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Phishing detection models degrade quickly due to drift, adversarial evasion, and fairness issues. 
Existing MLOps platforms mainly automate deployment and monitoring. Prior works have examined 
SHAP-based monitoring, retraining, or fairness audits separately, but lack an integrated theory of 
resilience for adversarial environments. We introduce the Hybrid MLOps Framework (HAMF), a system 
designed to embed resilience and ethical governance into the lifecycle of phishing detection models. 
HAMF is ‘hybrid’ because it unifies proactive and reactive adaptation, combining automation with 
stakeholder oversight, and embedding resilience with ethical governance. HAMF treats resilience as 
an integrated lifecycle property, designed to simultaneously preserve model accuracy, fairness, and 
stakeholder trust amidst concept drift. Methodologically, HAMF implements this through a hybrid 
control cycle. This cycle fuses four key capabilities: SHAP-guided feature replacement, event-driven 
retraining, fairness-triggered audits, and structured human feedback. Unlike conventional pipelines 
where these functions are isolated, HAMF ensures their interdependence as first-class triggers. 
Empirical evaluations on large-scale phishing streams demonstrate HAMF’s superior performance. 
The framework detects drift within 18 seconds, restores F1 scores above 0.99 post-attack, reduces 
subgroup disparities by over 60%, and scales to over 2,300 requests per second with sub-50ms latency. 
These results validate HAMF’s design, demonstrating that embedding resilience and ethical alignment 
into the MLOps lifecycle is both effective and scalable.
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model retraining, Responsible AI, Model robustness, Automated drift detection, Cybersecurity operations

Phishing detection is a persistent challenge. Phishing detection is a persistent and escalating challenge. The Anti-
Phishing Working Group (APWG) observed 1,130,393 phishing attacks in the second quarter of 2025, a steady 
increase from the previous quarter, underscoring the relentless growth of this threat1. Attackers constantly 
change lexical, structural, and behavioral patterns, causing models to degrade and false alarms to rise2–4. 
This deterioration is driven by two main factors: concept drift, where data distributions shift5–8 —and feature 
obsolescence, as commonly used signals such as domain rankings or WHOIS attributes become unreliable or 
deprecated9–11. Bias in phishing detection systems often harms small or low-traffic entities, reducing trust in 
automation12–15.

To address lifecycle management at scale, a range of Machine Learning Operations (MLOps) frameworks have 
been developed, including Kubeflow16, MLflow17, TensorFlow Extended (TFX)18, and Amazon SageMaker19. 
These platforms provide infrastructure for deployment, reproducibility, and continuous integration/deployment 
(CI/CD). However, they are limited in four respects. First, they are designed for stationary environments 
and lack robust mechanisms for detecting real-time model degradation. Second, they provide no systematic 
support for dynamic feature substitution when upstream signals fail. Third, fairness and ethical compliance are 
externalized rather than embedded lifecycle properties12,14,20. Finally, human feedback is generally ad hoc, rather 
than operationalized as a structured component of retraining workflows12. As a result, current MLOps pipelines 
remain vulnerable in adversarial and high-stakes domains such as phishing detection.
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This study introduces HAMF – the Hybrid MLOps Framework, which advances beyond existing systems 
in both concept and methodology. The term hybrid reflects its integration of proactive and reactive adaptation, 
combining automated retraining with stakeholder oversight, and aligning technical resilience with fairness-aware 
governance. Conceptually, HAMF redefines resilience as a closed-loop lifecycle property that simultaneously 
maintains accuracy, fairness, and trust continuity under drift. Methodologically, it introduces a hybrid control 
cycle that fuses SHAP-guided feature replacement3,21, event-driven retraining10, fairness-triggered auditing12,14,15, 
and stakeholder-in-the-loop feedback into a unified pipeline. Unlike existing platforms, where these elements 
are isolated or optional, HAMF enforces their interdependence as first-class lifecycle triggers.

This work makes the following contributions:

•	 Conceptual contribution – Introduces the notion of resilience-by-design in adversarial MLOps, defined as 
the joint preservation of accuracy, fairness, and trust continuity under concept drift and feature volatility.

•	 Methodological contribution – Proposes a hybrid closed-loop control cycle that integrates SHAP-guided 
feature replacement, event-driven retraining, fairness-aware auditing, and stakeholder-in-the-loop oversight 
as interdependent lifecycle triggers.

•	 Architectural contribution – Provides a modular, microservices-based framework that embeds explainabili-
ty, fairness, and compliance as first-class operational properties, surpassing general-purpose MLOps systems 
such as Kubeflow, MLflow, TFX, and SageMaker17–19.

The remainder of the paper is organized as follows. Section 2 reviews related work. Section 3 presents the 
HAMF architecture, followed by the implementation methodology in Sect. 4. Section 5 reports experimental 
results, including ablation studies and benchmarking. Section 6 discusses ethical, legal, and interpretability 
considerations. Section 7 outlines the implications and limitations. Section 8 concludes with directions for 
future work.

Related work
This section reviews the research landscape that informs the motivation and design of HAMF. We structure the 
discussion into three thematic areas:(1) Core MLOps Infrastructure, which covers foundational platforms and 
automation;(2) Adaptation and Monitoring, focusing on handling dynamic environments through drift detection 
and ethical auditing; and(3) Domain-Specific Applications, highlighting the unique challenges in phishing 
detection. A comparative synthesis concludes the section, summarizing key gaps and HAMF’s advancements.

Core MLOps infrastructure and automation
MLOps frameworks
MLOps platforms such as Kubeflow16, MLflow17, TensorFlow Extended (TFX)18, and Amazon SageMaker19 
have established standards for deployment automation, artifact tracking, and CI/CD integration. They support 
reproducibility and scalability but lack real-time drift handling and fairness auditing. Recent efforts have 
explored integrating fairness monitoring into pipelines14, and novel architectures for automation in DevOps15. 
However, they lack comprehensive lifecycle governance, especially for adversarial conditions.

Automated model maintenance
Automated maintenance often uses scheduled retraining or manual fixes, which fail in dynamic phishing 
settings. Earlier works emphasized continuous integration and DevOps-style orchestration12, while more recent 
methods focus on event-driven retraining and drift-aware updating10. End-to-end automation pipelines19 and 
business process drift monitoring22 have demonstrated progress, but they generally lack mechanisms for feature 
substitution or stakeholder-guided interventions, both critical in adversarial cybersecurity.

Adaptation and monitoring
Concept drift and feature volatility
Concept drift adaptation has been extensively studied through methods such as ADWIN6, the Early Drift 
Detection Method (EDDM)5, and adaptive windowing7. More recent research emphasizes interpretability-
driven explanations of drift23 and systematic reviews of text stream adaptation9.While these methods effectively 
detect drift, they often overlook feature volatility—the obsolescence or adversarial manipulation of features10,24. 
HAMF advances this field by combining drift detection with SHAP-based feature replacement, ensuring 
resilience against both distributional shifts and semantic feature failures.

 Fairness auditing and bias mitigation
Fairness-aware machine learning has become a central concern, with toolkits such as AI Fairness 36025 enabling 
detection and mitigation of algorithmic bias. Surveys13,15 highlight the persistent gaps in fairness integration 
into operational pipelines, while recent works argue for fairness-aware engineering practices14. Ethical auditing 
frameworks such as the NIST AI Risk Management Framework26 and discussions on ethics-by-design20,27 stress 
the importance of embedding governance directly into ML workflows. Explainability techniques such as SHAP3,21 
are widely used, but their integration as active triggers for fairness-aware retraining is a novel contribution of our 
work. HAMF operationalizes these concerns by treating fairness and transparency as first-class lifecycle triggers, 
not post hoc analyses.

Domain-specific applications: phishing detection systems
Phishing detection has traditionally relied on lexical, structural, and behavioral feature analysis2,3, with 
frameworks such as PhishHaven4 and PhishBench 2.028,29 providing domain-specific benchmarking. Recent 
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advancements leverage ensemble learning3, adversarial evaluation30, and adaptive detection strategies. However, 
existing phishing detection systems rarely integrate automated drift handling, fairness auditing, or human 
feedback mechanisms. The growing concern of AI-driven attacks20,26 underscores the urgency of developing 
pipelines that not only detect phishing but also maintain fairness and resilience in adversarial contexts.

Comparative summary
As summarized in Table 1, conventional MLOps platforms prioritize reproducibility and deployment scalability 
but lack core capabilities such as feature-level resilience, fairness-aware retraining, and contextual stakeholder 
collaboration. HAMF unifies these features into a domain-specific framework optimized for adversarial, high-
risk settings such as phishing detection.

HAMF framework
The Hybrid Approach MLOps Framework (HAMF) introduces a resilient, modular architecture tailored to 
adaptive phishing detection. Designed for adversarial, non-stationary domains, HAMF departs from traditional 
MLOps practices—such as those found in Kubeflow16 or SageMaker31—by embedding real-time drift handling, 
explainable feature optimization, and continuous fairness auditing directly into its operational loop.

Architectural design principles
The Hybrid MLOps Framework (HAMF) is designed to support resilient, adaptive, and ethically aligned model 
operations in adversarial environments such as phishing detection. Unlike conventional MLOps platforms that 
prioritize automation and scalability17,18 , HAMF embeds resilience-by-design as a first-class property. Here, we 
define resilience as the ability to sustain predictive accuracy, fairness, and stakeholder trust despite concept drift, 
feature volatility, and adversarial attacks5,6,8,9.

To achieve this, HAMF adheres to three guiding principles: 

	1.	 Closed-loop monitoring and adaptation —Continuous detection of drift and feature instability, coupled 
with event-driven retraining and feature replacement9,10.

	2.	 Fairness-aware lifecycle control—Integration of fairness audits and bias mitigation as triggers for retraining 
and deployment gating, ensuring ethical accountability in high-stakes domains12,14,15,20.

	3.	  Hybrid human–machine oversight—Stakeholder-in-the-loop mechanisms that allow experts to validate 
automated decisions, contribute domain insights, and oversee bias mitigation12.

The principle of trust continuity
A foundational design principle of HAMF is the operationalization of Trust Continuity.We define Trust 
Continuity as the sustained stakeholder confidence that an adaptive AI system will consistently meet its 
performance, fairness, and ethical goals as it adapts to a changing environment. It is not a static property but an 
emergent quality achieved through a continuous cycle of transparent monitoring, explainable adaptation, and 
auditable governance. This ensures the system’s behavior remains predictable and aligned with human intent 
despite its dynamic nature.

As real examples, we are listing three representative use cases from daily enterprise operations as follows: 

Capability
Proposed
HAMF

Kubeflow
16

MLflow
17

TFX
18

Amazon
SageMaker19

End-to-End Lifecycle Management ✓ ✓ ▲ ‡ ✓ ✓

Automated Event-Driven Retraining ✓ ✗ ✗ ✗ ▲¶

Dynamic Feature Replacement ✓ ✗ ✗ ▲ § ✗

Fairness & Ethical Auditing ✓ ✗ ✗ ✗ ▲¶

Explainability (Integrated SHAP) ✓ ▲ †2 ▲‡ ▲ § ✗

Drift Detection (Real-Time) ✓ ▲†1 ✗ ▲§ ▲¶

Stakeholder-in-the-loop Feedback ✓ ✗ ✗ ✗ ✗

Cloud Independence / Portability ✓ ▲ § ✓ ▲ § ✗

Scalability (Distributed / Parallel) ✓ ✓ ▲ ‡ ✓ ✓

Open-Source & Extensibility ✓ ✓ ✓ ✓ ✗

Table 1.  Comparative Analysis of HAMF and Prominent MLOps Frameworks.  ✓ Supported    ✗ Not 
Supported    ▲ Partially Supported or Requires Manual Setup †1 Requires custom implementation of drift 
detection algorithms (e.g., PSI, KL-divergence) as pipeline components, as it is not a native feature16. †2 
Supports explainability only if manually integrated with external tools like SHAP or Lime; not provided out-
of-the-box16. ‡ Provides core tracking but requires integration for full lifecycle management(e.g.,distributed 
execution relies on external engines like Spark17). § The pipeline structure can be manually engineered to 
support this feature, but it is not provided as a standard, pre-built, or configurable component18. ¶ Managed 
services exist(e.g.,Clarify for fairness), but event-driven retraining requires significant custom workflow 
configuration19
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	1.	 In Phishing Detection (URL Analysis): A HAMF-powered system detects novel URL obfuscation techniques 
as drift and automatically retrains to block them, while its stakeholder feedback loop allows analysts to cor-
rect false positives. This dual capability of automated resilience and human-guided correction provides a 
clear value proposition for the enterprise: it maximizes threat containment against zero-day attacks and min-
imizes business disruption by ensuring legitimate partners are not incorrectly blocked, thereby protecting 
both security and operational continuity.

	2.	 In Cybersecurity (Adaptive Network Security): When faced with a zero-day exploit, HAMF provides Securi-
ty Operations Center (SOC) analysts with a SHAP-based explanation of the new attack vector while automat-
ically adapting security policies. The value for the SOC is a significant acceleration of the incident response 
lifecycle; by automating detection and providing immediate, explainable insights, HAMF empowers ana-
lysts to validate and act on threats faster and with higher confidence, reducing the mean time to resolution 
(MTTR).

	3.	 In Digital Transformation (AI in Finance): When an AI model for loan approvals adapts to new economic 
conditions, HAMF’s embedded Ethical Compliance Module ensures the retrained model does not introduce 
bias against protected groups. The value for the financial institution is the ability to innovate with AI safely 
and at scale. HAMF de-risks the adoption of adaptive AI in regulated environments by ensuring that models 
remain both profitable and provably compliant, thereby unlocking new efficiencies while maintaining regu-
latory trust.

Modular microservices architecture
HAMF follows a microservices paradigm, where loosely coupled, containerized modules communicate 
through APIs to ensure fault isolation, observability, and scalability. This modularity enables HAMF to operate 
across both streaming and batch workflows, accommodating real-time phishing detection while supporting 
retrospective audits10,22.

The architecture integrates five core subsystems:

•	  Data management layer—Ingests and normalizes heterogeneous phishing-related data while ensuring sche-
ma consistency and versioning29.

•	 Feature adaptation engine—Detects feature volatility and substitutes unstable signals using SHAP-guided 
semantic replacements, thereby mitigating upstream feature obsolescence3,10,21.

•	 Model lifecycle orchestrator—Implements closed-loop control by coupling drift detection, retraining trig-
gers, and model versioning within a unified workflow10,19.

•	 Monitoring and feedback layer—Tracks predictive performance and system health, and integrates stake-
holder feedback into retraining decisions12.

•	 Ethical compliance module—Embeds fairness auditing and compliance checks aligned with governance 
standards such as GDPR and the NIST AI Risk Management Framework15–26 .

A sixth supportive layer, Documentation and Knowledge Management, records model lineage, feature changes, 
and audit outcomes, ensuring traceability and reproducibility32.

Architectural overview
Figure  1 illustrates HAMF’s modular architecture. Each subsystem is loosely coupled, enabling independent 
updates and fault isolation. Data flows cyclically across ingestion, feature monitoring, model orchestration, 
and compliance auditing, ensuring that drift signals and fairness diagnostics directly inform retraining. This 

Figure 1.  HAMF Modular Architecture.
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integrated design is a key differentiator; existing frameworks typically treat explainability and fairness as external 
add-ons, whereas HAMF embeds them as core lifecycle triggers12–15.

Distinction from prior frameworks
While existing platforms such as Kubeflow, MLflow, TFX, and SageMaker provide automation for deployment 
and monitoring17–19 , they lack integrated support for feature-level resilience, fairness-aware retraining, and 
structured stakeholder governance. HAMF advances beyond these systems by:

•	 Treating explainability, fairness, and resilience not as optional add-ons but as mandatory, interdependent 
lifecycle properties. This deep integration is empirically shown to reduce fairness disparities to a ∆DP of 
0.03, a significant improvement over the baseline frameworks, which exhibited disparities ranging from 0.08 
to 0.19 (Table 3).

•	 Introducing a hybrid control cycle that fuses SHAP-based feature adaptation, event-driven retraining, and 
fairness-triggered audits into a continuous feedback loop. The operational impact of this hybrid cycle is a 
dramatic reduction in response time to adversarial threats; our results in Section 5.2 demonstrate that HAMF 
detects and initiates recovery from adversarial drift in just 18 seconds, whereas comparable platforms require 
over 90 seconds or rely on simulated manual intervention times of 300 seconds.

•	 Positioning human oversight as a formal component of the pipeline, ensuring accountability and contextual 
alignment in security-critical domains.

This combination of architectural modularity and closed-loop resilience operationalizes a new scientific 
paradigm for adaptive MLOps, distinct from prior frameworks that emphasize scalability without adversarial 
robustness.

Methodology
This section details HAMF’s methodology, translating the architecture from Sect. 3 into a concrete, microservices-
based implementation. Figure 2 illustrates this detailed component architecture, mapping each conceptual 
subsystem to its implemented service and key technologies. This foundation enables a reproducible execution 
pipeline of thirteen interoperable stages (Figure 3). Each stage is containerized, auditable, and connected via 
event-driven orchestration. This design ensures continuous adaptation to concept drift, feature volatility, and 
fairness violations.

Figure 2.  Detailed Component Architecture of the HAMF Framework.
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Technology stack and deployment environment
HAMF is implemented in a cloud-agnostic, containerized environment to ensure portability and reproducibility. 
The technology stack follows a layered design, with each layer selected to balance scalability, explainability, and 
compliance with ethical standards.

•	 Data Layer: Distributed processing engines (e.g., Apache Spark) handle both batch and streaming ingestion 
from phishing intelligence feeds, while relational and object stores ensure ACID-compliant persistence and 
versioned datasets.

•	 Model Layer: Training and evaluation are performed using widely adopted ML frameworks (e.g., TensorFlow, 
XGBoost), with SHAP providing feature attribution to support resilience and interpretability. Lifecycle man-
agement is governed by model registries that enforce traceability and semantic versioning.

•	 Monitoring Layer: System health, drift, and fairness metrics are continuously tracked using a combination of 
real-time telemetry collectors and visualization dashboards, enabling rapid diagnosis of performance degra-
dation.

•	 Compliance and Governance Layer: Ethical auditing integrates fairness toolkits (e.g., AIF360) and anonymi-
zation utilities, ensuring alignment with GDPR, ISO/IEC 27001, and the NIST AI Risk Management Frame-
work.

•	 Deployment Environment: Microservices are orchestrated via Kubernetes, allowing elastic scaling of infer-
ence endpoints and retraining jobs, while Infrastructure-as-Code principles ensure reproducibility across 
hybrid or multi-cloud deployments.

This layered design avoids dependency on any single vendor or technology and emphasizes modularity, fault 
isolation, and auditability—key requirements for high-stakes phishing detection environments.

Pipeline execution workflow
Step 1–model & asset registration (owner onboarding)

•	 Inputs: Model ID/version, dataset URIs, compliance regime.
•	 Process: Models, datasets, and features are versioned via DVC and MLflow. A fairness pre-check (AIF360) 

runs on a 5% data sample.
•	 Outputs: Versioned baseline artifacts, compliance profile.

Figure 3.  HAMF Workflow.
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Step 2–data ingestion and preprocessing

•	 Inputs:Streaming phishing feeds (PhishTank, OpenPhish, Twitter crawlers) and benign sources (Alexa, .gov).
•	 Process: Spark preprocessing: remove duplicates, enforce schema, normalize timestamps, anonymize PII32,33.
•	 Outputs: Cleaned, versioned datasets.

Step 3–feature engineering and optimization

•	 Inputs:Preprocessed datasets.
•	 Process:Performs lexical and structural transformations. Feature relevance is scored using SHAP3,21 to flag 

unstable features for substitution (e.g., AlexaRank −→ GoogleRank)10.
•	 Outputs: Ranked and stable feature set.

Step 4–training and evaluation

•	 Inputs:Engineered feature sets.
•	 Process: Models trained with XGBoost, DNN, and ensembles using stratified cross-validation. Evaluation on 

temporally stratified splits ensures drift realism.
•	 Outputs: Trained model, SHAP interpretability visualizations, performance metrics (precision, recall, ROC-

AUC).

Step 5–model registry and versioning

•	 Inputs:Trained model artifacts, evaluation metrics, dataset version IDs, SHAP analyses.
•	 Process:Artifacts stored with lineage links to dataset IDs. Semantic versioning ensures traceability17,32.
•	 Outputs: Registered model, lineage logs.

Step 6–API-based model serving

•	 Inputs:Registered model.
•	 Process: Served as containerized REST API with autoscaling.
•	 Outputs: Production inference endpoints.

Step 7–real-time monitoring, logging, and drift detection

•	 Inputs:Live predictions.
•	 Process: Drift detection via KS, PSI, KL divergence22,27,34. SHAP deltas track semantic drift10,23.
•	 Outputs: Drift alerts, divergence scores, SHAP attribution shifts.

Step 8–performance thresholds and alerts

•	 Inputs:Live model metrics (e.g., F1-score, latency), infrastructure telemetry, historical baselines.
•	 Process:Metrics (F1, latency, FP/FN rates) checked against adaptive SLOs.
•	 Outputs: Breach alerts to stakeholders, retraining triggers.

Step 9–ethical auditing and fairness evaluation

•	 Inputs:Labeled validation data, sensitive attribute annotations (e.g., region, device), model predictions, policy 
definitions.

•	 Process: Fairness metrics ((∆DP), (∆EO)) computed12,15. Privacy validated via k-anonymity and l-diversi-
ty32,33.

•	 Outputs: Fairness reports, compliance triggers.

Step 10–feedback collection and loop closure

•	 Inputs: Model outputs and confidence scores, user annotations, flagged errors, retraining triggers
•	 Process: Analysts annotate false positives/negatives; feedback normalized and reintegrated into training.
•	 Outputs: Enriched validation sets, retraining signals.

Step 11–retraining triggers

•	 Inputs: Real-time metrics (F1, AUC), drift indicators, feature status logs, user feedback volume.
•	 Process: A composite trigger initiates retraining based on a combination of drift alerts, fairness violations, or 

feature deprecations: 

	
Triggerretrain =

{ 1, if ∆metric > τ1 ∨ PSI > τ2 ∨ Fd ∈ D
0, otherwise

 where:
	– ∆metric is the performance drop (e.g., F1-score decrease)
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	– PSI is the Population Stability Index for distributional drift
	– ∆DP  is the change in Demographic Parity
	– Fd is a deprecated feature in set D
	– Vfb is the volume of consistent user feedback (e.g., annotations of false positives/negatives) within a sliding 

time window
	– τ1, τ2, τ3, τ4 are the respective thresholds

•	 Outputs: New experiment run, retraining pipeline initiation.

Step 12–continuous deployment (CI/CD)

•	 Inputs:Validated model packages, API specifications, deployment descriptors
•	 Process: Retrained models deployed with canary testing and rollback.
•	 Outputs: Updated production model, deployment logs.

Step 13–stakeholder communication and documentation

•	 Inputs: CI/CD logs, audit outcomes, model metrics
•	 Process: Slack alerts, Trello tasks, BookStack documentation17,18.
•	 Outputs: Notifications, compliance records, audit trails.Threshold determination: The thresholds (τ ) are not 

static but are adaptively calibrated based on a moving baseline of recent system performance. For instance, τ1 
for performance drop is initially set to a 5% relative decrease from the model’s baseline F1-score. This base-
line is updated after each successful retraining cycle. This adaptive approach ensures that the triggers remain 
sensitive to significant degradation without causing excessive retraining due to minor, natural fluctuations.

Human feedback integration: Qualitative feedback from analysts (e.g., annotating false positives/negatives 
in Step 10) is quantitatively integrated via the Vfb > τ4 condition. When a predefined volume (τ4) of similar 
feedback events (e.g., 50 annotations of a new phishing pattern) is collected within a 24-hour window, it 
automatically triggers retraining. This formalizes the “Stakeholder-in-the-loop” mechanism, ensuring that 
domain expert knowledge directly and rapidly influences model adaptation.

To consolidate the preceding components, Figure  3 and Table  2 illustrate the operational workflow of 
the HAMF pipeline, spanning all thirteen lifecycle stages from initial model registration to stakeholder 
communication. Moreover, a detailed breakdown of the computational complexity for each of the thirteen 
pipeline steps is provided in Supplementary Note 3.

Algorithmic summary of execution logic
The HAMF lifecycle is governed by a closed-loop control system (see Supplementary Note 2, Algorithm S1 
for pseudocode). This system continuously orchestrates data ingestion, feature adaptation using SHAP-based 
attribution, and model deployment based on triggers from drift detection, performance monitoring, and fairness 
auditing. A key component is the SHAP-based feature adapter (see Supplementary Note 2, Algorithm S2), which 
ensures feature resilience by identifying and substituting unstable features based on attribution shifts.

An analysis of the computational complexity of this integrated system confirms its tractability for high-
throughput, real-time environments. The time complexity is dominated by data-dependent operations, scaling 

Step Title Purpose Key tools Outputs

1 Model & Asset Registration Register models, datasets, features MLflow, DVC, ARX Baseline model trigger, dataset versioning

2 Data Ingestion & Preprocessing Acquire and clean phishing data Spark, PostgreSQL, Elasticsearch Cleaned dataset, monthly snapshot

3 Feature Engineering & 
Optimization Transform raw data into predictive features SHAP, Feature Store Ranked, transformed feature set

4 Training & Evaluation Train and validate models using engineered 
features TensorFlow, Scikit-learn, MLflow Trained model, SHAP plots, evaluation metrics

5 Model Registry & Versioning Track model lineage and deployment readiness MLflow, MinIO, DVC Registered model with metadata and versioning

6 Model Serving Deploy models as RESTful endpoints FastAPI, BentoML, Kubernetes Live endpoints with telemetry and API schema

7 Monitoring & Drift Detection Detect drift and monitor performance metrics Prometheus, Grafana, Alibi 
Detect Drift alerts, SHAP deltas, dashboard logs

8 Performance Thresholds & Alerts Trigger alerts for performance anomalies Alertmanager, Grafana, Slack Real-time alerts, retraining signals

9 Ethical Auditing Evaluate fairness and compliance indicators AI Fairness 360, SHAP Fairness reports, bias flags, audit logs

10 Feedback Loop Capture expert annotations and issue flags Slack, Trello, DVC Curated feedback, retraining candidates

11 Retraining Triggers Initiate model updates from monitoring or 
feedback Alibi Detect, Custom Logic Triggered retraining workflows

12 Continuous Deployment (CI/CD) Automate reproducible model rollout GitLab CI/CD, Terraform, Helm Updated models in production

13 Stakeholder Communication & 
Documentation Notify stakeholders and maintain audit trails Slack, Trello, BookStack Logs, notifications, compliance documentation

Table 2.  Summary of HAMF Pipeline Steps.
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linearly with the number of records (n) and features (f), while space complexity remains efficient through 
bounded history logging. The full derivation of the complexity bounds is provided in Supplementary Note 1.

Parallel processing & scaling challenges
HAMF addresses scalability by implementing multi-layer parallelism across its pipeline. Rather than redesigning 
each step, parallelization ensures that ingestion, feature monitoring, retraining, and serving remain tractable 
under adversarial workloads.

Data ingestion is distributed via Apache Spark, enabling real-time processing of high-frequency phishing 
feeds. Feature attribution and drift monitoring are parallelized across feature partitions, reducing detection 
latency from minutes in baseline frameworks to under 20 seconds in HAMF experiments. Model training and 
retraining are accelerated using distributed GPU clusters managed by Kubernetes autoscaling, completing 
adaptive retraining within 27 seconds during controlled drift scenarios. Model serving is horizontally scaled, 
sustaining 2,300 requests/s with <50 ms p99 latency during stress tests.

Scaling challenges include (i) handling burst ingestion from social streams, (ii) GPU saturation during 
retraining, and (iii) fairness audits introducing batch-processing overhead. HAMF mitigates these via micro-
batching with backpressure, autoscaling policies, and asynchronous fairness evaluation.

In summary, HAMF’s layered parallelism ensures low-latency adaptation, high-throughput scalability, and 
fairness-aware monitoring at scale. Unlike general-purpose MLOps platforms, which offer either lifecycle 
automation or domain-specific drift detection, HAMF combines both within a unified, production-ready 
pipeline4,8,10,12,21,22,28.

Justification of tools and configuration
The Hybrid MLOps Framework (HAMF) employs a carefully selected set of technologies to ensure resilience, 
transparency, and ethical compliance within adversarial phishing detection environments. Tools are grouped 
functionally to illustrate their role in enabling HAMF’s closed-loop, adaptive pipeline.

Data collection and preprocessing:
Distributed frameworks such as Apache Spark35 enable large-scale, fault-tolerant ingestion of phishing data 
streams in both batch and streaming modes. Relational databases ensure schema integrity, while object storage 
systems provide scalable persistence. Version control tools (e.g., DVC32) align dataset snapshots with model 
training runs, and indexing engines (e.g., Elasticsearch) support fast retrieval of telemetry and anomalies. 
Collectively, these components ensure reproducibility and robustness for high-throughput environments.

Feature engineering and interpretability:
Python-based libraries (Scikit-learn, Pandas) support transformation and encoding, while SHAP3,21 enables 
both local and global attribution. This allows HAMF to flag unstable or biased features for replacement, 
ensuring feature-level resilience. The integration of SHAP addresses a gap in prior MLOps systems that lacked 
explainability-driven adaptation10,23.

Model training and lifecycle management:
Frameworks such as TensorFlow and XGBoost provide a balance between deep learning capacity and ensemble 
efficiency3,8. MLflow8 ensures experiment tracking, artifact management, and model versioning. Lifecycle 
automation is enforced through CI/CD pipelines19 , guaranteeing that retraining cycles are reproducible and 
auditable. This integration supports HAMF’s novelty in delivering closed-loop retraining with traceability.

Serving and deployment:
RESTful serving frameworks (e.g., FastAPI, BentoML) expose trained models as APIs. Containerization ensures 
environment consistency, while orchestration through Kubernetes13,36 supports elastic scaling and resilience. 
This ensures that retraining cycles triggered by drift or fairness violations can be deployed with minimal 
operational delay.

Monitoring and drift detection:
System health and model telemetry are collected through Prometheus22 and visualized with Grafana10. Drift is 
detected using libraries such as Alibi Detect37 and Evidently AI, applying statistical divergence metrics (KS, PSI, 
KL)27,34. Unlike baseline MLOps systems, HAMF couples these statistical checks with SHAP-based attribution 
monitoring10,23, ensuring semantic as well as statistical drift detection.

Ethical auditing and governance:
Fairness auditing leverages AI Fairness 36036 and bias/fairness surveys13,15. Privacy-preserving transformations 
(k-anonymity, l-diversity, t-closeness) are enforced through ARX34, ensuring compliance with GDPR, ISO/IEC 
2700138, and NIST AI RMF26. Unlike traditional pipelines, HAMF operationalizes fairness as an active trigger 
for retraining, aligning lifecycle control with ethical principles14,27.

Collaboration and documentation:
Stakeholder collaboration is supported by messaging and task-tracking systems (e.g., Slack11 , Trello39), while 
documentation platforms (e.g., BookStack33) ensure reproducible compliance records. These tools enable 
stakeholder-in-the-loop governance, an often-missing component in generic MLOps pipelines.

The justification of HAMF’s toolset is not simply functional: each category reinforces the framework’s novelty. 
Data tools enable scale and reproducibility, interpretability modules enforce feature resilience, lifecycle managers 
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ensure closed-loop retraining, monitoring systems provide low-latency drift detection, and fairness utilities 
operationalize compliance. By integrating these into a modular pipeline, HAMF advances beyond conventional 
MLOps systems focused solely on deployment automation4,8,12,21.

End-to-end pipeline overview
The HAMF pipeline integrates all functional modules into a unified, closed-loop lifecycle that ensures resilience, 
explainability, and ethical compliance in adversarial phishing detection. Figure   4 illustrates the end-to-end 
workflow, highlighting how data, models, and compliance information circulate across the system.

The pipeline begins with Data Management, where phishing intelligence is ingested from heterogeneous 
sources, including real-time feeds (e.g., social media, network traffic) and offline repositories (e.g., PhishTank, 
UCI). Data undergoes initial preprocessing—cleaning, normalization, and anonymization—supported by 
ethical and legal compliance modules (ARX anonymization, NIST privacy framework) to ensure GDPR- and 

Figure 4.  End-to-end overview of the HAMF pipeline.
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ISO-aligned governance. Large-scale data processing systems store both raw and processed artifacts in a version-
controlled data lake, providing reproducibility and auditability.

The Monitoring and Visualization Layer continuously tracks both system and model-level signals. Metrics 
such as performance degradation, feature attribution shifts, and distributional drift are visualized in dashboards, 
complemented by real-time alerting and annotation. This ensures that performance and fairness issues are 
observable to stakeholders, bridging the gap between automated monitoring and human interpretability.

Feature Optimization and Engineering builds on this foundation by extracting and ranking predictive 
attributes using SHAP-based explainability. Features are continuously evaluated for stability and fairness, with 
unstable signals replaced or flagged for stakeholder review. This guarantees that evolving phishing indicators do 
not undermine model robustness, a novel capability absent in general-purpose MLOps systems.

An Automatic Feedback Loop integrates both event-driven retraining triggers (e.g., drift detection, fairness 
violations) and stakeholder-in-the-loop annotations. Retraining is orchestrated through ML lifecycle managers, 
with optional interoperability with external cloud services (e.g., SageMaker, Google AI Platform, Azure ML) 
when extended scalability is required.

Finally, the Ethical and Legal Compliance Layer spans all pipeline stages. Bias assessments (e.g., demographic 
parity, equalized odds) and privacy-preserving transformations (e.g., k-anonymity, l-diversity) function as active 
controls, ensuring that retraining and deployment decisions remain aligned with AI governance standards.

Collectively, this overview highlights HAMF’s novelty: the integration of SHAP-guided feature resilience, 
fairness-aware retraining, and governance auditing into a single adaptive MLOps pipeline. Unlike conventional 
platforms that treat these components as external add-ons, HAMF operationalizes them as first-class triggers 
within its lifecycle, ensuring transparency, accountability, and robustness in phishing detection.

Experiments and results
This section presents a comprehensive evaluation of HAMF in adversarial phishing detection. The experiments 
address four research questions (RQs):

RQ1: Can HAMF sustain predictive performance under concept drift and feature volatility?
RQ2: How do its subsystems contribute to resilience and fairness?
RQ3: How does HAMF compare with existing MLOps frameworks?
RQ4: Can it scale to production-level workloads while preserving fairness?

Experimental setup
Datasets:

Three datasets were employed to ensure reproducibility and comparability:

•	 Self-compiled phishing corpus, consisting of phishing URLs obtained from PhishTank and OpenPhish 
feeds, and benign URLs from Alexa Top1M and institutional domains. Each sample was represented with a 
36-feature schema (lexical, structural, WHOIS-based attributes) and versioned with DVC for traceability29,32.

•	 PhishBench 2.028,29, a domain-specific benchmarking framework widely adopted for phishing evaluation 
and drift resilience testing.

•	 PhishHaven4 , an open-source real-time phishing detection dataset and system.Baselines: HAMF was bench-
marked against three representative frameworks: 

	1.	 Amazon SageMaker 19, a commercial-grade MLOps platform with managed retraining and monitoring.
	2.	 Kubeflow integrated with MLflow8,21, an open-source orchestration stack. As this baseline lacks native au-

tomated drift detection, we established a simulated manual detection latency of 300 seconds (5 minutes) for 
a fair comparison of end-to-end response.

	3.	 PhishBench 2.028,29, providing phishing-specific benchmarking but lacking fairness auditing and automated 
feature substitution.

All baselines were trained on identical datasets and feature schemas, tuned via grid search, and deployed under 
equivalent infrastructure.

Computational environment:Experiments were conducted on a cloud-hosted Kubernetes cluster 
provisioned with NVIDIA T4 (16 GB) and V100 (32 GB) GPUs, 64-core CPUs, and 128 GB RAM. Containerized 
workflows ensured reproducibility.

Tools and workflows:

•	 Lifecycle management: Kubeflow21, MLflow8.
•	 Monitoring and drift detection: Prometheus22, Grafana40, Alibi Detect41 .
•	 Fairness auditing: AI Fairness 36012,36.
•	 Explainability: SHAP3,21 .
•	 Versioning and compliance: DVC32, ARX anonymization34 .Metrics and statistical testing: Evaluation met-

rics included accuracy, precision, recall, F1-score, ROC-AUC, drift detection latency, retraining latency, infer-
ence latency (p99), and subgroup fairness disparity (∆DP). Drift was measured using the Population Stability 
Index (PSI) and KL divergence6,11,30. Fairness was assessed using AIF36012,36. All reported values are averages 
across three runs with 95% confidence intervals, and significance was determined using paired t-tests (p < 
0.01).30

To evaluate HAMF’s performance, we conducted a series of experiments simulating real-world challenges. 
The primary procedure involved: (1) training all frameworks on a stable dataset, (2) deploying the models and 
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activating monitoring, (3) injecting a specific type of failure (e.g., feature deprecation, adversarial drift), and (4) 
measuring the framework’s ability to automatically detect, retrain, and recover. A detailed walkthrough of the 
drift injection experiment is provided in Sect. 5.4.

Threshold configuration The operational thresholds for the HAMF pipeline were established through a 
combination of industry best practices, literature review, and empirical validation to ensure a balance between 
responsiveness and stability.

•	 Feature replacement (sim > 0.85): The cosine similarity threshold of 0.85 for SHAP-guided feature sub-
stitution was selected as it is a widely accepted value in semantic search literature for ensuring high feature 
relevance. This value effectively filters for strong semantic matches without being so restrictive that no viable 
replacements can be found.

•	 Fairness auditing ∆(DP > 0.1): Demographic Parity ∆(DP  threshold of 0.1 is aligned with common practice 
and recommendations in the fairness-aware machine learning literature, often associated with the “four-fifths 
rule” used in legal and ethical compliance frameworks. This parameter serves as a conservative trigger to 
initiate bias mitigation.

•	 Interpretability drifting ∆(SHAP > 0.05): The SHAP attribution stability threshold of 0.05 was determined 
empirically during a preliminary validation phase. It was found to represent a statistically significant devia-
tion from the baseline feature importance without being overly sensitive to minor, expected data fluctuations, 
thus preventing excessive and unnecessary retraining triggers.

All source code, dataset preparation scripts, configuration files, and workflow screenshots supporting the 
experiments are available at: https://github.com/asmaa-reda/phishing.

Benchmarking against baselines
Table 3 a high-level comparison of HAMF against established baselines. The evaluation focuses on core 
operational metrics: responsiveness to drift, preservation of accuracy, and maintenance of fairness.

As summarized in Table 3 and Figure 5, HAMF demonstrated superior performance across all key metrics. 
It detected concept drift with a latency of only 18 seconds, a critical advantage over SageMaker (92s) and the 
simulated 300s manual response for Kubeflow+MLflow. Following drift, HAMF recovered to a post-drift 
accuracy of 99.52%, significantly outperforming all baselines (p < 0.01). In terms of fairness, HAMF maintained 
a remarkably low demographic parity disparity (∆DP) of 0.03, which is a 4x to 6x improvement over the 
baselines. Furthermore, HAMF is the only framework to natively support automatic feature substitution and 
integrate SHAP interpretability directly into its resilience mechanisms.

Resilience to feature deprecation
To simulate feature volatility, we deprecated the AlexaRank feature. HAMF autonomously detected this, 
proposed GoogleRank as a substitute based on high semantic similarity (0.93), and triggered retraining.

As shown in Table 4, HAMF autonomously flagged the deprecated feature, proposed GoogleRank as a 
substitute (cosine similarity 0.93), and initiated retraining. It restored F1-scores to 0.9952 within 6 hours, while 
preserving fairness (∆DP = 0.03). In contrast, SageMaker and Kubeflow required manual intervention and 
showed higher disparities, while PhishBench lacked recovery mechanisms. This demonstrates HAMF’s unique 
ability to manage feature volatility autonomously.

Resilience to adversarial concept drift
To illustrate HAMF’s closed-loop operation, we provide a detailed walkthrough of an adversarial concept drift 
injection experiment, with the automated response sequence visualized in Figure 6.

	1.	 Baseline model training: All frameworks were trained on a stable version of the PhishBench 2.0 dataset. 
Baseline performance was recorded (Accuracy: 99.8%, F1: 0.998, ∆DP: 0.02).

	2.	  Model deployment and monitoring: Models were deployed as live endpoints. HAMF’s real-time monitor-
ing (using PSI and ∆DP) was activated.

	3.	  Concept drift injection: A sustained stream of data containing URLs with novel obfuscation techniques 
(e.g., homoglyphs, heavy URL encoding) was introduced, simulating an adversarial campaign.

Metric HAMF PhishBench SageMaker Kubeflow+MLflow

Drift Detection Latency (s) 18 — 92 ± 4.3 Manual

Post-Drift Accuracy (%) 99.52 ± 0.11 93.40 ± 0.29 96.10 ± 0.18 95.80 ± 0.23

p-value (vs HAMF) — <0.001 0.004 0.006

Fairness Violation (∆DP ) 0.03 ± 0.01 0.19 ± 0.03 0.08 ± 0.01 0.11 ± 0.02

SHAP Interpretability Retained ✓ — ✗ ▲
Automatic Feature Substitution ✓ ✗ ✗ ✗
Fairness-Aware Retraining Pipeline ✓ ✗ ✗ ✓

Table 3.  Comparison of HAMF Against Existing MLOps Frameworks. ✓ = Supported, ✗ = Not Supported, ▲ 
= Partially Supported
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Figure 6.  Sequence Diagram of HAMF’s Automated Response to Concept Drift.

 

Framework F1 (Post-recovery) Recovery latency ∆DP (Post-recovery) Interpretability retained

HAMF 0.9952 ± 0.0003 6 h (auto + HITL) 0.03 ✓ (SHAP-guided)

SageMaker19 0.9841 ± 0.0011 Manual retrain 0.08 ✗

Kubeflow+MLflow16,17 0.9863 ± 0.0009 Manual retrain 0.09 ▲
PhishBench 2.028,29 0.9819 ± 0.0014 Not supported 0.11 ✗

Table 4.  Comparison of recovery performance across frameworks.

 

Figure 5.  Comparative benchmarking: Drift Latency vs Fairness Disparity.

 

Scientific Reports |        (2025) 15:38478 13| https://doi.org/10.1038/s41598-025-23600-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	4.	  Automated detection and triggering (HAMF): HAMF’s monitoring layer detected a significant distribu-
tional shift (PSI = 0.28, exceeding threshold τ2 =0.2) within 18 seconds of the drift’s introduction. This trig-
gered an alert to the Model Lifecycle Orchestrator.

	5.	 Automated retraining and deployment: The orchestrator initiated a retraining pipeline using the most re-
cent data, including drifted samples. The new model was validated and deployed via CI/CD. The total re-
training and deployment latency was 27 seconds.

	6.	 Post-drift evaluation: The retrained model was evaluated on a held-out test set of the drifted data. HAMF 
recovered to 99.5% accuracy and a ∆DP of 0.03, as showen in Table 5.

	7.	  Baseline comparison: The same drift was applied to baseline frameworks. SageMaker’s managed service 
detected the drift in 92s, while Kubeflow required manual intervention (simulated at 300s). Their post-drift 
performance was inferior, as shown in Table 3 .

This experiment demonstrates HAMF’s core strength: the tight integration of rapid detection and fully automated 
recovery, a capability absent in current general-purpose platforms.

Ablation study
To validate the necessity of HAMF’s core modules, modules were disabled sequentially to evaluate subsystem 
contributions.

The results (Table 6, Figure 7) indicate that disabling SHAP-based feature adaptation or the drift engine 
significantly reduced F1-score (p < 0.01), confirming their importance for technical resilience. Crucially, 
disabling the fairness audit (AIF360) had little effect on accuracy but caused subgroup disparity (∆DP) to 
skyrocket from 0.03 to 0.17. This finding provides strong empirical evidence that HAMF’s advantage arises 
from the interdependence of its modules, and that ethical alignment is not an emergent property but must be 
explicitly engineered.

Fairness across subgroups
Fairness was evaluated across WHOIS domain age and traffic tiers.

As shown in Table 7 and Figure 8, HAMF’s fairness-aware retraining reduced false positive rates (FPR) by 
40-70% across all subgroups. The maximum disparity (∆DP) fell from 0.19 to 0.03. These improvements were 
statistically significant (p < 0.01), demonstrating that HAMF effectively mitigates structural bias in phishing 
detection, a dimension neglected in other frameworks.

Scalability and resource efficiency
To evaluate scalability, a synthetic workload replay was created by resampling and replaying from the combined 
datasets (self-compiled corpus, PhishBench 2.028,29, and PhishHaven4), generating 5M request events. Each 
replay preserved original labels and feature schema.

It can be observed in Table 8 and Figure 9 that HAMF sustained   2,300 requests/s with p99 inference 
latency under 50 ms, scaling automatically from 3 to 12 pods while maintaining GPU utilization below 75%. 
Storage overhead remained modest at ≤ 1.4 TB. These results confirm HAMF’s suitability for production-scale 
deployments while preserving fairness (∆DP ≤ 0.03).

Summary of key findings
Table 9 consolidates empirical evidence for the four central research questions (RQs) outlined at the beginning 
of Sect. 5. Each row maps a question to the relevant subsections and outcome metrics.

The results demonstrate that HAMF addresses all four research questions: it adapts rapidly to drift and feature 
volatility, subsystem ablations confirm the necessity of its design choices, benchmarking shows superiority 
over existing frameworks, and scalability tests validate production readiness. Novelty arises not from marginal 

Configuration Disabled Module(s) F1 (95% CI) p-value vs Full Fairness (∆DP)

Full HAMF – 0.9956 ± 0.0004 — 0.03

Feature adaptation SHAP substitution off 0.9821 ± 0.0011 <0.01 0.04

Drift engine Alibi Detect off 0.9787 ± 0.0013 <0.01 0.06

Fairness audit AIF360 off 0.9954 ± 0.0005 0.21 (n.s.) 0.17

Table 6.  Ablation Study of HAMF Modules.

 

Framework Drift latency Post-drift accuracy (%) Retraining latency ∆DP (post-drift)

HAMF 18 s 99.52 ± 0.11 27 s 0.03

SageMaker19 92 s 96.10 ± 0.18 3–5 min 0.08

Kubeflow+MLflow16,17 300 s 95.80 ± 0.23 >5 min 0.11

PhishBench 2.028,29 N/A 93.40 ± 0.29 N/A 0.19

Table 5.  Drift recovery performance comparison across frameworks.

 

Scientific Reports |        (2025) 15:38478 14| https://doi.org/10.1038/s41598-025-23600-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 8.  Fairness Across Subgroups.

 

Feature Category Subgroup FPR (before) FPR (after) ∆DP  reduction

WHOIS domain age
Age > 12 months 0.63 ± 0.02 0.38 ± 0.01 0.25

Age ≤ 12 months 1.03 ± 0.03 0.62 ± 0.02 0.41

Web traffic percentile

Top 33rd percentile 0.35 ± 0.01 0.23 ± 0.01 0.12

34th–66th percentile 2.02 ± 0.04 1.31 ± 0.03 0.71

Bottom 33rd percentile 1.70 ± 0.03 1.11 ± 0.02 0.60

Table 7.  Fairness Evaluation Before and After HAMF-Aware Retraining.

 

Figure 7.  Ablation Study of HAMF Modules.
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accuracy improvements but from embedding resilience, fairness, and explainability as first-class lifecycle 
properties.

Discussion
The empirical results presented in Sect. 5 substantiate the core thesis of this work: that resilience in adversarial 
ML systems must be a closed-loop lifecycle property, unifying performance, fairness, and explainability. Our 
findings demonstrate that HAMF successfully operationalizes this concept, advancing the state-of-the-art in 
MLOps for cybersecurity.

Theoretical and practical implications
Theoretically, HAMF contributes a new paradigm for MLOps in non-stationary environments. Unlike 
frameworks that treat model management as a linear CI/CD pipeline, HAMF introduces a hybrid control cycle 
where explainability (SHAP), fairness (AIF360), and performance monitoring are interdependent first-class 
triggers. The ablation study (Table 6, Figure 7) provides strong evidence for this design, showing that disabling 
any of these components degrades system resilience or fairness. The significant increase in ∆DP (from 0.03 to 

Research question Empirical evidence Interpretive significance

RQ1: Performance under drift Drift recovery in 18s; feature substitution restored F1 ≈ 0.995 Resilience to adversarial changes

RQ2: Subsystem contributions Ablation confirmed SHAP/drift modules critical to stability (F1-drop: 0.0135; p<0.01) (§ 6.4) Explainability and fairness are integral

RQ3: Benchmark comparison Outperformed baselines in fairness (∆DP < 0.08) and drift latency (18s vs. 92s and a 300s 
simulated manual response).

Establishes novelty beyond existing 
frameworks.

RQ4: Scalability and fairness Maintained ∆DP ≤ 0.03 at 2.3k RPS; 41.6ms p99 latency ( §§ 6.6–6.7) Ethics and speed achievable at scale

Table 9.  Summary of Key Findings Aligned with Research Questions.

 

Figure 9.  Scalability under Synthetic Replay Workloads.

 

Metric Result

Load replay volume 5 million labeled URLs

Ingestion rate ≈ 2,300 requests per second

p99 inference latency 41.6 milliseconds

Horizontal Pod Autoscaler (HPA) scaling behavior Scaled from 3 to 12 pods (CPU target = 70%)

GPU utilization (peak during retraining) 74%

Storage overhead after 60 days ≤ 1.4 TB (MinIO lifecycle-managed)

Table 8.  Scalability and Resource Metrics Under Load Replay.
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0.17) when the fairness module is disabled, despite no loss in accuracy, underscores that ethical alignment is not 
an emergent property but must be explicitly engineered and enforced.

For practitioners, particularly in Security Operations Centers (SOCs), HAMF offers a tangible solution to 
the operational burden of model decay. The framework’s 18-second drift detection and 27-second retraining 
latency translate to a mean-time-to-recovery (MTTR) of under one minute, compared to several minutes 
or even hours in manual or semi-automated setups. This rapid adaptation is crucial for containing zero-day 
phishing campaigns. Furthermore, by embedding SHAP explanations and fairness audits into the workflow, 
HAMF provides analysts with the interpretable evidence needed for confident incident response and regulatory 
reporting, thereby bridging the gap between pure automation and human oversight.

Ethical, legal, and interpretability aspects
The deployment of phishing detection systems in high-stakes environments—such as enterprise cybersecurity, 
governmental digital services, and regulated industries—requires strict adherence to principles of responsible 
AI, including fairness, transparency, privacy, and regulatory alignment. HAMF addresses these challenges with 
an ’ethics-by-design’ approach, embedding fairness, explainability, and compliance safeguards directly into its 
operational lifecycle. Unlike conventional MLOps frameworks, where ethical checks are treated as external or 
optional, HAMF operationalizes them as first-class triggers within its closed-loop control cycle.

Data privacy and regulatory compliance
HAMF ensures compliance with global data protection mandates such as the General Data Protection Regulation 
(GDPR), the California Consumer Privacy Act (CCPA), and the NIST AI Risk Management Framework (AI 
RMF)26 . During data ingestion, automated scanning identifies Personally Identifiable Information (PII), with 
anonymization enforced via ARX34 to satisfy k-anonymity, l-diversity, and t-closeness constraints. Violations, 
such as schema mismatches or regex-based PII leakage, result in immediate pipeline halting and alerts to 
designated stewards. Role-Based Access Control (RBAC) is applied within PostgreSQL, while lineage tracking 
and compliance artifacts are maintained via DVC32 and BookStack33. All training datasets are content-addressed 
using SHA-256, ensuring reproducibility and audit traceability in line with ISO/IEC 27001:202238.

Fairness and bias mitigation
Phishing datasets frequently exhibit structural bias, such as over representation of certain top-level domains 
or language-specific patterns. HAMF incorporates fairness diagnostics at ingestion, training, and deployment 
stages using AI Fairness 36012,36. Group-based metrics—including Demographic Parity (∆DP), Equalized Odds 
(∆EO), and Disparate Impact—are continuously computed. During experiments (Table 7, Figure 8, Section 5.4), 
fairness-aware retraining reduced subgroup disparities by over 60%, lowering ∆DP from 0.19 to 0.03.

Fairness thresholds (∆DP > 0.1, ∆EO > 0.2) act as operational triggers: if violated, mitigation strategies 
such as reweighting, resampling, or adversarial debiasing are automatically applied, and deployment is gated 
until resolution. These violations are also escalated to stakeholders via structured notifications (e.g., Slack11 , 
Trello39 ) for manual review. This integration moves fairness from post hoc reporting to a mandatory operational 
constraint, ensuring that subgroup equity is preserved throughout HAMF’s lifecycle.

Explainability and transparency
Explainability is embedded by design through SHAP-based attribution3,21 , which serves two critical roles. First, 
SHAP values are used to detect feature volatility: in the feature deprecation experiment (Table 4, Section 5.3.1), 
HAMF replaced AlexaRank with GoogleRank when attribution stability dropped, ensuring continuity without 
sacrificing fairness. Second, SHAP explanations provide local and global interpretability for deployed models, 
with all attributions versioned in MLflow8 dashboards and archived in BookStack33. Attribution stability is 
continuously monitored, and deviations beyond ∆SHAP(fi) > 0.05 trigger deployment gating and stakeholder 
review. This ensures that retraining decisions remain transparent and that prediction changes can be traced to 
drift, substitution, or debiasing interventions.

Ethical governance and stakeholder oversight
HAMF enforces multi-layer governance through structured alerting and audit logging. Any fairness violation, 
drift detection, or performance regression automatically generates a notification routed to role-specific 
channels (Slack11) and logged as tasks in Trello39. Stakeholder actions—such as approvals, overrides, or model 
quarantine—are recorded, producing a complete audit trail. Each production model is linked with:

•	 A versioned compliance profile (GDPR, CCPA status),
•	 A bias mitigation history (e.g., masked features),
•	 SHAP-based decision rationale artifacts.

This ensures accountability, transparency, and continuous alignment with responsible AI principles.

Dual-use consideration
Building on GDPR and NIST alignment, HAMF’s ethics-by-design paradigm also addresses potential dual-use 
risks, ensuring that explainability strengthens accountability without enabling adversarial exploitation. These 
risks arise because the very SHAP explanations that provide transparency could be weaponized by adversaries 
to perform model inversion or identify critical features for evasion, potentially crafting inputs (e.g., phishing 
URLs) that bypass detection.
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To mitigate this, HAMF employs architectural and governance controls embedded in its stakeholder feedback 
loop. First, access to detailed SHAP attributions is restricted by role-based access control (RBAC) to authorized 
auditors and analysts within the Ethical Compliance Module. Second, while SHAP values automatically trigger 
feature adaptation and retraining decisions, the underlying explanatory data itself is not exposed through public 
APIs. Third, for high-risk actions such as deploying a model retrained due to adversarial drift, HAMF’s Model 
Lifecycle Orchestrator can be configured to require explicit stakeholder approval, logging every decision for 
auditability. This controlled, multi-layered approach—combining automated explainability with human-in-
the-loop oversight—ensures that transparency serves its purpose for maintenance and trust without becoming 
an attack vector. By embedding these safeguards, HAMF balances explainability with security, transforming a 
potential vulnerability into a managed, ethical advantage.

Novelty in ethics-by-design
HAMF’s novelty lies in its hybrid control system, which uses not only technical metrics but also fairness violations 
and explainability shifts as direct operational triggers for model retraining. Retraining is activated not only by 
technical failures (e.g., drift, accuracy degradation; Table 5, Section 5.3.2) but also by ethical violations (e.g., 
subgroup disparity above thresholds; Table 7, Figure 8) or attribution instability (Table 4). These mechanisms 
were empirically validated in Sections 5.3–5.5, demonstrating that resilience in adversarial environments 
requires coupling technical robustness with ethical accountability. Such integration remains absent in existing 
MLOps frameworks, underscoring HAMF’s contribution beyond incremental engineering improvements.

Empirical validation of ethical modules
The mechanisms summarized in Table 10 were not only theoretical constructs but were applied and validated 
in the experimental evaluation. Fairness audits and mitigation (Table 7, Figure 8) demonstrated measurable 
reductions in subgroup disparities; SHAP-based explainability guided feature substitution in the deprecation 
experiment (Table 6); and drift-triggered retraining integrated fairness and attribution stability checks (Table 5). 
The ablation study (Table 6) further confirmed that disabling ethical modules such as fairness auditing resulted 
in significant disparities, highlighting their operational necessity. These results collectively validate HAMF’s 
novelty in embedding ethical, legal, and interpretability safeguards as operational properties rather than external 
compliance tasks.

Implications and limitations
Deployment implications
The adoption of HAMF carries significant implications for deployment in Security Operations Centers (SOCs) 
and enterprise environments. By embedding fairness auditing, SHAP-based attribution, and regulatory 
compliance into the operational pipeline, HAMF enables phishing detection models to be deployed in highly 
regulated domains such as finance, healthcare, and government digital services with increased confidence in 
their ethical and legal robustness26,38 . For SOC teams, HAMF’s event-driven retraining and real-time drift 
monitoring offer a practical means of reducing manual overhead while maintaining resilience against adversarial 
phishing campaigns. Furthermore, the integration of explainability tools provides analysts with interpretable 
evidence for incident response, supporting faster triage and more transparent decision-making processes3,21 .

Scope and generalization
While the framework demonstrates strong empirical performance, several limitations must29 acknowledged. First, 
experiments were conducted primarily on URL-based phishing datasets (PhishBench 2.028,29 and PhishHaven4), 
which may limit generalizability to other modalities such as email content, logos, or multimedia phishing. 
Second, although fairness auditing reduced subgroup disparities significantly (Section 5.4), fairness definitions 
are context-dependent, and results may vary under alternative metrics or demographic groupings12,36. Third, 
baseline benchmarking included SageMaker, Kubeflow+MLflow, and PhishBench, which represent widely used 
platforms, but additional industrial-scale systems may provide further insights.

Aspect Tool/technique Functionality Trigger/threshold Output/effect

Data Privacy ARX, SHA-256, DVC PII anonymization, hashing, and versioning PII match or schema 
violation

Pipeline halted; compliance steward 
alerted; flagged for review

Access Control PostgreSQL RBAC, 
BookStack Role-restricted access and versioned audit logs Unauthorized access attempt Access denied; incident logged in 

BookStack and audit trail updated

Bias Detection AI Fairness 360 Computes ∆DP , ∆EO, and Disparate Impact ∆DP > 0.1 or 
∆EO > 0.2

Retraining triggered; fairness alert sent 
to stakeholders

Bias Mitigation Reweighting, 
Adversarial Debiasing Fairness-aware retraining using mitigation techniques SHAP deviation > ±15% Discriminatory features masked or 

excluded; fairness metrics improved

Interpretability SHAP Local and global feature attribution with audit logging ∆SHAP (fi) > 0.05 Deployment paused pending stakeholder 
review; SHAP audit triggered

Auditability MLflow, BookStack Stores SHAP, fairness, and compliance metadata with 
full versioning Continuous Lifecycle traceability ensured; model-

card updated with audit metadata

Governance Slack, Trello Alert routing, stakeholder review, and resolution 
tracking

Any fairness violation or 
ethical trigger

Trello task created; stakeholder 
resolution logged; audit trail maintained

Table 10.  Ethical, Legal, and Interpretability Controls in HAMF11,17,21,25,33,34,38,39,41,42.
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Furthermore, while HAMF’s architecture is designed to be domain-agnostic, its validation in this work is 
focused on phishing detection. The principles of closed-loop adaptation, SHAP-guided feature resilience, and 
fairness-triggered retraining are likely applicable to other adversarial cybersecurity domains, such as malware 
detection and network intrusion detection systems (NIDS). In malware detection, for instance, feature volatility 
(e.g., deprecated API calls) and concept drift (e.g., new evasion techniques) are equally prevalent. However, such 
applications may require domain-specific modifications. The current feature adaptation engine is optimized for 
tabular and lexical data; extending it to handle binary features or graph-based representations of malware would 
be a necessary future step. Therefore, while the conceptual framework of HAMF is broadly generalizable, its 
instantiation and the assumptions of its microservices (e.g., the nature of features and drift) are currently tailored 
to the phishing domain.

Constraints
The current implementation relies on cloud-hosted GPU resources (T4/V100), which provide a feasible testbed 
but may not reflect constraints in resource-limited enterprise deployments. Similarly, fairness auditing and 
explainability introduce additional computational overhead, which could impact latency-sensitive applications. 
While results showed sub-50 ms inference latency at scale (Section 5.5), such performance may vary under larger 
multi-tenant workloads. Finally, HAMF focuses on supervised learning settings; its applicability to unsupervised 
or semi-supervised phishing detection requires further validation9,10.

Conclusion and future work
This study introduced HAMF, a Hybrid MLOps Framework that operationalizes resilience, fairness, and 
explainability as first-class properties of the ML lifecycle. Moving beyond existing platforms that treat ethical 
governance as an external add-on, HAMF integrates SHAP-guided feature substitution, event-driven retraining, 
fairness-aware auditing, and stakeholder-in-the-loop governance into a unified, closed-loop control system.

Our comprehensive empirical evaluation demonstrated HAMF’s effectiveness. The framework achieved 
rapid drift detection (18 s), near-perfect recovery of accuracy (F1 > 0.99), significant bias mitigation (reducing 
∆DP from 0.19 to 0.03), and scalable throughput (2,300 requests/s) with low latency. Ablation studies confirmed 
that this performance is contingent on the interdependence of its core modules, validating our hybrid design 
philosophy.

The implications of this work are both theoretical and practical. It provides a blueprint for building adaptive, 
responsible, and trustworthy AI systems for high-stakes, adversarial environments. For practitioners, HAMF 
offers a production-ready framework to reduce manual overhead and maintain robust defenses against evolving 
threats.

Future work will focus on three directions: (1) incorporating Large Language Models (LLMs) to analyze 
semantic content in phishing emails, (2) exploring federated learning to enable privacy-preserving, collaborative 
detection across organizations, and (3) extending HAMF into a multi-modal framework that integrates URLs, 
text, and screenshots to counter increasingly sophisticated hybrid attacks. In summary, HAMF bridges the 
critical gap between technical adaptability and regulatory accountability in modern cybersecurity.

Data availability
The datasets used and analyzed during the current study are publicly available from the following sources:- 
PhishBench 2.0: [https://github.com/phishbench] - PhishHaven: [https://github.com/phishhaven]. All source 
code, dataset preparation scripts, configuration files, and workflow screenshots supporting the experiments are 
available at: https://github.com/asmaa-reda/phishing.
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