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Invasive Breast Cancer (IBC), encompassing Invasive Ductal Carcinoma (IDC) and Invasive Lobular 
Carcinoma (ILC), is the most prevalent cancer in women. This study aimed to develop a machine 
learning (ML) model for distinguishing between its histological subtypes (IDC and ILC) by analyzing 
glandular texture features from the contralateral breast. T1-weighted pre-contrast MRI images were 
sourced from the Cancer Imaging Archive, with image segmentation performed in 3D Slicer software, 
yielding a dataset of 2444 slices (1890 IDC, 554 ILC). First-order and GLCM texture features were 
extracted using MATLAB, and feature selection via ANOVA F-test revealed correlation (0.1233) and 
mean (0.5335) as the least significant features. Despite this, the initial model with all features achieved 
an accuracy of 0.9038, suggesting the importance of all extracted features. To address dataset 
imbalance, the SMOTE technique was applied, creating balanced training (80%) and testing (20%) 
subsets. Various ML algorithms were tested, and the Random Forest Classifier achieved the highest 
cross-validation scores for both SMOTE (0.8723 ± 0.0209) and original (0.8989 ± 0.0224) datasets. The 
final model achieved an accuracy of 91% on the original and 87% on the SMOTE dataset, revealing a 
comprehensive classification. The findings support early diagnosis and make an innovative contribution 
to the literature.
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Abbreviations
GLCM	� Grey level co-occurrence matrix
IBC	� Invasive breast cancer
IDC	� Invasive ductal carcinoma
ILC	� Invasive lobular carcinoma
MATLAB	� Matrix laboratory
ML	� Machine learning
MRI	� Magnetic resonance imaging
ROC	� Receiver operating characteristic
SMOTE	� Synthetic minority oversampling technique

Breast cancer is one of the most prevalent malignancies affecting women globally, with a lifetime risk of 12.4%. 
In 2022, breast cancer was a leading cause of mortality worldwide, responsible for approximately 670,000 deaths 
and emerging as the most common cancer in 157 out of 185 countries1. Among its types, Invasive Breast Cancer 
(IBC) represents a significant clinical challenge. IBC includes localized breast cancer, which is confined to the 
breast, and metastatic breast cancer, characterized by the spread of cancer cells to distant parts of the body 
through the blood and lymphatic systems2. Within the staging system for breast cancer, in situ cancers are 
typically classified as Stage 0. Once invasive cancer is discovered, it is classified into stages 1 through 4 according 
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to the Tumor, Nodes, and Metastasis (TNM) staging system. This staging relies on three clinical characteristics: 
the size of the primary tumor and whether it has invaded nearby tissue;  the involvement of regional lymph 
nodes; and the presence or absence of metastasis to distant organs beyond the breast. Other elements that can 
influence staging include tumor grade, Human Epidermal Growth Factor Receptor 2 (HER2) status, estrogen 
receptor (ER) status, and progesterone receptor (PR) status3.

In breast cancer classification, the World Health Organization (WHO) and standard pathology guidelines 
categorize tumors based on histological type, which is determined through microscopic evaluation of tissue 
architecture. Invasive ductal carcinoma (IDC) is the most common form of invasive breast cancer and is 
characterized by duct-like morphological patterns, accounting for 80% of cases4. IDC originates in the milk ducts 
that channel milk from the glands to the nipple. A key clinical feature of IDC is the presence of a palpable “lump”. 
Genetic mutations, particularly in the BRCA1 and BRCA2 genes, are implicated in the development of IDC, 
leading to disrupted cell growth and division. Most IDCs exhibit ER and PR positivity5. In contrast, ILC 
represents a distinct histological subtype with lobular growth patterns, and it constitutes approximately 20% of 
invasive breast cancers. It typically arises from lobular carcinoma in situ (LCIS) in the milk-producing lobules, 
progressing into malignancy and infiltrating adjacent tissues. ILC may sometimes coexist with other types of 
breast cancer, such as ductal carcinoma in situ (DCIS) and IDC6. Unique to ILC is its diffuse growth pattern and 
linear infiltration of small, non-adherent cells into surrounding tissue7. This morphology stems from disrupted 
cell adhesion due to the absence of E-cadherin, a critical protein for cellular cohesion. Genetic alterations in 
the CDH1 gene underlie this deficiency, making the loss of E-cadherin a hallmark of ILC8. Both IDC and ILC 
are included under the histopathologic classification of breast cancer, alongside other variants such as tubular, 
mucinous, and medullary carcinomas.

Risk factors of breast cancer
Breast cancer has several risk factors, including older age, personal and family history of breast or ovarian 
cancer, and genetic mutations such as those in BRCA1 and BRCA2. Additional contributors include hormonal 
influences (e.g., timing of pregnancy, early menarche, late menopause), lifestyle factors (e.g., weight, physical 
activity, alcohol consumption, smoking), and prior medical treatments like radiation therapy and hormone 
replacement therapy. Familial syndromes, such as Cowden, Li-Fraumeni, and Peutz-Jeghers also elevate risk9. 
Hereditary factors contribute to a small percentage (5–10%) of cases, whereas lifestyle and environmental factors 
account for a larger proportion (20–30%)10.

Imaging techniques
Modern imaging modalities play a pivotal role in breast cancer detection and management. These include 
mammography, contrast-enhanced mammography, ultrasonography, magnetic resonance imaging (MRI), and 
others11. Among them, MRI demonstrates the highest sensitivity (94.6%) as a standalone modality, surpassing 
mammography and ultrasound12,13. The American College of Radiology (ACR) recommends annual MRI 
screening for women with a 20% or greater lifetime risk of developing breast cancer14. Advances in MRI 
technology, including improved 2D and 3D resolution, have expanded its utility in screening, diagnosis, and 
monitoring treatment response15.

Texture analysis
Texture analysis is an innovative approach in medical imaging that characterizes spatial patterns of grey-level 
intensities within an image16. Originally developed for computer vision tasks, such as object classification and 
surface inspection, texture analysis has become indispensable in medical imaging17. It enables the quantitative 
assessment of tissue properties, aiding in the differentiation of normal and abnormal tissues. Texture features 
are categorized based on their statistical order18. First-order features are derived from grey-level histograms, 
including mean, median, and skewness. Second-order features are extracted from co-occurrence matrices, 
highlighting inter-pixel relationships19. In breast imaging, texture analysis holds promise for identifying 
parenchymal patterns and distinguishing between cancer subtypes20.

Machine learning
Machine learning (ML) has revolutionized medical image analysis, enabling computers to “learn” from data and 
make predictions without explicit programming. ML approaches can be classified into three main categories: 
Supervised learning, Unsupervised learning, and Reinforcement learning21. Supervised learning constitutes a 
machine learning approach wherein the objective is to derive a function that accurately predicts outputs given 
corresponding inputs. This learning process relies on a dataset of labeled training examples, each comprising an 
input and its associated output22. On the other hand, unsupervised learning is trained on an unlabeled dataset23. 
In reinforcement learning, an autonomous agent learns to perform a task by trial and error, in the absence of 
any guidance from a user24. Supervised learning works best when the data is already highly predictive, such 
as when using “ground truth” labels. Commonly employed supervised learning classifiers include K-Nearest 
Neighbors (KNN), Logistic Regression (LR), Random Forest (RF), Naive Bayes (NB), Decision Trees (DT), and 
Support Vector Machines (SVM)25.

Literature survey
In recent years, several significant studies have advanced this field by developing models to classify invasive 
breast cancer subtypes. Most of the research is based on analysing the cancer tumor using the contrast-enhanced 
data. We focus on a few of studies. In the year 2010, Holli et al., conducted a retrospective study to investigate the 
texture parameters of IDC and ILC in dynamic contrast enhanced magnetic resonance images in comparison 
to healthy tissue to characterize texture analysis findings of cancer. They selected the T1-weighted pre-contrast, 
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two contrast enhanced series and their subtraction series. They achieved classification accuracy varying between 
80% and 100% for all the employed classification methods, differentiating both cancerous and healthy breast 
tissue, as well as invasive ductal and lobular carcinoma26. In 2020, Yuan et al., carried out a study in China on 
differentiating tumor grades in breast invasive ductal carcinoma using texture analysis of MRI. They used Gobor 
wavelet analysis of the region of interest (ROI) for the tumor image to extract the texture properties. The feature 
subset was classified by using a SVM and its parameters were adjusted to achieve the best outcome. The highest 
accuracy was obtained in the range of 77.79%–81.94% for the prediction model after a five fold cross-validation. 
They concluded that there is a significant correlation between the grades of IDC and MRI27. In 2016, Sutton et 
al., conducted a retrospective study on breast cancer molecular subtype classifier that incorporates MRI features. 
Tumors were contoured on the fat-suppressed T1-weighted pre-contrast and three post-contrast images. They 
used a multiclass SVM for this study and a Leave-One-Out Cross Validation (LOOCV) approach. Each SVM 
fitted in the LOOCV process and generated a model with varying features. Eleven out of the top 20 ranked 
features were significantly different between IDC subtypes with p < 0.05. When the top nine pathologic and 
imaging features were incorporated, the predictive model distinguished IDC subtypes with an overall accuracy 
on LOOCV of 83.4%28.

The majority of studies reviewed in the literature rely on the analysis of tumors using contrast-enhanced 
data which often requires invasive procedures. Although the differences between IDC and ILC may be subtle, 
diagnosing ILC is notably more challenging due to its diffuse growth pattern. It resembles normal breast 
parenchyma in conventional imaging29.

This is where artificial intelligence (AI), especially advanced machine learning and deep learning techniques 
- can play a transformative role. Recent years have seen significant advances in AI-driven breast cancer detection 
and diagnosis across multiple imaging modalities. Notably, Fusion Siamese Networks have been developed to 
compare current and prior mammograms, emulating radiological comparison and reducing false positives30. 
Similarly, hybrid transformer-based models integrate prior and current images to improve representation 
learning for longitudinal mammogram analysis31. In addition, deep neural networks have been shown to 
enhance radiologists’ performance in breast cancer screening, achieving accuracy comparable to or superior 
to human experts32. Beyond mammography, AI techniques are increasingly applied to MRI, with emerging 
models delivering accurate breast cancer detection and explainable anomaly localization in both high- and low-
prevalence settings33.

A comprehensive review by Chen et al. (2025) analyzed 181 AI-based studies published between 2020 
and 2024, highlighting the strengths and applications of machine learning and deep learning in breast cancer 
imaging. Machine learning approaches using handcrafted features such as shape, texture, and intensity showed 
robustness and interpretability, particularly when paired with feature selection techniques. Deep learning 
methods automated feature extraction and demonstrated excellent performance on large datasets. The review 
also emphasized the utility of AI in dynamic contrast-enhanced MRI (DCE-MRI), enabling precise tumor volume 
measurement and fibroglandular tissue segmentation due to high spatial resolution34. Adam et al. conducted 
a review in 2023 that explored deep learning techniques for breast cancer detection with MRI, focusing on 
the capabilities of convolutional neural networks (CNNs) for classification, object detection, and segmentation 
tasks. While CNNs have shown promise in small-scale studies, there remains a need for large-scale, real-world 
evaluations to fully assess the performance of AI-driven breast MRI interpretation. Specifically, prospective 
and retrospective studies are necessary to validate the effectiveness of deep learning models in diverse clinical 
settings35. Recent retrospective studies further demonstrate AI’s potential in breast MRI. For example, Hirsch et al. 
(2025) presented a high-performance, open-source model trained on 6,615 breast MRI examinations, validated 
on both internal and external datasets, achieving state-of-the-art detection and localization performance. These 
studies collectively underscore the rapid progress in multimodal, longitudinal, and explainable AI approaches 
for breast imaging36. AI models excel at identifying non-obvious texture and tissue composition features across 
large image datasets, making them well-suited for analyzing the CLB. Recent advances in AI have shifted focus 
beyond just tumor detection to more nuanced applications such as risk stratification, prognostic modeling, and 
subtype classification. These developments directly support the motivation behind using the CLB for diagnostic 
purposes, as AI can harness faint patterns in normal-appearing tissue that may correlate with underlying 
malignancy or tumor subtype.

While most prior work focuses on tumor detection or classification in the affected breast, analyzing the 
contralateral (unaffected) breast provides a complementary perspective. Subtle glandular and texture patterns in 
the unaffected breast may reflect systemic or field effects associated with tumor biology, offering early indicators 
of molecular subtypes before overt lesions are detectable. This approach enables non-invasive prognostic 
assessment, enhances risk stratification for the contralateral breast, and captures broader tissue environment 
information, which can improve subtype prediction and contribute to personalized breast cancer management.

This study focused on developing a machine learning-based classification model to distinguish between 
different subtypes of invasive breast cancer using features extracted from breast MRI images. This was achieved 
by preprocessing and extracting relevant features from MRI images of patients diagnosed with invasive breast 
cancer, training machine learning algorithms on the extracted features, and evaluating the performance of the 
developed classification model using appropriate metrics such as accuracy, sensitivity, specificity, and Area 
Under the Curve-Receiver Operating Characteristic (AUC-ROC).

Justification
Most studies rely on tumor data obtained through invasive methods, such as biopsy or contrast-enhanced 
imaging. Using contralateral breast data eliminates the need for invasive procedures, reducing patient 
discomfort, risks, and associated costs. The contralateral breast often serves as a reference for normal tissue. 
Leveraging its imaging data to identify subtle texture changes associated with invasive breast cancer introduces 
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a novel diagnostic paradigm. This approach assumes that systemic changes in the breast due to malignancy 
may be reflected in the contralateral breast, even without visible tumor presence. ILC is particularly difficult 
to diagnose due to of its diffuse growth pattern, which often resembles normal tissue in conventional imaging. 
Texture analysis of the contralateral breast offers a new way to detect these subtle, often imperceptible changes. 
This method could identify imaging biomarkers that are not directly related to the tumor but instead reflect 
systemic or microenvironmental changes, potentially leading to earlier detection or more nuanced subtype 
classification. Many current studies depend on contrast-enhanced imaging, which can be contraindicated in 
some patients (e.g., those with kidney issues or allergic reactions). By using non contrast MRI data, this approach 
becomes more widely applicable. If successful, this approach could complement existing diagnostic workflows 
and provide additional insights into breast cancer biology, particularly in screening high-risk populations or 
evaluating contralateral breast health in patients with unilateral breast cancer. Existing literature largely focuses 
on the tumor and its surrounding tissues. Investigating contralateral breast data shifts the focus and contributes 
a fresh perspective to breast cancer imaging research, addressing a critical gap in current knowledge.

Methods
This retrospective, quantitative study analyzed MRI data from female breast cancer patients to develop a machine 
learning-based model for classifying subtypes of IBC. This study employed a binary classification approach, with 
a supervised learning methodology used to develop the breast cancer subtype classification model.

Data collection
The MRI images were obtained from the Cancer Imaging Archive website, which is managed by the Frederick 
National Laboratory for Cancer Research (FNLCR), in compliance with their data usage policies and 
restrictions. Breast MRI images of the patients from “Duke Breast-Cancer-MRI” dataset (​h​t​t​p​s​:​​/​/​w​w​w​.​​c​a​n​c​e​r​​
i​m​a​g​i​n​​g​a​r​c​h​​i​v​e​.​n​e​​t​/​c​o​l​l​​e​c​t​i​o​n​​/​d​u​k​e​-​b​r​e​a​s​t​-​c​a​n​c​e​r​-​m​r​i​/) were collected through the archive in Digital Imaging 
and Communications in Medicine (DICOM) format, along with their age, type of breast cancer, tumor location, 
tumor grade (tubule), lymphadenopathy or suspicious nodes, and skin or nipple involvement. According to the 
selection criteria, only T1-weighted pre-contrast DICOM images were considered for this study.

Image processing and region of interest selection
As the preprocessing step, DICOM viewer was used for initial viewing of the downloaded DICOM images. The 
ROI for the glandular area of the contralateral breast (CLB) was identified, with each slice marked accordingly. 
The glandular area of the CLB was segmented using the thresholding function of the 3D slicer application, 
generating the glandular segmentation mask. Quality control measures involved manual verification of 
segmentation results and ROI selection by the expert board-certified radiologist which ensured the accuracy 
and reliability. Glandular segmentation masks were applied to the original MRI slices of the breast images. Non-
glandular tissue was masked out by multiplying the MRI slices with corresponding glandular masks, focusing the 
analysis on glandular regions (Fig. 1). In this manner, glandular ROI was isolated, and outlier slices containing 
ROI discontinuity were excluded. MATLAB (R2019b) was utilized to execute this process.

Features extraction
The various texture descriptors capturing spatial patterns and heterogeneity within the glandular tissues were 
computed and tested for normality. First-order and GLCM texture properties were extracted from the glandular 
region of MRI breast images. First-order texture features are statistical descriptors of images based on the values 
of individual pixels. Extracted first-order statistical features included:

Fig. 1.  (A) shows the ROI for one slice of the glandular tissue of the CLB (axial plane). (B) shows the isolated 
glandular ROI for the same slice of the CLB (axial plane).
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Mean: A measure of average intensity. This is the average grey-level value of the glandular tissue and can 
indicate the overall intensity.

	
Mean = 1

N

∑
N
i=1Ii� (1)

Standard deviation: A measure of average contrast. This measures the variation of grey-level values within the 
glandular tissue and can provide information on the heterogeneity of the glandular tissue.

	
Standard deviation =

√
1
N

∑
N
i=1(Ii − µ )2� (2)

Skewness: This measure indicates the symmetry of the distribution.

	
Skewness = 1

N

∑
N
i−1

(
Ii − µ

σ

)3
� (3)

Kurtosis: Measures the sharpness of the histogram of grey-level values.

	
Kurtosis = 1

N

∑
N
i=1

(
Ii − µ

σ

)2
− 3� (4)

Entropy: Measures the randomness or disorder of grey-level values considering all pixel values across the whole 
region.

	
Entropy = −

∑
N
i−1p (Ii) log (p( Ii ))� (5)

For the above Eqs. (1)-(5), N is the total number of pixels, Ii is the intensity value of the i-th pixel, µ is the mean 
intensity, and σ is the standard deviation of the pixel intensities in the region.

Local entropy: A measure of the randomness or unpredictability of pixel values within a local neighborhood. 
It quantifies the complexity of the intensity distribution in a specific local area, rather than considering the entire 
region.

	
Local entropy = −

∑
N
i−1p (Ii) log (p( Ii ))� (6)

Local range: A measure of the difference between the maximum and minimum pixel intensities in the local 
region. The range is computed from the minimum and maximum intensity values, reflecting the spread of 
intensity values.

	 Range = max (Ii) − min (Ii)� (7)

Local standard deviation: A measure of the variation of pixel intensities within a local region or neighborhood 
of an image. It quantifies how much the pixel values deviate from the mean intensity of that specific local region.

	
Local standard deviation =

√
1
N

∑
N
i=1(Ii − µ local)

2� (8)

For the above Eqs. (6)-(8), N is the number of pixels in the local neighborhood. Ii is the intensity of the i -th 
pixel in the local neighborhood, and µ local is the mean intensity of the pixels within the local neighborhood.

GLCM properties are a set of texture features that can be extracted using the GLCM, which captures the 
second-order statistical properties of the grey-level values in the glandular tissue. Extracted GLCM texture 
properties included:

GLCM contrast (CNT): GLCM contrast, also known as the sum of squares variance, measures the intensity 
difference between two neighboring pixels ( i, j) over the whole image. GLCM contrast becomes 0 for constant 
images ( i − j), while the weights continue to increase exponentially as the difference of pixel intensities (i − j) 
increases. However, the edges, noise, or wrinkled textures within an image increase the contrast value.

	
CT N =

∑
N−1
i,j=0Pi,j (i − j)2 � (9)

GLCM correlation (COR): The linear dependency of grey levels on neighboring pixels of the image is measured 
by the GLCM correlation. When there is a linear and predictable relationship between the two pixels, the 
corresponding correlation increases. Therefore, the images with high correlation values express that there is 
high predictability of pixel relationship.

	
COR =

∑
N−1
i,j=0Pi,j

[
(i − µ i)(j − µ j)√

(σ i
2) (σ j

2)

]
� (10)
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GLCM Energy (ENR): The GLCM energy measures the uniformity of the grey level distribution of an image. An 
identically uniform distribution of grey levels in an image (window is very orderly) expresses 1 for GLCM energy 
and it becomes 0 for images that have an identically non-uniform distribution of grey levels. Here, GLCM energy 
uses each Pi,j value as a weight for itself in the calculation of GLCM energy.

	
ENR =

∑
N−1
i,j=0Pi,j

2� (11)

GLCM homogeneity (HOM): GLCM Homogeneity is the way of measuring the smoothness of distribution of 
grey levels within an image, which is inversely correlated with contrast.

	
HOM =

∑
N−1
i,j=0

Pi,j

1 + (i − j)2 � (12)

These 12 properties were extracted for all the samples and copied into an Excel file.

Feature selection and model training
After feature extraction, a supervised learning method was applied to build a model for predicting types of 
IBC (IDC or ILC). A heat map was created to display the matrix’s values. The null values on the dataset were 
visualized in the heat map and then eliminated using a python method. The missing values in the data set were 
considered null, and were referred to as ‘not available data’ in the data set. The sample consisted of 2444 slices 
including 1890 IDC slices, and 554 ILC slices. The extracted feature values were normalized utilizing Python 
3.7 to have zero mean and unit variance: where Xn is the feature normalized value, X is the feature value and 
Xmin and Xmax are the minimum and the maximum values for the particular feature:

	
Xn = X − Xmin

Xmax − Xmin
� (13)

This standardization process avoids the domination of features with high variance in the learning process. To 
select the most pertinent texture features, an analysis of variance (ANOVA) F-test was applied to assess their 
significance in distinguishing between ductal and lobular carcinomas. To address the class imbalance between 
IDC and ILC instances in the dataset,  the SMOTE approach was employed. Subsequently, the original and 
SMOTE datasets were stratified and divided into training and testing subsets. The training subset comprised 
80% of the data, while the remaining 20% was allocated to the testing subset. To determine the most promising 
algorithm for differentiating between ductal and lobular breast cancer, a tenfold cross-validation method was 
employed. Moreover, an under-sampling technique was also utilized in the same manner. The default parameters 
were examined in each of the algorithms including, K-Nearest Neighbor (KNN), Logistic Regression (LR), 
Random Forest (RF), Decision Tree Classifier (DTC), Gaussian Naive Bayes (GaussianNB), Support Vector 
Machines (SVM), and AdaBoost Classifier (ADA). Afterwards, a model for classifying breast cancer types was 
created by feeding the selected features into the Random Forest Classifier, as it was found to be the most pertinent 
algorithm to execute the study following the tenfold cross-validation test. The performance of the algorithm was 
evaluated using several parameters. The accuracy, precision, recall, F1 score, confusion matrix, and AUC-ROC 
measures were obtained with the set of parameters that produced the best model. Hyperparameter tuning for 
the Random Forest Classifier using a random grid search was performed to identify the ideal set of parameters 
in an effort to improve the accuracy of breast cancer type prediction. Grid search is a systematic method for 
hyperparameter tuning. It explores a predefined set of parameter values, making it suitable when the search 
space is relatively small and computational resources are available. This process involves systematically searching 
for the best combination of hyperparameters to optimize the model’s performance within the specified grid37.

The considered tunable hyperparameters of the algorithm were: n_estimators, max_depth, min_samples_
split, min_samples_leaf, and bootstrap, and each hyper-parameter was tested within a predefined ranges of 
values (n_estimators: [50, 100, 200, 300], max_depth: [None, 10, 20, 30, 40], min_samples_split: [2, 5, 10], 
min_samples_leaf: [1, 2, 4], and bootstrap: [True, False]). The Receiver Operating Characteristic Curve (ROC) 
was used to estimate the performance of the developed classification model. In addition, the performance of the 
tuned classification model was assessed by observing accuracy, precision, recall, and F1 scores over the test set.

Accuracy expresses the proportion of all correct prediction from the total number of predictions made by 
the ML model:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (14)

Precision indicates the performance of a machine learning model by measuring the quality of positive predictions:

	
P recision = T P

T P + F P
� (15)

Recall measures the correctly predicted positive cases out of all the positive individuals:

	
Recall = T P

T P + F N
� (16)
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The harmonic mean of precision and recall is represented by the F1 score:

	
F 1 = 2.

P recision.Recall

P recision + Recall
� (17)

Where TP, TN, FP, and FN indicate True Positive, True Negative, False Positives, and False Negatives, respectively.
The performance of the ML model was evaluated again using the AUC-ROC, in addition to the previously 

mentioned performance evaluation metrics.

Results
The ANOVA F-test identified correlation (0.1233) and mean (0.5335) as the least significant features, while 
contrast achieved the highest score (87.4496). Sequential removal of features resulted in a steady decline in 
accuracy, with the initial model using all 12 features achieving the highest accuracy (90.38%). These results 
indicate that retaining all features is optimal (Table 1; Fig. 2).

Among the algorithms tested, the Random Forest Classifier outperformed the others, achieving the highest 
accuracy and lowest variance for both the SMOTE (0.8723 ± 0.0209) and original (0.8989 ± 0.0224) datasets after 
ten-fold cross-validation. Based on these results, the Random Forest Classifier was selected to build the most 
accurate model for distinguishing between ductal and lobular breast cancer (Table 2).

Fig. 2.   Corresponding model performance with ROC-AUC score (blue) and accuracy (green) as a function of 
feature removal (x-axis: number of features removed; y-axis: performance score).

 

Removed feature ANOVA F-test score Number of features Accuracy p-value

Correlation 0.1233 12 0.9038 7.254574e-01

Mean 0.5335 11 0.8997 4.651769e-01

Entropy 4.2328 10 0.8977 3.975375e-02

Standard deviation 5.9237 9 0.8936 1.500902e-02

Energy 9.0595 8 0.8691 2.639950e-03

Local entropy 11.0821 7 0.8548 8.845887e-04

Kurtosis 32.9575 6 0.8507 1.058667e-08

Skewness 34.9334 5 0.8466 3.888354e-09

Homogeneity 53.9667 4 0.8057 2.765401e-13

Local standard deviation 69.9366 3 0.7852 1.015149e-16

Local range 74.2891 2 0.7607 1.191515e-17

Contrast 87.4496 1 0.6605 1.890132e-20

Table 1.  Results of the feature selection process, showing the sequential removal of features based on ANOVA 
F-test scores. The table includes the removed features, their corresponding F-test score, the number of 
remaining features, and the resulting model accuracy.
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The generated model was able to predict the breast cancer type (ductal and lobular) with an overall accuracy 
of 90% after being trained using the Random Forest Classifier for the original dataset (Table 3). The area under 
the receiver operating characteristic curve (AUC-ROC) revealed a base model performance, with a score of 
0.9259 (Fig. 3).

The considered tunable hyper-parameters of the algorithm were: n_estimators, max_depth, min_samples_
split, min_samples_leaf, random_state, and bootstrap. Each hyperparameter was tested within predefined value 
ranges. After employing the grid search hyperparameter tuning, an increased overall accuracy of 91% was 
obtained for the original data set (Table 3). The best hyperparameters were n_estimators: 50, max_depth: 40, 
min_samples_split: 2, min_samples_leaf: 1, random_state: 42, and bootstrap: False. Furthermore, the developed 
tuned classification model correctly predicted 370 out of 383 invasive ductal carcinoma image slices, and 72 out 
of 106 invasive lobular arcinoma image slices (Fig. 5(A)).

After applying the SMOTE approach, a significant change was demonstrated in the prediction of invasive 
breast cancer subtypes using the developed model with the Random Forest Classifier. The generated model was 
able to predict breast cancer types (ductal and lobular) with an overall accuracy of 86% without hyperparameter 
tuning, and 87% with tuning (Table 4). The best hyperparameters were n_estimators: 100, max_depth: none, 
min_samples_split: 5, min_samples_leaf: 1, and bootstrap: False.

Due to the imbalance between IDC and ILC samples, an under-sampling technique was applied to improve 
predictions for ILC. The overall accuracy was measured at 85%, showing a slight deviation from previous 
findings. The area under the receiver operating characteristic curve (AUC-ROC) revealed the tuned model 
performance with a score of 0.9402. The developed tuned classification model correctly predicted 317 out of 378 
invasive ductal carcinoma image slices, and 101 out of 111 invasive lobular carcinoma image slices (Figure 6).

Discussion
There is a noticeable gap in the existing literature regarding robust methods for classifying IBC subtypes using 
contralateral breast MRI images. In this study, we proposed an automated, non-invasive technique to differentiate 
between IDC and ILC by analyzing statistical texture features, including first-order and GLCM (Grey-Level Co-
occurrence Matrix) texture features. The texture features were extracted from each image slice using MATLAB 
software. The statistical analysis revealed that the categories contained unequal numbers of image slices, with 

Category Precision Recall F1 score Support Accuracy

Base model
0 0.92 0.97 0.94 383 90%

1 0.85 0.68ara> 0.75 106

Tuned model
0 0.92 0.97 0.94 383 91%

1 0.85 0.69 0.76 106

Table 3.  Performance of the developed machine learning model with and without hyperparameter tuning, 
before the SMOTE approach. The table illustrates the precision, recall, and F1-score for each invasive breast 
cancer category in both the base and tuned classification models using the original dataset. The invasive breast 
cancer categories 0 and 1 represent invasive ductal carcinoma and invasive lobular carcinoma, respectively.

 

Algorithm Mean accuracy Standard deviation (SD) Accuracy as percentage

With SMOTE

KNN 0.6121 0.0340 61.21%

LR 0.6440 0.0360 64.44%

RF 0.8723 0.0209 87.23%

DTC 0.8175 0.0197 81.75%

GaussianNB 0.6914 0.0315 69.14%

SVM 0.6833 0.0414 68.33%

AdaBoost Classifier 0.7356 0.0225 73.56%

Without SMOTE

KNN 0.7418 0.0185 74.18%

LR 0.7761 0.0034 77.61%

RF 0.8989 0.0224 89.89%

DTC 0.8653 0.0193 86.53%

GaussianNB 0.7508 0.0193 75.08%

SVM 0.7720 0.0029 77.20%

AdaBoost Classifier 0.8183 0.0210 81.80%

Table 2.  The mean cross-validation scores, standard deviation (SD), and the accuracy from different 
algorithms for the SMOTE and original datasets. The table illustrates the mean K-fold cross-validation scores 
the corresponding SDs acquired by each classification algorithm with and without the application of the 
SMOTE.

 

Scientific Reports |        (2025) 15:39815 8| https://doi.org/10.1038/s41598-025-23498-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


1890 slices for the IDC category and 554 for the ILC category. To mitigate the impact of this imbalance, the 
SMOTE technique was applied, resulting in the equalized sample sizes across categories, with both being adjusted 
to match the sample size of IDC, which had the largest representation in the dataset. A 90% of accuracy was 
obtained with the Random Forest Classifier which could classify the IDC and ILC over the original dataset after 
a ten-fold cross-validation experiment. However, after applying SMOTE, the accuracy scores of all algorithms 
degraded significantly. Despite this, the Random Forest Classifier secured the highest accuracy among all other 
employed classifiers (Table 2). The dataset with both non-equalized and equalized sample sizes for each invasive 
breast cancer subtype category was divided into train and test subsets (80% and 20% of the data, respectively). 
Random Forest Classifier was chosen as the most pertinent algorithm to execute the study, as it provided the 
highest accuracy score among all seven classifiers. Hyperparameter tuning for the Random Forest Classifier 
using random grid search was performed to identify the ideal set of parameters to improve the accuracy of 
invasive breast cancer type prediction. The accuracy, precision, recall, F1 score, confusion matrix, and AUC-
ROC measures were obtained with the set of parameters that produced the best model. Comparing the precision, 
recall, and F1-score values of the base and the tuned model for each category, nearly the same values were 
obtained, with an improved overall accuracy (base model: 0.90 < tuned model: 0.91) (Table 3), and AUC-ROC 
score (base model: 0.9259 < tuned model: 0.9274) demonstrated the high classification power of the developed 
model over the original dataset. Furthermore, there was an improved accuracy score observed for tuned model 
compared to the base model over the SMOTE dataset (base model: 0.86 < tuned model: 0.87) (Table 4). A very 
low p-value (< 0.05) of paired t-test indicates that the difference in accuracy between the models is statistically 
significant. The Wilcoxon Signed-Rank test also supports this finding with a U-value of 5.0 and a p-value 
of 0.0000. The negative t-value (−17.151) shows that the original RF outperformed the SMOTE + RF in this 
comparison (Fig. 4). Our findings revealed a notable difference in predictive performance after hyperparameter 

Category Precision Recall F1 score Support Accuracy

Base model
0 0.94 0.87 0.91 378 86%

1 0.65 0.81 0.72 111

Tuned model
0 0.93 0.89 0.91 378 87%

1 0.69 0.78 0.73 111

Table 4.  Performance of the developed machine learning model with and without hyperparameter tuning after 
applying the SMOTE approach. The table illustrates the precision, recall, and F1-score for each invasive breast 
cancer category in both the base and tuned classification models using the SMOTE dataset. The invasive breast 
cancer categories 0 and 1 represent invasive ductal carcinoma and invasive lobular carcinoma, respectively.

 

Fig. 3.  Binary class receiver operating characteristic (ROC) curve for the original dataset before 
hyperparameter tuning. The performance of tuned binary classification models is displayed in the ROC curve 
(x-axis: false positive rate; y-axis: true positive rate across a range of classification threshold) (range 1.00–0.00). 
The area under the receiver operating characteristic curve (AUC-ROC) score is 0.9259.
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tuning between original dataset and SMOTE dataset. The original dataset exhibited superior IDC prediction 
(original dataset: 370 out of 383 vs. SMOTE dataset: 338 out of 378) with 7.44% higher in prediction score, while 
the SMOTE dataset demonstrated a marked improvement in ILC prediction (original dataset: 72 out of 106 vs. 
SMOTE dataset: 87 out of 111) with 9.51% boosted prediction value (Fig. 5).

According to Alkhawaldeh IM, et al.,  the SMOTE technique generates synthetic samples for the minority 
class by interpolating between existing minority class samples. If these synthetic samples are too similar to 
the original minority class samples, the model may over-fit to these specific patterns, leading to a decrease 
performance on the majority class38. Improved ILC prediction over the SMOTE dataset indicates that balancing 
the dataset can enhance the model’s ability to detect ILC, which might be underrepresented in the original 
dataset. Mohammed et al., reported that the class imbalance is a prevalent challenge in binary classification 
problems, where the distribution of instances between the two classes is significantly skewed. This can lead 
to inaccurate classification models, particularly for the minority class, as it is often misclassified. Moreover, 
the limited data available for the minority class can restrict model training, resulting in under-fitting or over-
fitting39. By increasing the representation of minority classes, SMOTE helps machine learning models learn the 
patterns and characteristics of the minority class more effectively. This often leads to improved classification 
accuracy, especially for the minority class40.

Fig. 5.  Confusion matrix illustrating the performance of the tuned classification model. The developed tuned 
classification model correctly predicted 370 out of 383 invasive ductal carcinoma image slices, and 72 out of 
106 invasive lobular arcinoma image slices over the original dataset (A). It also correctly predicted 338 out of 
378 invasive ductal carcinoma image slices, and 87 out of 111 invasive lobular arcinoma image slices over the 
SMOTE dataset (B).

 

Fig. 4.  The figure presents a comparative analysis of bootstrap analysis, paired t-test, and Wilcoxon signed-
rank test of classification accuracy between original and SMOTE datasets over 100 independent runs (Blue 
line: Original dataset; orange line: SMOTE dataset).
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Following model tuning, the under-sampling technique was found to be the most effective in predicting ILC, 
correctly identifying 101 out of 111 slices and surpassing the performance of the other two methods with the 
ILC prediction accuracy of 90.99% (Fig. 6). According to Yen et al., the SMOTE technique generates synthetic 
minority class samples independently of the majority class, which can potentially lead to overgeneralization. 
Due to the significant discrepancy in the number of samples between the majority and minority classes in 
imbalanced datasets, under-sampling techniques aim to mitigate this imbalance by reducing the number of 
instances belonging to the majority class41.

This investigation, specifically examining the contralateral breast yielded highly accurate results in 
differentiating IDC and ILC across the three investigated approaches. When comparing the results of this 
study to those of Holli et al. (2010), their classification accuracy ranged from 80% to 100% across all employed 
methods for distinguishing between IDC, ILC, and healthy breast tissue. However, it is important to note that 
their approach differs from ours. In their methodology, they utilized T1-weighted pre-contrast images, two 
contrast-enhanced series, and their corresponding subtraction series.

While this research represents a promising step forward, several limitations and directions remain. A 
significant concern is that this study assumed the contralateral breast to be entirely healthy. While the primary 
breast tumor often commands attention, the contralateral breast is frequently neglected. Conversely, it is well-
established that women with a history of invasive breast cancer have an increased risk of developing a secondary 
tumor in the healthy breast42. Initial research findings indicate that MRI may identify occult contralateral breast 
cancers in approximately 5% of women who have recently been diagnosed with breast cancer43. Thus, it is 
important to acknowledge the increased risk of developing breast cancer in the contralateral breast, which could 
introduce potential biases in the analysis. This challenge can be addressed by conducting a comparative analysis 
of breast MRI images obtained from a healthy population. A comparison of contralateral-only, ipsilateral-only, 
and bilateral breast inputs would be a valuable direction to assess the added benefit of incorporating contralateral 
breast texture features into the classification pipeline.

Despite the fact that this study highlights the potential of conventional machine learning for classifying breast 
cancer subtypes using contralateral breast texture features, future work could explore advanced deep learning 
models, such as Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), which excel at 
learning complex image features, but require large-scale, well-annotated datasets, to achieve generalizability and 
clinical robustness - resources that are currently limited in public breast MRI repositories, particularly for ILC 
cases. To bridge this gap, future studies could investigate transfer learning from large general-domain datasets, 
semi-supervised learning to leverage unlabeled data, or model distillation approaches that retain performance 
while improving explainability. Additionally, combining radiomics with deep learning features could offer a 
balanced, robust approach. As imaging datasets expand, these strategies may enhance clinical applicability and 
diagnostic accuracy.

Conclusion
The findings suggest that the extracted texture features from contralateral breast including first-order statistical 
texture features—such as mean, standard deviation, skewness, kurtosis, entropy, local entropy, local range, and 
local standard deviation, and GLCM texture features—such as contrast, correlation, energy, and homogeneity 
may serve as valuable biomarkers for differentiating histological breast cancer subtypes, specifically IDC and 
ILC. Considering the scope of machine learning applications and the specific focus on the contralateral breast, 
the obtained accuracy levels are deemed acceptable. The findings are expected to contribute significantly to 
improving breast cancer screening in such settings. Future research should focus on integrating the obtained 
results into clinical workflows with validation required across diverse populations. In conclusion, this study 
contributes to the growing field of ML in medicine by showcasing the potential of ML techniques to achieve the 

Fig. 6.  Confusion matrix illustrating the performance of the tuned classification model after applying the 
under-sampling technique. According to the confusion matrix, the developed tuned classification model 
correctly predicted 317 out of 378 invasive ductal carcinoma image slices, and 101 out of 111 invasive lobular 
carcinoma image slices.
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classification of IDC and ILC. By addressing the identified limitations and pursuing future research directions, 
the full potential of ML can be unlocked to revolutionize healthcare and improve patient outcomes.

Data availability
Freely available online dataset from the cancer imaging archive. ​(​h​t​t​p​s​​:​/​/​w​w​w​​.​c​a​n​c​e​​r​i​m​a​g​i​​n​g​a​r​c​h​i​v​e​.​n​e​t​/​c​o​l​l​e​c​t​
i​o​n​/​d​u​k​e​-​b​r​e​a​s​t​-​c​a​n​c​e​r​-​m​r​i​/​)​.​​
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