ATP-binding and positive regulation of transcription by RNA polymerase II were identified, 
both with low enrichment scores (1.38 and 1.35, respectively) in GO terms and the UniProt Knowledgebase 
(Supplementary data.xlsx online). No results were retrieved from KEGG pathways. Because enrichment tools 

Exer #1 (50 epochs)

Exer #2 (50 epochs)

Exer #3 (50 epochs)

Exer #1 (200 epochs)

Exer #2 (200 epochs)

Exer #3 (200 epochs)

Mean dist. = 6.8608 Mean dist. = 5.9180

Mean dist. = 4.8934 Mean dist. = 3.7908

Mean dist. = 3.400 Mean dist. = 3.1984

Fig. 4.  Network inference using real experimental data. Network graphs illustrate all inferred paths for each 
exercised mouse (Exer #1–3), based on reanalyzed RNA sequencing data from individual tibialis anterior 
muscle samples obtained in our previous study13. A single bout of treadmill running was conducted after a 
4-week training protocol. Gene expression profiles were compared between three exercised mice and three 
non-exercised controls. See the Methods section for details on the individual comparisons. Model training was 
performed for either 50 or 200 epochs. The message passing loss was calculated for the best combination of 
inferred paths associated with each goal node, and these values were averaged to produce the mean distance 
(mean dist.).
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are designed to identify related cellular systems from sets of differentially expressed factors, they cannot capture 
interindividual variation, identify molecular factors beyond the input genes, or trace paths originating from 
physiological stimuli. These observations collectively suggest that the present GNN functions as a scientifically 
interpretable, small-scale inference model tailored to skeletal muscle biology, with sufficient capacity to support 
individualized network inference across a tissue-specific corpus of published studies.

PageRank centrality indicated that OPA1 was the most relevant factor associated with the mechanisms 
underlying interindividual variation in responses to exercise, despite being directly connected to only two types 
of nodes across the common and individual-specific networks. In contrast, UQCRC2 was connected to 36 types 
of nodes, although its centrality was lower (0.016–0.023 vs. 0.058–0.085 for OPA1). This apparently paradoxical 
result suggests that OPA1 is linked to a node functioning as a highly connected hub. Indeed, in the common 

Exer #1 Exer #2

Exer #3

Number of unique pathsa

Common networkb

Unique networksc

Exer #1

Exer #2

Exer #3

Fig. 5.  Extraction of common and individual-specific networks. (a) Venn diagram showing the number of 
shared and unique inferred paths among the three exercised mice (Exer #1–3). (b) The common network 
represents the overlapping paths found in all three individuals. (c) Unique networks for each mouse were 
extracted from the total inferred networks presented in Fig. 4 by identifying individual-specific paths.
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network, OPA1 is connected to MFN2, one of the primary nodes, which itself links to multiple nodes across 
all individuals and exhibits high centrality (0.047 in Exer #1, 0.039 in Exer #2, and 0.037 in Exer #3). This local 
loop likely contributed to the elevated centralities of both OPA1 and MFN2. Taken together, these findings 
suggest that UQCRC2 represents a key intermediate factor potentially explaining interindividual variation in 
transcriptional responses to acute exercise.

UQCRC2 (ubiquinol-cytochrome c reductase core protein 2) is a component of mitochondrial respiratory 
chain complex III, essential for the formation of mitochondrial supercomplexes involving complexes I, III, and 
IV21,22. Missense mutations in UQCRC2 have been linked to impaired mitochondrial respiration and inherited 
human disorders23–25. Notably, a previous study reported that high volume of high-intensity interval training 
significantly increased UQCRC2 protein expression in skeletal muscle, contributing to enhanced ATP production 
through more efficient formation of respiratory complexes26. In the individualized networks inferred by the 
model, UQCRC2 exhibited variable interactions with distinct downstream nodes across mice, suggesting that its 
local network context contributed differently to each individual’s gene expression response (Fig. 7). Importantly, 
the model’s use of domination-based weighting does not imply that UQCRC2 lies upstream in a canonical 
signaling pathway. Rather, the model hypothesizes directional relationships in which UQCRC2 functions as a 
dominant influence relative to its connected nodes within the inferred context. For instance, CKMT2, ACTN3, 
and MYOZ1 were uniquely associated with UQCRC2 in the Exer #3 (Fig. 7), implying that these factors might 

Fig. 7.  Variation of UQCRC2-associated edges. Heat map illustrating the target nodes connected to UQCRC2 
across the three exercised mice (Exer #1–3). Targets were re-ordered by hierarchical clustering. Color intensity 
reflects the message passing loss of the path including the corresponding edge, with darker blocks indicating 
lower loss.

 

Fig. 6.  Clustering of node PageRank centralities across individuals. For each individual-specific network 
shown in Fig. 4, PageRank centrality was computed from path node sequences, with path weights determined 
by losses relative to the input-derived goal node features. Individuals were clustered by Jensen–Shannon 
divergence between their PageRank distributions (excluding the primary and goal nodes) using hierarchical 
clustering. Nodes absent from an individual’s network were assigned a centrality of zero. The three exercised 
mice (Exer #1–3) were each assigned to separate clusters, indicating mutually divergent network structures.
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be directly or indirectly modulated by UQCRC2, even though the precise molecular mechanisms linking them 
remain unknown. This interpretive framework reflects the core capability of the present GNN model: to propose 
biologically plausible, yet hypothetical, directional associations based on learned patterns across multiple studies. 
While the inferred relationships should be interpreted as hypothesis-generating rather than confirmatory, the 
model successfully produced skeletal muscle-specific network structures that align with experimental outcomes 
and capture individual-level diversity. Taken together, these findings support the utility of this GNN as a domain-
focused inference tool with strong contextual validity for skeletal muscle biology.

Limitations and future directions
This study introduces a GNN model designed to infer bioreaction-variation networks within a skeletal muscle–
specific corpus. The skeletal muscle model represents one example within the broader framework of bioreaction–
variation networks. Models for other organs can be constructed using similar procedures. In fact, separating 
networks by organ is preferable, since the same molecule may play different roles in different tissues. We also 
emphasize the need for tools that can integrate these organ-specific networks into an inter-organ framework. 
The primary aim of this study was not to propose a universally optimized model, but rather to demonstrate a 
customizable model architecture that can be implemented and adapted at a laboratory scale to address specific 
biological questions. The model presented here serves as a proof-of-concept example of such a design. However, 
the current implementation has several limitations as shown below:

•	 The model requires input data that represent differential states between experimental and control condi-
tions in order to infer individualized networks. Consequently, datasets comprising only baseline or resting 
conditions, without any comparative group, are not applicable for inference with this model. Therefore, the 
extraction of individual-specific features through inference reflects relative interindividual variation within 
the cohort, including the control subjects used for comparison.

•	 Experimental models or analytical parameters for which relevant edges are scarce in the training dataset may 
lack sufficient connectivity to support robust inference. In such cases, the model may fail to generate appro-
priate or biologically meaningful network predictions.

•	 Because numerical embeddings generated by BioBERT do not directly reflect the magnitude of biological 
changes in a quantitatively interpretable form, it was necessary to incorporate information on the direction 
of change, specifically by labeling each relation as either an increase or a decrease. This approach allowed the 
bioreaction-variation described in the contexts to be translated into vector space. However, capturing such 
directional changes at the individual level cannot rely on statistical significance testing, which is generally not 
applicable to single-subject data. In the present study, RNA sequencing data were used, and a twofold change 
threshold, commonly employed in transcriptomic analyses, was applied to assign directional labels. For other 
data types or analytical contexts, effect size metrics such as Cohen’s d may provide a more appropriate basis 
for estimating individual-level deviations from the comparison group.

Data availability
The datasets generated and/or analysed during the current study are available in the GitHub repository, ​h​t​t​p​s​:​​​
/​​/​g​i​t​h​u​​b​.​c​o​​m​/​f​u​m​i​​k​a​w​a​​n​​o​-​l​​a​b​​/​B​i​o​r​e​​a​c​t​​i​o​​n​-​V​a​r​i​a​t​​i​o​n​-​N​e​t​w​o​r​k. The location of each PyTorch graph dataset on 
private Google Cloud Storage is also provided in the repository.
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