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Genetic variants reshape the
m°A epitranscriptome and drive
transcriptomic reprogramming in
colorectal cancer
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Genome-wide association studies (GWAS) have identified numerous single-nucleotide polymorphisms
(SNPs) associated with various diseases, including cancer. However, the mechanisms by which these
SNPs contribute to disease susceptibility remain largely unclear. While recent studies have explored
the transcriptional impact of disease-associated SNPs, their role in post-transcriptional regulation has
been less extensively investigated. In this study, we investigated whether cancer-associated SNPs
influence gene expression by altering N6-methyladenosine (m®A) RNA methylation. We collected
GWAS-identified SNPs across nine cancer types and integrated these with matched tumor and normal
m&A RNA immunoprecipitation sequencing (m°A-seq) and RNA sequencing (RNA-seq) datasets. We
first identified differentially methylated m®A sites and assessed whether cancer-associated SNPs were
enriched within these regions. These analyses revealed that cancer-associated SNPs were significantly
enriched within hypermethylated m®A regions in colon cancer. Integrative analysis revealed that
SNPs enriched in m®A-modified regions are associated with altered gene expression and RNA splicing,
suggesting that m®A methylation mediates the post-transcriptional impact of genetic variants.
Experimental validation further confirmed altered gene expression following ALKBH5 knockdown,
consistent with patient-derived data. Collectively, our findings support a novel mechanistic connection
between genetic variants and RNA methylation-driven transcriptomic regulation in colorectal cancer,
underscoring the epitranscriptome as a potential axis of oncogenic control.
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Abbreviations

A3SS Alternative 3’ splice site
A5SS Alternative 5 splice site
CDS Coding sequence

DEG/DEGs Differentially expressed gene(s)
DMP/DMPs  Differential m°A peak(s)

DRACH D=A/G/U,R=A/G,H=A/C/U

eQTL Expression quantitative trait loci

FPKM Fragments per kilobase of transcript per million mapped reads
GWAS Genome-wide association study

LD Linkage disequilibrium

IncRNA Long non-coding RNA
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m°A N6-methyladenosine

mPA-seq mC®A RNA immunoprecipitation sequencing
MXE Mutually exclusive exon

RI Retained intron

RNA-seq RNA sequencing

SE Skipped exon

SNP Single nucleotide polymorphism
sQTL Splicing quantitative trait loci
SRA Sequence read archive

TCGA The cancer genome atlas

TTS Transcription termination site
UTR Untranslated region

VSEA Variant Set Enrichment Analysis

N6-methyladenosine (m°®A), the most abundant internal modification in eukaryotic messenger RNAs
(mRNA)"2, plays a pivotal role in shaping the fate of transcripts by influencing RNA stability>*, splicing™®,
localization®”, and translation®®°. The deposition and removal of m°A are orchestrated by methyltransferase
(“writer”) and demethylase (“eraser”) enzymes, whereas RNA-binding proteins (“readers”) specifically recognize
the modification and mediate downstream regulatory effects on RNA metabolism, establishing a dynamic and
reversible control layer!®!!. Accumulating evidence suggests that dysregulation of m°A contributes to a wide
range of human diseases, including cancer'?14 where it contributes to tumor initiation, progression, and
immune evasion by reshaping transcriptomic outputs in both oncogenes and tumor suppressors!»14-16,

Despite increasing interest in m®A-dependent gene regulation, the extent to which genetic variants contribute
to shaping the m®A landscape remains poorly defined, although epigenetic and environmental factors have been
shown to influence its dynamics!”"!®. Given that m®A deposition depends on specific sequence and structural
contexts such as the DRACH motif (D = A/G/U, R = A/G, H = A/C/U)", it is plausible that single-nucleotide
polymorphisms (SNPs) may disrupt or create m®A consensus sites?’, thus altering the modification status
of target transcripts in a genotype-dependent manner?!. Such changes could in turn affect RNA stability or
processing, ultimately influencing post-transcriptional gene regulation®>%.

Genome-wide association studies (GWAS) have uncovered numerous SNPs associated with cancer
susceptibility?»?>. However, the majority of these SNPs are located in noncoding regions of the genome?,
making it difficult to assign their biological functions. Traditional functional interpretations have focused on
the potential for noncoding SNPs to affect transcription factor binding, enhancer activity, promoter accessibility,
or chromatin organization?”?%, Although these models are well established, the potential of noncoding SNPs
to act through post-transcriptional mechanisms remains underexplored. Recent work has suggested that RNA
modifications, particularly m®A, may constitute an emerging layer of gene regulation through which genetic
variants influence the transcriptome?®-3!. Although some studies have begun to explore these possibilities,
the functional consequences of SNP-driven m°®A modulation remain largely uncharacterized. Nevertheless,
comprehensive investigations into the mechanistic interplay between cancer-associated SNPs and the m°A
methylome are still lacking and are needed to define their functional impact on the transcriptome.

In this study, we hypothesize that cancer-associated SNPs may contribute to transcriptomic changes by
altering m®A RNA modification sites. To test this hypothesis, we performed an integrative analysis of GWAS
data from nine cancer types, alongside matched m°A RNA immunoprecipitation sequencing (m°A-seq) and
RNA sequencing (RNA-seq) datasets derived from tumor and normal tissues. We examined whether cancer-
associated SNPs are enriched in regions with differential m°A methylation, and whether these variants are
associated with changes in transcript levels or alternative splicing patterns. Our results reveal that m°A may
function as a post-transcriptional mediator of genetic variant effects in cancer.

Results

Transcriptome-wide m®A profiling reveals distinct methylation landscapes between tumor
and normal tissues

To examine the relationship between cancer-associated SNPs and alterations in m°®A methylation patterns, we
first analyzed m°A-seq data from nine cancer types and matched normal tissues. The m°A-seq datasets were
obtained from the Sequence Read Archive (SRA) database (Supplementary Fig. S1A)%2. Raw sequencing reads
were preprocessed using Trim-Galore to remove adapters and low-quality bases, and aligned to the human
reference genome (GENCODE hg38) using STAR®®. The aligned data were subsequently used for gene expression
quantification, alternative splicing detection, and m°A peak identification as summarized in the overall analysis
pipeline (Fig. 1A). Gene expression levels in tumor and normal samples were quantified using HTSeq, followed
by differential expression analysis with DESeq2 to identify differentially expressed genes (DEGs) in tumors™®.
Alternative splicing differences were detected using rMATS-turbo to identify differentially spliced genes between
tumor and normal tissues.

We next identified m°A-enriched peaks from the m®A-seq data using exomePeak and annotated their
locations within transcript features®”. Motif enrichment analysis confirmed that these peaks were significantly
enriched for the canonical DRACH sequence, a known motif for m®A deposition (Supplementary Fig. S1B)383.
We also annotated the genomic distribution of all detected mPA peaks, including intronic, exonic, intergenic,
and regulatory regions, to provide a more complete reference for downstream analyses (Supplementary Fig.
S1C). Differential m°A peaks (DMPs) were identified by comparing m°A enrichment levels between tumor
and normal samples. These DMPs served as the basis for subsequent analyses, including the evaluation of their
overlap with cancer-associated SNPs and transcriptomic features in multiple cancer types.
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Fig. 1. Overview of m®A-seq analysis pipeline and summary of peak distribution across various cancer types.
(A) Schematic workflow of the analysis pipeline used in this study. (B) Metagene plot showing the distribution
of m°A peaks along transcripts from various tissue types. (C) Bar plot of differential m®A peaks identified by
exomePeak, showing the number of peaks increased (red) or decreased (blue) in tumor tissues across different
cancer types (adjusted P<0.05, after Benjamini-Hochberg multiple correction).

To further characterize the biological relevance of m°A dynamics, we examined both the positional
distribution and cancer-specific variation of m®A methylation. Using metaplotR, we visualized the density of m°A
peaks across transcript regions and found that peaks were predominantly enriched in the 3" untranslated regions
(3'UTRs) and coding sequences (CDSs) across the nine cancer types analyzed (Fig. 1B)*. This distribution
pattern is consistent with prior findings on the positional preference of m°A across transcripts*!. In addition
to these spatial patterns, previous studies have also reported that m°A levels vary across cancer types, with
some cancers exhibiting increased m°A methylation while others display decreased levels compared to normal
tissues!*%%3. In line with these findings, m°A modification changes exhibited substantial heterogeneity across
cancer types, with both up-regulated and down-regulated DMPs identified (Fig. 1C). In particular, cancers
exhibited increased m°A methylation in colon, breast, lung, ovarian, prostate, renal cell, and salivary cancers,
with colon and salivary cancers showing a greater number of up-regulated DMPs compared to down-regulated
DMPs. These results suggest that cancer-type-specific reprogramming of m°A methylation may contribute to
transcriptomic remodeling in the tumor microenvironment, a possibility we explore further in the following
analyses.

Colon cancer-specific enrichment of genetic variants in differential m°A regions

To evaluate whether m®A changes were associated with genetic variation, Variant Set Enrichment Analysis
(VSEA) was used to test for enrichment of cancer-associated SNPs within DMP regions (Figs. 1A and 2A)*.
In this analysis, we integrated GWAS data with m°A-seq profiles across nine cancer types. We retrieved lead
SNPs and their linkage disequilibrium (LD) SNPs from the GWAS Catalog to construct a comprehensive set
of cancer-associated variants**. These SNPs were intersected with DMPs previously identified between tumor
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Fig. 2. Integration of differential m°A peaks in multiple tumor tissues with cancer-associated SNPs via Variant
Set Enrichment Analysis (VSEA). (A) Workflow of VSEA combining cancer associated SNPs from GWAS and
mPA-seq data from different cancer types. (B) Bar plot shows the counts of lead SNP and the line plot shows
the number of total SNPs (lead SNPs and LD SNPs) across cancer types. (C) Stacked pie graph shows the
genomic distribution of cancer-associated lead SNPs in different cancer types. (D) Enrichment scores of colon
cancer-associated SNPs within the differential m®A peaks based on VSEA. Enrichment scores were calculated
separately for increased and decreased peaks in tumors. A red dot indicates statistical significance (P<0.05,
permutation test, n=1,000).

and normal samples (Fig. 1C). To assess whether this overlap was greater than expected by chance, we applied
VSEA, comparing observed intersections against a randomized background (Fig. 2A). This analysis was
designed to determine whether cancer-associated SNPs are non-randomly distributed within regions of altered
mPA methylation, providing a potential mechanistic link between genetic variation and m°A epitranscriptomic
regulation.

We first quantified the number of lead SNPs and total SNPs (lead + LD) associated with each cancer type
to estimate the differences in genetic variant burden in different cancer types. As shown in Fig. 2B, breast and
prostate cancers exhibited the highest number of lead SNPs, while colon, cervical, oral, renal cell, and salivary
cancers displayed substantially fewer. This disparity implies that the contribution of inherited genetic variants to
m°A regulatory dynamics may differ across tissue types.

To understand the genomic distribution of these SNPs, we annotated them by region, including exonic,
intronic, intergenic, promoter, and transcription termination site (TTS) regions (Fig. 2C). As expected, most
SNPs were located in intronic and intergenic regions, followed by exonic and regulatory elements, consistent
with prior reports that disease-associated variants often reside in noncoding regions*®’.
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We next examined whether DMPs, classified as increased peaks or decreased peaks in tumors compared to
normal, were significantly enriched for cancer-associated SNPs in each corresponding cancer type. Strikingly,
among all nine cancer types analyzed, only colon cancer showed a significant enrichment of cancer-associated
SNPs within increased peaks (Fig. 2D; Supplementary Table S1; adjusted P=0.0023 based on VSEA after
Benjamini-Hochberg multiple correction). This enrichment was assessed using permutation-based sampling,
comparing the observed overlap between SNPs and DMPs to a null distribution generated from randomly
selected genomic regions. This finding indicates that genetic variation may play a unique role in shaping m°A
remodeling in colon cancer, highlighting a genetic-epitranscriptomic axis that is specifically observed across
certain tumor types.

Colon cancer-associated SNPs overlapping with m®A methylation may contribute to
transcriptomic changes

Given that colon cancer exhibited significant enrichment of cancer-associated SNPs in their differentially m®A-
modified regions, we next investigated whether these SNPs are directly positioned within altered m°A peaks.
We performed an overlap analysis between colon cancer-associated SNPs and hypermethylated m®A peaks,
followed by annotation of their genomic positions (Fig. 3A). Genomic annotation revealed that a majority of
SNPs overlapping with hypermethylated m®A peaks in colon cancer were located in intronic regions (60%).
This annotation summarizes the positional distribution of m®A-overlapping colon cancer-associated SNPs.
A permutation test confirmed that the observed proportion of intronic SNPs was within the expected range
given the genomic distribution of colon cancer-associated SNPs (adjusted P = 0.99986), suggesting no statistical
enrichment. By contrast, SNPs located in exonic and promoter regions were statistically enriched compared
to the null distribution (adjusted P = 0.000025 and 0.001625, respectively), indicating potential regulatory
relevance. To facilitate further investigation, we compiled a comprehensive list of colon cancer-associated SNPs
overlapping with hypermethylated m°A peaks, including rsIDs, genomic locations, eQTL/sQTL annotations,
and mC®A peak information (Supplementary Table S2). These overlapping SNPs were unevenly distributed across
chromosomes, with higher numbers observed on chromosomes 11, 15, and 21 (Fig. 3B). To determine whether
this chromosomal distribution reflected meaningful enrichment rather than random variation, we conducted
a permutation test. In each of 100,000 iterations, we randomly sampled the same number of SNPs from the full
set of colon cancer-associated SNPs and recorded their chromosomal locations. This generated a background
distribution for SNP counts per chromosome. Compared to this background, chromosome 21 was significantly
enriched (adjusted P < 0.05), while chromosomes 11 and 15 did not show enrichment beyond expectation.
Previous cancer genomics studies have reported the recurrent chromosome arm level genetic rearrangement
in chromosome 21q in microsatellite instability-positive (MSI) primary colon cancers, which aligns with our
enrichment findings*®. These findings suggest that chromosome 21 may harbor a higher density of functionally
relevant cancer-associated SNPs within hypermethylated m®A regions.

To gain functional insight into the 52 colon cancer-associated SNPs located within DMPs and narrow down
to the functionally associated SNPs, we annotated them as expression quantitative loci (eQTLs) or splicing
quantitative trait loci (sQTLs) using the snpXplorer platform®. This analysis identified 25 SNPs located
within hypermethylated m°®A peaks in tumors, which were predicted to influence transcript expression and/or
splicing (Supplementary Fig. S3A and Table S2). We subsequently extracted the target genes of these SNPs and
categorized them according to QTL type to identify candidates potentially regulated at the level of expression,
splicing, or both (Fig. 3C).

To assess whether these QTL-associated genes display differential transcript levels in tumors, we analyzed
input RNA-seq data matched to the m®A-seq samples from colon cancer and corresponding normal tissues, as
illustrated in the workflow in Fig. 1A. First, we identified DEGs in colon cancer compared to normal tissues
and generated a heatmap representation of global expression changes (Supplementary Fig. S3B). By integrating
these expression data with our eQTL results, we identified RIBC2 and MCM3AP-AS] as genes that not only
carried m°A-associated eQTL signals but were also significantly upregulated in colon tumors compared
to normal tissues (Fig. 3D). These observations were further supported by TCGA pan-cancer data showing
elevated expression of RIBC2 mRNA and MCM3AP-AS1 IncRNA in colon adenocarcinoma compared to normal
tissues (Supplementary Fig. S3C and S3D). These findings support a possible mechanistic link between m®A-
associated SNPs and altered gene expression in colon cancer. According to the TCGA pan-cancer data, both
genes are also upregulated in multiple other cancer types compared to normal. This broader expression pattern
is consistent with previous studies reporting that RIBC2 and MCM3AP-AS] are differentially expressed and
clinically relevant in various human cancers beyond colon cancer, likely through mechanisms independent of
m°A regulation®->2, While these findings highlight the potential importance of these genes across multiple
cancer types, the specific contribution of m°A-associated SNPs to their regulation remains to be elucidated. We
compiled an extended list of colon cancer-associated m®A SNPs located within the RIBC2 and MCM3AP-AS]
loci, identified through integrative annotation including HaploReg (Supplementary Table S3). As a next step, we
examined the potential involvement of m®A-associated SNPs in alternative splicing regulation in colon cancer.
Using the same RNA-seq dataset, we performed a genome-wide splicing analysis to identify differentially spliced
genes (DSGs) in colon cancer relative to normal tissue. This analysis revealed widespread splicing alterations in
skipped exons (SE), alternative 5" or 3’ splice sites (A5SS, A3SS), mutually exclusive exons (MXE), and retained
introns (RI) (Supplementary Fig. S3E). Among the genes containing m°A-SNP overlaps, FAM118A and TRIM4
showed significant A3SS alterations (Fig. 3E). These findings suggest that m®A-associated SNPs may contribute
to alternative splicing regulation in a transcript-specific manner, potentially influencing cancer-associated
splicing patterns.
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Fig. 3. Functional impact of m ¢ A-associated SNPs in colon cancer. (A) Genomic distribution of colon
cancer-associated SNPs overlapping with increased m°A peaks. We define these SNPs as m®A-associated SNPs
in colon cancer. (B) Chromosomal distribution of m°®A-associated SNPs. (C) Annotation of m®A-associated
SNPs using eQTLs and sQTL information based on snpXplorer*®. Red box indicates the presence of eQTLs
and/or sQTLs of corresponding SNPs. (D) Expression of RIBC2 and MCM3AP-ASI in tumor vs. normal
tissues based on RNA-seq data. Statistical significance was determined based on adjusted P-values (Wald test in
DESeq2 followed by Benjamini-Hochberg multiple correction). (E) Evaluation of alternative splicing events for
five sQTL-related genes detected using rMATS-turbo. Red indicates the presence of alternative splicing events
of corresponding genes in colon cancers compared to normal. The asterisks indicate statistical significance: * P
<0.05,** P<0.01, ** P < 0.001.
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Fig. 4. Orthogonal validation of differentially expressed genes and differential splicing events in colon
cancer potentially linked with m®A-associated SNPs. (A) RT-qPCR showing increased expression of RIBC2
and MCM3AP-ASI after ALKBH5 knockdown in DLD1 and CCD841 cells. Statistical significance was
determined using two-tailed unpaired t-test. Error bars represent standard deviation (SD). (B) Upregulation
of RIBC2 and MCM3AP-ASI in colon tumor tissues compared to normal tissues based on orthogonal RNA-
seq dataset (PRJNA742008). Statistical significance was determined based on adjusted P-values (Wald test in
DESeq?2 followed by Benjamini-Hochberg correction). (C) Global identification of differential splicing events
between tumor and normal tissues categorized by event type. (D) Alternative splicing events of selected genes
identified from the PRJNA742008 dataset using rMATS-turbo. Red boxes indicate the presence of alternative
splicing events of corresponding genes in colon cancers compared to normal. The asterisks indicate statistical
significance: * P<0.05, ** P<0.01.

Genetic variants modulate m°®A modification and drive post-transcriptional rewiring in
colorectal cancer

The observed association between colon cancer-associated SNPs and altered m°A methylation, along with
accompanying changes in gene expression and splicing, led us to investigate whether these transcriptomic
alterations are mediated by m®A modification. We performed functional assays using the colon cancer cell line
DLD1 and the normal colon epithelial cell line CCD841. In both cell lines, we inhibited m®A demethylation by
knocking down ALKBH5, an m®A demethylase known to exert tumor-suppressive functions in colon cancer. In
parallel, to assess concordance with patient-derived data and clinical relevance, we analyzed a publicly available
dataset (PRJNA742008) containing matched m®A-seq and RNA-seq data from ten colon cancer patients. This
complementary analysis allowed us to assess the regulatory effects of m®A-SNPs in both experimental systems and
patient-derived tissues. Upon ALKBHS5 depletion, both RIBC2 and MCM3AP-AS1 transcripts were upregulated,
supporting the hypothesis that m®A modification promotes the expression of these genes. (Fig. 4A). Consistent
with this observation, analysis of dataset from an orthogonal cohort of colon cancer patients (PRJNA742008)
revealed that both genes were significantly upregulated in tumor tissues, supporting the reproducibility of our
findings in an independent dataset (Fig. 4B).

Using transcriptome data from PRJNA742008, we additionally investigated differential splicing events
potentially regulated by m®A-SNPs in colon cancer. Analysis with rMATS identified differential splicing events
between tumor and normal tissues (Fig. 4C). Notably, FAMI118A showed RI events, and TRIM4 showed SE
events in tumor tissues (Fig. 4D). These splicing alterations were distinct from the A3SS events observed in
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our earlier analysis, suggesting that m®A-associated SNPs may regulate splicing in a context- and transcript-
dependent manner. Moreover, while earlier analyses emphasized increased A3SS in tumor tissues, our current
findings reveal a broader spectrum of splicing changes, underscoring the complex regulatory roles of m°A-SNP
interactions in colorectal cancer.

Discussion

Our findings uncover a previously underappreciated regulatory axis suggesting that single-nucleotide
polymorphisms (SNPs) may modulate the transcriptome through m®*A RNA methylation. By integrating m®A-
seq, RNA-seq, and genome-wide association studies (GWAS) across nine cancer types, we identified significant
enrichment of cancer-associated SNPs within dynamically remodeled m°A regions.

Notably, among the nine cancer types analyzed, only colon cancer exhibited significant enrichment of
SNPs within m®A peaks that gained methylation in tumor tissues, passing multiple testing correction. While
we cannot definitively resolve the reason for this tissue-specific enrichment without deeper understanding of
tissue-specific epitranscriptomic regulation, it is possible that colorectal tissues harbor biological features that
increase the likelihood of interaction between germline variation and m°A modification. In addition, although
variant burden alone does not fully explain the observed enrichment, differences in the number and genomic
distribution of GWAS-identified SNPs across cancer types (Fig. 2B and C) may have contributed in part to
detection sensitivity or statistical power. For example, although colon cancer harbored fewer associated SNPs
than breast or prostate cancers, it showed significant enrichment, whereas other low-SNP cancers such as oral
or renal did not. This suggests that variant burden may interact with tissue-specific regulatory environments to
shape the observed enrichment pattern. Consistent with this interpretation, Liu et al. (2020) reported that m°A-
related SNPs are strongly associated with colorectal cancer based on independent Disease Ontology enrichment
analysis, reinforcing the biological plausibility of our findings™.

To explore potential functional consequences of m°A-associated SNPs, we focused on cancer-associated
variants that overlapped with hypermethylated m°®A peaks and were annotated as expression or splicing
quantitative trait loci (eQTLs or sQTLs). These regions exhibited the strongest enrichment of disease-linked
variants and showed frequent associations with changes in transcript abundance. In contrast, SNPs located
in regions with decreased m°A methylation showed no comparable enrichment and were excluded from
downstream analyses. Among the QTL-linked transcripts identified, MCM3AP-ASI and RIBC2 were consistently
upregulated in colon cancer.

The observed upregulation of MCM3AP-ASI and RIBC2 was supported by both experimental and patient-
derived data. In DLD1 and CCD841 cell lines, ALKBH5 depletion increased the expression of these transcripts,
indicating that they are responsive to elevated m°A levels. Consistent expression changes were observed in an
independent cohort of colon cancer patients (PRJNA742008), reinforcing the reproducibility of our findings
across both experimental and clinical contexts. These results support the functional relevance of m°A in
regulating these genes, in agreement with predictions from our integrative m®A-QTL analysis.

MCM3AP-ASI is a long noncoding RNA that has been implicated in the proliferation and invasion of
colon cancer cells, potentially via Wnt/B-catenin®%. RIBC2, although not previously characterized as a cancer-
associated gene, also exhibited consistently elevated expression in colon cancer. While its role in oncogenesis
remains to be experimentally validated, its regulation by m°®A-sensitive loci highlights it as a gene of interest for
future investigation.

We also observed that m®A-associated SNPs are linked to alternative splicing events in a manner that appears
transcript- and context-dependent. In our discovery dataset, FAM118A and TRIM4 exhibited A3SS usage in
tumors. In an independent patient cohort, however, splicing patterns differed. In particular, FAM118A showed
retained introns, while TRIM4 exhibited exon skipping, indicating transcript-specific differences in splicing
outcomes across datasets. These results suggest that m°®A-SNP interactions may modulate splicing in variable
ways depending on cellular context, RNA structure, or the availability of splicing regulators. Given the frequent
positioning of m°®A peaks within exons and promoter-proximal regions, these modifications may facilitate the
recruitment of splicing-regulatory RNA-binding proteins, thereby influencing isoform selection in tumors.

Our findings extend current models of how noncoding genetic variants contribute to cancer biology.
While many GWAS-identified SNPs lie outside protein-coding regions, their mechanistic interpretation has
remained a major challenge. The present study provides evidence that m®A methylation may act as a regulatory
intermediary, linking static DNA variation to dynamic RNA-level outcomes in tumor transcriptomes. Although
tumor and normal tissues are nearly identical at the DNA sequence level, SNPs may shape m°A profiles that
influence RNA stability, splicing, and abundance.

We definea class of functional variants, which we refer to as m®A-QTLs, that operate through epitranscriptomic
mechanisms rather than classical transcriptional regulation. These variants reveal a genetically encoded layer of
post-transcriptional control that is dynamic and cell-type specific. Although our findings were most prominent
in colon cancer, this framework may also inform studies in other tumor types or molecular subgroups where
m®A dysregulation and regulatory variation co-occur. Future work should further characterize mSA-QTLs across
diverse biological contexts and investigate whether targeting m®A enzymes can mitigate the phenotypic effects
of pathogenic variants. As small molecule inhibitors of m°A regulators move toward clinical development, our
results underscore the importance of considering inherited variation in RNA regulatory mechanisms when
designing targeted cancer therapies.
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Materials and methods

Preprocessing of RNA-seq and m°A-seq data

Gene expression profiles (RNA-seq and m®A-seq) from tumor tissues and matched normal tissues for nine
cancer types (including colorectal, breast, lung, ovarian, renal cell, and salivary gland cancers) were retrieved
from the SRA (https://www.ncbi.nlm.nih.gov/sra) database as Fastq format. Detailed dataset information,
including accession numbers and sample sizes is summarized in Supplementary Fig. S1A%2 Fastq files underwent
preprocessing with Trim-Galore (v.0.6.6; https://github.com/FelixKrueger/TrimGalore) to remove adapter
sequence and low-quality reads, ensuring data quality for subsequent analyses. For RNA-seq data, processed
reads were aligned to the human reference genome (GRCh38) with the STAR aligner (v.2.7.10a) using the GTF
file from GENCODE (GRCh38.gencode.v43.basic.annotation.gtf) with default parameters®’. Read counts of
each gene was calculated using HTSeq package (v.2.0.2)3.

Identification of differential m®A peaks (DMPs)

For m°®A-seq data, peak calling was conducted using R package exomePeak (v.2.16.0)*’, followed by annotation
of peaks according to genomic features (UTR, exon, intron, promoter, and intergenic regions) using custom R
scripts and the GENCODE hg38 annotation. Differential m°A peaks (DMPs) were identified using exomePeak
with the following criteria: P<0.05.

Identification of differential expressed genes (DEGs)

For RNA-seq data, differentially expressed genes (DEGs) between tumor and normal tissues were identified
using the DESeq2 R package (v.1.42.1)*. Genes with adjusted P value < 0.05 and absolute log2 fold-change >
0.58 were considered as DEG. Heatmaps were generated to visualize DEGs using the R packages ggplot2 (v.3.5.1)
and pheatmap (v.1.0.12), respectively>>*.

Identification of differentially spliced genes (DSGs)

To identify differentially spliced genes (DSGs) that contains alternative splicing events in tumor samples, RNA-
seq reads were first aligned to the human reference genome (GENCODE hg38) using STAR (v.2.7.10a) with the
following options (--twopassMode Basic --alignSJDBoverhangMin 1 --alignSJoverhangMin 8 --alignEndsType
EndToEnd --outSAMattributes NH HI AS NM MD XS --outSAMstrandField intronMotif), which ensured
high-confidence spliced alignment and preservation of strand-specific attributes required for downstream
splicing analysis. The aligned RNA-seq data were analyzed using rMATS-turbo (v.4.1.2)%. Alternative splicing
events including skipped exons (SE), retained introns (RI), alternative 5 splice sites (A5SS), alternative 3’ splice
sites (A3SS), and mutually exclusive exons (MXE) were quantified. Events with FDR <0.05 were considered as
statistically significant differential splicing events in tumors compared to normal tissues.

Variant set enrichment analysis (VSEA)

Cancer-associated SNPs were obtained from the GWAS catalog®®. Lead SNPs and their LD-associated SNPs
(r? = 0.8) were extracted to establish a comprehensive set of cancer-specific genetic variants using R package
haploR (v4.0.7) bioinformatics package®’. To assess the functional significance of SNP enrichment within DMPs,
Variant Set Enrichment Analysis (VSEA) was performed using the method previously described by Ahmed
et al. (2017)*. Briefly, VSEA calculates enrichment scores by comparing the observed frequency of cancer-
associated SNPs in DMPs to the estimated frequency of cancer-specific SNPs in the same number of randomly
selected genomic regions. Statistical significance was determined by generation of null distributions based on
1,000 permutations and random selection of genomic regions each time, with P < 0.05 considered significant
enrichment.

eQTL and sQTL analysis

Expression quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) analyses were conducted
using snpXplorer?’, an integrative database containing functional annotations of SNPs. Candidate cancer-
associated SNPs overlapping with differential m®A peaks were queried against the snpXplorer database to narrow
down SNPs that are potentially associated with the gene expression or alternative splicing events. Statistical
significance of eQTL and sQTL associations was defined as P < 0.05.

Functional validation via ALKBH5 knockdown

To validate the functional role of m®A methylation, ALKBH5 knockdown was performed using siRNA
transfection (target-specific siRNA purchased from Genolution) in colon cancer (DLD1) and normal colon
epithelial (CCD841) cell lines. Transfections were performed using Lipofectamine RNAiMAX reagent
(Invitrogen) according to the manufacturer’s protocol. The following ALKBH5 siRNA sequence was used in
this study: 5-r(GCGCCGUCAUCAACGACUA)A(TT)-3" Gene expression changes of selected targets were
quantified via quantitative real-time PCR (qRT-PCR). Gene-specific oligonucleotides used in the study are as
follows: 5’- TGGCAAATTCCATGGCACC-3’ (sense) and 5°- AGAGATGATGACCCTTTTG-3’ (antisense) for
GAPDH mRNA; 5- CAGAGAATGGTCTTTGCAGCAGC-3 (sense) and 5- TTCTGGAGGTGCTTGGCT
GTCT-3 (antisense) for RIBC2 mRNA; and 5- CTGGAAGCAGAAAGAGGCTGG-3’ (sense) and 5’- ACTG
GAAGAGGAGCACAGAGTG-3’ (antisense) for MCM3AP-ASI IncRNA. All experiments were performed in
triplicate.

Statistical analysis
All statistical analyses were conducted using R software (v.4.2.1)%. Data are expressed as mean + standard
deviation. Comparisons between two groups were performed using Student’s t-tests. Spearman’s correlation
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analysis was performed using R packages ggpubr (v.0.6.0) and stats (base package)®. P < 0.05 was considered
statistically significant.

Data availability

The RNA-seq and m®A-seq datasets analyzed in this study are publicly available from the NCBI Sequence Read
Archive (SRA) under accession number PRJNA488293, PRJNA1011293, PRJNA659478, PRINA679771, PRJ-
NA901504, PRINA814496, PRINA719065, PRJNA1092401, PRJNA1039844, PRJNA786917, and PRINA742008.
Additional processed data supporting the findings of this study are available from the corresponding authors
upon reasonable request.
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