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The blood pressure (BP) estimation plays a crucial role in assessing cardiovascular health and 
preventing related complications. One of the early warning indicators for heart disorders is elevated 
blood pressure. Thus, monitoring of blood pressure continuously is needed. The study aims to 
develop and validate a reliable deep learning-based approach for blood pressure estimation using 
photoplethysmography from the publicly available database MIMIC-II. The continuous wavelet 
transform (CWT) was used to transform the photoplethysmogram (PPG) signals into scalograms, 
which were then input into six different deep learning models: VGG16, ResNet50, InceptionV3, 
NASNetLarge, InceptionResNetV2 and ConvNeXtTiny. The obtained deep features from each one 
of these models were employed to estimate BP values using random forest. The proposed approach 
uses a unique transfer learning framework that integrates deep feature extraction from scalograms 
with random forest regression, providing a new pathway for blood pressure estimation. The models 
were assessed using mean absolute error (MAE) and standard deviation (SD) in estimating the systolic 
and diastolic blood pressure values. Out of six models, ConvNeXtTiny and VGG16 showed good 
performance. ConvNeXtTiny achieved mean absolute error of 2.95 mmHg and standard deviation of 
4.11 mmHg for systolic blood pressure and mean absolute error of 1.66 mmHg and standard deviation 
of 2.60 mmHg for diastolic blood pressure. The achieved result complies with the clinical standards set 
by Advancement of Medical Instrumentation Standard (AAMI) and the British Hypertension Society 
standard (BHS). This can enhance cardiovascular health monitoring with continuous, non-invasive 
and reliable blood pressure measurement, assisting in early detection of the disease. The suggested 
method shows that reliable blood pressure estimation from photoplethysmography signals is possible 
with the use of deep learning and transfer learning. Above all, ConvNeXtTiny offers a dependable 
method for continuous blood pressure monitoring that satisfies clinical requirements and may help in 
the early identification of cardiovascular problems.
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Blood Pressure (BP) levels that are abnormal can have lethal consequences, increase the risk of Cardiovascular 
Disease (CVD), and damage organs. Heart attacks, strokes, renal failure, and other conditions can all be brought 
on by chronic hypertension1. Hypertension constitutes a major risk factor for CVD, which continues to be 
the primary cause of mortality globally2. In 2019, according to the World Health Organization (WHO), CVD 
accounted for 17.9 million deaths, representing 31.4% of total fatalities worldwide including countries such as 
United Kingdom and Northern Ireland registered them as second leading cause of fatalities with 28.7% and 
23.4% of total deaths respectively3. The CVD mortality has risen consistently, with figures increasing from 14.2 
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million in 2000 to 15.9 million in 2010, and reaching 17.9 million in 2019 (Fig. 1a). The WHO also recorded 
that across most European countries, the Russian Federation, India, China, and the United States, CVDs have 
consistently remained the leading cause of fatality with 28.1% of total (Fig. 1b).

With the rising trend, it is essential to continuously monitor BP to detect, control, and treat hemodynamic 
abnormalities and CVD in their early stages4. Thus, this motivates to develop a reliable and non-invasive deep 
learning (DL) based framework for reliable BP estimation using PPG signals, enabling timely monitoring, early 
detection of cardiovascular abnormalities and enhance patient care. Blood pressure can be intermittently or 
continuously monitored. Sphygmomanometry and oscillometry are two examples of intermittent approaches; 
the former uses Korotkoff noises, while the latter provides automated, hands-free measurements. However, 
intermittent approaches have drawbacks such as the need for training, quiet environments, and time lag between 
readings5,6.

Continuous monitoring techniques include volume clamp, invasive arterial BP estimation, arterial 
tonometry, electrocardiogram (ECG), and photoplethysmography (PPG). Invasive methods are commonly 
used in healthcare but are limited to in-house patients7. The common method for ECG recording is done by 
using electrodes as explained by Satter et al.8. It is non-invasive and reliable for cardiovascular diagnosis but not 
feasible for continuous monitoring for non-patients. PPG uses optical approaches to measure variations in blood 
volume without the need for intrusive procedures9. PPG can be captured in transmissive or reflective modes and 
has applications in clinical and mobile settings10,11. Smartwatches and wearable technologies can benefit from its 
real-time monitoring capabilities, which are especially helpful for athletes, exercisers, and the elderly. The study 
aims to use advanced DL techniques by employing a unique transfer learning framework with scalogram-based 
BP estimation.

The rest of the paper is organized as follows: The second section elaborates on the review of literature over the 
past years, highlighting their evolution from traditional approaches to advanced Machine Learning (ML) and 
DL methods. Subsequently, the methodology and materials adopted for BP estimation are explained including 
dataset, windowing, and scalogram generation, continuous wavelet transform (CWT), and pre-trained CNNs. 
Section  Hardware and software specifications encompasses discussions about the paper’s outcomes and 
performance comparisons with various pre-trained CNN models.

Related work
From statistics to deep learning techniques, PPG signal analysis has changed over time. For blood pressure 
estimation, a variety of parameters have been used, including Pulse Transit Time (PTT)12, Pulse Wave Velocity 
(PWV)13,14 etc. A measure of arterial stiffness is PWV, while PTT counts the time an arterial wave travels 
between two arterial sites. Multiple sensors are needed for statistical methods, which are impacted by variables 
such as age, weight, etc.15,16. PWA uses linear regressions to assess PPG waveform morphological aspects to 
predict blood pressure14,17. Because of their potential, PTT and PWV approaches are still being investigated; 
nevertheless, one of their limitations is that they require two sensors that can precisely measure the distance 
between artery sites.

ML approaches, such as Random Forests (RF), Support Vector Machines (SVM), Artificial Neural Networks 
(ANN), Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN) have been used 
to estimate BP using constructed features generated from PPG data18–24. Feature engineering can be time-
consuming and may not guarantee accuracy in PPG signal analysis18,25–30. The optimum features are selected by 
incorporating various correlation techniques. Alternatively, deep neural networks can learn characteristics or 
features directly from PPG signals, eliminating the necessity of manually crafting features31–33. Due to the ability 
of deep learning approaches which can automatically extract high dimensional features from PPG signals, it 
has received attention. Researchers have used auto-encoders, multi-layered neural networks, and deep neural 
network models to estimate BP, achieving improved results compared to traditional methods34–37. The U-Net 
architecture has been applied for image segmentation38,39, leading to its utilization for PPG signal mining. 

Fig. 1.  (a) Global causes of death 2000, 2010, 2019—WHO Global Observatory3 (b) Causes of death in the 
Europe, China, India, United Kingdom, Russian Federation and United State of America, 2016—WHO Global 
Observatory3.
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However, existing models still have limitations, such as information redundancy and gradient vanishing. 
Researchers have made improvements by incorporating attention modules, residual modules, and enhanced 
U-Net models40,41. These optimizations have demonstrated success in image segmentation but are still in the 
early stages of application of continuous blood pressure monitoring using physiological signals42–46. Although 
several deep learning algorithms have been investigated, they frequently need significant computer resources 
and memory.

Recent research in transfer learning and domain adaption highlights the growing focus on improving model 
efficiency and adaptability across various tasks and domains. A comprehensive overview of transfer learning in 
deep reinforcement learning is given by Zhuang et al.47, while Wang et al.48 investigate source free unsupervised 
domain adaptation, which enables models to adapt without having access to the source data. Zhang et al.49 
focus on learning from multi sources for domain adaptation, and Luo et al.50 address the challenge of handling 
inaccurate label spaces in multi source domain adaptation. These techniques could be used for BP estimation 
using PPG signals as they help models adapt to various populations and sensor types, reduce reliability on large, 
labelled datasets, and maintain performance despite label noise. Deep neural networks have high computational 
and memory demands, but pretrained CNNs enhanced through transfer learning, reduce these requirements 
and improve efficiency. This approach decreases the need for extensive labelled data and enables adaptation to 
new tasks with lower resources consumption.

Pretrained CNNs have been used in clinical areas like brain tumour detection from MRI scans, histopathology 
image classification, and brain image analysis51–53. These successes suggest that pretrained CNNs, which have 
been effectively used in prior studies for BP estimation, could be valuable for this task, thereby allowing us to 
take advantage of their established strengths, improving both the efficiency and accuracy of the system while 
also making it more resource efficient in BP estimation. The following are the key research gaps identified after 
rigorous literature survey:

•	 Dependency on sensor placement: The measurement process is difficult with the methods such as PTT and 
PWV which requires two or more sensors.

•	 Hand crafted feature engineering: The identification of hand-crafted features by exhaustive search and opti-
mizing it requires time and considerable effort.

•	 Computational complexities: The deep learning models automatically extract features, but it requires high 
computational and memory.

These gaps underline the need for insightful methods like transfer learning to overcome the limitations by 
reducing memory and high computational requirements.

In order to apply transfer learning to time series inputs, PPG signals can be transformed into images by using 
visibility graphs54 but preserving a relevant temporal and frequency information remains a challenging task. 
On the other hand, scalograms that represents time–frequency information at different scales, offers a more 
simple and straightforward way to preserve relevant time and frequency information, unlike visibility graphs 
which involve identifying complex points, checking for visibility and creating edges and nodes. The utilization of 
scalograms has been done in epilepsy diagnosis from EEG signals55 has prompted the application of scalograms 
in estimating BP values from PPG signals. Scalograms retain both time and frequency details of PPG signals, 
making them valuable for BP regression tasks. Though, a previous study has demonstrated the effectiveness of 
utilizing scalograms for BP classification using models such as pretrained CNN models56–58 and deep CNN 
architectures59,60 and evaluated the performance of their model using accuracy metric. These studies have 
primarily focused on blood pressure classification based on hypertension stages, laying a foundation that can be 
further extended to BP regression. Thus, it can be built upon these approaches to estimate continuous BP values 
and evaluate them against clinical standards such as the Advancement of Medical Instrumentation (AAMI) and 
the British Hypertension Society (BHS) guidelines.

In one of the research works21, time and frequency features were separately extracted for BP estimation 
wherein frequency features were obtained by taking Fast Fourier Transform (FFT). Time-varying autoregressive 
(TV-AR) methods have been used for estimating heart rate variability61. Unlike scalograms that provides direct 
time–frequency representation, TV-AR captures spectral changes over time by varying parameters making it 
tedious and complex to implement effectively, and thus resolution is affected. The Short-Time Fourier Transform 
(STFT) has been used in PPG based blood pressure estimation62 and obtained accuracy by classifying it as 
normal or Hypertension. It could be explored in future studies for BP regression task from PPG signals as it 
provides time–frequency information. However, the CWT has been used in this study. Due its ability to adapt to 
different frequency components at varying time points, offers a promising alternative for capturing the nuanced 
dynamics of PPG signals.

Based on the existing literature, the utilization of scalograms for blood pressure estimation has been explored 
in a few studies, where deep learning models such as CNN-SVR, compound multichannel CNN, and image 
encoding and fusion BP techniques have been applied to perform BP regression. Maharajan et al.63 assessed 
performance using RMSE, while Lu et al.64 employed Mean Error and standard deviation. Liu et al.65 utilized 
custom image fusion methods instead of scalograms and evaluated MAE. Their study incorporated BHS-based 
evaluation and achieved Grade A, and further exploration of standard deviation assessment can enhance 
alignment with AAMI clinical standards, presenting an opportunity for advancement.

To address the challenge of blood pressure estimation, this algorithm offers a data driven, end to end solution 
using PPG signals. It employs pretrained models, which provide low computational cost. Additionally, to 
meet clinical standards, the approach emphasizes scalogram based preprocessing, yielding deep features and 
eliminating the need for manual feature engineering. The following are the primary contributions of the current 
study:
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•	 The application of continuous wavelet transform using Morlet wavelets to generate scalograms, effectively 
captures both time and frequency information from PPG signals and estimates BP accurately. Morlet wavelet 
has the capability of analysing oscillatory signals such as PPG, as its kernel consist of complex exponential 
wrapped in gaussian envelop.

•	 Instead of training models from scratch, the pretrained CNN models are employed to extract deep features 
from generated scalograms, minimizing the computational cost.

•	 The random forest was used to estimate systolic and diastolic BP values in compliance with clinical stand-
ards, due to its robustness and ability to handle complex data patterns as compare to other machine learning 
techniques.

•	 Unlike previous studies, the BP estimation was validated using both AAMI and BHS standards making it 
reliable in health care applications.

The next section gives the detailed description about the methodology and materials used in the paper starting 
from dataset used, PPG segmentation, obtaining scalograms, pretrained models for deep features and random 
forest to estimate BP values.

Methodology and materials description
The proposed model for continuous and non-invasive estimation of BP pressure using PPG signals is depicted 
below in Fig. 2.

The Fig. 2 gives the detailed information about the data which is collected from the “Medical Information 
Mart for Intensive Care” (MIMIC II) database, a valuable source of medical information. Then, the collected PPG 
data is pre-processed and subsequently, a CWT is employed to the preprocessed data, resulting in the generation 
of two-dimensional representations known as scalograms. Furthermore, the VGG16, ResNet50, InceptionV3, 
NASNetLarge, InceptionResNetV2, and ConvNeXtTiny are used to capture the deep features, i.e., characteristics 
from Scalograms. Finally, the Random Forest model utilizes the extracted features in BP estimation.

The significance of this research lies in the use of scalograms for blood pressure estimation based on 
clinical standard evaluation. This approach sets itself apart from existing methods by transforming PPG signals 
into scalograms with a focus on BP regression and evaluating performance based on clinical standards. The 
proposed model achieves MAE and SD below 5 mmHg and 8 mmHg respectively, while also attaining Grade A 
classification under BHS.

The RF model was chosen for its effectiveness in managing complex feature sets derived from scalograms. A 
prior study66 compared machine learning algorithms for BP estimation from HCFs and showed that Random 
Forest outperformed other methods with MAE of 4.45 mmHg while adhering to AAMI standards. Its ensemble 
learning techniques aggregates predictions from several decision trees, reducing variance and preventing 
overfitting making it a good choice for handling the varied feature outputs from different pretrained CNNs. It 
provides feature importance rankings and helping in identifying the most relevant features from the scalograms.

A key aspect of integration of scalograms with pretrained CNN models, combined with a Random Forest 
(RF) algorithm. The RF model is tuned with number of estimators set to 100. This unique combination uses the 
strengths of pretrained models that captures intricate pattern in PPG signals while incorporating the robustness 
of RF for BP regression. The proposed model aims to enhance the generalizability and reliability of BP estimation.

These pretrained models were selected to address a range of architectural challenges, from the classic VGG16 
to more recent designs like ConvNeXtTiny. This consistent representation enables a direct assessment of each 
model’s ability to handle the time–frequency information of the PPG data. The RF model further refines these 
extracted concrete features, enhancing the stability of BP predictions.

This structured methodology not only improves performance metrics but also reinforces the clinical relevance 
and real-world applicability of the proposed model, making it well-suited for practical deployment in wearable 
and healthcare applications.

Dataset
The dataset used was obtained from the University of California Irvine (UCI) Machine Learning Repository67, 
which is a subgroup of the MIMIC-II waveform database68. It is which is made available online by the PhysioNet 
organization. The UCI dataset, basically collected from Physionet database, consist of 12,000 records that has 
synchronized measurements of PPG, arterial blood pressure (ABP), and ECG, all sampled at a frequency (fs) of 

Fig. 2.  Architecture of the pretrained convolutional neural networks and random forest.
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125 Hz. The ABP measurements were measured invasively which is widely acknowledged as the gold standard 
for BP assessment69. Hence, the ABP waveforms available in MIMIC II database serve as the reference values 
for blood pressure in the research. The MIMIC II offers a well-established collection of waveform data that has 
been widely used in research studies related to healthcare analytics and monitoring. In this work, ABP and PPG 
waveforms were utilized for non-invasive blood pressure measurement and the details are listed in Table 1.

The MIMIC II dataset was used from where the PPG and ECG signals were loaded and extracted which is 
shown in Algorithm 1.

Input: fileDir: Directory containing .mat files (MIMIC II dataset)
exercise: Exercise name to filter files

Output: data: hierarchical array consist of ppg, ecg and abp (of which ppg and abp signals are used in this paper)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

function load_data(fileDir, exercise):
initialize word as the lowercase version of exercise
initialize file_path_list as an empty list
define valid_file_extensions as [".mat"]
for each file in filedir:

check if the file extension is valid
append the full path to file_path_list

initialize data as an empty list
for each path in file_path_list:

extract base from the filename without extension
if word is in base:

load data from the .mat file
append the first element of the loaded array to data

end function

15. function load_data_partial(filename): 
16.
17.
18.

load data from the .mat file using the specified filename 
store the loaded data in mat_contents 

end function

19.
20.
21.
22.
23.
24.

//main processing logic
set datapath to the directory containing .mat files
set word to 'part'
call: total_data = load_data(datapath, word)
call: x = load_data_partial(os.path.join(datapath, 'part_1.mat'))
// total_data is stored in .h5

Algorithm 1.  Data loading and signal extraction

Following the comprehensive exploration of the dataset, the next stage of this methodology is to uproot the 
temporal and spectral dynamics encompassed in the PPG signals through windowing and scalogram generation.

Windowing and scalogram generation
The PPG and ABP data were windowed and scalograms were generated which is shown in Table 2. By segmenting 
the records into non-overlapping segments and applying the Morlet transform to PPG signals, converts it into 
2D array called as scalograms.

The scalograms effectively represent the signals by retaining temporal and spectral characteristics. The 
following steps demonstrate the windowing of signals and generation of scalograms:

Particulars Details

Dataset Name UCI Machine Learning Repository

File format MATLAB’s v7.3 mat file

No. of mat files 12 files

Total no. of records in each file 12 × 1000 = 12,000 records

Each record consists of three signals PPG, ABP and ECG signals

No. of sample in each record There is varying length of samples

Table 1.  Descriptive statistics of the dataset.
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	1.	 The PPG and ABP was segmented into non-overlapping segments of 1000 samples (8 s) which is mentioned 
in Algorithm 2. The duration of each segment is calculated by using the Eq. (1).

		
Duration = No. of Samples

Sampling F requency (fs) = 1000
125 = 8 seconds (Since fs = 125 Hz)� (1)

	2.	 The PPG data is filtered from 0.1 Hz to 8 Hz (Algorithm 3) as this range has significant information related 
to the DC component (baseline) and the AC component (blood volume changes due to heart pump). This 
range was determined by analyzing the Fourier Transform (FT) of PPG signals, detailed in Section Contin-
uous wavelet transform and illustrated in Fig. 3, and is consistent with prior studies analyzing PPG signals 
for blood pressure estimation32,35,36,46. The diastolic and systolic BP reference values were obtained from 
segments of ABP waveforms, corresponding to each PPG segment (Algorithm 4).

	3.	 A Morlet transform, using a continuous wavelet transform with 128 scales, was applied to the PPG segments 
(Algorithm 5).

	4.	 Scalograms were generated, with each scalogram having a size of 128 by 1000.
	5.	 The scalograms were resized to dimensions suitable for the pre-trained CNN model, ensuring compatibility 

with its input requirements.

Fig. 3.  Frequency spectrum of a PPG segment—(a) a plot showing DC component (b) a plot showing 
frequency range from 4 to 12 Hz.

 

Particulars Details

Dataset array Each record (PPG and ABP) is splitted into non-overlapping segments of 1000 samples with multiple rows

No. of PPG segments considered in our work 3000 × 1000

No. of Scalograms 3000 scalograms each of 128 by 1000 size
(Each scalogram is obtained from individual row of the dataset)

SBP and DBP Reference Values The reference values were obtained from corresponding ABP segments with dimensions of 3000 × 2

Table 2.  Data windowing and scalogram generation.
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Input: data: hierarchical array consist of ppg, ecg and abp (of which ppg and abp signals are used)
Hyperparameters: sample_size = 1000 (No. of samples to extract per segment)
Output: ppg_array: Numpy array containing segmented PPG values

abp_array: Numpy array containing segmented ABP values
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

//initialize lists
initialize ppg, abp, ecg as empty lists
//data extraction loop
for each i in range of length of total_data:

for each j in range of length of total_data[i]:
set k to the length of total_data[i][j][0, :]

for each n in range of k // sample_size:
extract ppg values: ppg = total_data[i][j][0, (n * sample_size):(n * sample_size) + 
sample_size]
extract abp values: abp = total_data[i][j][1, (n * sample_size):(n * sample_size) + 
sample_size]
append ppg and abp to ppg and abp respectively

//convert lists to arrays
convert ppg and abp to numpy arrays
store ppg and abp in an .h5 file

Algorithm 2.  Windowing of PPG and ABP signals

Input: ppg_data
Hyperparameters: min_frequency = 0.1 Hz

max_frequency = 8 Hz
sampling rate = 125 Hz

Output: filtered ppg data
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

function band_pass_filter_ppg(ppg_data): 
set min_frequency 
set max_frequency
set sampling_rate 
# Calculate normalized frequencies 
normalized_min_frequency = min_frequency / (0.5 * sampling_rate) normalized_max_frequency = 
max_frequency / (0.5 * sampling_rate) 
# Create and apply the band-pass filter 
filtered_ppg = apply filter with normalized frequencies to ppg_data 

end function

Algorithm 3.  Filtering PPG signal
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Input: sample_size: number of samples to extract per segment
sampling rate (the rate at which signal is sampled)
abp (arterial blood pressure data)

Hyperparameters: sample_size = 1000
sampling rate = 125

Output: sbp
dbp

1.
2.
3.
4.
5.
6.
7.
8.
9.
0.
11.
12.
13.
14.

function preprocessdata(abp, sample_size, fs):
initialize sbp = []
initialize dbp = []
for each row in abp:

temp_sbp = []
temp_dbp = []
for q in range(num_periods):

abp_one_period = abp[p, q * fs : (q + 1) * fs]
temp_sbp.append(max(abp_one_period))
temp_dbp.append(min(abp_one_period))

append average(temp_sbp) to sbp
append average(temp_dbp) to dbp

store sbp and dbp in an .h5 file
end function

Algorithm 4.  Extracting SBP and DBP from ABP

Input: ppg signal
Hyperparameters: scale = 128, wavelet = Morlet
Output: scalograms of ppg signals saved in .h5 format
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

function continuouswavelettransform(signal, scales, wavelet_function):
initialize coefficients = []
initialize frequencies = []    
for each scale in scales:

// define the wavelet based on the chosen wavelet function and scale
// custom implementation of the wavelet formula
wavelet = define_wavelet(scale, wavelet_function)
convolution_result = apply_convolution(signal, wavelet)        
append convolution_result to coefficients
append compute_frequency(scale) to frequencies

return coefficients, frequencies
end function

Algorithm 5.  Scalogram generation of PPG signals

Thus, this process helps us to prepare the scalograms (two-dimensional data) which is applied as input for 
further analysis using the pre-trained CNN model, ensuring that the original time and frequency components of 
the PPG signals were preserved and utilized in the subsequent analysis.

Continuing on the use of the Morlet wavelet to obtain scalograms, the subsequent section discusses continuous 
wavelet transform. Moving forward to a greater understanding of CWT, its kinds, and its mathematical 
complexities, we hope to clarify how this transformative method aids in the preservation and application of 
crucial signal characteristics.

Continuous wavelet transform
Similar to the FT, the CWT calculates the similarity between an input signal and analyzing function using inner 
products.

The analytic function used by the CWT is wavelets, while the FT uses complex exponentials. The process 
involves comparing the input signal with various scales and positions of the shifted, compressed, or stretched 
wavelet versions to construct a two-variable function. This representation enlarges a one-dimensional signal 
into a two-dimensional function, capturing location and scale information, and offers a rich and detailed 
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characterization. Depending upon the nature of the wavelet, the CWT can be complex-valued or real-valued. 
Equation  2 illustrates the CWT formula, which is dependent on the wavelet choice as well as scale (a) and 
position (b) factors.

	
C (a, b; f (t) , ψ (t)) =

ˆ ∞

−∞
f(t) 1

a
ψ∗

(
t − b

a

)
dt� (2)

where ψ(t) is the wavelet basis, * denotes the complex conjugate, and f(t) denotes the signal. The wavelet’s time 
point, scale, and shift are represented by the letters “t,” “a,” and “b,” respectively. The choice wavelet affects the 
continuous wavelet transform coefficients in addition to the scale and position values.

Typical wavelets that are employed in the continuous wavelet transform are the Poisson, Morlet, and Mexican 
Hat70. The wavelets have distinct qualities and are appropriate for various signal processing applications. 
Mathematically, it is defined as:

	 ψP oi (t) = c ∗ e−λttnH (t)� (3)

where H(t) is the Heaviside step function. It has 0 for t < 0 and 1 for t ≥ 0; c is a normalization constant; λ is the 
decay parameter; t is the time variable; n is a positive integer determining the degree of the polynomial term.

The Poisson wavelet is a popular tool for transient signal analysis, and it’s especially good at identifying and 
describing abrupt changes or discontinuities in time-series data.

The Ricker wavelet, often called the Mexican Hat wavelet, is another kind of wavelet used in analysis of 
signals. It is the second derivative of gaussian function, mathematically defined as follows:

	
ψMex (t) = A

(
1 − t2

σ2

) (
e

−t2

2σ2

)
� (4)

where A is a normalization constant; t is the time variable; σ is a positive parameter determining the width of 
the wavelet.

It is widely applied in many different fields, including pattern recognition, image processing, and seismic 
research. It is particularly useful for identifying patterns like peaks and troughs in data. A complex sinusoid and 
a Gaussian window are combined in the Morlet wavelet, which makes it an excellent tool for oscillatory signal 
analysis. Based on the specific needs and attributes of the signal under analysis, one can choose from several 
wavelets, each with unique characteristics.

When the signal is convolved with the different Morlets, amplitude information is obtained at these specific 
frequencies. This analysis makes it easier to thoroughly explore the temporal and spectral content of the signal 
and provides insightful information about its time–frequency properties. Consequently, the Morlet wavelet’s 
capacity to analyze oscillatory signals and efficiently capture time and frequency information is one advantage 
of using it as an analyzing function60. Furthermore, convolution preserves temporal resolution, its Gaussian 
frequency pattern lowers misleading ripple effects, and its minimal calculations using the fast Fourier transform 
result in improved computing efficiency. This feature is particularly beneficial for the analysis physiological 
signals like electrocardiograms and photoplethysmograms.

The Morlet wavelet is mathematically defined as:

	 ψMor (t) = ej2πfte
−t2

2σ2 � (5)

where j is the imaginary operator, f denotes frequency in Hz, and t indicates time in seconds.
The width of the Gaussian, denoted as σ, is defined as

	
σ = n

2πf
� (6)

The parameter ‘n’ establishes a trade-off between time and frequency precision, often termed as the “no. of 
cycles”. For neurophysiological data like EEG, and MEG, the parameter ‘n’ usually varies between 2 and 15 for 
frequencies ranging from 2 to 80 Hz71. Considering that PPG signals, similar to EEG, are physiological data with 
a range of frequencies from 0.5 Hz to 10 Hz and the mapping suggests that the value of ‘n’ can be selected as 3.

The Fourier transform of a PPG segment, shown in the Fig. 3, clearly indicates this frequency range. It has a 
DC Components indicating the baseline and the AC component indicating the volumetric changes of blood in 
the tissue due to Heartbeat.

The Fourier transform analysis (Fig. 3) indicates that the frequency range of 0.1 Hz to 8 Hz captures the most 
significant information in PPG signals. The DC component reflects the baseline level, while the AC component, 
primarily within this range, corresponds to the volumetric changes in blood due to cardiac activity, making it 
critical for accurate blood pressure estimation.

Further, the real and imaginary part of Morlet Wavelet for different values of cycles and scale factor is shown 
in Fig. 4.

With the positive aspects of the Morlet transform established, the utilization of a pre-trained CNN model has 
been explored as the next phase of this research. The next section focuses on the incorporation of the pre-trained 
CNN model to further enhance the analysis and estimation of blood pressure.
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Convolutional neural networks: an overview
CNNs are a kind of DL model made especially for processing grid-like input. It represents a powerful paradigm 
in signal processing that uses hierarchical feature extraction to enhance model accuracy. In the proposed 
framework, CNNs are employed learn by itself and identify features within the input data, facilitating the 
understanding of complex signals. The key elements of CNN are discussed below.

Key elements of a CNN

	1.	 Convolutional Layers: These layers are the heart of a CNN. They consist of kernels. also known as filters, 
that systematically slide by s over the input array to extract relevant features. The convolution operation is 
mathematically defined as:

		
I (x, y) ∗ f (x, y) =

∑
i

∑
j

I (i.j) f (x − i, y − j)� (6)

	where I(x, y) is an input array corresponding to individual colour channel, f(x, y) is a kernel.
	The output dimension is given by

		

[
m + 2p − f

s
+ 1

]
×

[
m + 2p − f

s
+ 1

]
� (7)

	where, m is the dimension of input image, p is number of zero padding around the border of the image, f is the 
kernel size and s is stride value.

	2.	 Activation Functions: Commonly used activation functions include Rectified Linear Unit (ReLU) and Sig-
moid. They introduce non-linearity, enabling it to learn complex relationships in the data.

		  ReLU : a (t) = max (0, t)� (8)

		
sigmoid : σ (t) = 1

1 + e−t
� (9)

Fig. 4.  Morlet Wavelet for different values of no. of cycles and scales.
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	3.	 Pooling Layers: These layers decimate the spatial dimensions of the feature maps, reducing computational 
complexity. Max pooling takes the maximum value from a local region of the feature map. If max pooling 
size is 2 by 2 and applied with stride 2 then the dimension of output will be reduced by half.

	4.	 Fully Connected Layers: These layers connect every neuron in one layer to every neuron in the next layer. 
They are typically found towards the end of a CNN and are responsible for high-level reasoning.

CNNs are trained through backpropagation, where the weights of the network are updated to minimize the 
difference between predicted and actual outputs. Thus, CNN automatically learns the hierarchical features from 
data makes them an indispensable tool in Biomedical signal processing applications.

Pretrained CNN models
For photoplethysmography (PPG) based blood pressure estimation, pretrained models were used which has 
capability to extract remarkable deep features from extensive training on large datasets. In our framework, 
pretrained models serve as efficient feature extractors which processes two-dimensional arrays derived from 
PPG segments using continuous wavelet transform.

This research seeks to analyze and compare the accuracy of different pretrained models, namely, as VGG16, 
ResNet50, InceptionV3, NASNetLarge, InceptionResNetV2 and ConvNeXtTiny, in capturing relevant features 
from the scalograms and their effectiveness in accurately estimating systolic and diastolic BP values.

VGG16
In blood pressure estimation framework, VGG16 pretrained model was incorporated which was introduced by 
Simonyan and Zisserman in 2014, as a foundational CNN. VGG16 is recognized for its architectural simplicity 
and efficacy, maintaining uniformity with a consistent kernel size of 3 × 3, a stride of 1, and MAXPOOL layers of 
size 2 × 2 with a stride of 2. There are 16 levels as the number of kernels gradually rises by a factor of two to 512. 
A RGB image with dimensions of 224 × 224 is required as input for VGG16, which uses input normalization by 
the subtraction of mean pixel values72. Upon applying the Morlet wavelet to the PPG segment, a scalogram with 
initial size of 128 by 1000 is generated. However, a further transformation is required for compatibility with the 
VGG16 design, which demands a 224 by 224 by 3 input. This means that the 128 by 1000 grayscale array must 
be converted to RGB format. By doing so, a modified array of dimensions 224 by 224 by 3 was obtained that 
ensures seamless integration with the input requirements of the VGG16 pretrained model. The Fig. 5 illustrates 
the adapted architecture of VGG16 utilized in the blood pressure estimation framework with output dimension 
7 × 7 × 512.

ResNet50
The deep residual network ResNet50, which was first introduced by He et al.73, is a key part of this approach 
for blood pressure assessment. With 50 layers, ResNet50 makes it easier to train incredibly deep CNNs and is 
now commonly used for a variety of computer vision tasks. Like VGG16, ResNet50 applies input normalization 

Fig. 5.  VGG16 architecture.
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by removing the mean pixel values from a 224 × 224 RGB image as input73. ResNet50’s design is illustrated by a 
decrease in feature map dimension as depth increases, as seen in Fig. 6. The final output dimension of this model 
is 7 × 7 × 2048, yielding 2048 feature maps of size 7 × 7.

The obtained scalogram of dimensions 128 by 1000 is resized to meet the input requirements of ResNet50. 
The adapted ResNet50 architecture, showcased in the Fig. 6, serves as a feature extractor.

Inceptionv3
The pretrained Convolutional Neural Network (CNN) model InceptionV3, created by Google74, is essential 
to the system for estimating blood pressure. To collect characteristics across different scales, InceptionV3 uses 
multiple concurrent convolutional paths with varied kernel sizes.

InceptionV3 expects a 224 by 224 by 3 input dimensions. The scalogram, which is originally 128 by 1000 
in size, is transformed to fit the input specifications of InceptionV3. As part of this, the grayscale array must 
be formatted into RGB to make sure the model is compatible. The architecture of InceptionV3 is shown in the 
picture, which includes its convolutional, batch normalization, and pooling layers. This results in the creation 
of 2048 feature maps of dimension 5 by 5. InceptionV3 is also used as a feature extractor in the blood pressure 
prediction pipeline.

NASNetLarge
NASNetLarge, introduced by Zoph et al.75, is a neural architecture search-based network that achieves cutting-
edge performance on various image recognition tasks. It also utilizes input normalization through subtracting 
the mean pixel values. It requires an input dimension of 331 by 331 by 3, thus the scalogram of size 128 by 1000 is 
transformed to align with the model’s input specifications. Thus, in the proposed approach, the pretrained CNN 
models (VGG16, ResNet50, Inception v3 and NASNetLarge) are used as feature extractors with the top layers 
being removed. The layers of the models are frozen except the fully connected dense layers. The output obtained 
from these pretrained models, referred to as deep features, captures high-level representations automatically 
extracted from the input images.

Fig. 6.  Resnet50 architecture.
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InceptionResNetV2
The Inception architecture and residual connections from ResNet are combined in InceptionResNetV2, which 
was created by Szegedy et al. in 201776. The combination produces a deep CNN that is highly effective in a 
several computer vision tasks. InceptionResNetV2, like NASNetLarge, applies input normalization through the 
subtraction of mean pixel values. It requires that input should be of dimensions of 299 by 299 by 3. To ensure that 
it is compatible with the model, input data i.e. scalograms is preprocessed. Together with other pretrained CNN 
models, InceptionResNetV2 is used as a feature extractor in the suggested methodology. In order to extract deep 
characteristics from input images, the network’s architecture involves freezing all layers other than the dense 
layers that are completely connected. The network’s architecture involves freezing all layers except the top layer 
and thereby produce deep features which are used in BP estimation.

ConvNeXtTiny
ConvNeXtTiny is a small CNN architecture that was presented by Liu Z et al. in 202077 and is intended for 
high performance in image recognition applications through efficient computing. ConvNeXtTiny’s architecture 
is optimized for resource-restricted situations, which sets it apart from the rest five models, and makes it 
appropriate for applications with constrained computational resources. One common preprocessing procedure 
that ensures consistency among input data is input normalization. The network anticipates that input images 
will have 224 × 224 by 3 dimensions. ConvNeXtTiny has frozen layers and the fully connected dense layers are 
fine-tuned. By using this method, deep characteristics from input can be effectively extracted and create useful 
representations for later tasks i.e. estimating blood pressure.

The process of extracting and flattening deep features from scalograms using the pretrained models 
mentioned above is shown in Algorithm 6.

Input: scalograms of ppg signals
Hyperparameters: pretrained_model (vgg16, resnet50, inceptionv3, nasnetlarge, inceptionresnetv2 and convnexttiny)

include_top = false
input_shape = target input shape for the model

Output: flattened feature vectors extracted from the pretrained model
1.
2.
3.
4.
5.
6.
7.
8.

9.
10.

11.
12.
13.
14.

15.
16.

17.
18.
19.

// resize scalograms for model input
function resize_scalograms(scalograms, target_size):

initialize resized_scalograms = []
for each scalogram in scalograms:

resized = resize(scalogram, target_size, preserve_range=true)
append resized to resized_scalograms

return resized_scalograms
end function

function extract_features(pretrained_model, resized_scalograms):
load pretrained_model(include_top=false, input_shape)

// set all layers in the model as non-trainable
for each resized_scalogram:

features = pretrained_model.predict(resized_scalogram)
flatten(features) // flatten the features extracted

return flattened feature vectors
end function

// main processing flow
resized_scalograms = resize_scalograms(scalograms, (224, 224))
flattened_features = extract_features(pretrained_model, resized_scalograms)

Algorithm 6.  Feature extraction using pretrained models

The deep features extracted from the pretrained models are flattened to create a one-dimensional feature 
vector. This vector serves as the input to a random forest regressor described in the subsequent subsection, 
which predicts the blood pressure values.

Random forest
In random forest regression model, multiple decision trees are built by training on different bootstrapped 
subset of the feature vector (fattened) obtained from CNN. The dataset consists of m samples, denoted by D, 
{(xk, yk)}m

k=1 has p features in each sample, where xk  is the feature vector and yk  is the output vector. The next 
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step is to create B bootstrapped datasets i.e. the no. of estimators (trees), denoted as Db, 
{(

xk
(b), yk

(b))}m

k=1
 

for b = 1, 2…B.
Once the bootstrapped dataset is created then the training process is started which involves repeatedly 

splitting the sample space into disjoint regions Rj  based on the features values. For each node, q features are 
randomly selected from p features. The best features are chosen with the corresponding split points such that the 
MAE is minimized within each region.

In each region Rj , the predictions cj  is made by taking the average of the target values for yk  for all the 
training samples that fall in that region, which is given by:

	

cj = 1
|Rj |

∑
xk∈Rj

yk � (10)

where |Rj | is the number of samples in region Rj .
For a new input xk , the prediction from a single tree is determine by the region Rj  that the input xk  falls into 

and the cj  is obtained which is mathematically given as

	
fb (xk) =

F∑
j=1

cjI(xk ∈ Rj)� (11)

where xk  = new data.
F = no. of regions or splits in the sample space.
Where I (xk ∈ Rj) = indicator function which is given by

	
I (xk ∈ Rj) =

{ 1, xk ∈ Rj

0, otherwise � (12)

The final prediction of the Random Forest model is obtained by averaging the predictions from all B decision 
trees. The overall prediction f (xk) is given by

	
f (xk) = 1

B

B∑
b=1

fb (xk)� (13)

where B = no. of bootstrapped subsets (or trees).
The Algorithm 7 gives the detailed steps of implementation of Random Forest and predictions made by 

multiple trees. The averaging of the predictions made from multiple trees helps in reducing the variance thus 
reduces overfitting making the model more robust and generalizable.

The k-fold cross validation is also employed (Algorithm 7) to increase the robustness of random forest. In 
k-fold cross validation, the dataset is split into ‘k’ folds and the model is trained on ‘k-1’ folds and tested on 
the remaining one fold. The procedure is repeated for each fold and the average of performance metrics are 
calculated. The performance metrics used are MAE and Standard Deviation (SD) which is necessary to have 
compliance with clinical standards. The mathematical formula for both is given by

	
MAE = 1

n

n∑
k=1

|yk − ŷk|� (14)

where n = number of observations; yk  = target value; ŷk  = predicted value.

	

SD =

√√√√ 1
n

n∑
i=1

(xi − µ)2� (15)

where n = number of observations.
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Input: x_train (array): feature vectors for training
y_train (array): target values for training
x_test (array): feature vectors for testing
y_test (array): target values for testing

Hyperparameters: n_estimators = 100 # number of trees in the random forest
random_state = 42 # seed for reproducibility
k_folds = 10 # number of folds for cross-validation

Output: predictions (array): predicted values - sbp and dbp
1.

2.
3.
4.
5.

6.
7.
8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.

25.
26.
27.
28.
29.
30.

31.
32.

x_for_rf = flattened_features  //features extracted from x-train and then flattened

//define forest
function: initialize_random_forest(n_estimators, random_state)

initialize forest as an empty list
return the forest

function: create_bootstrapped_data(x_train, y_train, n_estimators)
for each estimator b from 1 to n_estimators:

create a bootstrapped dataset Db by sampling with replacement from the original dataset D
add Db to a list of bootstrapped datasets

return the list of bootstrapped datasets Db

function: build_decision_tree(Xb, yb, q)
initialize the root node of the decision tree with all samples from the bootstrapped dataset Db
while the stopping condition is not met (max depth):

for each node:
                    randomly select q features from the total p features in Xb
                    for each feature, find the best split point by minimizing the mean absolute error in the target 
values yb

split the node into disjoint regions Rj based on the best split
recursively repeat the splitting process for the left and right subtrees until the stopping criteria are 
met

return the decision tree

function: predict_single_tree(tree, xk)
identify the region Rj that the input sample xk falls into based on the feature splits in the decision tree
return cj, the average of yk values in region Rj

function: random_forest_predict(forest, xk)
initialize an empty list called predictions_list
for each tree in the forest:

predict fb(xk) using the predict_single_tree function for the given input xk
append fb(xk) to predictions_list

return the average of predictions_list

function: train_random_forest(x_train, y_train, n_estimators, random_state)
initialize the forest using initialize_random_forest(n_estimators, random_state)

33.
34.

35.
36.
37.
38.

39.

40.
41
42.
43.
44.

45.
46.
47.
48.

49.
50.

51.
52.
53.
54.
55.

create bootstrapped datasets db for each estimator using create_bootstrapped_data(x_train, y_train, 
n_estimators)

for each bootstrapped dataset Db:
build a decision tree using build_decision_tree(xb, yb, q)
add the trained decision tree to the forest

return the forest

initialize errors_sbp, errors_dbp as empty lists

function k_fold_cross_validation(x_for_rf, y_train, n_splits):  
    for each fold i in kfold(n_splits):
        split x_for_rf and y_train into train_data, val_data, train_target, val_target
        fit forest on train_data, train_target //call train_random_forest function
        predict on val_data //call random_forest_predict
        
        compute error_sbp as mean_absolute_error for sbp on val_data
        compute error_dbp as mean_absolute_error for dbp on val_data
        
        append error_sbp and error_dbp to errors_sbp and errors_dbp
        
    return mean of errors_sbp and errors_dbp
end function

save the best fold model for prediction

apply pretrained_model.predict on x_test to get features_extracted_flattened
//call train_random_forest function
predictions = apply best fold forest model to predict blood pressure on test data 

Algorithm 7.  Random forest regression for BP prediction with k-fold cross-validation
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The number of estimators is set to 100. As discussed, the overfitting is reduced and prediction accuracy is 
improved by this ensemble model of decision trees. Thus, generates an effective model that captures a variety 
of data properties by combining the outputs of several trees. Also, the k value is set to 10, thereby dividing the 
dataset into ten subsets, maintaining ninefold for training and the remaining one for testing as part of a tenfold 
validation technique. Thus, the model that has been thoroughly evaluated using AAMI and BHS standard 
(Algorithm 8) using Random Forest with 100 estimators and tenfold validation is more robust and dependable.

Input: predictions, y_test
Output: aami and bhs standard evaluation metrics for sbp and dbp predictions
1.
2.
3.
4.

5.
6.
7.

8.
9.

function evaluate aami_bhs(predictions, y_test):
aami evaluation:

calculate total, me, mae, sd for sbp and dbp
print results

bhs evaluation:
calculate percentages of sbp and dbp predictions within <5mmHg, <10mmHg, <15mmHg
print results

return aami and bhs evaluation results
end function

Algorithm 8.  Evaluation metrics for BP prediction (AAMI and BHS Standards)

Transfer learning model

SBP DBP

(mmHg)
Percentage of records with absolute error 
difference (mmHg)

Percentage of records with absolute error 
difference

ME MAE SD

 < 5  < 10

 < 15 mmHg (%) ME MAE SD

 < 5  < 10

 < 15 mmHg (%)mmHg (%) mmHg (%) mmHg (%) mmHg (%)

ConvNeXtTiny 0.64 2.95 4.11 81.33 97.33 99.33 0.47 1.66 2.60 92.67 98.67 100

VGG16 0.24 3.94 5.19 68 96.67 98.67 0.08 2.56 3.80 84 95 100

ResNet50 −0.23 4.66 5.75 58.67 94.67 98.67 −0.24 2.39 3.63 87.33 96 100

Inceptionv3 0.58 5.21 6.7 57.33 91.33 96 0.14 3.2 4.72 81.33 90 100

NASNetLarge 0.39 5.19 6.34 54.67 91.33 98 0.3 3.06 4.27 80 94.67 100

InceptionResNetV2 −0.81 5.11 6.40 58 90.67 97.33 −0.52 2.74 4.10 82.67 94 100

Table 4.  Performance of transfer learning models with random forest in estimating SBP and DBP. Significant 
values are in bold.

 

Item Content

Model description

Parameters of random forestPretrained model Output dimension

CPU 12th Gen Intel(R) Core(TM) 
i5-12500H 2.50 GHz VGG16 7 × 7 × 512 No. of Estimators 100

GPU NVIDIA GEFORCE RTX 3050 ResNet50 7 × 7 × 2048 Random State set 
during Training process 42

RAM 8.00 GB InceptionV3 5 × 5 × 2048 Validation Method Tenfold cross 
validation

Operating System Windows 11 NASNetLarge 11 × 11 × 4032 No. of Epochs 30

Programming Language Python 3.6 InceptionResNetV2 8 × 8 ×  1536

Performance Metrics

MAE, SD

Environment Used Jupyter Notebook ConvNeXtTiny 7 × 7 ×  768

Accuracy percentage 
when considered 
error difference 
of < 5, < 10, < 15 mmHg

Deep learning Library TensorFlow 2.10.0
Input to Random Forest (The 
output of pretrained models are 
flattened and fed input to Random 
Forest)

25,088 × 1
100,352 × 1
51,200 × 1
487,872 × 1
98,304 × 1
37,632 × 1

Table 3.  Hardware, software, and model training configuration.

 

Scientific Reports |        (2025) 15:39647 16| https://doi.org/10.1038/s41598-025-23350-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Hardware and software specifications
The hardware and software specifications used in these experiments are displayed in Table 3.

Results and discussion
The proposed models, utilizing random forest with 100 estimators, are employed to estimate blood pressure at 
the systolic and diastolic levels, and their results are compared. The study’s findings are presented in Table 4, 
which offers a thorough summary of the accuracy obtained by each transfer learning model and demonstrates 
how successful they are as feature extractors for precise systolic blood pressure (SBP) and diastolic blood pressure 
(DBP) measurement.

The results must satisfy the criteria set by AAMI clinical78 and BHS standards79. As per AAMI standard, 
the mean difference between a device and mercury standard should lie within 5 mm Hg and not exceed a SD 
of 8 mm Hg. The BHS’s objectives align with those of the AAMI standard. Table 5 lists the BHS classifications.

The BHS clinical standard states the validity of blood pressure measurement devices or algorithms based on 
the percentage of BP readings that fall within predefined error threshold when compared to a reference standard. 
The grading criteria are as follows:

•	 Grade A: It requires ≥ 60% of BP samples to be within ± 5 mmHg, ≥ 85% within ± 10 mmHg, and ≥ 95% with-
in ± 15 mmHg.

•	 Grade B: It requires ≥ 50% of BP samples to be within ± 5 mmHg, ≥ 75% within ± 10 mmHg, and ≥ 90% with-
in ± 15 mmHg.

•	 Grade C: It requires ≥ 40% of BP samples to be within ± 5 mmHg, ≥ 65% within ± 10 mmHg, and ≥ 85% with-
in ± 15 mmHg.

Grade A corresponds to the highest level of accuracy, followed by grade B and then grade C.
The achieved results (Figs.  7 and 8) illustrate the efficacy of various DL models in estimating BP using 

photoplethysmography (PPG) signals. Notably, the ConvNeXtTiny model and VGG16 exhibit the best 
performance, with MAE of 2.95 mmHg and 3.94 mmHg, respectively, for SBP and 1.66 mmHg and 2.56 mmHg, 
respectively, for DBP. These values fall well within the clinical standard of acceptable error. Additionally, both 
models maintain a relatively low standard deviation of 4.11 mmHg and 5.19 mmHg for SBP and 2.6 mmHg and 
3.8 mmHg for DBP. This further confirms its reliability in terms of standard deviation. Even though the result 
achieved for ConvNeXtTiny and VGG16 had minimum error but the result obtained using the other three 
models also indicated good performance and compliance with the AAMI standard for DBP.

Fig. 7.  Comparison of model’s mean absolute error (MAE).

 

Grade

Absolute difference between standard 
and test device (%)

 ≤ 5 mmHg  ≤ 10 mmHg  ≤ 15 mmHg

A 60 85 95

B 50 75 90

C 40 65 85

D Worse than C

Table 5.  British hypertension society classifications79.
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Considering the BHS criteria for grade A, where results should be greater than 60%, 85%, and 95%, the 
models’ performance can be assessed as follows:

•	 For Systolic Blood Pressure (SBP):
•	 ConvNeXtTiny meets the criteria A (Fig. 9) for all error thresholds, showcasing robust performance with high 

accuracy percentage (81.33%, 97.33% and 96.33% of the input data falls within the error of < 5 mmHg, within 
< 10 mmHg, and within < 15 mmHg respectively). And VGG16 also meets the criteria A with 68%, 96.67% 
and 98.67% of the input data that falls within the specified error.

•	 Albeit the performance of ResNet50, InceptionV3, NASNetLarge, and InceptioResNetV2 aligns closely with 
grade A criteria for all error thresholds, it can be categorized as meeting grade B criteria (Figure 9) due to its 
proximity to the established benchmarks.

•	 For Diastolic Blood Pressure (DBP):
•	 All models perform well within grade A criteria (Fig. 10) for all error thresholds, with most of their estimates 

falling within the defined ranges.

Thus, the results show that the features extracted from PPG signals by the pretrained CNN models capture 
physiologically relevant information that correlates with blood pressure variations. The PPG signal reflects 
change in blood volume as heart pumps, which in turn is exhibited in their time–frequency representation. 
The scalograms obtained using continuous wavelet transform capture the dynamic variations of physiological 

Fig. 9.  Comparative performance of the Models’ SBP error as per British Hypertension Society (BHS).

 

Fig. 8.  Comparison of models’ standard deviation (SD).
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data such as the systolic correlates with the rising edge and diastolic blood pressure with dicrotic notch. The 
DL models are capable of identifying intricate patterns in these time–frequency representation, which are 
challenging to capture manually. This complies with the clinical standard as discussed earlier.

Another important statistical metric used to quantify the linear relationship between two variables is the 
correlation coefficient (Pearson) which is denoted by ‘r’. Its value lies between −1 and 1. The value ‘−1’ indicates 
perfect negative linear relationship, ‘ + 1’ indicates perfect positive linear relationship, and no linear relationship 
is indicated by −0. The correlation coefficient between two variables X and Y is calculated by using following 
formula:

	

r =
∑

(Xi − X)(Yi − Y )√(
Xi − X

)2(
Yi − Y

)2

where Xi and Yi are the individual records, X  and Y  are the mean of X and Y respectively.
In context of blood pressure estimation, Pearson correlation coefficient can be used to find out how close the 

estimated SBP and DBP values are with respect to target SBP and DBP. It provides a more complete picture of the 
result reliability. Table 6 shows that ConvNeXtTiny and VGG16 has greater correlation coefficient around 0.8 for 
both SBP and DBP as compare to other four models.

In summary, the presented results indicate that the models, particularly ConvNeXtTiny and VGG16, largely 
satisfies AAMI standard in BP estimation. Both achieved grade A for both SBP and DBP estimation, thereby 
meeting the BHS standard with good correlation. The superior performance is due to the fact that it has a 
consistent architecture with uniform filter and max-pooling dimensions. The other four models met the BHS 
clinical standard for DBP estimation with grade A and approached grade A for SBP estimation, demonstrating 
their effectiveness and proximity to meeting the BHS standard.

These findings highlight the potential of using pretrained models, such as VGG16, ResNet50, InceptionV3, 
NASNetLarge, InceptionResNetV2 and ConvNeXtTiny, as reliable tools for accurate BP estimation, satisfying 
the standards established by both AAMI and BHS in clinical blood pressure monitoring.

Pearson correlation coefficient (r) SBP DBP

VGG16 0.879 0.729

ConvNeXtTiny 0.826 0.831

ResNet50 0.589 0.342

Inceptionv3 0.399 0.195

NASNetLarge 0.427 0.199

InceptionResNetV2 0.448 0.214

Table 6.  Pearson correlation coefficient.

 

Fig. 10.  Comparative analysis of the Models’ DBP error as per British Hypertension Society (BHS).
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Benchmarking against established algorithms
In this analysis, an evaluation of the proposed method has been presented alongside several well-established 
approaches in the clinical field for BP estimation using physiological signals. The various algorithms were 
conducted on the MIMIC II and MIMIC III databases, employing various types of input features and machine 
learning models for comparison (Table 7).

According to the research papers, upon comparing their results, it has been discerned that the findings 
present a challenging perspective. Specifically, the obtained results demonstrate a notable advancement in the 
medical sciences field, specifically in the estimation of blood pressure values as per clinical standards.

This method grasps scalogram-based features and employed six pretrained models for prediction. The results 
demonstrate promising performance for ConvNeXtTiny and VGG-16 with mean absolute errors (MAE) in 
compliance with AAMI standard, underlining its potential for accurate blood pressure estimation. Furthermore, 
this approach meets BHS criterion with grade A, attesting to its clinical validity. For remaining four models, 
satisfying AAMI standard but achieved grade A BHS standard for DBP and grade B BHS standard for SBP. A 
comparative analysis was conducted exclusively with studies employing deep learning models, as this approach 
incorporates deep features in conjunction with deep learning architectures.

The primary novelty of the proposed model is highlighted in the study, which focuses on the application of 
the Morlet wavelet transform which results in so called scalograms and its distinctive features are highlighted 
below:

	(a)	 Multiresolution analysis:

	The model captures both localized and global fluctuations in the time-frequency domain because of the mul-
tiresolution analysis of the PPG signals provided by the Morlet wavelet transform. Comparing this method 
to conventional time-domain techniques yields a more thorough description of the underlying physiological 
dynamics.

	(b)	 Frequency localization:

	Morlet wavelet transform is very useful for evaluating non-stationary signals such as PPG, because it offers su-
perior frequency localization compared to Fourier-based techniques. Thus, the model filter out unnecessary 
information and noise while focusing on specific frequency components that are relevant to blood pressure 
dynamics.

Author Database Type of input Model

Result

ValidationME MAE S.D

Our Method MIMIC II Scalogram based features
VGG16 SBP = 0.24

DBP = 0.08
SBP = 3.94
DBP = 2.56

SBP = 5.19
DBP = 3.8

Met both AAMI and BHS 
Criteria (Grade A)

ConvNeXtTiny SBP = 0.64
DBP = 0.47

SBP = 2.95
DBP = 1.66

SBP = 4.11
DBP = 2.60

Met both AAMI and BHS 
Criteria (Grade A)

Weinan Wang54 MIMIC II Features extracted from 
Visibility Graphs

AlexNet and 
Ridge regression

SBP = 0.00, 
DBP = 0.58 SBP = 8.46, DBP = 5.36 Met AAMI and Grade A BHS 

only for DBP

Yung-Hui Li80 MIMIC II 7 Temporal features BiLSTM SBP = 6.726,
DBP = 2.516

SBP = 14.505,
DBP = 6.442

Met AAMI and Grade A BHS 
only for DBP

Harfiya36 MIMIC II Time series PPG and its 
derivatives

LSTM based 
autoencoder

SBP = 4.05, 
DBP = 5.25 SBP = 2.41, DBP = 3.17 Met AAMI for both

Jamal 
Esmaelpoor et. 
al.81

MIMIC II Deep features CNN-LSTM SBP = 1.91, 
DBP = 0.67 SBP = 5.55, DBP = 2.84 Met AAMI and Grade A BHS 

Std. for both

Da Un Jeong et. 
al. (2021)86 MIMIC Morphological and 

Temporal features CNN–LSTM SBP = 0.0,
DBP = 0.2

SBP = 1.6,
DBP = 1.3

Met AAMI and Grade A BHS Std 
for both but used 48 patients’ data

Sen Yang82 PPG and 
ECG

Time series PPG, ECG 
signals and Physical 
Characteristics

CNN and LSTM SBP = 4.43, 
DBP = 3.23 SBP = 6.09, DBP = 4.75 Met AAMI and Grade A BHS 

only for DBP

El-Hajj37 MIMIC II
52 Temporal features from 
Time series PPG and its 
derivatives

LSTM and GRU SBP = 4.51, 
DBP = 2.6 SBP = 7.81, DBP = 4.41 Met AAMI for DBP

Zheming Li 
et.al.83 MIMIC—II Time series PPG GRNN SBP = 3.96, 

DBP = 2.39
Met AAMI and Grade A BHS 
Std. for both

Mingzheng Yu 
et. al.43

MIMIC—
III

Time series PPG and its 
derivatives ARIU SBP = 4.75, 

DBP = 2.81 SBP = 6.72, DBP = 4.59 Met AAMI and Grade A BHS 
Std. for both

Kai zhou et. al.84 MIMIC II Time series PPG and 
Intrinsic Mode Functions EEMD and TCN SBP = -1.55, 

DBP = 0.41 SBP = 9.92, DBP = 4.86 Met AAMI and Grade A BHS 
only for DBP

Table 7.  Performance benchmarking of blood pressure estimation models against established algorithms.
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	(c)	 Adaptive representation:

	In situations where the signal contains complex patterns as in case of PPG signals, scalograms provide a more 
reliable depiction of such PPG signals. The Morlet wavelet technique gives the PPG signals an adaptable rep-
resentation, thus the model can capture changes in frequency content over time. Its adaptability is crucial for 
precisely characterizing the dynamic nature of blood pressure fluctuations since blood pressure changes can 
vary significantly in response to physiological and environmental stimuli.

	(d)	 Integration of pre-trained models with scalogram:

	By using the Morlet wavelet transform in conjunction with pre-trained models for feature extraction, the model’s 
ability to extract discriminative representations from the scalograms is enhanced. Due to this integration, 
the model performs better on blood pressure estimation tasks by utilizing the benefits of both deep learning 
expressiveness and wavelet-based signal processing.

Integrating Morlet wavelet pre-processing into blood pressure estimation models can significantly enhance 
their performance. This blood pressure estimation method, that uses a Morlet wavelet preprocessing based 
scalograms of raw PPG signals and it complies with clinical standards. Although PPG signals and derivatives 
were included in the paper36,37,43, our focus on utilizing scalograms emphasizes the effectiveness of Morlet 
wavelet preprocessing in achieving challenging results through a simplified input method. The Morlet wavelet 
transform enhances the modeling process by capturing the nonlinear interactions present in physiological data, 
thereby improving the accuracy and robustness of BP estimation.

Overall, the proposed method exhibits competitive performance in comparison to prior works, demonstrating 
its potential as a reliable tool for blood pressure estimation in clinical applications by achieving results comparable 
to those of the previous studies listed in the above table. This thorough assessment serves as a baseline for further 
studies in this area.

The outcomes of the aforementioned implementation are as follows:

	(a)	 Scalogram-based transfer learning: The proposed algorithm presents a novel method for accurate blood 
pressure measurement from PPG data by combining transfer learning with scalogram-based preprocessing.

	(b)	 Data-driven solution: This research provides a simplified, data-driven methodology for continuous blood 
pressure monitoring, increasing efficiency and reliability by doing away with human feature engineering.

	(c)	 Model evaluation and selection: The study presents a methodical comparison of several deep learning mod-
els and shows that the most accurate blood pressure predictions are obtained when random forest regres-
sion is employed in conjunction with the ConvNeXtTiny and VGG16 models.

	(d)	 Standards compliance: The performance of the suggested approach is carefully assessed in accordance with 
accepted standards (AAMI and BHS), demonstrating its dependability for practical blood pressure moni-
toring applications.

	(e)	 Pearson connection Coefficient: For both ConvNextTiny and VGG16, a significant correlation was found 
between the estimated and true BP values.

Conclusions
In this study, a reliable and clinically validated approach for PPG based non-invasive blood pressure estimation 
using transfer learning is proposed. The proposed method, being a unique pathway for blood pressure 
estimation, uses transfer learning framework integrating deep features obtained from scalograms with Random 
Forest regression. The pretrained CNN models, such as VGG16, ResNet50, InceptionV3, NASNetLarge, 
InceptionResNetV2, and ConvNeXtTiny which are demonstrated to be effective in the study as feature extractors 
for estimating SBP and DBP from photoplethysmography (PPG) signals. The findings demonstrated the six 
models’ potential for accurate blood pressure measurement in clinical settings by showing that they all correlated 
well and met the AAMI’s accuracy standards for SBP and DBP estimation.

Additionally, the models performed very well when satisfying the BHS clinical criteria; ConvNeXtTiny and 
VGG16, for example, achieved grade A results for both SBP and DBP estimate. The other models approached 
grade A for SBP estimation and successfully satisfied the BHS criteria for DBP estimation. These findings suggest 
that pretrained models have the potential to enhance blood pressure monitoring accuracy, contributing to 
improved healthcare decision-making.

For future scope, further investigations can focus on expanding the analysis to include a larger dataset 
encompassing diverse patient populations. But, in handling larger dataset, the application of Morlet wavelet 
and pre-trained CNN models may require scalable computational resources, effective GPU acceleration, and 
optimised data pretreatment for computational efficiency, with any implementation issues taken into account. 
In additional to the this, exploring different CNN architectures and evaluating their performance on specific 
subgroups or medical conditions could provide valuable insights.

One potential area could be the evaluation of the impact of model performance at different frequency 
ranges in PPG signals, which provides an opportunity to increase the depth of the analysis. Incorporating 
other physiological signals and exploring multimodal approaches may also enhance the accuracy of blood 
pressure estimation. Finally, conducting real-time experiments and deploying the developed models in clinical 
environments would offer practical validation and help bridge the gap between research and clinical application. 
However, the implementation of this future scope could present challenges, such as the need to optimise for real-
time processing constraints, handle legal and ethical issues about patient privacy, and ensure robust adaptability 
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to various clinical data. These challenges emphasise the necessity of implementing a comprehensive plan to 
successfully integrate trained models into changing healthcare environments.

Data availability
In this study, the publicly available dataset was used for analysis. The dataset is accessible from University of 
California Irvine (UCI) Machine Learning Repository at the following link: ​h​t​t​p​s​:​​/​/​a​r​c​h​​i​v​e​.​i​c​​s​.​u​c​i​.​​e​d​u​/​d​​a​t​a​s​e​t​​/​
3​4​0​/​c​​u​f​f​%​2​B​​l​e​s​s​%​​2​B​b​l​o​o​​d​%​2​B​p​r​​e​s​s​u​r​e​​%​2​B​e​s​t​i​m​a​t​i​o​n.
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