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Modern electron microscopy enables the acquisition of extremely large datasets, necessitating 
optimized machine learning techniques, such as dimensionality reduction and clustering, to extract 
material insights. We propose a novel nonnegative matrix factorization (NMF) technique that 
integrates domain-specific constraints inherent to electron microscopy, including spatial resolution 
and continuous intensity features without downward-convex peaks. This constrained NMF was applied 
to four-dimensional (4D) scanning transmission electron microscopy (STEM). Using the constrained 
NMF, both simulated and actual experimental data were successfully decomposed into interpretable 
diffractions and maps that cannot be achieved using principal component analysis (PCA) and primitive 
NMF methods. Additionally, hierarchical clustering was optimized based on diffraction similarity, 
which is a combination of a polar coordinate transformation and uniaxial cross-correlation. Then, 
nanometer-sized crystalline precipitates embedded in an amorphous metallic glass, ZrCuAl, were 
successfully detected and classified according to their diffraction patterns. The present scheme is 
broadly applicable across various characterization techniques, including hyperspectral imaging, and 
effectively mitigates the known artifacts found in conventional machine learning techniques that rely 
solely on mathematical constraints without domain-specific knowledge.
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 Modern scientific instruments generate significantly larger datasets than previous ones. Four-dimensional 
scanning transmission electron microscopy 4D-STEM1–5 is an advanced electron microscopy technique 
in which two-dimensional (2D) electron diffractions I2D(u, v) are acquired by the STEM incident probe at 
varying positions (x, y), where (u, v) and (x, y) are the reciprocal and real-space coordinates, respectively (Fig. 
1a). 4D-STEM provides bimodal information from both real and reciprocal spaces as maps and diffractions. 
This technique yields extensive 4D data, I4D(x, y,u, v), and can be regarded as the basis of all STEM imaging 
techniques, including ptychography and differential phase contrast.

The significantly larger datasets from these scientific instruments necessitate integrating various machine 
learning techniques to extract meaningful material insights6–9. Well-established machine learning tools, such 
as scikit-learn10, HyperSpy11DSTEM1, and MATLAB, have already significantly benefited materials science, 
and machine learning techniques have been applied to 4D-STEM several times12–18. Dimensionality reduction 
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techniques in unsupervised machine learning are indispensable tools for materials characterization, with 
principal component analysis (PCA)19–22 and nonnegative matrix factorization (NMF)23–25 being commonly 
used. Both PCA and NMF can approximately describe larger datasets using the matrix products of low-rank 
matrices.

However, although established tools have been applied to various research domains as they are, they do 
not integrate domain-specific knowledge (e.g., the properties of scientific instrumentation) into the machine 
learning algorithms themselves. Consequently, these tools can provide factorized components that cannot be 
interpreted as scientific measurement signals. A typical example is a negative intensity in the PCA, as shown 
in Fig.  1b, whereas electron microscopy signals physically must be positive because the number of detected 
electrons cannot be negative. Although NMF is used to circumvent the negative intensities, it still shows physically 
implausible artifacts. Here, we focus on implementing domain-specific knowledge in electron microscopy, such 
as resolution and intensity profiles. Various types of resolution (spatial, angular, or energy) must be improved; 
however, these resolutions can also be used as constraints to distinguish noise from signals through smoothing 
or Fourier filtering. Additionally, experimental results often show continuous intensity profiles for various 
reasons, which can be modeled based on physics but are not always represented by mathematical constraints. 
Conventional NMF can provide physically unrealistic high-frequency information or downward-convex peaks 
in a continuous intensity profile (Fig. 1c).

In this study, we propose a novel scheme to perform constrained NMF that incorporates knowledge of 
electron microscopy, such as the resolution in maps and intensity profile characteristics in diffractions (Fig. 1d). 
We applied the constrained NMF to both simulated and experimental 4D-STEM data (see the Methods). Given 
its foundation in resolution and intensity profile constraints, which are common across scientific instruments, 
the proposed scheme can be adapted for other hyperspectral imaging techniques.

Fig. 1.  Schematic drawings of Four-dimensional scanning transmission electron microscopy (4D-STEM) 
and various factorizations. Factorized results include the first and the second diffractions and corresponding 
maps. Fourier transforms (FTs) of the maps are also shown. a Schematic of 4D-STEM, b Principal component 
analysis (PCA) of simulated 4D-STEM data. Blue arrows indicate artifacts of negative intensities. Dotted lines 
in the FTs of the maps indicate the resolution limits, and their outer parts represent high-frequency noise. c 
Primitive nonnegative matrix factorization (NMF). White arrows indicate artifacts of downward-convex peaks. 
d NMF with domain-specific constraints. These results do not show artifacts, such as downward-convex peaks 
in the diffractions or high-frequency noise in the maps.
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Results
Outlines of primitive NMF algorithms and 4D-STEM
This section briefly summarizes the basics of primitive NMF and its combination with 4D-STEM. Advanced 
reports on NMF algorithms26,27, a textbook by pioneering researchers28, a comprehensive review of 
chemometrics29, and a modern textbook30 have been published. The experimental data, the matrix X, are 
approximated by the product of lower-rank matrices W and H consisting of positive elements:

	 X ∼= W H,� (1)

where W and H denote the basis and their coefficients, respectively. In many NMF applications (e.g., object 
recognition26 and text mining), the sequence of the column vectors of X is irrelevant. In scientific measurements, 
however, the sequence of the column vectors in X corresponds to the position (e.g., hyperspectral imaging) or 
time (e.g., acoustic analysis). Although the matrix X can be transposed in its definition, in this study, the rows 
and columns of X represent the reciprocal (spectral) and real-space coordinates of 4D-STEM, respectively.

We determine the low-rank matrices W and H by minimizing a cost function D (an objective function), 
based on the Frobenius norm ∥ · ∥F of the error as follows:

	
D(X||W H) = 1

2 ∥X − W H∥2
F .� (2)

Two major algorithms can minimize the cost function in Eq. (2) using iterative procedures: (a) multiplicative 
update (MU) or (b) alternating least squares (ALS). In the case of the MU algorithm, the following update 
equations are used based on the majorization–minimization flamework26:

	 W ← W⊛XHT ⊘ W HHT ,� (3)

	 H ← H⊛W T X ⊘ W T W H,� (4)

where ⊛ and ⊘  denote elementwise multiplication and division, respectively.
Alternatively, the ALS algorithm can be performed using the following equations:

	
W ←

[(
XHT

) (
HHT

)−1
]

+
,� (5)

	
H ←

[(
W T W

)−1 (
W T X

)]
+

,� (6)

where [ · ]+ represents a nonnegativity constraint projection28, i.e., [W ]+ = max {0, W }. Because the ALS 
algorithm implements a constraint as a projection, domain-specific constraints can be flexibly designed.

Both MU and ALS algorithms are standard NMF solvers in the established tools, e.g., MATLAB (‘mult’ and 
‘als’ of the function nnmf()) and scikit-learn (‘mu’ and ‘cd’ of NMF()). It is pointed out30 that the ALS algorithm 
is not mathematically rigorous, particularly for the projection [ · ]+ onto the nonnegative orthant. In this study, 
we utilized both the MU and ALS algorithms and monitored their convergence, as discussed below. In the 
Supplementary Information, we provide usable scripts for DigitalMicrograph (Gatan Inc.)31 for both the MU 
and ALS algorithms as Listings S1 and S2, respectively.

Primitive NMFs with either algorithm tend to yield sparse components32; however, the sparse components 
are not always interpretable based on the physics of electron microscopy. If the actual components are not 
sparse, primitive NMF produces physically implausible sparse components. For example, if an experimental 
result consists of a continuous intensity (e.g., baseline) and additional sharp peaks, which are common in 
scientific measurements, primitive NMF inserts downward-convex peaks into the continuous intensity (e.g., 
white arrows of Fig. 1c), which is a known artifact as the unnatural drop in intensity16,25,33. In addition, primitive 
NMF does not implement 2D frequency analysis and cannot discriminate high-frequency noise. In the case of 
noisy datasets, it may provide high-frequency components that are physically impossible, and the nonnegativity 
constraint alone cannot solve these issues. In the following sections, we discuss two constraints related to the 
resolution and intensity profile features of scientific measurements.

To apply NMF to 4D-STEM, 4D data I4D (x, y, u, v) must be transformed into the matrix X . We transform 
the 2D experimental diffractions I2D(u, v) into one-dimensional (1D) column vectors of the matrix X, such that 
the rows and columns of X represent the reciprocal and real-space coordinates, respectively (Fig. 2). If the data 
point of each coordinate (x, y, u, v) in the 4D data is (nx, ny, nu, nv) and the assumed number of components 
in NMF is nk (nk < < nxy), then X ∈ Rnuv× nxy

+ , W ∈ Rnuv× nk
+ , and H ∈ Rnk× nxy

+ , where nxy = nxny  
and nuv = nunv . Because the rows of W and the columns of H correspond to the reciprocal and real-space 
coordinates, respectively, they are referred to as the diffraction matrix W and the map matrix H in this study. 
NMF yields the assumed number of diffractions wk (u, v) and maps hk (x, y) (k = 0, 1, …, nk−1) as the k-th 
column and row vectors of W and H, respectively. The transformation from a 1D vector into 2D data (maps and 
diffractions) and the reverse process are referred to as refolding (or reshaping) and unfolding, respectively. The 
dimensionality is reduced because the number of components nk, which is the column number of the matrix W, 
is assumed to be smaller than the total number of experimental diffractions nxy.

As the cost function in Eq. (2), i.e., the Frobenius norm, is invariant to the multiplication of the permutation 
matrix, the sequences of columns and rows of X are arbitrary and irrelevant for primitive NMF calculations. 
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In other words, the diffractions are processed as 1D vectors without probe position information, and various 
material characteristics (e.g., the spatial distribution in real space or the diffraction angle in reciprocal space) 
are not addressed. Thus, the bimodal information in 4D-STEM cannot be utilized in primitive NMF. This study 
aims to integrate such bimodal information into the NMF algorithm by applying constraints to 2D maps and 
diffractions.

Protocol of constrained NMF with 4D-STEM knowledge
The proposed NMF protocol can be classified as an ALS algorithm because Eqs.  (7) and (8) correspond to 
the least-squares solutions derived from ∂

∂ W
D = 0 and ∂

∂ H
D = 0, respectively. The protocol consists of the 

following steps, as illustrated schematically in Fig. 3.

(1)  The number of components nk is assumed.
(2)  	The matrix H(i) is generated with its elements being nonnegative random numbers, where i represents the 
index of iterations.

(3)
	

W (i+1) =
(

X H(i)T
) (

H(i) H(i)T
)−1

.
� (7)

Fig. 3.  Schematic drawing of NMF with constraints on diffractions and maps. Domain-specific constraints 
[ · ]W and [ · ]H on diffractions and maps, respectively, are implemented in Steps (4) and (6), respectively.

 

Fig. 2.  Schematic drawing of the matrix calculation for 4D-STEM.
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(4)	   A constraint on diffraction is applied, i.e., nonnegativity 
[
W (i+1)]

+
or domain-specific 

[
W (i+1)]

W
;  

then, W (i+1) ←
[
W (i+1)]

+
 or W (i+1) ←

[
W (i+1)]

W
. The details of the domain-specific constraints are 

explained later. Each column vector of W (i+1) is normalized.

(5)
             	

H(i+1) =
(

W (i+1)T W (i+1)
)−1 (

W (i+1)T X
)

.� (8)

(6)	  A constraint on maps is applied, i.e., nonnegativity 
[
H(i+1)]

+
 or domain-specific 

[
H(i+1)]

H
; then, 

H(i+1) ←
[
H(i+1)]

+
 or H(i+1) ←

[
H(i+1)]

H
.

(7)  	The mean squared error (MSE) (X − W (i+1)H(i+1))2 and the L1-norms of the differences 
∥∥W (i+1) − W (i)

∥∥
1

 

and 
∥∥H(i+1) − H(i)

∥∥
1

 are calculated to monitor their convergence. The protocol then returns to Step (3) until 
the index of the iterations reaches a preset value (500 in this study).
(8)  	To survey the global minimum, NMF is performed multiple times (ten in this study) from Steps (2) to (7), 
and the optimum matrices W and H are selected.
(9)  	To place the major components first in the H rows and W columns, the row vectors of H are sorted accord-
ing to their L2-norms, and the column vectors of W are sorted according to the order of the corresponding row 
vectors of H.

Steps (4) and (6) primarily implement the nonnegativity constraints [ · ]+; however, additional domain-specific 
constraints have been introduced in this study. Two different domain-specific constraints on diffractions and 
maps are applied, which are denoted as [ · ]W and [ · ]H, respectively. The former eliminates downward-convex 
peaks using rotational symmetry, and the latter reduces high-frequency noise by convolution with a kernel 
estimated from the spatial resolution (Fig. 3). The following section discusses these additional constraints in 
further detail. These constraints are stricter than conventional nonnegativity. Although the MSE is proportional 
to the cost function Eq.  (2), we found that the MSE becomes inadequate for monitoring the convergence of 
iterations when these additional constraints are introduced, as discussed later (Fig. 7). We also calculated the 
L1-norms of the iterative differences in matrices W and H to monitor the convergence in Step (7).

Constraint on diffractions [ · ]W: continuous intensity feature
Scientific measurement data often show continuous intensity features for various reasons, such as background 
noise from a detection instrument or an actual signal (e.g., the baseline) originating from physical phenomena. 
In the latter case, the continuous intensity itself constitutes the material information of interest. Here, we 
consider the electron diffractions of 4D-STEM based on kinematical scattering theory, where the amplitudes 
of the diffraction scatterings are the product of the atomic scattering factors and the Laue function34. The 
atomic scattering factor decreases monotonically with the scattering angle. By contrast, the Laue function, 
which depends on the atomic arrangement, produces discrete peaks, particularly for single crystals, resulting in 
diffraction spots. In the case of an amorphous structure, it results in concentric diffuse rings. When amorphous 
and crystalline materials are mixed, the diffraction pattern becomes a sum of both crystalline and amorphous 
patterns, resulting in spots with concentric diffuse rings. The amorphous diffuse rings must have rotational 
symmetry; however, the amorphous components derived using primitive NMF show dark spots as artifacts (see 
Fig. 1c), similar to the unnatural intensity drop observed in hyperspectral imaging16,25,33. We thus leverage this 
rotational symmetry in the diffuse rings as a constraint to avoid an unnatural intensity drop in 4D-STEM.

Figure 4 schematically illustrates the procedure for applying the constraint to diffractions. The initial step 
is to refold the nk column vectors of the matrix W (i) into a set of 2D diffractions wk

(i) (u, v), where k = 0, 
1, …, nk−1 of each iteration i. As shown in Fig. 4a, the factorized diffractions comprise bright crystalline spots 
(Bragg spots), amorphous diffuse rings, and dark spot artifacts. Subsequently, each diffraction wk

(i) (u, v) is 
transformed into w′

k
(i)(r, φ) (Fig. 4,b),  i.e., a polar coordinate transformation. The radial intensity at each 

radius is derived from each column of the transformed diffraction. As illustrated in radial intensity at r2 (Fig. 4c), 
the dark spots can be identified as regions below the radial mean intensity; these regions are then substituted 
with the mean intensity, thereby eliminating the dark spots. Figure 4d shows the radial intensity at r1, which 
includes bright diffraction spots. To estimate the continuous intensity baseline, the bright spots must be treated 
as outliers larger than a certain threshold, which is assumed to be twice the radial mean intensity in this study. 
Subsequently, the radial mean intensity is recalibrated without the outliers. If weak dark spots appear at the 
same radius r1, these dark spots can be corrected to the recalibrated value. The processed r − φ  diffractions 
are then transformed back into 2D diffractions 

[
wk

(i) (u, v)
]
W

, and finally, they are unfolded into the column 
vectors of the diffraction matrix W (i). These processes are applied to each radius (e.g., r0, r1, r2, …, nu/2) of each 
diffraction component (k = 0,1, …, nk−1) in each iteration (i = 0,1, …, 499) of Step (4). All of these processes are 
represented as W (i) ←

[
W (i)]

W
. Notably, all factorized components, including amorphous and crystalline 

diffractions, are processed equally using the same script; therefore, it is an unsupervised process. Figure 4e and 
f show examples of the constraint on diffractions. A DigitalMicrograph script for this constraint is provided in 
full in Sect. 3 of the Supplementary Information (Listing S4).
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Constraint on maps [ · ]H: smoothness governed by spatial resolution
Resolution is the most critical parameter limiting the information that can be obtained in hyperspectral imaging. 
Although there are spatial and angular resolutions in 4D-STEM, we focus on the former here. The spatial 
resolution in STEM primarily depends on the incident probe size, and the experimental scanning step is often 
smaller than the probe, leading to oversampling. The spatial resolution determines the limit on the obtainable 
real-space information, and the observable frequency can be evaluated using the Fourier transform. Based on 
its spatial resolution, we can constrain the frequency limit as the obtainable information. An inverse Fourier 
transform is used to revert the data to real-space information (i.e., Fourier filtering). Alternatively, we can use 
another direct approach, real-space convolution, wherein the convolution kernel is small and comparable to the 
point spread function, which is equivalent to smoothing to reduce random noise in oversampled images. The 
Fourier transform of a smoothed image shows a decay in the contrast transfer at high frequencies.

In the actual data processing, nk row vectors of H(i) are refolded as a set of maps hk
(i) (k = 0,1,…,nk−1). 

Then, we perform the constraint procedures as hk
(i) ← hk

(i)∗g for the set of maps, where g is the assumed 
kernel, and ∗ represents convolution. The set of the convoluted maps is unfolded as row vectors of H(i), and we 
denote the whole procedure as H(i) ←

[
H(i)]

H
. Figure 5 shows examples of the constraint on maps, and 

Fig. 5a shows a 3 × 3 convolution kernel based on a Gaussian distribution. The convolution kernel matches the 
expected spatial resolution, i.e., the steepness at the edges of the crystalline areas (see Fig. 10a). Figure 5b and 
c show example maps and their Fourier transforms before and after the constraint process, respectively. The 
convolution attenuated the high-frequency noise (outside the circle indicated by the dotted line in Fig.  5b). 
Although the 3 × 3 Gaussian distribution was used, the size and intensity profile of the kernel can be optimized 
for each experiment.

NMF results of simulation data
We first demonstrate NMF on simulated 4D-STEM data, the structures of which are described in the Methods 
and Fig. 10. Figure 6 shows the NMF results under various constraint conditions: (a) primitive NMF (ALS), (b) 
smoothing in maps ( [ · ]H), (c) intensity continuity in diffractions ( [ · ]W), and (d) fully constrained for maps 
and diffractions (( [ · ]H and [ · ]W)). The correct number of components (nk = 4) is assumed, and each result 
shows the minimum MSE from ten different random initializations. The primitive NMF (Fig. 6a) estimates one 
amorphous (k = 0) and three crystalline diffractions (k = 1, 2, 3), including the weak (1%) crystalline areas in the 
maps (see (iii), (vi), and (ix) in Fig. 10a). Many dark spot artifacts are observed in the amorphous diffraction 
pattern (arrows in w0 in Fig. 6a). The positions of these dark spots correspond to those of the diffraction spots 
of the other components. The smoothing constraint on the maps (Fig. 6b) improves the signal-to-noise ratio in 
the maps, although artifacts still appear, such as the dark spots in the diffraction (w0) and the dark areas in the 
maps (h1,h2,h3), as indicated by the arrows. The continuity constraint on the diffractions (Fig. 6c) successfully 
eliminates these dark spots and areas; however, the noise in the maps is not negligible (see the rectangle in h2 in 
Fig. 6c). Applying both constraints (Fig. 6d) can significantly reduce these artifacts.

Fig. 4.  Schematics of the constraint on diffractions [ · ]W with examples. a Schematic of the factorized 
diffraction wk (u, v), including diffraction spots (bright spots), an amorphous diffuse ring, and artifacts (dark 
spots). br–φ transformed diffraction w′

k(r, φ). Arrows r1 and r2 indicate the positions of the radial intensity 
profiles. c and d Radial intensity profiles c at r2 in which dark spots are included and d at r1 in which bright 
spots are included. e and f Examples of the constrained diffractions, which are processed by the proposed 
script (Listing S4).

 

Scientific Reports |        (2025) 15:39143 6| https://doi.org/10.1038/s41598-025-23541-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The stopping criterion is important for general iterative algorithms. To confirm the convergence of the NMF 
iterations, we analyzed the MSEs and the differences in W (i) and H(i). Figure 7a shows the MSEs of the primitive 
NMF based on the MU and ALS algorithms and the constrained NMF as a function of iterations, assuming 
nk = 6. In this case, the primitive NMF based on the ALS algorithms reduces the MSEs with fewer iterations 
than the MU algorithm. Even after 500 iterations, the MSE of the MU algorithm remains higher (0.60591) 
than that of the primitive ALS (0.60570). This faster convergence is a known advantage of ALS algorithms28,30, 
and we confirmed the convergence properties of our calculations with nk = 4, 5, 6, 8, 10, and 12 (Fig. S2). The 
convergence of the NMF algorithms can be validated by comparing it to the MSE of the PCA, as indicated by 
the horizontal dashed line (0.60567). When domain-specific constraints are introduced, the converged MSE 
increases (0.60918 at i = 500). The MSE of the primitive NMF monotonically decreases through the iterations; 
however, that of the constrained NMF shows an initial minimum MSE within several iterations (0.60842 at i = 
8) and then converges to a relatively high value (0.60918 at i = 500), as shown in Fig. 7a. Therefore, MSE is not 
always a suitable parameter for tracking convergence. We also calculated the L1-norms of the iteration differences 

Fig. 6.  NMF results of simulated data under various constraint conditions. The correct number of components 
(nk = 4) is assumed. a Primitive NMF (ALS). b Smoothing in maps. c Intensity continuity in diffractions. d 
NMF with constraints on both maps and diffractions. PCA results under the same condition are also given in 
the Supplementary Information (Fig. S3).

 

Fig. 5.  Procedure for the constraint on maps [ · ]H. a Convolution kernel for map. b and c Examples of a map 
b before and c after the convolution and its Fourier transform.

 

Scientific Reports |        (2025) 15:39143 7| https://doi.org/10.1038/s41598-025-23541-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


∥∥W (i+1) − W (i)
∥∥

1
 and 

∥∥H(i+1) − H(i)
∥∥

1
, as shown in Fig. 7b and c, respectively. The L1-norms of the 

differences in all the NMF algorithms finally reach small values. In other words, all algorithms, including the 
constrained NMF, converge similarly to stationary points, as do the primitive MU and ALS algorithms. Thus, we 
can confirm their conversions by monitoring the differences, 

∥∥W (i+1) − W (i)
∥∥

1
 and 

∥∥H(i+1) − H(i)
∥∥

1
.

NMF results and the hierarchical clustering of experimental data
Next, we apply the developed NMF technique to an actual material with an unknown number of components. 
The specimen was a ZrCuAl metallic glass annealed at 880 K under 5.5 GPa. The nanostructure of metallic glass 

Fig. 7.  Convergence of various NMF algorithms as a function of iterations. a MSEs of a few NMF algorithms. 
The MSE of PCA is shown as a horizontal broken line. b and cL1-norms of the differences in the W(i) and H(i), 
respectively.
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has been analyzed using advanced electron microscopy techniques35,36. Because of the high-temperature, high-
pressure treatment, nanometer-sized crystals precipitated in the amorphous matrix. The preliminary results have 
been reported elsewhere16,37. As shown in Fig. 8a and b, we performed the primitive and constrained NMFs (for 
both W and H). The number of components nk is assumed to be 30, and Fig. 8 shows ten pairs of diffractions and 
maps that indicate the high L2-norm of the maps. In other words, these components are dominant in the actual 
specimen. All 30 factorized diffractions and maps are provided in the Supplementary Information (Fig. S5).

In both the primitive and constrained NMF results (Fig. 8a and b), the lowest-index component w0 does 
not show intense diffraction spots and corresponds to amorphous diffraction. In the case of primitive NMF, a 
few amorphous-like components appear (w0, w1, w2 and w3 in Fig. 8a), but they suffer from dark spot artifacts, 
as indicated by the arrows. These diffractions are expected to be an identical crystallographic component, i.e., 
the amorphous matrix; however, because of the different dark spot artifacts, they are assigned as a few separate 
components. This is problematic because the multiple amorphous components of the artifact make it difficult 
to detect other crystalline components, even if we assume a large number of components nk. By contrast, 
the constrained NMF shows a single amorphous component, as shown in Fig. 8b, with no dark spots in the 
diffractions.

Both methods broadly identify similar crystalline precipitates. For example, the precipitates h4 and h9 of 
primitive NMF correspond to the precipitates h4 and h8 of constrained NMF, respectively. Note that the map h4 
of primitive NMF is noisier than h4 of constrained NMF. This is consistent with the simulation results (Fig. 6), 
which demonstrate noise reduction by the constraint. The precipitate h9 in constrained NMF resembles map h3 
of primitive NMF; however, h3 of primitive NMF exhibits amorphous-like diffraction, which is discussed later 
(Fig. 9c). Consequently, this crystalline precipitate could be detected only by constrained NMF. These superior 
factorization properties of the constrained NMF can be quantitatively validated by similarity evaluation and 
hierarchical clustering, as described below.

To quantitatively compare the primitive and constrained NMFs, we evaluated the cosine similarities of 
each set of factorized diffractions. The cosine similarity, which is a standard measure in machine learning, is 
calculated using the following equation:

	
cosine_similarity (k1, k2) = ⟨W (:, k1) , W (:, k2)⟩

∥W (:, k1)∥F ∥W (:, k2)∥F

,� (9)

where W (:, k) represents the k-th column vector of the matrix W. Figure 9a shows the cosine similarities of the 
diffractions factorized by the primitive and constrained NMFs. The low-index diffractions (top-left corner) of 
the primitive NMF show high similarities, suggesting the same amorphous diffraction. However, the constrained 
NMF does not indicate other diffractions similar to the amorphous one. Thus, the appropriate constraints can 

Fig. 8.  NMF results of 4D-STEM for ZrCuAl treated at high pressure and temperature. a Primitive NMF 
and b a fully constrained NMF. The number of components nk is assumed to be 30, and the ten pairs of 
major components are shown. All 30 components are shown in Fig. S5. PCA results are also given in the 
Supplementary Information (Fig. S4).
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eliminate the artifacts and multiple components resulting from artifacts, more clearly discriminating between 
the amorphous and crystalline areas.

The actual experimental data must include similar crystalline diffractions; however, the high-index crystalline 
diffractions show low values for the cosine similarity in both the primitive and constrained NMFs (Fig. 9a). 
This is because the similarity of rotated diffractions cannot be detected based on 1D measures, such as the 
cosine similarity or Euclidean distances, in standard machine learning techniques. By introducing 2D analytical 
techniques for electron microscopy, further information on the experimental data can be derived. Here, we 
define the diffraction similarity based on the cross-correlation of r − φ -transformed diffractions. In the case 
of cross-correlation, the similarity is given by the peak value, and the amount of pattern shift is measured by 
the peak position38,39. The diffraction similarity between two components k1 and k2 can be calculated using the 
following equation:

	 diffraction_similarity (k1, k2) = max
(
w′

k1 (r, φ ) ⋆ w′
k2 (r, φ )

)

	 subject to r = 0,� (10)

where ⋆  represents cross-correlation, and r = 0 is required to allow uniaxial shifts along the φ  axis of 
w′

k (r, φ ), i.e., the φ -rotation of wk (u, v). The rotation angle can also be calculated using the uniaxial 
cross-correlation as follows:

	
diffraction_rotation (k1, k2) = arg max

φ

(
w′

k1 (r, φ ) ⋆ w′
k2 (r, φ )

)

	 subject to r = 0.� (11)

Using Eq. (10), we calculated the diffraction similarities of primitive and constrained NMF results (Fig. 9b). In 
contrast with the cosine similarity (Fig. 9a), the diffraction similarity can identify similar rotated diffractions 
among the high-index crystalline components. The r − φ  transformation and uniaxial cross-correlation are 
fundamental domain-specific knowledge in electron diffraction, and this combination is effective for elucidating 
the results of 4D-STEM.

Fig. 9.  Cosine similarity, diffraction similarity, and hierarchical clustering of factorized diffractions. a 
Conventional cosine similarities of diffractions factorized by the primitive and constrained NMFs. b 
Diffraction similarities of the diffractions factorized by the primitive and constrained NMFs calculated using 
Eq. (10). c Dendrogram based on the diffraction similarity of the primitive NMF. Insets show integrated 
factorized diffractions after rotation correction. d Dendrogram of the constrained NMF.
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Because the same diffractions, but rotated, are factorized as different components in all NMFs, clustering is 
required to categorize the factorized results based on diffraction physics34. The diffraction similarity mentioned 
above can be used as a substitute for conventional distances required in hierarchical clustering. Notably, standard 
techniques (e.g., k-means clustering) based on conventional distances are ineffective for experimental data 
consisting of randomly rotated patterns. Figure 9c and d show the dendrograms of the hierarchical clustering 
of the primitive and constrained NMF results, respectively. The diffraction similarity calculated by Eq. (11) 
was applied to compute the linkage matrices for SciPy40 using customized DigitalMicrograph scripts, and the 
dendrograms were plotted using NumPy41, SciPy, and Matplotlib42. During the hierarchical clustering, we also 
calculated averaged diffractions with φ -rotation corrections using Eq. (11). Four major clusters are found in 
both dendrograms, and each averaged diffraction is shown in the inset. The average crystalline diffractions in 
Fig. 9c and d show similar twin spots; however, their Bragg angles and corresponding distances d are different, 
resulting in the different clusters. The constrained NMF reveals only one amorphous component, whereas the 
primitive NMF derives four (k = 0, 1, 2, 3) because of the artifact (see the green lines in Fig. 9c and d). This 
clustering based on the diffraction similarity clarifies the difference between the primitive and constrained 
NMFs and is also an enhanced machine learning technique with domain-specific knowledge.

Discussion
Comparison with established software
In this study, the MU and ALS algorithms were implemented from scratch using custom DigitalMicrograph 
scripts. These custom scripts allowed us to optimize their functionality and monitor the convergence process. 
We also reproduced the standard NMF for 4D-STEM using scikit-learn, which is the most established package. 
The Python code for the scikit-learn NMF implementation on DigitalMicrograph is provided in Sect. 2 of the 
Supplementary Information (Listing S3), where several options, including regularization for both matrices W 
and H, can be applied.

Regularization is a standard technique used in machine learning to avoid overfitting. We evaluated its effects 
on the simulated 4D-STEM data using scikit-learn, as shown in Fig. S1. We found that dark spot artifacts persisted 
even when regularization terms were applied. Although regularization is known to improve the generalization 
performance and mitigate the effect of noise, it does not eliminate the abovementioned artifacts. In terms of 
noise reduction, the smoothing constraint on the maps in this study is similar to a regularization term. However, 
our approach does not require hyperparameter optimization (e.g., the regularization amplitudes for W and H), 
as the smoothing kernel is simply derived from electron microscopy knowledge.

Versatility of the present constrained NMF
This constrained NMF is applicable to various analytical techniques, e.g., hyperspectral imaging for elemental 
mapping43,44. Spatial resolution, continuous intensity features, and nonnegativity are physically self-evident but 
have not been systematically exploited as constraints in factorizations. If the penalty terms in the cost function 
are differentiable (e.g., Tikhonov regularization), an exact update formula can be obtained, as in the MU 
algorithm. In various applications, actual domain-specific constraints are not always differentiable. However, 
such knowledge can be implemented using the present proposed scheme, which is based on the ALS algorithm.

The spatial resolution, i.e., the size and shape of the point spread function, depends on each experimental 
technique. For various analytical techniques, it is practical if a specific kernel function (e.g., a Gaussian, 
Lorentzian, or pseudo-Voigt function) can be applied without rebuilding the update equations for the NMF. In 
this study, the convolution kernel (see Fig. 5) is assumed based on the incident probe of STEM; however, it can 
also be optimized for the material properties. For example, if the distribution of the diffractions or spectra is 
expected to be spatially delocalized, we could set an extended convolution kernel for the maps according to the 
expected distribution. Additionally, the constrained NMF can be used for noise filtering, where the convolution 
kernel is intentionally made large.

In many machine learning techniques, hyperparameters must be optimized, and the present constrained 
NMF also requires some hyperparameters such as a convolution kernel and the number of components. From 
a practical point of view, it is convenient when less computation is required to optimize the hyperparameters 
themselves. The convolution kernel can be reasonably prepared based on domain-specific knowledge, i.e., 
expected spatial resolution and scanning step (see the Methods). The number of components nk is a critical 
hyperparameter in all NMF algorithms. It is reported that the sufficient number of components nk could be 
speculated by comparing the MSEs of PCA and NMF12,13,16. Even if the number of components assumed in 
NMF is set larger than the actual number, our procedure yields integrated components through hierarchical 
clustering. Therefore, this method can be considered robust with respect to hyperparameter optimization.

Although the proposed scheme is heuristic, it is a practical solver with superior versatility for various 
constraints. This scheme could provide a new solution for materials scientists who use off-the-shelf machine 
learning software without incorporating their domain-specific knowledge and have been troubled by artifacts.

Methods
Simulated 4D-STEM data
We prepared simulated 4D-STEM data consisting of one amorphous and three different crystalline diffractions, 
as shown in Fig. 10b (the number of components nk is four) with dimensions (nx, ny, nu, nv) = (36, 36, 128, 128). 
The simulated data in real space (x, y) included nine crystalline areas (about 6 × 6 pixels each) in an amorphous 
matrix (Fig. 10a), where the interface between the amorphous matrix and crystalline areas was gradually changed. 
The crystallinity ratios of the nine areas varied between 9%, 3%, and 1%. Examples of diffraction at each single 
position are shown in Fig. 10c; the left halves represent ideal diffractions, and the right halves represent the 
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simulated data with quantum noise, which was used in this study. The quantum noise was implemented based on 
the Poisson distribution of the number of electrons, N = 104, in each diffraction. This condition is similar to that 
obtained with a probe current of 2 pA and an exposure time of 1 ms, which are practical experimental settings. 
As shown in Fig. 10c, diffraction spots were visible when the crystalline-to-amorphous ratio was 9% (i, iv, vii) 
and 3% (ii, v, viii); however, diffraction spots were difficult to recognize when the ratio was 1% (iii, vi, ix) because 
of severe quantum noise. This simulated 4D-STEM data was mathematically generated using DigitalMicrograph 
custom scripts based on the four normalized diffractions (Fig. 10b) and the distributions in real space (Fig. 10a). 
Poisson noise was randomly implemented on all diffractions.

4D-STEM experiments with a metallic glass specimen
We analyzed a metallic glass Zr50Cu40Al10 specimen subjected to a high-pressure (5.5 GPa) and high-
temperature (880 K) treatment. The structural and mechanical properties of the specimens are detailed in our 
previous report37. A specimen for 4D-STEM was prepared by Ar ion milling (PIPS-II, Gatan) at 2 kV or less. 
We performed a 4D-STEM experiment using an electron microscope (Titan, Thermo Fisher Scientific) at an 
accelerating voltage of 300 kV (wavelength λ = 2.0 pm). The 4D-STEM data were obtained from an 87 × 87 nm2 
area using a 1.5 nm scan step (58 × 58 pixels) and a diffraction of 128 × 128 pixels (i.e., I4D ∈ R58× 58× 128× 128). 
We realized a small convergence semi-angle of 0.5 mrad using a small aperture diameter of 0.5 μm (i.e., high 
angular resolution), and we could clearly distinguish crystalline spots from the amorphous diffuse rings. The 
spatial resolution of the present 4D-STEM experiment depended on the diffraction limit, and the probe had a 
full width at half maximum of 2 nm. The scan step of 1.5 nm was a slight oversampling condition for the incident 
probe. Based on the estimated spatial resolution and the scan step in the experiment, we set the 3 × 3 Gaussian 
convolution kernel for smoothing in the constraint on map [ · ]H, which was similar for the simulated data (Fig. 
5a). Diffractions were acquired with an exposure time of 10 ms using a charge-coupled device detector (US1000 
series, Gatan), and their intensities were converted into the number of electrons.

The experimental data included subtle noise from the detection system and comparable quantum noise due 
to the limited number of electrons captured per pixel. Typically, hundreds of electrons are involved in each 
pixel, which can contain tens of a percent of quantum noise according to the Poisson distribution. Although 
no normalization or denoising was applied, minimal data preprocessing was performed prior to NMF. Each 
diffraction pattern was accompanied by an intense direct spot at the center, and this high-intensity area became 

Fig. 10.  Simulated 4D-STEM data consisting of one amorphous and three crystalline components. a Real-
space structure. b Four components of diffractions. c Diffraction examples from areas (i)–(x). 4D-STEM data 
with Poisson noise was used in this study.
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dominant when calculating the MSE; however, the direct spot is insensitive to the crystal structure. We therefore 
used a mask to cover the intense direct spot to select the structure-sensitive area (see Fig. 2).

Data availability
The datasets generated during this study are available from the corresponding author upon reasonable request.
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