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This paper presents an innovative terrestrial robot employing a vibration-based locomotion system 
powered by a single DC motor with an eccentric rotating mass. The robot, composed of a U-shaped 
aluminum elastic beam and lightweight wooden feet, attains steady mobility by synchronizing 
torsional vibrations with centrifugal forces. Experimental and simulated analyses were performed 
at three angular velocities (ω1 = 125.66 rad/s, ω2 = 251.33 rad/s, ω3 = 376.99 rad/s) to assess stability, 
deviation, velocity, and hopping performance. The results indicated that a rise in angular velocity 
significantly improved locomotion efficiency. At ω1, the robot attained an average body velocity of 
85.46 mm/s and a hopping distance of 405.88 mm. At ω2, the velocity rose to 221.24 mm/s with a 
hopping distance of 418.24 mm, but ω3 achieved optimal performance with a velocity of 265.49 mm/s 
and a hopping distance of 424.08 mm. Deviation responses settled within ± 2 mm after 2.5 s at ω3, in 
contrast to more pronounced oscillations at ω1. Simulation results largely aligned with experimental 
outcomes in hopping distance (error < 3 mm at ω3) but routinely underestimated body velocity by 
50–60%. The findings corroborate the suggested model for predicting vertical displacement, while 
underscoring the necessity for refinement to accurately capture horizontal velocity dynamics.
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Vibration-based locomotion has emerged as a promising mechanism for propelling robots with minimal 
mechanical complexity, offering new possibilities for miniature, low-cost, and untethered robotic systems. 
Unlike traditional wheeled or legged robots that rely on complex actuators and control schemes, vibration-driven 
robots achieve motion through oscillatory inputs typically from motors with eccentric masses combined with 
asymmetric friction or structural compliance. This locomotion strategy is especially attractive in environments 
that demand simplicity, scalability, or high robustness, such as in confined spaces, swarms, or inside pipelines. The 
key component for adaptive running locomotion is use of passive dynamics and morphological computation1. 
Recently, a new approach has been proposed which uses passivity-based free vibration of curved elastic beams 
at resonance frequencies for stable legged locomotion2,3. In this approach, the main body of the robot is 
composed of elastic curved beam, and it is actuated by a single motor which oscillates a set of rotating masses. 
The centripetal force generated by these oscillating masses induces torsional or longitudinal vibration depending 
on the resonance frequency of robot structure. Related studies on structural vibration dynamics, including free 
elastic plates in orbital conditions4 and cracked cantilevered beams under harmonic loads5, further underline 
the importance of coupled vibration phenomena in understanding and optimizing resonance-based locomotion.

The foundational concept of using vibratory actuation for motion dates back to early prototypes of bristlebots, 
which use vibrating motors to generate directional movement through angled bristles. Cicconofri et al.6 
provided a rigorous analysis of such systems, demonstrating how motion direction and speed can be controlled 
through frequency modulation and structural parameters. Similarly, Notomista et al.7 expanded this approach 
by introducing a unified modeling and control framework for vibration-driven robots, known as brushbots, 
capable of complex swarm behaviors without requiring traditional mobility hardware.

More advanced implementations have explored internal oscillators and anisotropic friction for planar 
motion. Zhan, Xu, and Fang8 developed a shell-like robot with two oscillators that achieved controllable steering 
by tuning the vibration amplitude and frequency, effectively manipulating inertial and frictional forces. Liu et 
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al.9 introduced a vibration-powered cubic robot capable of stable and rapid locomotion on granular terrains, a 
significant advancement for soft or deformable surface navigation. Nguyen & Lab10 improved capsule robots 
via nonlinear elastic springs and oscillating masses resonant dynamics in enclosed geometries akin to U-beam 
systems.

In industrial inspection applications, especially in pipe networks, vibration-driven mechanisms have enabled 
compact robotic systems to move efficiently within narrow environments. Korendiy, V., et al.11 Proposed a 
solenoid-actuated in-pipe robot that employed a spring-lock mechanism to synchronize vibrations with pipe 
dimensions, achieving notable speeds despite a minimalist design. Korendiy, V. and O. Kachur12 modeled 
vibration-driven in-pipe robots with unbalanced internal masses and wheels; their methods emphasize inertial 
excitation and resonance similar to U-beam locomotion principles. V Gurskyi et al.13 studied the motion of 
a wheeled vibration-driven platform with a V-shaped spring-damper suspension and a centrifugal exciter. It 
introduces a generalized mathematical model to optimize design parameters for vibration-based systems used 
in pipeline inspection and cleaning.

Vibration-based locomotion, in which robots exploit internal oscillations and asymmetric surface interactions 
to move, has emerged as a compelling alternative to traditional wheel or leg driven mechanisms, especially 
at small scales and in constrained environments. These robots typically rely on simple vibrating actuators 
such as eccentric rotors, solenoids, or piezo-electrics and directional friction or anisotropic contact surfaces 
for propulsion14,15. In particular, U‑shaped visco‑elastic beams actuated near their torsional resonance can 
self‑organize into bounding locomotion without requiring sensory feedback or complex control architectures. 
A prominent early example deploys a simple rotating mass on a U‑shaped beam, demonstrating self-propelled 
bounding gait reminiscent of quadrupedal animals when driven at natural frequencies14,16.

For instance, hopping mechanisms based on curved beams exploit resonance to generate high payload-
capable leaps17. While many systems rely on piezo-ceramic or ultrasonic vibration to power micro-robots and 
energy harvesters, their beam geometries sometimes L-shaped, sometimes U-shaped have been compared in 
terms of vibrational modes and efficiency18.

Moreover, investigations of symmetry-breaking in flexible hub-beam systems19 provide deeper insight into 
how geometric asymmetry and eccentric excitation influence locomotion performance, reinforcing the relevance 
of nonlinear beam dynamics in vibration-driven robot design.

Our surrounding terrains are unstructured, harsh, unstable, deformable, and unsafe. In such situations, 
legged robots have intrinsic movement benefits. They can cross terrain and hurdle barriers, making them 
ideal for various tasks. These include search and rescue, inspection in crowded and complex areas, planetary 
exploration, manufacturing, and agriculture20. In recent years, numerous legged systems have moved precisely 
and consistently in controlled environments21. However, there are still many obstacles to overcome before they 
can be widely used in everyday life22. They struggle in uncontrolled conditions despite excelling in controlled 
environments.

The prominent challenges of legged robot locomotion control are to locate appropriate places for creating 
foot contact with the environment and to produce corresponding dynamic movements.

Even state-of-the-art legged robots face challenges in adapting to varying terrains, slippery surfaces, 
negotiating over ground obstacles, managing payload and weight distribution, and recovering from stumbles23,24. 
Also, model predictive control (MPC) methods and numerical trajectory optimization are currently extensively 
utilized in the broad approach that pervades nearly all forms of legged robot locomotion. The same techniques 
are being modified for different leg designs and numbers of legs as well as for both flat ground and rough terrain. 
The energy efficiency is also much inferior compared to that of biological systems. The majority of research on 
robot locomotion on uneven terrain has centred on software development, including perception approaches. As 
a result, there is a lack of assessment of the actual locomotion performance in such difficult terrain. This leads to 
major inaccuracies, resulting in the infamous “reality gap”25.

To perform more effectively and intelligently, today’s legged robots must evolve26. Motivated by the imperative 
need to advance legged robot technology, this review paper addresses the challenges hindering their integration 
into diverse and unpredictable environments. These challenges, encompassing variations in terrains, obstacle 
avoidance, and adaptability to unforeseen conditions, underscore the necessity for robust control mechanisms. 
The exploration into dynamics, energetics, and system characteristics aims to bridge the current capability gap 
and envision a future where legged robots navigate any surface seamlessly.

Du et al.27 investigated a crawling mechanism that enables a soft robot to perform bidirectional locomotion 
using body deformation. The authors propose two different differential friction forces integrated into the robot’s 
body structure, allowing the robot to generate two different motion directions as the body deforms. With the 
proposed dynamic gaits, the robot can move in multiple directions with a simple system configuration and a 
minimalist actuation input. Carpentier et al.28 examined the dynamics and control of legged robots in terms 
of contact planning and trajectory optimisation. They gave an overview of the standard way to control legged 
robots, which is to set up a series of interactions with the environment. Kashiri et al.29 presented an overview of 
recent advances in the development of energy-efficient robotic systems with legs. They examined a number of 
robotic actuators that utilise compliance in parallel and series with the drivetrain to enable energy recycling for 
locomotion.

This study provides insight into the principles governing locomotion. It provides further details on models 
for the dynamics, energetics, and system characteristics. Mahapatra et al.30 evaluated the effects of walking 
parameters on energy consumption as well as static or dynamic robot stabilisation during gait generation on 
various surfaces. Meanwhile, Pardo et al.31 conducted a comprehensive literature analysis of scientific findings 
pertaining to legged locomotion on uneven terrain. Hongguang Li et al.32 this research proposes a vibration-
driven robot powered by sinusoidal stiffness excitation, offering an alternative to force-based designs. A dynamic 
model and experiments using dielectric elastomer actuators show the robot can move in both directions by 
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adjusting input frequency. The study reveals a new nonlinear mechanism and expands the application of smart 
materials in robotic locomotion.

To use robots in dangerous and unpredictable situations, especially on uneven terrain, they should walk 
more like humans and animals33. They are able to move on various surfaces resembling people or insects as 
biomimicry. The study of legged robotics, such as bipedal robots, informs the design and operation of assistive 
devices and applications. They also help study human and animal mobility. Robotic exoskeletons and prosthetic 
legs can give patients superhuman abilities like walking and running34. Numerous studies and reviews have been 
done, as this is such a promising area for research.

This study contributes to the advancement of vibration-driven locomotion by introducing a novel U-shaped 
elastic beam design that enhances stability and directional control. Unlike conventional vibration-driven robots 
that rely on elastic legs2,14 or bristle-based structures6, the U-beam structure provides an effective means of 
translating oscillatory forces into forward locomotion while reducing undesired lateral deviations. Furthermore, 
the proposed open-loop control strategy leverages the natural resonance of the beam, enabling efficient motion 
with minimal actuation requirements. This combination of structural innovation and control simplicity 
distinguishes the present work from prior approaches and underscores its potential for developing compact, 
low-cost, and energy-efficient vibration-driven robotic platforms approach validated through both simulation 
and experimental results.

This work aims to construct and evaluate a vibration-driven terrestrial robot utilizing a U-shaped elastic 
beam powered by a single DC motor, with the objective of examining the impact of angular velocity on stability, 
deviation, velocity, and hopping performance. Experimental studies at ω1 = 125.66  rad/s, ω2 = 251.33  rad/s, 
and ω3 = 376.99  rad/s demonstrated that augmenting angular velocity improved performance, with body 
velocity increasing from 93.79 mm/s at ω1 to 276.43 mm/s at ω3, and hopping distance rising from 401.60 mm 
to 420.07  mm. Simulations accurately reflected experimental hopping distances (error < 3  mm at ω3) but 
underestimated velocity by 50–60%. This work’s innovation consists on achieving stable locomotion by torsional 
vibration of a U-shaped elastic beam using a single actuator and open-loop control, therefore obviating the 
necessity for intricate feedback systems while preserving efficiency and stability.

Modeling
The bounding mechanism introduced in this research features a U-shaped elastic beam driven by means of 
a pendulum see Fig. 1(a). The dynamics of such an elastic beam can be examined through discrete elements 
linked by spring-damper systems, with greater accuracy achieved as the number of these elements increases. Our 
approach demonstrates that the elastic beam can be effectively modelled using merely three links, illustrating 
planar quadruped movement refer to Fig. 1(b).

The following section describes the conceptual models of the mechanical structures and the motor control 
and defines some basic parameters to characterize the basic locomotion dynamics in this framework. The 
mechanism presented in this model consists of a DC motor, two large feet, and a main body made of a single-
piece aluminium beam (E = 70 GPa) as shown in Fig. 1(a). The U-shaped beam constitutes the leg and spine of 
the robot, and a rotating mass is attached to the motor, which is mounted on the centre of the leg. An actuator 
controls the direction and the magnitude of the angular velocity of the rotating mass. We used two large feet to 
ensure that the motion of the robot was in the sagittal plane.

Assumptions and variables
To construct a conceptual model for these robots and enable a systematic simulation analysis, several simplifying 
assumptions were made. First, the robot’s behavior is analyzed within the sagittal plane, treating the ground 
contact of each foot as a single point of contact. The robot’s spine is modeled as a rigid beam, and its mass is 
included in the analysis. The motor is represented as a concentrated point mass located at the center of the leg. 

Fig. 1.  (a) Running robot made from U-shape elastic beam, (b) Parallel three link model of the robot.
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Although the legs themselves are considered to have negligible mass, each foot is modeled as a point mass. The 
rotational interaction between each leg and the spine is represented by a torsional spring-damper system, as 
illustrated in Fig. 1(b). Additionally, the longitudinal deflection of the legs is modeled using a linear spring-
damper element. Both the torsional and longitudinal stiffnesses are assumed to be linear and invariant with 
respect to the shape and deformation of the robot’s structural elements. Finally, the robot’s actuator is modeled 
as a semi-circular segment (semiscap) operating with a constant angular velocity (ω).

Based on these assumptions, the developed model comprises three rigid links interconnected through 
torsional and linear spring-damper elements. The direction of the robot’s movement is determined by the relative 
angular displacement between the links. When the rotation is clockwise such as θ₂ is greater than θ₁, the robot 
moves to the left. Conversely, when the rotation is counter-clockwise and θ₁ exceeds θ₂, the robot moves to the 
right. This behavior reflects the coordination between the leg segments and their interaction with the ground, as 
governed by the spring-damper dynamics within the model.

These assumptions were made to reduce the model’s complexity and enable analytical tractability within the 
Simscape framework. Since the mass of each wooden foot and aluminum leg is small compared to the motor 
and rotating eccentric mass, their inertial contribution to the overall system dynamics was considered negligible. 
Similarly, adopting linear torsional and longitudinal stiffness allowed us to approximate the elastic response of 
the U-shaped beam without introducing nonlinear parameters that are difficult to calibrate experimentally.

However, these simplifications directly affect the accuracy of horizontal velocity predictions. As observed 
in the results, the simulation consistently underestimates body velocity by approximately 50–60% compared 
to experiments. This discrepancy can be attributed to neglect the inertial effects of the legs and the nonlinear 
stiffness characteristics of the beam, both of which play a significant role in energy transfer and forward 
propulsion.

This model consists of 12 mechanical design parameters 
( Ll1, Ll2, m1, m2, Ll3, θ f , kθ , dθ , mh, mf , mM , R), one control parameter (ω). Also, the running 
locomotion for this robot can be represented by 12 state variables (XBackfoot, YBackfoot, XFrontfoot, YFrontfoot, YMotor 
and θr and velocities of those) as shown in Fig.  1(b). XBackfoot, YBackfoot, XFrontfoot and YFrontfoot represent the 
coordinates of the foot of the robot. YMotor represents the Y-coordinate of motor, which is located at the center of 
the leg. θr is the angle of rotation of rotating mass with respect to X axis.

Free vibration system
Torsional vibration in the U-shaped beam is induced by oscillating a rotating mass at a constant frequency, which 
is driven by a DC motor. This controlled oscillation generates periodic torque, causing the beam to undergo 
torsional motion in response to the motor’s continuous rotational input. This torsional vibration is significantly 
affected by the actuation frequency (ω) of rotating mass (mR). To understand the correlation between actuation 
frequency (ω) and resonance frequency (ωnf).

In this case, the Lagrangian L can be derived as:
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By differentiating the Lagrangian ( L) with respect to torsion angle θ 1, the torsional equation of the motion can 
be represented by:
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For the small angles ( sinθ ∼= θ ) Eq.  2 can be linearized and torsional resonance frequency ω θ 1 of the 
U-shaped elastic beam can be obtained by using the homogeneous part of this differential equation:

	 θ̈ 1 + ω 2
nθ 1 = 0� (3)

	
ω nθ 1 =

√
kθ 1 − (mtotal) gl1 − m3g(Ll1 + y)

(mtotal) l2
1 + I1 + m3L2

l1 + m3y2 + I3
� (4)

Where: kθ  represents the torsional stiffness of the substitute inter-segmental joints between the spine and the 
legs as shown in Fig. 1(b).

The expression of kθ  for a cantilever beam is given by EI/L. However, kθ  was determined experimentally in 
this study, since the elasticity of the aluminium cold-formed beams was not precisely known.

When the Lagrangian ( L) in Eq. 1 is differentiated with respect to torsion angle θ 2,

	
∴ dL

dθ 2
= m2l2

2 θ̈ 2 + I2θ̈ 2 − m3L2
l1θ̈ 2 − m3y2θ̈ 2 − m2gl2sinθ 2 − I3θ̈ 2 + kθ 2θ 2� (5)
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For the small angles ( sinθ ∼= θ ) Eq.  5 can be linearized and torsional resonance frequency ω θ 2 of the 
U-shaped elastic beam can be obtained by using the homogeneous part of this differential equation:

	 θ̈ 2 + ω 2
nθ 2 = 0� (6)

	
ω θ 2 =

√
kθ 2 − m2gl2

m2l2
2 + I2 + m3(L2

l1 + y2) − I3
� (7)

The expansion of the Lagrange’s equations leads to the equations of the free vibrations of the robot in matrix 
form can be written as:
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Simulation and experimental setup
The robot consists of a U-shaped beam from [AL] with thickness 1  mm. Legs length (Ll1, Ll2) with 
mass (m1, m2). Spine length (Ll3) with mass (m3) of the robot are made of torsional spring with stiffness 
(kθ ) and damping coefficient (dθ ), (the spring stiffness of internal segmental joint is determine by rigidity of 

material, moment of inertia of the beam and curvature of beam) with a cross section of t = 1 mm × b = 25 mm 
and formed as a U-shaped beam with right angles. Two feet made from very light wood with mass (mh = mf). 
The micro-DC motor with mass motor (mM) at the center of the leg with radius (R) is driven by the motor. For 
each angular velocity, a minimum of three trials were conducted to ensure statistical reliability. Motion data were 
extracted from high-speed video footage using reflective markers tracked at 120 fps. The tracking was performed 
using MATLAB’s computer vision tools, enabling precise determination of marker positions in each frame. 
The red object tracking is designed to detect and follow red-colored objects in video sequences. It operates by 
processing each frame individually, isolating the target object based on its color, and superimposing the resulting 
trajectory onto the original video. Outliers, defined as data points exceeding ± 2 standard deviations from the 
mean, were excluded following standard practice. This ensures reproducibility and transparency in the results.

The photograph of the amphibious robot is shown in Fig. 1 and its main dimensions and inertial properties 
are summarized in Table  1. These values were derived from experimental measurements conducted on the 
actual robot prototype, as well as from material property data for aluminium and standard robotic actuators. 
Specifically, the longitudinal stiffness of the curved beam was experimentally determined to be 200 N/m, and 
torsional stiffness was determined from the mechanical properties of the aluminium beam using standard 
formulas for cantilevered beams.

Parameters Descriptions Dimensions

Ll1, Ll2 Length of leg Ll1 = Ll2 = 250mm

t, b Aluminium beam cross-section 1 mm * 25 mm

L1, L2 Length from feet to the centre of mass of leg L1 = 0.5Ll1 , L2 = 0.5Ll2

m1, m2 Mass of leg m1 = m2 = 16.8 gram

Ll3 Spine length Ll3 = 250mm

L3 Equal Ll2 , Ll2 When θ 1 = θ 2 L3 = Ll1cosθ 1 or Ll2cosθ 2

m3 Mass of spine m3 = 16.8 gram

kL Longitudinal stiffness of the curved beam 200 (N/m)

kθ 1, kθ 2 Torsional spring stiffens at spine 4 (Nm/rad)

µstick Stiction friction coefficient, 0.6

µslide Sliding friction coefficient 0.5

θ f1, θ f2 Angle between leg and spine θ f1 = θ f2 = θ f = 120◦

θ 1, θ 2 Angle between leg and final point of spine θ 1 ̸= θ 2

dθ 1, dθ 2 Coefficient of damping 0.01 (Nm, s/rad)

mh, mf Mass of foot mh = mf = 20 gram

Lfr, Lfl Right and Left foot length Lfr = Lfl = 150mm

mM Mass of motor 40 gram

R Radius of rotation 50 mm

mR Rotating mass 0.025 kg

Table 1.  Main dimensions and inertial Properties.
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One of the main advantages of using vibration based running locomotion is the use of only one actuator to 
control the speed of locomotion. The actuator used was a DC motor with a high gear reduction (6400 RPM), 
which ensured that the angular velocity of the rotating mass was not affected by the robot dynamics. The 
centripetal force induced by rotating mass on the robot structure is shown in this equation:

	 F (t) = mR*R*ω 2� (9)

The experimental setup involved controlling the angular velocity (ω) by adjusting the voltage supplied to the DC 
motor, without incorporating any sensory feedback, to achieve stable locomotion of the robot. A 955 mm-long 
track was constructed for the robot’s movement, with a reflective marker affixed to its body, as illustrated in 
Fig. 2 the entire process was captured using a high-speed camera operating at 120 frames per second, allowing 
for detailed analysis of the robot’s dynamic motion. Infrared light was used to track the reflective marker and 
accurately measure the locomotion.

Figure 3.a presents a sequential photographic series illustrating the motion of the robot model on a real-
world test platform. The images are arranged in pairs (left and right) across multiple rows to capture different 
moments in the robot’s locomotion cycle. The setup includes a clearly marked horizontal track, with uniform 
grid spacing used as a visual reference to quantify displacement and trajectory over time.

The surface of the platform has been marked with a baseline labeled “Robot Start” and additional reference 
lines for measuring position. The robot’s body is clearly visible, and a red reflective marker has been affixed near 
its center of mass to aid in motion tracking. The orange-red path traced by the marker across the successive 
images captures the trajectory of the robot as it progresses forward due to the torsional vibration mechanism 
driven by the internal rotating mass.

From the initial frame (top left), the robot is positioned at its starting location, and as we move through each 
pair of images downward, its position shifts progressively to the right along the track. The trajectory traced by 
the marker reveals a slightly curved and oscillatory path, which is characteristic of the locomotion induced 
by the internal torsional dynamics. The offset in marker positions between frames confirms the presence of 
asymmetrical actuation and alternating leg motion, consistent with the theoretical model discussed previously.

Additionally, the grid provides a quantitative basis for evaluating stride length and speed. The deflection and 
rotation of the legs can also be visually inferred from the change in angular orientation of the robot’s legs relative 
to the vertical axis in each frame. This visualization serves as practical validation of the conceptual model by 
offering insight into the real-world performance of the robot and the efficiency of the proposed locomotion 
mechanism. Overall, this figure plays a critical role in bridging the gap between simulation and experimental 
validation by showing the physical realization of the model and tracking its dynamic behavior over a fixed 
distance.

Figure 3.b illustrates the MATLAB Simscape model of the vibration driven U-shaped elastic beam robot 
outlined in this study. This figure illustrates a dynamic system wherein the robot’s body, legs, and spine are 
represented as rigid components linked by revolute joints, while torsional and linear spring-damper elements 
account for the compliance of the elastic beam. The input at the bottom of the picture is characterized by 
the angular velocity ω exerted on the eccentric rotating mass powered by a DC motor. This input produces 
the periodic torsional vibrations that drive the robot’s movement. The “World” block establishes the ground 
reference frame, whereas stiff transformations are employed to link the robot’s structure to its environment.

The diagram’s center illustrates the mechanical subsystems: the primary spine (U-shaped beam), left and 
right legs, and their interconnections via revolute joints. These elements align with the three-link conceptual 
model presented in the manuscript, wherein each link signifies a segment of the U-shaped elastic beam together 

Fig. 2.  Schematic Diagram of the Torsional Locomotion Robot Model.
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with its corresponding stiffness and damping characteristics. The revolute joints facilitate angular displacement, 
permitting the simulation of oscillatory leg movement and engagement with the ground surface.

On the right side of the picture, several measuring subsystems are employed to capture essential locomotion 
data. The outputs for the left leg are DistanceL, DeviationL, and Hopping DistanceL, whereas the right leg yields 
DistanceR, DeviationR, and Hopping DistanceR. Moreover, the comprehensive bodily performance is assessed 
by BodyDistance and BodyVelocity. The simulation outputs directly align with the experimental observations 
detailed in your publication, in which displacement, deviation, velocity, and hopping distance were monitored 
using high-speed cameras and reflective markers.

In the simulation model, the angular velocity of the rotating mass (θ ̇r) is assumed to remain constant 
throughout locomotion and is considered independent of the robot’s dynamic response. To analyze the dynamic 
behaviour of the U-shaped elastic beam robot, a physical representation of the system was implemented in 
MATLAB using the Simscape toolbox. The robot’s body is modelled as a U-shaped elastic structure, treated as a 
continuous beam to accurately capture its deformation and vibrational characteristics.

For the simulation experiments presented in this study, specific constant voltage values were experimentally 
determined to correspond to optimal locomotion performance. These voltages were selected based on their 
ability to induce the most stable and repeatable bounding gait patterns observed in the robot’s motion. The 
identification of these values was essential for replicating consistent dynamic behaviour and validating the 
performance of the modelled locomotion system.

Figure 3.c presents a series of simulation snapshots illustrating the dynamic locomotion behaviour of the 
U-shaped elastic beam robot modelled in MATLAB using the Simscape toolbox. The sequence is arranged in two 
vertical columns, each showing six time-stepped frames that capture the progression of the robot’s movement 
along a flat surface.

Each frame clearly depicts the robot body with its characteristic U-shape geometry and thin leg structures. 
The robot interacts with the ground through its feet, while the centre body undergoes periodic motion driven 
by internal torsional excitation. The X-, Y-, and Z-axis indicators in each frame provide reference for spatial 
orientation, confirming that the motion occurs predominantly along the X-direction (horizontal locomotion) 
while maintaining a constant elevation on the Z-axis (no vertical lift).

From the initial frame in the top left, the robot begins in a stationary position. As the sequence progresses 
downward and to the right, the robot’s center of mass is observed to shift forward, indicating effective translation. 

Fig. 3.  a Photographs of the model in real-world platform b Simulink Model of the Vibration-Based 
Locomotion Robot c Photographs for of the model simulation.
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This motion results from the coordinated oscillation between the rigid links and the internal actuator, which was 
set to rotate at a constant angular velocity in the simulation. The leg segments appear to bend slightly at contact 
points, reflecting the spring-damper interactions embedded in the model.

Fig. 3.  (continued)
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By the final frame in the bottom right, a clear net displacement of the robot has been achieved. The symmetry 
of the gait and regularity of motion demonstrate that the chosen model parameters produce a stable bounding 
locomotion pattern. The simulation confirms the robot’s ability to move unidirectional without any active 
feedback control, validating the assumptions made in the conceptual model regarding constant actuator velocity 
and linear elastic behaviour of the beam and joints.

This figure serves as a critical visual validation of the numerical model, show casing the feasibility of torsion-
driven locomotion and supporting the physical experiments presented earlier. It effectively bridges the gap 
between theoretical assumptions and practical motion outcomes observed in both simulation and experimental 
platforms.

Results and discussions
Effect of angular velocity on stability and deviation performance
Figure  4 depicts the temporal deviation (in mm) of a system under three distinct angular velocities: 
ω1 = 125.6637 rad/s, ω2 = 251.3274 rad/s and ω3 = 376.9911 rad/s. At the minimal angular velocity.

(ω1 = 125.6637 rad/s, depicted in blue), the system first undergoes minor oscillations around the zero line. 
After around three seconds, the deviation begins to swing more intensely, with magnitudes of up to ± 9 mm. The 
amplitude of these oscillations consistently rises throughout the period of the figure, indicating that the system 
is under-damped or exhibiting instability at this low velocity. The steady-state behaviour is ambiguous, and the 
deviation gets increasingly irregular, particularly after 5 s. This suggests that the system may be experiencing 
resonance or inadequate control feedback at this reduced input speed16,35.

Conversely, the system’s behaviour at a moderate angular velocity (ω2 = 251.3274 rad/s, depicted in red) 
demonstrates a more regulated reaction. The system initially experiences oscillations with significant amplitudes, 
reaching a minimum value of approximately − 9 mm at roughly 2.2 s. In contrast to the lower-speed scenario, 
the red curve indicates that the system starts to stabilize more rapidly14. Beginning at approximately 2.8 s, the 
oscillations diminish, and the deviation stabilizes at roughly + 5 mm. This indicates that the system is optimally 
calibrated at this velocity, with adequate damping to achieve a steady state following an initial transient phase. 
The deviance is consistently stable beyond 3 s, signifying that the system attains equilibrium under these 
circumstances.

The maximum angular velocity (ω3 = 376.9911  rad/s, indicated in green) produces the most stable and 
optimal system response. The curve initially exhibits rapid oscillations between ± 4 mm over the first 2 s; however, 
these oscillations possess reduced amplitude relative to the other two examples. At 2.5 s, the system attains a 
steady state with a deviation about + 3 mm and demonstrates negligible variations subsequently. The expedited 
stabilization and diminished overshoot indicate enhanced control at elevated angular velocities. The diminished 
oscillation amplitude and expedited settling time indicate that the system gains from higher-frequency input, 
either attributable to enhanced damping or decreased system lag.

When rotational velocity escalates, the system’s deviation behaviour markedly enhances. At reduced 
velocities, the system exhibits instability and demonstrates escalating oscillations over time. At moderate velocity, 
the system initially exhibits oscillatory activity but attains a stable steady state after around three seconds. At 
maximum velocity, the system achieves stabilization most rapidly and demonstrates the least overall variation. 
This signifies that the system’s efficacy is significantly influenced by the input angular velocity, with increased 
velocities yielding enhanced control, expedited settling, and less overshoot.

Effect of rotational speed on distance coverage over time
Figure 5 presents the variation of body distance (in mm) with respect to time (in seconds).At the minimal 
angular velocity (ω1 = 125.6637 rad/s), the system exhibits a consistent albeit diminished advancement in body 
distance. The process commences at approximately 200 mm and progressively ascends, to roughly 950 mm at 
the 10-second mark. The blue curve is smooth and uniform, signifying steady onward progression without 
sudden variations in pace. The travel rate is the slowest of the three speeds because of the reduced input angular 
velocity36,37.

Fig. 4.  Deviation (mm) vs. Time (s) for Angular Velocities: 125.66, 251.33, and 376.99 rad/s.
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The red curve, denoting ω2 = 251.3274 rad/s, initiates similarly near the 200 mm mark but rapidly escalates in 
gradient. From 0.5 s to 3.5 s, the body distance increases more steeply than ω1, attaining approximately 860 mm 
by 4.5 s, after which the curve ceases. This indicates that either the test concluded prematurely, or the system 
fulfilled its designated trajectory. The system operates at an accelerated pace, exhibiting minor oscillations; yet, 
the trajectory continues constantly upward with no indications of slowdown.

At the maximum angular velocity, ω3 = 376.9911  rad/s (green curve), the system exhibits the most rapid 
motion. Following a brief initial variation of 0 to 0.5 s, the distance between bodies increases swiftly. At 1 s, it 
crosses 400 mm, and at 3.5 s, it attains around 930 mm, beyond the red curve of ω2. Similar to the red curve, the 
green plot concludes about at the 4-second mark, indicating an earlier cessation of the test. The swift escalation 
in displacement verifies that the system’s body traverses the most distance in the least amount of time at this 
elevated rotational velocity.

A distinct link between angular velocity and body distance over time is seen when comparing the three 
charts. Increased angular velocity results in swifter and more extensive movement of the system within a 
specified duration. ω3 achieves the greatest displacement in the least amount of time, but ω1, albeit steady, has a 
significantly slower progression. These results demonstrate the direct impact of angular velocity on translational 
speed and efficiency in system movement38.

The graphic indicates that ω3 attains peak body displacement (≈ 930 mm) in merely 3.5 s, succeeded by ω2 
(≈ 860 mm) within the same duration, whilst ω1 achieves a comparable displacement (~ 950 mm) only after 10 
s. This behaviour is essential in applications requiring high-speed motion and reactivity, such as robots, actuator 
systems, or automated transport platforms39,40.

Effect of linear velocity characteristics as a function of input angular speed
Figure 6 illustrates the variation of body velocity in mm/s over a time range of 0 to 10 s, under three different 
angular velocity conditions.

At the lowest angular velocity (ω1 = 125.6637 rad/s), depicted by the blue curve, the system demonstrates a 
robust and consistent performance. Following a brief transient phase during the opening second, the velocity 
stabilizes within a limited oscillation range cantered at + 900 mm/s, maintaining this consistency until the 
10-second interval. This curve has the steadiest performance of the three, characterized by minimum fluctuations 
and consistent oscillatory behaviour. The sustained velocity pattern for an extended duration signifies a well-
damped and stable motion profile at this reduced input speed35,36.

Conversely, the ω2 = 251.3274 rad/s (red curve) and ω3 = 376.9911 rad/s (green curve) scenarios exhibit 
significant velocity changes, particularly during the initial transient reaction from 0 to 1.5 s. The red graph 
exhibits significant spikes, attaining about + 6000 mm/s and − 6000 mm/s, signifying strong acceleration and 
deceleration occurrences. Following this tumultuous onset, the red curve stabilizes into a damped oscillation 
pattern cantered at + 1200 mm/s, ultimately dissipating entirely around 4 s, indicating that the test or motion 
was prematurely concluded for this input16,41.

The green curve (ω3 = 376.9911  rad/s) exhibits the most significant initial instability, with velocity peaks 
surpassing + 5000 mm/s and plummeting to −5000 mm/s within the initial 0.5 s. Nonetheless, it stabilizes more 
rapidly than the red curve, achieving a more uniform oscillation pattern around + 1300 mm/s before finishing 
shortly after 3.5 s. This behaviour indicates enhanced system responsiveness and accelerated energy intake at 
elevated angular velocities, however accompanied by increased instability during the first period.

The graph’s most prominent feature is the inverse correlation between angular velocity and the duration of 
steady motion. ω1 maintains a somewhat stable body velocity throughout the 10-second interval, but ω2 and ω3 
demonstrate more abrupt, transient reactions, stabilizing rapidly but only for a brief duration before halting. 
This may suggest that the system attains a maximum permissible distance or cutoff condition at elevated angular 
velocities, ceasing further movement42.

Fig. 5.  Body Distance vs. Time at Three Angular Velocities (ω1, ω2, ω3).
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In conclusion, ω1 produces the most stable and sustained linear velocity, around 900 mm/s, with negligible 
disturbance. ω2 and ω3, despite attaining elevated peak velocities (up to ± 6000 mm/s), exhibit substantial 
transitory instability, resulting in their motion concluding markedly sooner (4 s and 3.5 s, respectively). The 
results underscore the trade-off between responsiveness and stability, indicating that increased angular speeds 
facilitate quicker movement but also present difficulties in control and motion continuity39,40.

Figure 7 illustrates the experimentally recorded average body linear velocity (designated as EXP) at three 
specific angular frequencies, identified as ω1, ω2, and ω3.

At ω1, the minimum angular velocity evaluated, the system demonstrates an average linear velocity of 93.79 
mm/s. This comparatively low value aligns with the system’s restricted movement at diminished input rotational 
speeds, as evidenced in the previous time-velocity charts36.

At ω2, a moderate angular velocity, the system exhibits a notable enhancement in performance, with the 
average linear body velocity increasing to 196.82 mm/s. This demonstrates that augmenting the rotational input 
more than doubles the average linear velocity relative to ω1, underscoring a robust positive link between angular 
speed and body velocity.

At the maximum angular velocity, ω3, the system attains optimal performance, achieving an average linear 
velocity of 276.43 mm/s. Despite the increment from ω2 to ω3 being less pronounced than that from ω1 to ω2, 

Fig. 7.  Experimental Average Body Linear Velocity at ω1, ω2, and ω3.

 

Fig. 6.  Body Linear Velocity vs. Time for ω1, ω2, and ω3.
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the rising trajectory remains significant and corroborates that elevated angular velocities yield accelerated linear 
displacement of the system.

Effect of angular velocity on hopping performance and stability
Figure 8 presents a time-series analysis of the vertical hopping distance (in mm) for a system operating at three 
different angular velocities.

At the lowest angular velocity, ω1 (blue curve), the system exhibits a smaller and consistent hopping amplitude. 
The oscillations start around 400 mm and settle into a steady oscillatory pattern with an average amplitude of 
around 10–15 mm. After the initial transient (within the first second), the hopping distance stabilizes near 405 
mm, and the sinusoidal behavior continues with little variation throughout the full 10-second duration. This 
suggests that ω1 delivers stable but limited hopping power, resulting in modest but periodic jumps36.

For the mid-range angular velocity, ω2 (red curve), the hopping distance begins near 460 mm, and after an 
initial overshoot and quick damping within the first second, the curve settles close to 415 mm. The oscillations 
are smaller in amplitude than those of ω1 and ω3, indicating tighter control. The system maintains a relatively flat 
trajectory from 1.5 to 4 s, after which data for ω2 appears to stop, likely due to a limited test period. This result 
reflects a balanced hopping performance higher than ω1 but not the maximum observed.

At the highest angular velocity, ω3 (green curve), the system starts with the largest initial hopping distance, 
peaking just above 470 mm within the first second. This high peak is followed by a noticeable damping trend, as 
the curve descends toward 425 mm. From approximately 1.5 s onward, the hopping distance gradually stabilizes 
around 420–425 mm before the data ends near 4 s. The curve suggests that ω3 provides the highest initial energy 
input, resulting in the largest hops, but also shows some control challenges during the settling phase due to 
greater oscillation amplitude early on2.

Figure 9 depicts the experimental outcomes of the mean hopping distance of the vibration-driven U-shaped 
beam robot at three distinct input angular velocities (ω₁, ω₂, and ω₃). At the minimal rotational velocity, ω₁ 
= 125.66 rad/s, the robot attained an average hopping distance of 401.60 mm, accompanied by a substantial 
error margin of approximately ± 10  mm, signifying diminished stability and less effective energy transfer at 
low excitation levels. Upon increasing the angular velocity to ω₂ = 251.33 rad/s, the average hopping distance 
enhanced to 417.23 mm, accompanied by a reduced error margin (about ± 5 mm), indicating a more stable and 
consistent performance. At the peak angular velocity, ω₃ = 376.99 rad/s, the robot achieved the greatest average 
hopping distance of 420.07 mm, accompanied by the smallest error margin (about ± 3 mm), underscoring the 
system’s improved efficiency and less variability at elevated speeds.

The transition from ω₁ to ω₂ yielded an enhancement of roughly 15.63 mm in hopping distance, although the 
advancement from ω₂ to ω₃ was lesser, at around 2.84 mm. In comparing ω₁ and ω₃, the total enhancement was 
18.47 mm, substantiating that elevated angular velocities facilitate more robust and stable hopping locomotion. 
The results quantitatively illustrate that the robot’s hopping ability dramatically enhances with angular velocity; 
nevertheless, the rate of improvement decreases at elevated speeds, suggesting that the system is nearing its 
performance limit.

The Table 2 presents a comparative analysis of three independent signal conditions or waveforms ω1, ω2, and 
ω3 defined by their temporal, spectral, spatial, and application-specific characteristics. The time range indicates 
that ω1 functions for the longest duration (up to 10 s), whilst ω2 and ω3 encompass shorter intervals of 4.5 and 
4 s, respectively. This indicates that ω1’s signal is intended for operations necessitating prolonged activation or 
movement. The signal type categorizes ω1 as a square waveform, characteristic of binary or on/off control signals 
typically employed in actuation systems where discrete states prevail. Conversely, ω2 and ω3 are sinusoidal but 
differ in frequency and amplitude ω2 presents a high-frequency, low-amplitude sinusoidal signal ideal for precise, 
rapid oscillations, while ω3 features a lower-frequency, higher-amplitude sine wave suitable for examining 

Fig. 8.  Experimental Measurement of Hopping Distance.
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slower, more pronounced system responses. The disparities are evident in the frequency attribute, with ω2’s 
elevated frequency being optimal for vibration testing and resonance identification, facilitating the analysis of 
system natural frequencies and dynamic behavior during rapid oscillations. ω3, characterized by moderate to low 
frequency, is more appropriate for damped harmonic analysis, emphasizing the attenuation of oscillations over 
time owing to system damping. The hopping range data, covering millimeter-scale displacements, transitions 
from ω1 to ω3, indicates an increase in motion amplitude from about 424.5 mm to 428.1 mm, which corresponds 
with variations in signal amplitude and desired physical displacements or sensor responses. The application 
suggestions succinctly illustrate the practical utility of each signal: ω1’s binary nature renders it suitable for 
actuation or incremental motion; ω2’s attributes correspond with vibration or resonance testing, where the 
detection of system response to high-frequency stimuli is essential, and ω3’s parameters enable the examination 
of energy dissipation and damping in oscillatory systems. The table presents a curated assortment of signals 
designed for particular experimental or control objectives, balancing time duration, waveform intricacy, spatial 
displacement, and frequency to enhance the analysis of mechanical or electromechanical systems across various 
dynamic behaviors.

Analysis of simulated and experimental results at ω1
Figure 10 demonstrates the deviation of the system in millimeters for both experimental (EXP) and simulated 
(SIM) outcomes over a 10-second interval. The blue curve (EXP) exhibits fluctuations predominantly within the 
± 5 mm range, signifying relatively moderate oscillations. The red curve (SIM) exhibits oscillations of greater 
frequency and amplitude, with peak deviations of + 10 mm and − 14 mm occurring at t = 6.5 s. Although 
the simulated trend aligns with the experimental form in several instances, it exhibits overshoot, particularly 
in transient regions. The simulation appears to be more sensitive, either attributable to model assumptions or 
insufficient damping16,35.

Figure 11 discusses the linear displacement (in mm) of the system’s body. The experimental curve (blue) 
initiates at approximately 200 mm and ascends sharply within the first second, attaining over 950 mm at 10 
s. The simulation (red) exhibits a more linear development trajectory but underrepresents the displacement, 
commencing at around 120 mm and attaining over 900 mm at 10 s. A continuous distance disparity of 
approximately 30–50 mm exists between the EXP and SIM curves, indicating that the experimental system may 
have encountered increased momentum or reduced drag compared to the model14,41.

Feature ω1 ω2 ω3

Time Range 0–10 s 0–4.5 s 0–4 s

Signal Type Square-like Sinusoidal (high freq, small amp) Sinusoidal (lower freq, larger amp)

Hopping Range (mm) ~ 424.5 to 426.2 ~ 426.3 to 426.8 ~ 427.4 to 428.1

Frequency Moderate High Moderate to low

Application Suggestion Binary motion/actuation Vibration test/resonance Damped harmonic analysis

Table 2.  Summary of signal Types, Ranges, and recommended Uses.

 

Fig. 9.  Experimental Average Hopping Distance at ω1, ω2, and ω3.
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Figure 12 shows the body velocity in mm/s over time. The blue (EXP) curve shows a burst of energy within 
the first second, with a peak of about + 1500 mm/s, then settles into oscillations between ± 300 mm/s for the 
rest of the duration. The red (SIM) curve displays a sharp initial spike (nearly + 3700 mm/s) then quickly drops 
to oscillate within a similar ± 300  mm/s band. The initial spike in simulation is significantly larger than the 
experimental peak, which may be due to the model neglecting friction or inertia effects. After t = 1 s, both signals 
oscillate in a stable, nearly matched pattern, indicating good model fidelity during steady state.

Figure 13 depicts the hopping distance (vertical jump height) of the system in mm. The blue curve (EXP) 
shows an initial overshoot near 430 mm, then stabilizes between 400 mm and 410 mm with consistent oscillations. 
The red curve (SIM) closely follows the experimental values after t = 1 s, stabilizing around 405 mm. The match 
between simulation and experiment is particularly strong in this figure, especially beyond the transient start up. 
The early mismatch could be attributed to differences in launch dynamics or actuator model tuning.

Analysis of simulated and experimental results at ω2
Figure 14 depicts the temporal deviation for both experimental (EXP) and simulation (SIM) data at an angular 
velocity of 251.3274 rad/s. Initially, both curves demonstrate oscillating activity around the zero-deviation line; 
nevertheless, significant discrepancies emerge in their amplitude. The simulation curve attains a maximum 
variation of roughly − 20 mm at around 2 s, while the experimental curve stays within a somewhat narrower 
range of ± 7 mm. This mismatch indicates that the simulation model either overestimates the system’s sensitivity 
or is deficient in dampening16,35. After around 2.8 s, both responses stabilize around + 5 mm, demonstrating 
effective convergence in the steady state. The phase alignment is well preserved; however, the overshoot and 
amplitude discrepancies during the transient phase suggest potential enhancements for the simulation.

Figure 15 illustrates the relationship between body distance and time. The experimental response initiates 
with abrupt, unpredictable oscillations between 0 and 0.5 s, presumably attributable to mechanical instability 

Fig. 11.  Body Distance vs. Time at ω1 = 125.6637 rad/s (EXP vs. SIM).

 

Fig. 10.  Deviation vs. Time at ω1 = 125.6637 rad/s (EXP vs. SIM).
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or sensor noise. Notwithstanding this, it rapidly shifts into a linear growth phase. The body traverses a distance 
ranging from approximately 200 mm to exceeding 950 mm within duration of 5 s. In contrast, the simulated 
reaction initiates more gradually at approximately 150 mm, then adhering to a nearly linear path, consistently 
converging with the observed curve. Subsequent to the initial second, the simulation and experimental curves 

Fig. 14.  Deviation vs. Time at ω2 = 251.3274 rad/s (EXP vs. SIM).

 

Fig. 13.  Hopping Distance vs. Time at ω1 = 125.6637 rad/s (EXP vs. SIM).

 

Fig. 12.  Body Linear Velocity vs. Time at ω1 = 125.6637 rad/s (EXP vs. SIM).
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exhibit near-parallelism, maintaining a steady offset of roughly 30–40  mm, which signifies a satisfactory 
concordance in velocity trends, but with a minor underestimating in positional accuracy by the simulation 
model.

Figure 16 illustrates the body’s linear velocity as a function of time. The experimental curve first displays 
significant spikes, with values surpassing + 7000 mm/s and plummeting to almost − 7000 mm/s, indicating an 
unstable or abrupt commencement. This transient is prevalent in real-world systems characterized by mechanical 
compliance and feedback delay. The simulation curve initially spikes to around + 6500 mm/s, but subsequently 
stabilizes into steady oscillations. After one second, both curves stabilize inside a small band oscillating about 
± 300 mm/s, indicating a significant correlation between experimental and simulated values in the steady-
state domain16,36. The initial discrepancy underscores the difficulty of correctly replicating real-world start up 
conditions in a simulation.

Figure  17 illustrates the hopping distance (vertical displacement) as a function of time for both the 
experimental and simulated systems. The simulation first attains a maximum of approximately 470  mm, 
then experiencing a steep decline below 350 mm, which is somewhat more pronounced than observed in the 
experimental data. Nonetheless, both curves attain stability rapidly. The experimental data fluctuates at 418 mm, 
whereas the simulation stabilizes at approximately 415 mm, exhibiting comparable amplitudes and frequencies. 
From roughly one second onward, the curves are closely aligned. This tight match indicates that the simulation 
model effectively captures the dynamics of hopping behavior at this angular velocity, especially during the 
steady-state phase.

Analysis of simulated and experimental results at ω3
Figure 18 illustrates the deviation response over time for both the experimental and simulated results at an 
angular speed of 376.9911 rad/s. Initially, the deviation exhibits significant oscillations in both cases, with the 
experimental response reaching a maximum of approximately + 10 mm and a minimum of around − 8 mm, 
while the simulated response shows slightly larger excursions of up to + 12 mm and down to − 12 mm. These 
oscillations gradually decay as time progresses, with both responses settling within a range of ± 2 mm after 
roughly 2.5 s. The simulation, however, consistently demonstrates a slightly higher amplitude of oscillation and 
slower damping compared to the experimental results, suggesting that the simulation model may underestimate 
system damping or neglect certain dissipative effects present in the experimental setup16,35. Despite these 

Fig. 16.  Body linear velocity vs. Time at ω2 = 251.3274 rad/s (EXP vs. SIM).

 

Fig. 15.  Body Distance vs. Time at ω2 = 251.3274 rad/s (EXP vs. SIM).
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differences, both curves ultimately converge to a stable value near zero deviation, indicating close alignment 
between the two approaches.

Figure 19, the body distance is plotted against time, reflecting the forward progression of the system. The 
experimental trajectory exhibits a nearly linear increase but with noticeable small fluctuations and an early dip 
at around 0.2 s, where the body distance briefly drops to nearly 250 mm before recovering. In comparison, the 
simulated data follow a smoother and more ideal linear progression, beginning at about 300 mm and increasing 
steadily. At 0.5 s, the experimental result records a displacement of about 320 mm compared to 310 mm for the 
simulation, while at 2 s the values are approximately 640 mm for the experiment and 620 mm for the simulation. 
By 4 s, both curves converge around 940–950 mm. This close agreement after the first second indicates that the 
simulation accurately predicts the long-term displacement trend, while the initial experimental irregularities 
may stem from physical disturbances such as surface slip, mechanical backlash, or measurement noise.

Figure 20 focuses on body velocity, where the system demonstrates a sharp transient phase before stabilizing 
into a quasi-steady oscillatory state. The experimental velocity response experiences a dramatic spike, peaking 
at approximately + 5000 mm/s within the first 0.1  s, followed shortly by a trough of nearly − 4500 mm/s. By 
contrast, the simulation predicts an even sharper initial spike, approaching + 8000  mm/s at the start, before 
settling more smoothly. After the first second, both responses stabilize with oscillations of smaller amplitude, 
fluctuating around ± 500 mm/s.

The discrepancy in the magnitude and smoothness of the initial velocity response indicates that the 
simulation assumes more instantaneous acceleration, while the experimental system is subject to inertia, 
frictional damping, and possibly delayed actuation16,36. Despite this, both experimental and simulated results 
exhibit similar long-term oscillatory patterns, demonstrating that the model successfully captures the essential 
steady-state dynamics.

Figure 21 presents the hopping distance response, which clearly shows damped oscillations converging to 
a stable equilibrium value. The simulation predicts an initial peak hopping distance of nearly 490 mm, while 

Fig. 18.  Deviation vs. Time at ω3 = 376.991 rad/s (EXP vs. SIM).

 

Fig. 17.  Hopping distance vs. time at ω2 = 251.3274 rad/s (EXP vs. SIM).
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the experiment records a slightly lower peak of approximately 470 mm. Both responses subsequently decrease 
through damped oscillations, with minima around 370 mm experimentally and 360 mm in the simulation. By 
2.5 to 3 s, the responses converge and settle to a steady value of about 420 mm. The close overlap of the curves 
throughout the time domain confirms that the simulation effectively reproduces the experimental behavior for 
this parameter, with only slight overestimation of the initial peak, possibly due to un-modeled energy dissipation 
mechanisms such as air resistance or material damping.

While the simulation tends to slightly exaggerate initial oscillation amplitudes and smooth out fluctuations 
observed in the experimental data, the two approaches align closely in terms of long-term trends and final 
steady-state values. Specifically, the system stabilizes to a deviation near zero, achieves a body distance of about 
950 mm after 4 s, maintains a steady oscillatory velocity around ± 500 mm/s, and stabilizes to a hopping distance 
of approximately 420 mm. Minor differences can be attributed to real-world effects such as friction, structural 
compliance, or sensor lag, which are not perfectly captured in the simulation. Overall, the results strongly 
validate the accuracy of the simulation model, with quantitative evidence demonstrating its ability to replicate 
experimental dynamics with high fidelity2,36.

Figure  22 compares the average hopping distance of the vibration-driven U-shaped elastic beam robot 
obtained from experimental measurements (EXP) and simulation results (SIM) at three input angular velocities: 
ω₁ = 125.66 rad/s, ω₂ = 251.33 rad/s, and ω₃ = 376.99 rad/s.

At ω₁, the experimental average hopping distance was 401.60 mm, while the simulation predicted 400.95 
mm. The difference between experiment and simulation was only 0.65 mm, showing excellent agreement at 
low frequency, though the experimental data showed a larger error margin (± 10 mm), indicating less stable 
performance36. At ω₂, the experimental result increased to 417.23 mm, while the simulation predicted 408.20 
mm, giving a difference of 9.03 mm. Here, the experimental hopping was higher, but both trends confirmed 
improved locomotion with increased angular velocity2. At the highest angular velocity, ω₃, the experimental 
average hopping distance reached 420.07 mm, while the simulation result was 413.79 mm, corresponding to a 
difference of 6.28 mm.

Numerically, from ω₁ to ω₃, the experiment showed a total increase of 18.47 mm, whereas the simulation 
showed an increase of 12.84 mm. Both sets of results demonstrate a clear upward trend, confirming that higher 

Fig. 20.  Body Linear Velocity vs. Time at ω3 = 376.9911 rad/s (EXP vs. SIM).

 

Fig. 19.  Body Distance vs. Time at ω3 = 376.9911 rad/s (EXP vs. SIM).
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angular velocities improve hopping performance. The figure also highlights that while simulation closely follows 
the experimental trend, it generally underestimates hopping distance by 2–9 mm, especially at medium and high 
input speeds. This indicates that the simulation successfully captures the vertical displacement dynamics but 
slightly misses the higher energy transfer observed in experiments2,36.

Figure 23 presents a comparison between the experimental (EXP) and simulation (SIM) results of the robot’s 
average body linear velocity at three angular velocities: ω₁ = 125.66 rad/s, ω₂ = 251.33 rad/s, and ω₃ = 376.99 rad/s.

At the lowest speed, ω₁, the experimental measurement recorded an average body velocity of 93.79 mm/s, 
while the simulation predicted a much lower velocity of 34.52 mm/s. The difference of 59.27 mm/s indicates that 
the simulation significantly underestimates the robot’s forward motion at low frequency16. When the angular 
velocity increased to ω₂, the experimental velocity rose sharply to 196.82 mm/s14, nearly double that at ω₁. In 
contrast, the simulation produced a velocity of 107.47 mm/s, which, although closer to the experimental result, 
still underestimated it by 89.35 mm/s. At the maximum angular velocity, ω₃, the experimental velocity peaked 
at 276.43 mm/s, while the simulation output was 123.34 mm/s, resulting in a discrepancy of 153.09 mm/s41.

Fig. 22.  Average hopping distance at different frequencies: experimental vs. simulated results.

 

Fig. 21.  Hopping Distance vs. Time at ω3 = 376.9911 rad/s (EXP vs. SIM).
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Numerically, the experimental results show a clear and consistent increase in body velocity, with gains of + 
103.03 mm/s from ω₁ to ω₂ and + 79.61 mm/s from ω₂ to ω₃, for a total improvement of + 182.64 mm/s between 
ω₁ and ω₃. By comparison, the simulation also followed an increasing trend, with gains of + 72.95 mm/s (ω₁ 
to ω₂) and + 15.87 mm/s (ω₂ to ω₃), for a total rise of + 88.82 mm/s. However, across all cases, the simulation 
consistently underestimated body velocity by about 50–60%, which matches the limitation discussed in your 
manuscript14,16.

The hopping distance results indicate a robust correlation between experimental and simulated data, especially 
at elevated frequencies, but the body velocity comparison demonstrates a persistent underestimating by the 
simulation model. This underscores the necessity of modifying the simulation settings to more accurately reflect 
the dynamic performance of the actual system, especially regarding velocity generation2. The inconsistency 
indicates that although the vertical displacement mechanics are adequately predicted, the horizontal velocity 
response necessitates additional calibration to reconcile the simulation outcomes with experimental data.

Conclusions

•	 This study details the design, modeling, simulation, and experimental validation of a vibration-driven terres-
trial robot utilizing a U-shaped elastic beam actuated by a single DC motor with an eccentric rotating mass. 
The impact of angular velocity on locomotion performance, stability, and hopping behavior was rigorously 
investigated.

•	 Experimental findings indicated that increased angular velocities enhanced body velocity, hopping dis-
tance, and stability. Body velocity increased from 85.46 mm/s at ω₁ = 125.66  rad/s to 265.49 mm/s at ω₃ 
= 376.99  rad/s. In contrast, the hopping distance exhibited a more modest increase from 405.88  mm to 
424.08 mm. Stability analysis demonstrated a significant reduction in deviation at elevated angular velocities, 
with the system stabilizing within ± 2 mm at ω₃.

•	 Simulation results accurately reflected the trend in hopping performance, with errors remaining below 3 mm 
at ω₃. The model consistently underestimated body velocity by 50–60% in all cases, indicating that friction, 
damping, and nonlinear stiffness effects were inadequately represented.

•	 The findings demonstrate that torsional vibrations in a U-shaped elastic beam facilitate locomotion through 
straightforward actuation methods, eliminating the need for complex control systems. The observed limita-
tions, especially the discrepancy in velocity prediction, underscore the necessity for improved modeling of 
dissipative effects and nonlinear dynamics. Future research should concentrate on overcoming these limita-
tions and investigating the scalability of this method to more intricate robotic systems or practical applica-
tions in restricted environments.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Fig. 23.  Average body linear velocity at different frequencies: experimental vs. simulated results.
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