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This research develops a 3D non-hydrostatic model to simulate complex free-surface flows, including 
wave propagation under various conditions. The model discretizes the full 3D Reynolds-averaged 
Navier–Stokes (RANS) equations using the finite volume method on a staggered computational grid. 
The grid combines orthogonal cells in the horizontal plane with a curvilinear system conforming 
to bed and water surface boundaries vertically. The governing equations are solved via a time-
splitting pressure-correction approach. Initially, intermediate velocities are computed by addressing 
advection–diffusion terms, the dynamic pressure gradient, and the water surface gradient in the 
momentum equations. This is achieved through a time-splitting method with tailored techniques 
for each component. Subsequently, the provisional velocity fields and pressure correction gradients 
are incorporated into the continuity equation. A Poisson equation governing pressure correction is 
then derived. The study introduces a modification to the 3D non-hydrostatic pressure distribution in 
the surface layer within the pressure correction method, streamlining its implementation compared 
to similar approaches. With this modification, the model can simulate short-wave propagation in 
three dimensions using only a few vertical layers. Furthermore, a new approach is implemented for 
estimating horizontal velocities at vertical velocity locations, reducing computational complexity by 
increasing the sparsity of the system matrix. The 3D numerical model is validated through simulations 
of various scenarios. The high level of agreement with experimental and analytical results highlights 
the model as a reliable and efficient tool for simulating coastal wave processes in practical scenarios.

List of symbols
P	� Total pressure (Pa)
g	� Gravitational acceleration (m s−2)
x	� Coordinate along the x-axis in a Cartesian coordinate system (m)
y	� Coordinate along the y-axis in a Cartesian coordinate system (m)
z	� Coordinate along the z-axis in a Cartesian coordinate system (m)
q	� Dynamic pressure divided by density (Pa m3 kg−1)
u	� Velocity component along the x-axis (m s−1)
v	� Velocity component along the y-axis (m s−1)
w	� Velocity component along the z-axis (m s−1)
t	� Time (s)
h	� Still water depth (m)
Pa	� Atmospheric pressure (Pa)
∆x	� Cell size along the x-axis (m)
∆y	� Cell size along the y-axis (m)
∆q	� Pressure correction term divided by density (Pa m3 kg−1)
D	� Total water depth (m)
d	� The thickness of each layer (m)
fp	� Kth layer thickness coefficient (−)
D̂	� Water depth next to the cell boundary (m)
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U	� Depth-averaged u (m s−1)
V	� Depth-averaged v (m s−1)
F	� Advection flux (m3 s−2)
uint	� Intermediate velocity component in the x-direction (m s−1)
vint	� Intermediate velocity component in the y-direction (m s−1)
wint	� Intermediate velocity component in the z-direction (m s−1)
uadv	� Advected x-velocity (m s1)
vadv	� Advected y-velocity (m s1)
wadv	� Advected z-velocity (m s1)
T	� Period (s)
∆t	� Time step (s)
d̂	� Cell-edge layer thickness (m)
b1, b2, and b3	� Weighting coefficients determined by the weighted layer thickness (−)
H	� Wave height (m)
k	� Wave number (m−1)
L	� Wavelength (m)
H0	� Incoming wave height (m)
x́	� Horizontal coordinate along the x́-axis in the local coordinate framework (m)
ý	� Horizontal coordinate along the ý-axis in the local coordinate framework (m)
e	� Interpolation coefficient
ds	� Mound thickness (m)
zb	� Bed elevation coordinate of the parabolic basin (m)
h0	� Depth of still water at the basin’s center (m)
r	� Distance from the center of the basin (m)
R	� The radius of the still water level (m)
r0	� Radius from the center of the basin to a still water level contour (m)
V10T	� Water volume after ten periods (m3)
V0	� Initial water volume (m3)
Greek symbols
ρ	� Mass density (kg m−3)
η	� Water surface elevation (m)
Vhor	� Horizontal eddy viscosity (m2 s−1)
Vver	� Vertical eddy viscosity ( m2 s−1)
ρ0	� Water density (kg m−3)
ψ(r)	� Limiter function (−)
ϕ	� Flux through each layer (m2 s−1)
ξ	� Relative vertical velocity (m s−1)
θ	� The weighting factor for the time discretization approach (−)
ω	� Angular frequency of the wave (−1)
Subscripts
x	� Along the x-axis
y	� Along the y-axis
m	� Cell center index along the x-axis
n	� Cell center index along the y-axis
p	� Cell center index along the z-axis
T	� Position for obtaining the vertical gradient of dynamic pressure in the upper half of the surface layer
np	� Number of layers
s	� Surface level
Le	� The left side of the computational cell wall
Ri	� The right side of the computational cell wall
r,t	� At a distance r from the center of the mound and at time t
*	� Intermediate velocity
Superscripts
n	� Time-step counter
p	� Related to the prediction phase
c	� Related to the correction phase
TVD	� Related to the TVD approach
x	� Along the x-axis
y	� Along the y-axis
ux(uy), vx(vy)	� Flux of u along the x (y) direction, Flux of v along the x (y) direction

Computational fluid dynamics (CFD) is widely applied in diverse fields to simulate and optimize fluid-related 
processes. In energy and food systems, it has been used to evaluate solar dryers for fish products, enhancing 
drying performance and sustainability1. CFD models have improved airflow management and energy efficiency 
in data centers2, and when coupled with machine learning, have optimized combustion systems for lower 
emissions3. In mechanical and biomedical engineering, CFD has contributed to improving exhaust manifold 
design4 and understanding flow behavior in ureteral stents5. Applications extend to elevator aerodynamics6, 
sediment-induced clogging in hydraulic filters7, eco-friendly spur dike designs8, CO₂ separation using ionic 
liquids9, and pollutant dispersion in urban environments10. These examples underscore CFD’s versatility across 
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engineering domains. Following the widespread application of CFD across various disciplines, the present study 
develops a three-dimensional non-hydrostatic model to simulate key coastal wave transformation processes—
including shoaling, diffraction, and refraction—over complex bathymetries.

Hydrodynamic flows in nature are intricate and 3D, necessitating the use of appropriate 3D models for accurate 
simulation of associated phenomena. A critical aspect of these flows is how pressure is taken into account. When 
simulating time-dependent flows involving a free surface, if the vertical acceleration is significantly smaller 
than the remaining terms in the pressure equation in the governing equations, it can be disregarded, enabling 
the assumption of hydrostatic pressure. In such cases, pressure depends on the water surface level, which can 
be easily determined. However, for specific phenomena, such as those investigated in this research, vertical 
velocities and accelerations must be carefully considered and accurately calculated in three dimensions.

Various techniques have been developed to simulate non-hydrostatic water surface flows and scenarios 
involving dynamic boundaries, such as interactions between air and water. In this context, the Volume of Fluid 
(VOF) approach has been utilized by researchers such as Lin and Liu11, Bakhtyar et al.12, Liu et al.13, Li et al.14, and 
Jin et al.15. Christensen and Deigaard16 applied the Marker and Cell (MAC) technique, while Wang et al.17 and 
Frantzis et al.18 utilised the Level-Set Method in their research. Although these methods can simulate complex 
water surfaces, they face challenges related to stability and high computational costs, particularly for large-scale 
applications in coastal areas and rivers19. These methods are widely used for two-phase flow simulations and 
have been validated extensively. However, they are inherently designed to capture detailed air–water interfaces, 
requiring fine grid resolutions and significant computational resources, even for non-breaking wave cases. While 
their cost may not be excessively high for simple wave propagation, they are not optimized for scenarios where 
phase separation is not a primary concern. Addressing the issue of high computational costs is even more critical 
for 3D simulations.

In addition to fully 3D non-hydrostatic solvers, a variety of alternative modelling approaches have been 
developed with the aim of reducing computational costs while retaining acceptable accuracy. For example, 
unstructured finite volume hydrostatic solvers, such as the VOLNA code20, are widely used for tsunami 
generation, propagation, and inundation. Similarly, depth-averaged non-hydrostatic and dispersive models, 
including modernized Boussinesq-type systems21 and modified shallow-water equations for varying seabeds22, 
were proposed to capture key wave transformation processes with the goal of reducing computational demands. 
However, these simplified approaches, such as shallow-water and Boussinesq-type models, are unable to resolve 
vertical flow details and fail to accurately simulate the propagation of short waves. By contrast, non-hydrostatic 
models can reproduce both short-wave propagation and vertical flow structures, even when using only two 
vertical layers. Notably, Zijlema and Stelling23 reported that the computational cost of non-hydrostatic models 
may even be lower than that of multi-layer Boussinesq-type models, while achieving superior accuracy.

In this research, a 3D model with non-hydrostatic properties was developed to simulate wave shoaling, 
diffraction, and refraction. The governing equations were solved using the time-splitting approach combined 
with a pressure-correction projection technique, which consists of two primary steps. The initial phase 
determined intermediate velocities through the resolution of the advection–diffusion terms, the explicit 
dynamic pressure gradient, and the gradient of the water surface elevation, utilizing the time splitting approach 
and suitable methods for each component. This approach significantly reduces computational complexity in 
multidimensional space, enhancing the model’s efficiency while maintaining accuracy24–28. Modifications were 
made to the governing equations and the computational approach to preserve local momentum balance and 
ensure the monotonicity of the solution, allowing for the concurrent resolution of the conservation of mass and 
momentum equations. Considering the critical role of horizontal advection in wave propagation simulations, 
a Godunov-type shock-capturing scheme was employed to handle these components. To further optimize the 
discretization process in 3D simulations, a novel method for estimating horizontal velocities at vertical velocity 
locations was employed. This method reduces the dependency of each computational cell to 15 neighboring 
cells, compared to the traditional 25-cell framework, effectively reducing the number of non-zero coefficients 
in the system matrix in the pressure equation system and significantly improving computational performance 
in 3D applications. In the second step, the intermediate velocity fields, along with the gradient term related to 
pressure adjustment from the momentum equations, were integrated into the conservation of mass equation, 
leading to the development and implicit solving of a pressure-adjustment equation, often identified as the 
Poisson equation. A modification for the distribution of 3D non-hydrostatic pressure in the surface layer was also 
integrated. This adjustment simplifies the non-hydrostatic pressure distribution in the surface layer compared to 
other methods and enables the model to capture short wave propagation with just a few vertical layers. Finally, 
the model was validated through four scenarios: modeling linear standing short waves in a 3D closed basin, 
simulating sinusoidal wave propagation over a submerged elliptical mound, modeling wave propagation over an 
elliptical mound on a sloping bed, and simulating long wave resonance in a parabolic basin. This study provides a 
robust and computationally efficient model for three-dimensional coastal wave dynamics, facilitating enhanced 
prediction and management of coastal water environments in engineering and environmental applications.

Governing equations
The Reynolds-averaged Navier–Stokes (RANS) equations in their incompressible and unsteady form were used 
to simulate the 3D free surface flow. Based on the pressure correction method, if the total pressure P in the 
momentum equations is defined as P =  − ρg(z − η) + ρq, the equations are as follows:

	
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0� (1)
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Due to the impermeable nature of the bed, the condition governing vertical velocity at the bed is represented by 
the following kinematic boundary equation:

	
−u

∂h

∂x
− v

∂h

∂y
= w|z=−h� (5)

The vertical velocity at the water surface was calculated using the kinematic boundary condition (BC) applied 
there:

	
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w|z=η � (6)

The dynamic BC at the water surface is defined by the air pressure. By setting the overall pressure equal to the air 
pressure at the surface level (z = η), the dynamic pressure at the surface was calculated:

	
Pa = −ρ0g(z − η) + ρ0q ⇒ q = Pa

ρ0
∼= 0� (7)

In the 3D numerical model, the elevation of the water surface elevation was considered as an unknown variable, 
resolved simultaneously with other factors. By integrating the conservation of mass equation over the water 
column and using the Leibniz rule, combined with the application of the kinematic BCs at the bottom layer 
and the free surface as described in Eqs. (5) and (6), a differential equation for the water surface elevation—or, 
equivalently, a continuity equation for the water body—was established:

	

∂η

∂t
+ ∂

∂x

ˆ η

−h

udz + ∂

∂y

ˆ η

−h

vdz = 0� (8)

Treatment of Turbulence
Based on a review of the literature, for the estimation of eddy viscosity in the horizontal direction, the zero-
equation Smagorinsky29 model is considered appropriate, while for the vertical direction, k-ε model is employed. 
Therefore, these models are adopted in this study, with a brief description provided below. More detailed 
explanations can be found in Rodi30.

Smagorinsky29 model
Smagorinsky29 approximated the eddy viscosity for horizontal two-dimensional flows as follows:

	
νt = C2

s .∆x.∆y

√
2

(
∂u

∂x
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(
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(

∂v
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)2
� (9)

Where Cs = 0.1–0.2 is the dimensionless Smagorinsky coefficient.

Standard k-ε turbulence model
One of the most commonly used two-equation models for turbulence simulation is the k-ε model. In this study, 
the k-ε model is applied to compute the vertical eddy viscosity. The two governing equations of the model are 
expressed as:
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= ∂
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− ε� (10)
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where k is the square root of the turbulent kinetic energy, ε is the dissipation rate of turbulent kinetic energy, 
and νt = cµ

k2

ε  is the eddy viscosity. The other coefficients of the standard k-ε model are constant values and are 
summarized in (Table 1).
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The boundary conditions for the k-ε model at the free surface and seabed can be applied either as Dirichlet 
(specified value) or Neumann (specified flux) conditions31. For the Dirichlet condition, the wall function 
approximation is used as follows:

	
k = u2

∗√
cµ

, ε =
c0.75

µ k1.5

κ.z
� (12)

where z is the distance from the wall, κ = 0.41 is the von Karman constant, and u∗ is the shear velocity. For the 
Neumann boundary condition, the flux of turbulent kinetic energy at the surface and bottom is assumed to be 
zero, while the flux of dissipation rate is calculated as:

	
νt

σk

∂k

∂z
= 0 ,

νt

σε

∂ε

∂z
= −c0.75

µ
νt

σε

k1.5

κ.z
� (13)

For more detailed information, readers are referred to Launder and Spalding32 and Burchard31.

Numerical methods
The governing equations were numerically solved using a computational mesh with Cartesian coordinates in 
the horizontal plane and curvilinear coordinates aligned with the boundary vertically, as depicted in (Fig. 1).

The horizontal plane of the computational domain was discretized using cells with varying dimensions Δx 
and Δy. On the boundary-fitted curvilinear grid at the bed and water surface, the solution domain was divided 
into several layers, with the layer thicknesses (dp) as follows:

	
dp = fp.D = fp.(η + h), 0 < fp < 1,

∑
p

fp = 1� (14)

The number of vertical cells was kept uniform across the entire grid. In this case, any change in the water surface 
elevation within a column would alter the vertical dimension of all cells in that column, ensuring that the ratio 
of the cell height to the total depth remained constant. A standard staggered computational grid was employed 
for positioning the variables (Fig. 2).

Pressures are assigned to the center of each cell (indices m,n,p). Horizontal velocity components u are 
placed at the right and left walls of each cell (indices m + 1

2 , n, p and m − 1
2 , n, p), while horizontal velocity 

components v are positioned at the front and back edges (indices m, n + 1
2 , p and m, n − 1

2 , p). Vertical 
velocities are situated at the top and bottom edges (indices m, n, p + 1

2  and m, n, p − 1
2 ). The elevation of the 

bed (− h) and water surface (η) are located at the bottom and top of each column and at the center (indices m,n). 
Therefore, the water depth D = η + h is defined at the center of the column, i.e., at the position m,n. The water 
depth at the cell edge was calculated with an upwind method oriented according to the depth-averaged velocity 
direction33. For example, this depth was defined for the location of the horizontal velocity u as follows:

Fig. 1.  Meshing of the 3D computational domain using a boundary-fitted curvilinear coordinate system.

 

c1ε
(production constant of ε)

c2ε
(dissipation constant of ε)

σk
(prandtl number for k)

σε
(prandtl number for ε)

cµ
(eddy viscosity constant)

1.44 1.92 1.00 1.30 0.09

Table 1.  Constant coefficients in the k-ε turbulence model.
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Numerical discretization and solving algorithm
In the first step, the horizontal momentum equation u was discretized spatially by integrating Eq. (2) over the 
vertical range from zm+ 1

2 ,n,p− 1
2

 to zm+ 1
2 ,n,p+ 1

2
. In the next step, after discretizing Eq. (1) at the location of 

the velocity u, this equation was multiplied by the velocity um+ 1
2 ,n,p and then subtracted from the equation 

obtained in the first step. Finally, the result was divided by dm+ 1
2 ,n,p, yielding the following relationship:
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where:
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	 qn+θ = θ.qn+1 + (1 − θ).qn = qn + θ.(qn+1 − qn) = qn + θ.∆q� (20)

Fig. 2.  Placement of unknowns in the staggered grid.
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The calculation method for um,n,p+ 1
2

 (in Eq. 19) and similar parameters, which involves determining horizontal 
velocities at vertical velocity locations, will be described in the next section. In the present study, θ = 1 was 
considered. The discretization of Eq. (3) was performed similarly to the horizontal momentum equation u. By 
integrating Eqs. (1) and (3) over the vertical range from zm,n+ 1

2 ,p− 1
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 to zm,n+ 1
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2
 and at the location of the 

horizontal velocities v, the final result of the discretization is as follows:
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where:
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Similarly, the same approach was used for the discretization of Eq. (4). Therefore, by integrating Eqs. (1) and (4) 
over the vertical range from zm,n,p to zm,n,p+1 and combining them as previously described, the following relation 
was obtained:
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where:
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Equation (6) was discretized as follows:
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This research utilized a pressure correction projection technique to solve the equations. In the first step of 
this method, the intermediate horizontal and vertical velocities were computed using the three momentum 
equations. At this stage, the pressure terms were computed using the values from the preceding time step:
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Then, in the next step, the remaining pressure gradient terms were used to update the intermediate velocities:
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In the subsequent phase of the pressure-correction projection approach, the intermediate velocities obtained 
from Eq. (30) along with the gradient term of the pressure correction were substituted into the conservation of 
mass equation. This yielded a Poisson equation for pressure-correction, which was then solved.

Referring to Eq. (7), the dynamic pressure on the free surface is set to zero (see Fig. 3). The vertical momentum 
equation for the top portion of the surface layer is formulated as follows:

Fig. 3.  Configuration of parameters in the surface layer.
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Wm,n,T was estimated using a third-degree polynomial interpolation:

	 wm,n,T = b1.wm,n,np+ 1
2

+ b2.wm,n,np− 1
2

+ b3.wm,n,np− 3
2 � (32)

The coefficients above were calculated based on the weighted layer thickness. Finally, after solving the pressure-
correction equation, the obtained Δq values were substituted into Eq. (30) to calculate the final velocities u, v, 
and w, and η was calculated from Eq. (28).

Treatment of bottom friction
In the simulation of wave propagation in the coastal region, bottom roughness becomes important and must be 
incorporated into the horizontal momentum equation as the bed shear stress, τb. This bed shear stress term is 
applied implicitly and only to the bottom layer velocity, as follows:
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where Cf is the dimensionless bottom friction coefficient and n is the Manning roughness coefficient.

Determining horizontal velocities at vertical velocity points
As shown in equations like Eq. (19), the use of a boundary-fitted grid and the finite volume method results in 
terms involving horizontal velocities located at positions where vertical velocities are defined (e.g., um,n,p+ 1

2
), 

but horizontal velocities are not. To address this issue in 3D simulations, this study proposes a novel approach. 
In this approach, the horizontal velocity values, such as um,n,p+ 1

2
, are estimated using the following relation:
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2 , calculated as the average of the four surrounding intermediate horizontal velocities, as shown below:
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e coefficients, for a grid with unequal layer ratios, are calculated as follows:
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The advantage of this method lies in applying averaging only to the explicit terms, while directly incorporating 
the dynamic pressure correction gradient into the implicit terms of the equations. This approach reduces the 
dependency of each cell on only 15 surrounding cells, significantly decreasing the computational effort required 
to solve the system of linear equations. In contrast, extending classical methods34,35 to the three-dimensional 
case results in each cell depending on 25 surrounding cells.

Computational techniques for handling advection terms
When modeling the behavior of highly nonlinear waves, such as during wave breaking, the term representing the 
advection (convection) of momentum is critical. The method used to solve it greatly influences the accuracy and 
reliability of the outcomes. Among the various convective terms in the momentum equations, the convection of 
horizontal velocities along the x-axis and y-axis is the most significant. As a result, the method for solving these 
terms varies from the methods used for the other advection terms. There are various methods for solving the 
advection term, each differing in temporal and spatial accuracy. In this study, to achieve second-order temporal 
accuracy, a predictor–corrector approach was employed. During the prediction step, the fluxes in the convection 
equation were computed with the Godunov scheme by accurately solving the Riemann initial value problem. 
In the correction step, a backward approach was utilized. This method, applied by Yekta and Banihashemi36 to 
shallow water equations, was adapted here for a 3D non-hydrostatic model.

Given the application of the time-splitting algorithm in this study, the horizontal advection term in the 
momentum equation was split as follows:
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∂t
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d
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In the prediction step, the above equation was discretized:
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The Riemann problem for Eq. (38) is defined by the following relation:
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In the prediction step, the fluxes were evaluated with the Godunov method by solving the Riemann problem as 
follows:
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In the correction step, the fluxes were calculated using a backward method as follows:
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To improve the precision of the flux calculations in the correction step, up

m+ 1
2 ,n,p

 used in Eq. (41) was computed 
using the following relation instead of Eq. (38):
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In this study, to suppress numerical oscillations and capture shocks around discontinuities, the SEA (Simple 
Efficient Algorithm) algorithm, which was introduced by Zia and Banihashemi37 and is considered a TVD (Total 
Variation Dimensioning) method, was used. This is achieved by using a flux limiter method and constraining 
part of the numerical flux in the discretized equation, numerical oscillations were prevented. In this method, the 
TVD fluxes were computed using the following relation:
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In the current research, the MUSCL (Monotonic Upstream-centered Schemes for Conservation Laws) limiter 
function38 was used:
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where:

	

r =




F c
m−1,n,p−F

p
m−1,n,p

F c
m,n,p−F

p
m,n,p

if u
m+ 1

2 ,n,p
+ u

m− 1
2 ,n,p

≥ 0
F c

m+1,n,p−F
p
m+1,n,p

F c
m,n,p−F

p
m,n,p

if u
m+ 1

2 ,n,p
+ u

m− 1
2 ,n,p

< 0
� (45)

Scientific Reports |        (2025) 15:39536 10| https://doi.org/10.1038/s41598-025-23341-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The above procedure was used to calculate the flux resulting from the advection of velocity u in the x-direction 
(Fux). A similar procedure was used to calculate Fuy, Fvx, and Fvy.

Results and discussion
Modeling of linear short-standing waves in a 3D closed basin
The first test employed to illustrate the effect of dynamic pressure distribution on the model results involved 
simulating linear short-standing wave oscillations within a 3D closed basin. For this purpose, a cubic basin 
with dimensions of 10 m in length, width, and depth was considered. The initial condition for the water surface 
elevation to form a standing wave can be expressed using the following relation:

	

η(x, y, t) = H

2 cos (kx.x) cos (ky.x) cos (ω.t)

kx = 2π

Lx
, ky = 2π

Ly
and ω = 2π

T

� (46)

In this test, the wavelength in each direction was considered to be twice the length of the basin, i.e., 20 m, with a 
wave height of 0.2 m. The wave period, calculated from the dispersion relation, was 3.01 s. The initial water surface 
profile at t = 0 is also shown in (Fig. 4). The dimensions of the computational grid in the horizontal directions, Δx 
and Δy, were set to 0.5 m, and five vertically uniform layers were used. The time step was configured to 0.05 s.

Figure 5 shows the water surface configurations from the 3D model at times 9.25, 9.5, 9.75, and 10 T.
The results of this simulation are presented as a comparison of the water surface elevation from the numerical 

model with that from the analytical solution at the location x = 7.25 m and y = 7.25 m, as shown in (Fig. 6). The 
details of the analytical solution can be found in Dean and Dalrymple39. In this test, given the ratio h =

√
2π, 

deep water conditions were established, and the vertical acceleration component played a significant role. The 
accuracy of vertical acceleration predictions is influenced by the number of vertical layers and how the pressure 
is handled in the uppermost cell. The results highlight the model’s ability to simulate linear short-standing wave 
oscillations in deep water using only 20 cells in the longitudinal direction and five vertical layers.

To further highlight the deviations between the numerical and analytical solutions, the residual was 
calculated as the difference between the two solutions at each time step and its temporal variation was plotted. 
The corresponding residual plot is presented in (Fig. 7).

As illustrated in Fig.  7, the residual remains very small throughout the simulation, with values confined 
within ± 0.005  m. The oscillatory pattern of the error indicates that the deviations are mainly due to the 
accumulation of numerical discretization effects over time, rather than a systematic bias. Moreover, the 
residual oscillates around zero, confirming that the numerical model neither consistently underestimates nor 
overestimates the analytical solution. Overall, the residual plot confirms the high accuracy and reliability of the 
present model in reproducing the analytical results.

Modeling of sine wave propagation over an elliptical submerged mound
This test aims to evaluate how effectively the 3D simulation captures phenomena like wave shoaling, refraction, 
and diffraction, and to explore how nonlinear effects interact with dynamic pressure. To achieve this, the 
numerical model results were validated against experimental data from Vincent and Briggs40. In this experiment, 
a propagating wave travels over a variable topography created by an elliptical submerged mound. Figure 8 shows 
the geometry of this test, including the coordinate system, topography, and locations for output data collection. 
The computational domain extends from x =  − 6.1 m to x = 18.9 m and from y =  − 12.5 m to y = 12.5 m.

According to the provided coordinates, the elliptical mound was positioned using the following relation:

Fig. 4.  Initial elevation profile of the 3D standing wave in the closed basin.
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Fig. 7.  Temporal residuals (numerical – analytical) of the standing wave test (corresponding to Fig. 6).

 

Fig. 6.  Comparison of water surface elevation from the numerical solution (solid line) and the analytical 
solution39 (circle) at the location x = 7.25 m and y = 7.25 m.

 

Fig. 5.  Water surface elevations obtained from the 3D numerical model at different times in the closed basin.
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The still water depth outside the elliptical boundary is constant at 0.457 m, and inside this boundary, it was 
calculated using the following relation:
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)2
� (48)

In this test, a wave with a height of H0 = 2.54 cm and a period of 1.3 s enters from the western boundary (left side), 
with a kh of 1.27. Therefore, in the numerical model, the depth-wise discharge distribution was considered based 
on linear theory for the incoming wave. At the right boundary, both a radiation BC and a sponge layer were used 
to reduce wave reflection, while reflective BCs were applied at the lateral boundaries. The computational domain 
was discretized with grid spacings of ∆x = 0.05 m and ∆y = 0.1 m, using two vertical layers where the lower layer 
accounted for 70% and the upper layer for 30% of the total depth. The time step was 0.02 s, and the overall 
duration of the simulation was selected to satisfy stability requirements. The final wave field configuration is 
shown in (Fig. 9).

Fig. 9.  Final and 3D state of the wave field after the simulation period.

 

Fig. 8.  Measurement sections and specifications of the laboratory test by Vincent and Briggs40 for wave 
propagation over an elliptical submerged mound.
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The dimensionless wave height at eight designated sections was compared with experimental data (Fig. 10). 
The wave height was measured over the last five periods.

To further evaluate the performance of the present numerical model, its results were compared with those 
from two well-established models that have demonstrated reliable performance against experimental data from 
Vincent and Briggs40. The model developed by Fang et al.41 is a finite volume-based, shock-capturing scheme 
that solves the governing equations using a fractional-step method, in which the total pressure is decomposed 
into hydrostatic and non-hydrostatic components. While the hydrostatic part is integrated explicitly, the non-
hydrostatic part is selectively deactivated near wave fronts to represent breaking waves as shocks. On the other 
hand, the model proposed by Kang and Guo42 employs an alternating direction implicit (ADI) scheme in a depth-
integrated non-hydrostatic framework. Each time step is split into two half-steps, in which dynamic pressure and 
velocity components are discretized implicitly in one direction and explicitly in the other. A tridiagonal solver 
(Thomas algorithm) is used to efficiently solve the resulting linear systems.

The analysis of the results demonstrates the model’s ability to simulate the phenomena of interest. In 
particular, the accuracy of the wave shoaling simulation is evident in Sect. 9 and, additionally, in Sect. 7. The 
wave refraction phenomenon in front of the mound in Sect. 3 is observed, with wave concentration at the center 
of this section. Furthermore, in Sect. 4, due to diffraction, the wave energy disperses towards the edges. Table 2 

Fig. 10.  Comparison of dimensionless wave height for sinusoidal wave propagation over an elliptical 
submerged mound at specified sections between experimental data from Vincent and Briggs40 (circles), results 
of the current model (red lines), results of the Fang et al.41 model (blue lines), and results of the Knag and 
Guo42 model (black lines).
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clearly demonstrates that the present model outperforms the other two numerical models in terms of accuracy, 
as evidenced by its lower RMSE values at all measured sections.

In addition to the RMSE values reported in (Table 2), the mean absolute error (MAE) and mean bias error 
(MBE) were calculated to provide further insight into the model performance. These results are summarized in 
(Table 3).

The computed MAE and MBE values indicate that the model accuracy in reproducing the experimental 
results depends strongly on the section location relative to the elliptical mound. The largest MAE occurs at 
Sect. 3 (0.158), where strong wave shoaling, refraction, and diffraction lead to energy focusing and enhanced 
local variability. The negative MBE (− 0.114) at this section shows a tendency of the model to underestimate the 
wave height compared with the measurements. Similarly, in Sect. 4, where wave diffraction redistributes energy 
toward the flanks, the MAE remains relatively high (0.108). In contrast, the lowest errors are observed at Sects. 6 
(MAE = 0.056) and 8 (MAE = 0.060), located perpendicular to the wave propagation direction, where the wave 
field is more uniform. The positive MBE values at these Sects. (0.052 and 0.056) suggest a slight overestimation 
of wave heights by the model. Overall, the results confirm that errors are more pronounced in regions strongly 
affected by refraction and diffraction, while they decrease in more regular wave zones. Nevertheless, the generally 
low MAE values (mostly below 0.16) and small MBE magnitudes across the sections demonstrate the robustness 
and reliability of the present 3D model in capturing the complex wave transformations over the submerged 
elliptical mound.

Modeling wave propagation over an elliptical mound on a sloping bed
This test is similar to the previous one but with the elliptical mound situated on a sloping bed rather than a 
flatbed. The increased incoming wave height and shorter period compared to the previous test leads to a more 
pronounced interaction between nonlinear behavior and dynamic pressure. Therefore, this test provides a more 
comprehensive assessment of the simulation’s ability to model phenomena such as wave shoaling, diffraction, 
and refraction.

The numerical model results were compared with experimental data from Berkhoff et al.43. According to 
Fig. 11, in this experiment, a regular wave propagates over an elliptical mound situated on a bed with a slope of 
1:50. A secondary coordinate frame (x′, y′) is oriented at -20 degrees relative to the primary coordinate system. 
In this local reference frame, the x′ axis aligns with the shore, while the y′ axis is oriented perpendicular to the 
shore. In this case, the still water depth, excluding the elliptical mound, is calculated using the following relation:

	

h = 0.45 for y′ < −5.484
h = max

[
0.1, 0.45 − 0.02(5.484 + y′)

]
for y′ ≥ −5.484

� (49)

The boundary of the elliptical mound is specified using the following relation:

Section 40 MAE MBE

Section 2 0.078 −0.078

Section 3 0.158 −0.114

Section 4 0.108 −0.058

Section 5 0.071 −0.010

Section 6 0.056 0.052

Section 7 0.076 0.061

Section 8 0.060 0.056

Section 9 0.098 −0.018

Table 3.  MAE and MBE of the numerical model compared with experimental data40.

 

Section 40 Kang and Guo41 (RMSE) Fang et al.42 (RMSE) Present model (RMSE)

Section 2 – – 0.100

Section 3 0.297 0.306 0.165

Section 4 0.284 0.305 0.130

Section 5 – – 0.090

Section 6 0.132 0.131 0.070

Section 7 0.366 0.365 0.092

Section 8 0.124 0.138 0.071

Section 9 0.231 0.260 0.109

Table 2.  RMSE comparison of three numerical models against Vincent and Briggs40 experimental data.
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and the mound thickness is obtained using the following relation:

	
ds = −0.3 + 0.5

√
1 −

(
x′

5

)2
−

(
y′

3.75

)2
� (51)

In this test, a regular wave with a height of 4.64 cm and a period of one second enters the computational domain 
from the southern boundary (y = -10 m).

In the simulation, the wave loading was represented as a depth-wise discharge distribution based on linear 
wave theory. At the boundary (y = 20 m), a 5-m-long sponge layer and radiation BC were used to absorb the 
waves. For the side boundaries (x = -10 m and x = 10 m), reflective wall conditions were used, similar to those in 
the laboratory model. The computational domain was divided using grid intervals of 0.1 m in the x direction and 
0.05 m in the y direction. The domain was segmented into two vertical layers, with the bottom layer covering 30% 
and the top layer covering 70% of the total depth. A time step of 0.01 s was utilized. The simulation continued 
until equilibrium was achieved. The final 3D profile of the water surface across the entire domain is presented 
in (Fig. 12).

The dimensionless wave height at eight specified sections in Fig. 11 were compared with experimental data. 
The wave height was determined by averaging the values over the last five periods after the solutions had stabilized. 
In Fig. 13, the comparison between the numerical model results and experimental data for dimensionless wave 
height with the incoming wave is presented.

Two well-established models that have used these tests for validation are the Stelling and Zijlema44 model and 
the Ma et al.45 model. Stelling and Zijlema44 employ the Keller-box implicit scheme, which approximates non-
hydrostatic vertical pressure gradients at different vertical grid points simultaneously. In the Ma et al.45 model, 
NHWAVE, a shock-capturing non-hydrostatic model for simulating nonlinear free-surface wave processes, was 
introduced. The governing equations were solved in a σ-coordinate system. To highlight the significance of wave 
refraction and diffraction, Stelling and Zijlema44 compared their numerical results with measured data from 
Berkhoff et al.43 at four sections, while Ma et al.45 carried out the comparison at all sections. To validate the 

Fig. 11.  Measurement sections and specifications of the laboratory test by Berkhoff et al.43 for wave 
propagation over an elliptical mound on a sloping bed.
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accuracy of the present model, the results obtained from the Stelling and Zijlema44 and Ma et al.45 models are 
also presented in (Fig. 13).

Based on the phenomenon of refraction, wave concentration in front of the mound at Sect.  3 reaches a 
maximum, with a wave height 2.2 times that of the incoming wave. As the wave moves away from the mound, 
diffraction becomes apparent, particularly in Sects. 4 and 5.

The RMSE analysis shows that the present numerical model achieves higher accuracy in estimating 
dimensionless wave height compared to the other two numerical models (Table 4). For the present model, 
the RMSE values at Sects. 1 to 8 are 0.060, 0.096, 0.114, 0.107, 0.084, 0.077, 0.101, and 0.105, respectively. In 
comparison, the corresponding values for the numerical model by Ma et al.45 are 0.086, 0.128, 0.110, 0.099, 
0.104, 0.129, 0.120, and 0.100. For the model by Stelling and Zijlema44, the RMSE values at Sects. 2, 5, 6, and 7 
are 0.134, 0.115, 0.128, and 0.205, respectively. These results demonstrate that the present model provides more 
accurate predictions than the model by Stelling and Zijlema44 across all evaluated sections and outperforms Ma 
et al.45 in most sections, with only minor differences in accuracy for the remaining sections.

To further quantify the model accuracy, the mean absolute error (MAE) and mean bias error (MBE) were 
also computed for the measured sections, and the results are presented in (Table 5).

The MAE and MBE values highlight the dependence of model accuracy on the section location relative to 
the elliptical mound on the sloping bed. The lowest error is found at Sect. 1 (MAE = 0.049), where the wave 
field remains more uniform and less affected by refraction or diffraction, resulting in close agreement between 
numerical and experimental results. The largest errors occur at Sects. 3 (MAE = 0.096) and 4 (MAE = 0.090), 
which coincide with energy focusing due to shoaling and refraction in front of the mound and energy 
redistribution caused by diffraction toward the flanks. These regions pose greater challenges for numerical 
reproduction of wave transformations. Downstream of the mound, the errors decrease (e.g., MAE = 0.071 at 
Sect. 5), reflecting improved model–data agreement as the wave field becomes more regular. A slight increase in 
errors at Sects. 7 (0.081) and 8 (0.088) may be attributed to residual divergence effects in the far field. The MBE 
values are consistently small and positive (up to 0.059 at Sect. 7), indicating a mild tendency of the model to 
overestimate wave heights. Overall, the generally low MAE (< 0.1) and small MBE values confirm the robustness 
of the present 3D model in capturing wave shoaling, refraction, and diffraction processes over the submerged 
mound on a sloping bed.

Modeling of long wave resonance in a parabolic basin
To evaluate the model performance in handling wet/dry conditions in a 2D plan, an existing analytical solution 
for a nonlinear shallow water problem was used. In this context, a long wave oscillation test in a parabolic basin 
was chosen, providing a rigorous and challenging test for numerical models. In this test, assuming that the 
coordinate system’s origin is at the center of the basin, the bed of the parabolic basin is defined by the following 
relation:

	
zb = −h0

(
1 − r2

R2

)
, r =

√
x2 + y2� (52)

Thacker46 provides the analytical formula for the water surface height (η) and the radial horizontal velocity (ur), 
derived from the nonlinear shallow water equations, as follows:

	
ηr,t = h0

[ √
1 − A2

1 − A. cos ω t
− 1 − r2

R2

(
1 − A2

(1 − A. cos ω t)2 − 1
)]

� (53)

Fig. 12.  3D water surface elevation of the wave field after the simulation period.
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Section 43 Stelling and Zijlema44 (RMSE) Ma et al.45 (RMSE) Present model (RMSE)

Section 1 − 0.086 0.060

Section 2 0.134 0.128 0.096

Section 3 − 0.110 0.114

Section 4 − 0.099 0.107

Section 5 0.115 0.104 0.084

Section 6 0.128 0.129 0.077

Section 7 0.205 0.120 0.101

Section 8 − 0.100 0.105

Table 4.  RMSE comparison of three numerical models against Berkhof et al.43 experimental data.

 

Fig. 13.  Comparison of dimensionless wave heights for sinusoidal wave propagation over an elliptical mound 
on a sloping bed at specified sections, between experimental data from Berkhoff et al.43 (circles), results of the 
current model (red lines), results of the Stelling and Zijlema44 model (blue lines), and results of the Ma et al.45 
model (black lines).
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ur,t = ω.r.A. sin ω t

2(1 − A. cos ω t) , A = (R4 − r4
0)

(R4 + r4
0) , ω = 1

R

√
8gh0� (54)

The numerical values for the parameters used in this test were set as h0 = 1 m, r0 = 2000 m, and R = 2500 m. 
Therefore, the 2D computational domain was selected from x =  − 3500 m to x = 3500 m and y =  − 3500 m to 
y = 3500 m, using a grid spacing of Δx = Δy = 20 m. The vertical direction utilized two layers of equal thickness, 
and a time step of 2 s was selected. Based on the analytical solution, the flow was considered frictionless. A 
minimum depth value of 10−5 m was used to establish wet/dry conditions. The initial water surface elevation in 
this test was determined by setting t = 0 in Eq. (53), with the velocity values being zero under these conditions. 
Since this test involves long waves, solving the pressure gradient term is not necessary, and thus it is not included 
in the numerical model. The exclusion of the pressure gradient term is equivalent to assuming a hydrostatic 
pressure distribution. Additionally, the temporal weighting factor θ in Eq. (20) was set to 0.5 to ensure that the 
calculations achieved second-order temporal accuracy.

The comparison between the numerical solution and the analytical solution of the water surface elevation at 
the cross-section y = 0 after one period is shown in (Fig. 14). Additionally, a comparison of the radial velocity 
from the numerical and analytical approaches under the specified conditions was conducted, with the findings 
illustrated in (Fig. 15).

In addition to the visual comparison shown in (Fig. 14), the RMSE was computed at different phases of the 
oscillation to better quantify the model accuracy. These results are presented in (Table 6).

The RMSE values demonstrate excellent agreement between the numerical and analytical solutions at all time 
instants (all below 0.04). Slightly higher errors are observed at t = T (0.032) and t = 7 T/6 (0.029), which can be 
attributed to the stronger variations in free-surface elevation during these phases. As the oscillation progresses, 
the RMSE decreases, reaching its minimum value at t = 3 T/2 (0.014). This decreasing trend indicates that the 
model achieves higher accuracy in reproducing more stable and uniform flow patterns.

To further evaluate the model performance, the RMSE values of the radial velocity shown in (Fig. 15) were 
calculated at different time instants. The results are presented in (Table 7).

The RMSE values confirm that the model reproduces the velocity field with good accuracy, although the 
errors are slightly larger than those for water surface elevation . The highest errors occur at t = 7 T/6 (0.065) and 
t = 4 T/3 (0.063), corresponding to phases of rapid flow variation where pressure gradients and local accelerations 
are strongest. In contrast, lower errors are found at t = T (0.049) and t = 3 T/2 (0.047), which represent more 
stable phases of the oscillation. A comparison with Fig. 14 highlights a different error evolution between the two 
variables. While the RMSE for water surface elevation (Fig. 14) decreases monotonically over time, the RMSE for 
radial velocity (Fig. 15) first increases from t = T to t = 7 T/6 and then decreases toward t = 3 T/2. This behavior 
reflects the higher sensitivity of the velocity field to transient flow variations and pressure gradients, whereas the 
free-surface elevation exhibits a more uniform and stable trend during the oscillation.

Overall, the consistently low RMSE values (all below 0.07) in (Figs. 14, 15) demonstrate the robustness of 
the present model, which in these cases employs only two vertical layers, in simultaneously reproducing both 
the free-surface oscillations and the velocity field in the parabolic basin, while maintaining numerical stability 
throughout the simulation.

However, it should be noted that accuracy deteriorates after several periods. This reduction in accuracy results 
from the use of a Cartesian grid for circular tests—a limitation documented in previous studies for Boussinesq 
models47–49 and for non-hydrostatic models33,50. However, the change in water volume after 10 periods is on the 
order of 10−7, with 

V10T −V0
V0

≈ 10−7
.

Conclusion
In this research, the 3D RANS equations are discretized with the finite volume approach on a standard 
staggered grid system. The governing equations are tackled using a pressure-correction method with a time-
splitting technique, carried out in two main phases. First, the intermediate velocities are computed by solving 
the advection and diffusion terms, gradient of the water surface and the explicit dynamic pressure terms in 
the momentum equations, applying a time-splitting method and suitable techniques for each component. 
Recognizing the importance of horizontal advection terms in wave propagation simulations, a Godunov-type 
shock-capturing scheme was utilized to address these aspects. Furthermore, a novel approach is introduced for 
estimating horizontal velocities at vertical velocity locations, which enhances the sparsity of the coefficient matrix 

Section 43 MAE MBE

Section 1 0.049 0.019

Section 2 0.080 0.024

Section 3 0.096 0.007

Section 4 0.090 0.026

Section 5 0.071 0.025

Section 6 0.061 0.013

Section 7 0.081 0.059

Section 8 0.088 0.050

Table 5.  MAE and MBE of the numerical model compared with experimental data43.
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in the pressure equation and reduces overall computational complexity in three-dimensional applications. Next, 
these intermediate velocities, together with the gradient of the pressure adjustment term from the momentum 
equations, are incorporated into the conservation of mass equation. This process results in the formulation 
of a Poisson equation for pressure adjustment by eliminating the velocity components. The strong agreement 
between the simulation results, experimental data, and analytical solutions demonstrates the capability of the 
model to accurately reproduce nonlinear wave phenomena such as shoaling, refraction, and diffraction. Owing 
to its accuracy, flexibility, and reduced computational demand, the model offers a practical and valuable tool 
for analyzing complex free-surface flows and supporting engineering decisions in coastal and environmental 
water systems. It should be acknowledged, however, that the present study has focused on non-breaking wave 
propagation, and the explicit treatment of wave breaking processes has not been addressed. Future research will 
aim to extend the developed framework toward fully three-dimensional modeling of breaking waves, thereby 
broadening its applicability to more complex coastal hydrodynamic conditions.

Fig. 14.  Comparison of the water surface elevation at the cross-section y = 0 and at times t = T (upper left), 
t = 7 T/6 (upper right), t = 4 T/3 (lower left), and t = 3 T/2 (lower right), showing the analytical solution46 
(circles) versus the numerical solution (red line), with the bed level indicated by the black line.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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