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Focused ion beam scanning electron microscopy (FIB-SEM) tomography has increasingly been utilized 
for acquiring three-dimensional (3D) microstructure features at the sub-micron scale in irradiated 
nuclear materials. This technique involves sequential ion beam slicing followed by electron beam 
imaging and compositional mapping using energy dispersive spectroscopy (EDS). Despite its growing 
use, several challenges persist. These include the time-intensive nature of data collection of EDS 
data, difficulties in distinguishing between various microstructures, and issues with image alignment. 
These challenges currently limit the broader application of FIB-SEM tomography in the field. To 
overcome these limitations, we propose using convolutional neural networks (CNNs) to automate 
microstructure identification in SEM images. Our study introduces a new framework for identifying 
microstructures in irradiated U-10Zr (wt%) metallic fuel with limited annotated data. The framework 
includes the creation of a reliable annotated dataset with paired SEM and ground truth data from 
EDS maps, the applications of CNNs for microstructure identification, and the validation of model 
performance. Specifically, we employed the Segment Anything Model (SAM) to align SEM images 
with corresponding EDS maps and focused ion beam (FIB) tomography SEM data. We evaluate several 
models, including Patch-based U-Net, Attention U-Net, and Residual U-Net, finding that patch-based 
U-Net exhibits superior segmentation performance and consistency. This approach reduces reliance on 
EDS detectors and aids in accelerating nuclear material analysis process, highlighting the potential of 
advanced deep learning techniques to improve microstructural understanding in nuclear material. This 
is the first framework to integrate SAM and Patch-based CNN models for semantic segmentation of 
irradiated nuclear materials, with potential applicability to other tomography datasets.
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Focused ion beam scanning electron microscopy (FIB-SEM) tomography has recently been employed in a variety 
of studies across different fields, including biological science1, geological materials2, and nuclear materials3–7.
This technique involves sequentially milling away thin layers of the materials, followed by SEM imaging the 
surface and/or compositional analysis through energy dispersive spectroscopy (EDS). This technique enables 
three-dimensional visualizations of the microstructures in examined materials, allowing researchers to study 
intricate details in nuclear materials, such as phases, boundaries, distribution of porosity, and fission products. 
The microstructures observed through SEM are often visually similar and indistinguishable to the naked eye, 
making it challenging to differentiate between various phases. To address this difficulty, energy dispersive X-ray 
spectroscopy (EDS) is often paired with SEM imaging for elemental analysis, aiding in the identification of 
various phases. When SEM imaging and EDS are performed on the same regions of a sample, often at different 
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resolutions, more accurate phase identification can be achieved, as shown in Fig. 1. However, enabling this level 
of accuracy is difficult to achieve using through SEM imaging alone.

Conducting comprehensive microstructural and compositional analysis using FIB-SEM presents several 
challenges, primarily related to time and labor costs. Acquiring EDS maps requires long-term instrumental 
stability since it is time-consuming, often limiting the maximum acquisition of material volume. Furthermore, 
accurately identifying specific microstructures often requires the combination of multiple EDS elemental maps, 
which frequently contain noise8,9 that can obscure the details necessary for accurate phase identification. For 
FIB-SEM tomography of irradiated materials, operational constraints such as minimizing radioactivity often 
necessitate limiting EDS map acquisition, making it impractical to apply EDS to every SEM image. Typically, 
only 8–10 patches are selected for EDS characterization mainly to confirm the presence of specific elements, 
leaving part of sample unanalyzed. Additionally, aligning EDS maps and SEM images is essential to correct 
misalignment caused during data collection due to software setting variations and drifting problems. These 
challenges collectively limit the efficacy for FIB-SEM tomography capabilities and data analysis.

Deep learning models, particularly convolutional neural networks (CNNs), offer a promising solution to 
overcome some limitations and improve SEM-EDS data analysis. Bangaru et al. utilized a CNN to identify 
four distinct microstructures—aggregates, hydrated cement, anhydrous cement, and pores—in SEM images 
of concrete10. This approach helped in understanding the performance and potential causes of cracks or 
failures in concrete material. Other studies have utilized CNN-based architectures to facilitate microstructure 
characterizing in nuclear materials. For example, Wang et al. introduced a residual model with a ResNet50 
encoder11, pre-trained on the ImageNet dataset12, for segmenting pores in irradiated metallic fuels13. Although 
this study demonstrated that while residual convolutional blocks effectively segmented large pores, it struggled 
to accurately identify smaller pores in SEM images. Sun et al. implemented a CNN-based instance segmentation 
model of extracting fission gas bubbles in SEM images of irradiated U-10Zr14. Moreover, CNNs have been 
applied to various microscopy datasets, achieving excellent characterization performance15–17. The advantages 
of applying CNN models to material science have been demonstrated in recent years. However, the good 
performance of CNN models highly depends on large, carefully annotated imaging datasets, which are typically 
generated manually14, synthetically18 or based on EDS maps11 in material science.

In our specific case, the absence of ground truth annotated data for CNN training posed a significant challenge. 
Moreover, no synthetic data is available on the studied material and labeling manually is both time-consuming 
and labor-intensive. Thus, generating the ground truth from EDS maps is the best choice. To overcome the 
challenge of noise posed to EDS map data analysis, we propose using EDS to generate ground truth data with a 
new framework for data preparation. Following data preparation, we employ Patch-Based CNNs (PBCNNs) to 
identify microstructures. These models can characterize materials more efficiently with less noise, providing a 
promising solution to overcome the challenges that low-resolution EDS detectors pose. The workflow includes 
the following steps:

1) creating a reliable dataset by using EDS maps to generate ground truth data for training the deep learning 
model.

2) employing several deep learning models to identify the microstructures from SEM images following the 
data preparation.

3) validating the performance of the models and utilizing the test performed model on unseen dataset.
The pipeline of the proposed model is illustrated in Fig. 2. This approach aims to address the limitations of 

EDS availability and enhance the efficiency and accuracy of microstructural analysis. The key contributions of 
this work include:

•	 Developing a new framework for data preparation in FIB-SEM tomography data.
•	 Implementing PBCNNs for efficient segmentation of material microstructures in SEM images.
•	 Performed a comprehensive analysis of state-of-the-art CNN-based SEM segmentation methods.

Fig. 1.  Corresponding scanning electron microscopy (SEM) image (LEFT) and energy-dispersive 
spectroscopy (EDS) map (RIGHT).
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Materials and experiments
U-10Zr (wt%) metallic fuel is the leading candidate for the next-generation sodium-cooled fast reactor19,20. 
Prototypical annular and solid U-10Zr fuels were used for the data analysis, which was designed and fabricated 
in the Materials & Fuel Complex at Idaho National Laboratory (INL)21,22. The studied sample is from a high 
burn-up (13.1 at%) solid U-10Zr metallic fuel cladded with HT9 as part of the MFF-3 irradiation test in the 
Fast Flux Test Facility (FFTF)23. Advanced characterizations of the material were conducted previously at 
Irradiated Materials Characterization Laboratory (IMCL) using focus ion beam (FIB) and transmission electron 
microscopy (TEM).

In this study, the SEM images were collected under 5525× magnification with a field of view (FOV) using 
backscattered electrons (BSE) using Helios NanoLab G3 Dual Beam Plasma FIB instrument at IMCL. 65 pairs of 
SEM images and EDS maps were collected. Each SEM image is at a size of 1024 × 1512 pixels with a resolution of 
0.048 µ m/pixel, while each EDS map size is 400 × 512 pixels with resolution of 0.12 µ m/pixel. Besides, 150 
SEM images with a higher resolution of 0.0096 μm/pixel were collected without EDS maps. Based upon previous 
findings22,24, we focused on six key microstructure features. Pores represent voids within the fuel that affect 
structural integrity and thermal conductivity, essential for assessing fuel swelling and gas release. Platinum (Pt) is 
often deposited as a protective layer on the surface of the sample before milling. This helps to prevent damage to 
the underlying material during the ion milling process. HT9 Cladding enhances high-temperature performance 
and corrosion resistance of the cladding, making its examination vital for understanding protective effectiveness 
under irradiation. Uranium (U) matrix, the primary energy source, provides insights into phase transformations 
and irradiation impacts on fuel microstructure. Lanthanides, as fission products, form separate phases, and their 
distribution helps understand their behavior and effects on fuel performance and safety. Studying these classes— 
pores, Pt, HT9 cladding, U, lanthanides, and other—provides valuable information on microstructural changes, 
material interactions, and overall performance of the U-10Zr fuel, aiding in the development of next-generation 
sodium-cooled fast reactors.

Methods
Data preparation
As we discussed in the introduction, one of the primary challenges in employing CNNs for phase detection is 
the limited availability of annotated data. High-quality, labeled EDS datasets are essential for training robust 
and accurate CNN models, but obtaining such data can be resource-intensive and time-consuming. EDS maps 
often contain noise, complicating the data preparation process. To address this issue, we utilized EDS maps to 
generate ground truth annotations efficiently, aligned SEM and the corresponding EDS for model training, and 
employed patch extraction, thereby increasing the data volume. The workflow is shown in Fig. 3. The details for 
each component are described as follows.

Ground truth generation on EDS images. The data preparation process for EDS analysis begins with denoising 
the EDS data to enhance the quality of the elemental maps using Gaussian and minimum filtering. Following 
this, the denoised elemental maps are combined to form a composite image that shows the distribution and 
concentration of various elements within the sample. As each EDS map represents one specific element 
distribution within a region, we utilized overlayed EDS maps to generate annotations based on multiple threshold 
methods. The maps were annotated at pixel level to assign each pixel to one of six predefined classes: Pores, Pt, 
HT9 Cladding, U, Lanthanides, and Other. The manually annotated data establishes a ground truth dataset, 
serving as a reference for validating the accuracy of the analysis. Finally, segmentation masks were created 
through binary thresholding of EDS maps, with each element assigned a single pixel value ranging from 0 to 5.

 SEM images and EDS elemental maps alignment. To ensure corresponding SEM images and EDS maps shared 
the same global coordinate system, we aligned SEM images with corresponding EDS elemental maps. ImageJ 
and Fiji25 are popular open-source software for microscopy image registration, adopting techniques such as 
Scale-Invariant Feature Transform (SIFT)26. Boever et al.27, combine information between corresponding X-ray 
Computed Tomography (CT), SEM, and EDS images with the Bookstein landmark registration technique28 
to improve chemical characterization in geological materials. Although effective, such methods require high-

Fig. 2.  The pipeline for proposed method.
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resolution local features in image pairs to achieve high registration performance, thus struggle to register sparse 
and noisy EDS images. To overcome this, Mosaliganti et al.29

utilized an Insight Segmentation and Registration Toolkit (ITK)30 to segment and register microscopy 
datasets. By extracting global features, this method reduces the need for high-resolution FIB tomography images. 
In addition, Zhou et al. employed deep learning to learn appropriate transformations between microscopy 
image pairs and increase registration quality31. Although these solutions yielded great registration performance, 
both require time-consuming data preprocessing and iterative optimization steps, diminishing their speed and 
efficiency.

In this study, we first aligned all SEM and EDS images using a pre-trained vision transformer known as 
Segment Anything Model (SAM)32 for reducing the inter-and intra-slice variability between FIB tomography 
image pairs. Specifically, we separated the material regions of current frame in our FIB tomography dataset from 
the background pixels by identifying the boundaries of the U-10Zr. After identifying these boundaries on both 
SEM and EDS images, we cropped the images only maintaining material areas. This method does not require any 
training or extensive data preprocessing, thus it is more efficient than current state-of-the-art microscopy data 
registration methods. Figure 4 shows an example of the SEM image before and after alignment using the SAM. 
Figure 5 presents an example of the aligned SEM image and EDS map using SAM.

Fig. 4.  An example showed before and after alignment of an EDS map using Segment Anything Model.

 

Fig. 3.  Proposed image preprocessing and registration method using pretrained Segment Anything Model.
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Patch-based convolutional neural network
U-Net is particularly effective for biomedical image segmentation tasks due to its architecture that captures 
both contextual information and precise localization. U-Net has also demonstrated high efficiency with limited 
data33. The architecture includes skip connections that allow for the combination of high-resolution features 
from the encoder with upsampled features in the decoder, which helps maintain spatial information, as shown 
in Fig. 6(a). Attention U-Net as shown in Fig. 6(b) often outperforms traditional U-Net models in tasks requiring 
fine segmentation due to its ability to emphasize important features while ignoring irrelevant ones34. However, 
to take full advantage of attention mechanisms, large datasets may be necessary to avoid overfitting and ensure 
proper learning. Residual U-Net shows superior performance in various image recognition tasks without facing 
issues like vanishing gradients35. The architecture can be adapted for different tasks, including classification, 
detection, and segmentation, as shown in Fig. 6(c). In this study, we first extracted small patches from each image 
to expand the number of samples in our dataset. Due to our limited sample size, we proposed a PBCNN model to 
characterize irradiated nuclear material, drawing inspiration from the widely successful U-Net architecture33–35. 
Additionally, we validated the model’s performance using popular metrics and compared it against Attention 
and Residual networks on the FIB tomography dataset. The experimental setup and performance comparisons 
are shown in the following sections.

Experimental setup/Implementation details
We utilized a dataset consisting of registered 65 SEM images with corresponding annotated EDS data serving 
as the ground truth for the training and evaluation of all PBCNN models. The leave-one-out cross-validation 
method was employed, wherein each SEM image was iteratively used as a test sample while the remaining images 

Fig. 6.  (a) U-Net convolutional blocks (b), Attention U-Net (c), and Residual U-Net.

 

Fig. 5.  An illustration of a SEM image (left) and EDS map (right) after alignment.
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were used to train the model. This approach ensured a comprehensive assessment by allowing every patch to 
contribute to both training and testing.

Training dataset setup. To prepare the dataset for training the CNN model, we up-sampled all images to 
640 × 1280 pixels for efficient material characterization. Then image patches measuring 256 × 128 pixels were 
extracted from preprocessed SEM and EDS image pairs. This procedure resulted in a total of 2952 valid patches. 
Besides, images were randomly augmented in each epoch using techniques such as horizontal and vertical 
flipping, scaling, and rotation. Additionally, all images were shuffled at the start of training to mitigate the risk of 
overfitting and ensure a diverse sampling of the data throughout the learning process.

Training parameter setup. The experiments were conducted on Nvidia A100 GPUs, with the primary software 
environment being CUDA 12.3 and Python 3.11.9. The deep learning framework was Tensorflow version 
2.16.1. The Adam optimizer was employed with a learning rate set to 1 × 10-4. In this work, we implemented 
PBCNNs based on U-Net, Attention U-Net, and Residual U-Net architectures for the semantic segmentation of 
FIB tomography data. All PBCNN models were optimized using a specific learning objective. The models were 
trained with a batch size of 16 for 100 epochs. An exponential learning rate scheduler with a decay rate of 0.97 was 
used to reduce the learning rate after each epoch. Optimal material characterization performance was achieved 
after 80 epochs, as detailed. Fig. 7 shows that fewer epochs resulted in lower Dice similarity performance, while 
more training led to reduced generalizability.

Loss function selection. The input for training was defined by the following learning objective:

	 LF inal = LMSE + LDice

	
LMSE = 1

N

∑
N
i=1(yi − ŷi)2

	
LDICE = 1 − 2 ·

∑
y · ŷ∑

y2 ·
∑

ŷ2 + ϵ

where LF inal is the summation of the mean squared error, LMSE , and dice similarity coefficient LDICE , 
between PBCNN output and ground truth segmentation masks.

Evaluation metrics
To obtain the best performance of the models on the specific task, we trained and tested three CNN architectures: 
U-Net, Attention U-Net, and Residual U-Net on the same generated dataset. The popular metrics we used include 
mask-level Accuracy, Dice Similarity Coefficient (Dice) and the Jaccard Similarity Index (IoU) by comparing the 
predicted element-wise segmentations to annotated ground truth masks. The three metrics are defined as below:

	
Accuracy = 1 − |A − B|

N

	
Dice = 2 · A ∩ B

A + B

	
IoU = A ∩ B

A ∪ B

Fig. 7.  Sensitivity of PBCNN to the number of epochs.
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Where, A and B represent the set of pixels in the ground truth and predicted segmentation masks, and N  is the 
total number of pixels. The higher metric value indicates the better performance of the model.

In the following section, we obtained the overall comparisons of the three models and justified the importance 
of each component of PBCNN architecture through the ablation of numerous input parameters.

Results
Overall accuracy comparison
To ensure a fair comparison of all models, we controlled experimental variables, including the use of image 
patches, the choice of loss functions such as DICE and cross-entropy, and data augmentation methods. This 
standardized approach allowed for an objective evaluation of each model’s performance. With the chosen 
parameters, U-Net, Attention U-Net, and Residual U-Net successfully identified five different microstructures 
on the studied material. Figure 8 shows the characterization result of PBCNN models on a single SEM image. 
Table 1 shows the characterization performance of PBCNN models on all SEM Images. U-Net achieved a mean 
Dice of 0.84 ± 0.01, compared to Attention U-Net and Residual U-Net with a Dice of 0.82 ± 0.01 and 0.80 ± 0.01, 
respectively. The highest Dice value from U-Net indicates model performance is the best among the three models.

Model Dice IOU Recall Precsion

U-NET 0.84 0.74 0.83 0.86

Attention U-NET 0.82 0.71 0.80 0.84

Residual U-NET 0.81 0.70 0.79 0.84

Table 1.  Performance evaluation of Patch-based convolutional neural networks.

 

Fig. 8.  Material characterization performance of patch-based U-Net, Attention U-Net, and residual U-Net 
convolutional neural networks.
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Ablation studies
To verify the efficacy of the proposed PBCNN model, we conducted three ablation experiments, the results of 
which are presented in Tables 2 and 3, and 4, respectively. The first experiment aimed to determine if the patch-
based method enhances model performance. The second experiment evaluated the impact of data augmentation 
on the results. The third experiment focused on identifying the optimal loss function for achieving the best 
results. Each experiment was evaluated using mask-level accuracy, Dice coefficient, and Intersection over Union 
(IoU) metrics.

To ensure the robustness and generalizability of the PBCNN model, we conducted a series of tests on image 
patches derived from the global dataset of SEM images. By segmenting the entire images into smaller patches, we 
aimed to evaluate model performance on localized features while preserving the contextual information inherent 
in the global structure. This patched approach improved the training process convergence smoother and faster, 
as shown in Fig. 9, and allowed us to assess the model’s capability to accurately detect microstructural phases 

Fig. 9.  (a) Training history of the U-Net without patching; (b) training history of the U-Net with patching.

 

Model Dice IOU Accuracy

Mean absolute error (MAE) 0.11 0.10

Mean squared error (MSE) 0.84 0.74 0.95

Categorical crossentropy 0.83 0.73 0.88

Focal 0.83 0.73 0.88

Dice 0.84 0.74 0.97

Dice + MAE 0.11 0.10

Dice + MSE 0.84 0.74 0.97

Dice + Crossentropy 0.83 0.73

Crossentropy + MAE 0.11 0.10

Crossentropy + MSE 0.84 0.74 0.88

Crossentropy + Focal 0.83 0.73

Focal + MSE 0.82 0.84

Table 4.  Sensitivity of patch-based CNN model to different loss functions based on U-Net.

 

Model Accuracy MDICE MIOU

W/Data augmentation 97.0 0.84 0.74

W/O Data augmentation 96.1 0.78 0.68

Table 3.  Data augmentation ablation study based on U-Net.

 

Model Accuracy Mdice Miou

W/Patches 96.8 0.84 0.74

W/O Patches 94.0 0.82 0.63

Table 2.  U-Net patch ablation study based on U-Net.
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within diverse regions of the material, ensuring that the trained model is not overly reliant on specific global 
characteristics but can generalize well across different scales and contexts. As shown in Table 2, we demonstrate 
that a patch-based approach improved the material characterization performance across several metrics and 65 
SEM images. Specifically, the mean IoU and Dice on the U-10Zr dataset increased by 17.5% and 3%, respectively. 
Splitting SEM images into patches effectively allowed the model to capture local features in SEM images and 
increased the number of training samples. These improvements imply that the model benefits from enhanced 
sensitivity to localized features while maintaining an understanding of the overall structure.

To further enhance the performance and robustness of the PBCNN model, we employed extensive data 
augmentation techniques during training. This included transformations such as rotations, translations, and 
flipping, significantly increasing the diversity of the training dataset. By augmenting the initial dataset to over 
4000 images, we observed a substantial improvement in the model’s ability to accurately detect and classify 
microstructural phases, as shown in Table 3. However, beyond this point, additional augmentation did not yield 
significant further improvements in model performance. This suggests that while data augmentation is crucial 
for enhancing model robustness and generalization, there is a saturation point beyond which the benefits of 
further augmentation diminish. Consequently, our findings underscore the importance of a balanced approach 
to data augmentation, optimizing the trade-off between dataset diversity and computational efficiency.

The third ablation experiment focused on determining the optimal loss function for the PBCNN model. 
Various loss functions were tested to identify which one provided the best performance in terms of accuracy, 
Dice coefficient, and IoU. The results, detailed in Table 4, show the individual DICE loss function, or composite 
mean squared error (MSE), and DICE loss function outperformed other loss functions.

In summary, these ablation experiments underscore the importance of patch-based methods and data 
augmentation in enhancing the performance of the PBCNN model, as well as the critical role of selecting an 
optimal loss function. The comprehensive evaluation using accuracy, Dice coefficient, and IoU metrics provides 
a robust validation of the model’s efficacy in detecting microstructural phases.

Application and discussion
 In Sect.  ❝Methods❞, our validation demonstrated that the PBCNN model surpassed both the Residual 
U-Net and Attention U-Net, exhibiting superior accuracy, Dice coefficients, and IoU in detecting five distinct 
microstructure classes within the training data. The training phase utilized 65 SEM images with lower resolution. 
In this section, we extend the application of the PBCNN model to another dataset of 150 SEM images with 
higher resolution and generate a 3D visualization of the microstructures. The goal of 3D reconstruction is driven 
by the enhanced observational capabilities of FIB 3D tomography compared to traditional 2D SEM. FIB 3D 
tomography involves incrementally milling away material atoms and conducting SEM imaging to create stacks 
of 2D images, which are then reconstructed into a 3D volume. Despite its advantages, FIB tomography has 
limitations that we address, including the misalignment of adjacent SEM during the milling process. There is a 
variation in the focused area during SEM, causing discrepancies between slices. To accurately visualize the 3D 
structure of the entire

.
To ensure adjacent SEM images sharing the same global coordinate system, we first aligned all SEM using 

the SAM model32 which is discussed in Sect. ❝Data preparation❞. The 3D reconstruction result of the studied 
material after alignment is shown in Fig. 10 (a). The PBCNN model was applied to all SEM images. The detected 
microstructures were reconstructed into a 3D structure for visualization in three-dimensional space in different 
angle views, as shown in Fig. 10 (b). Segmented 3D renderings of the five microstructural groups are shown in 
Figs. 11 and 12. We provided animation results for different phases as supplementary documents (fuel.gif, ht9.
gif, ln.gif, others.gif, pores.gif and ln_pores.gif).From these reconstructions of different phases, the concentrated 
lanthanide areas are identified at the interface of HT9 cladding and Uranium fuel, while isolated lanthanides are 
located at the pore boundaries. Meanwhile, iron (Fe) from HT9 cladding has diffused to fuel. These observations 
highlight the capacity of the PBCNN framework to extract meaningful structural features from complex 
microstructural datasets.

At the same time, limitations of our work should be acknowledged. First, segmentation performance can be 
influenced by the quality of EDS data and by the binarization of overlapping elemental signals into six phase 
maps. Qualitative results in Fig. 12 indicate that the model generalizes well to unseen, higher-resolution FIB-

Fig. 10.  (a)The 3D reconstruction of nuclear material sample (b) 3D visualization of Lanthanide and fuel.
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SEM data, suggesting some robustness to variations in input data. However, a more systematic evaluation of 
the effects of EDS data resolution, noise levels, and binarization thresholds remains an important direction for 
future work.

Secondly, all PBCNN models were optimized using per-pixel loss functions, which do not explicitly account 
for global spatial alignment. This can lead to pixelated artifacts when predictions are slightly shifted, as illustrated 
in Fig.  8. In future work, we plan to incorporate hierarchical patch-based losses to better enforce structural 
coherence across scales or integrate positional encoding to restore global spatial awareness during training.

Conclusion
In this study, we utilized a vision transformer model, known as SAM, to automatically align FIB-SEM 
tomography data collected for high burn-up U-10Zr metallic fuel samples. We created a new dataset consisting 
of pairs of SEM images and EDS ground truth maps that was built in this research for different microstructure 
identification. Several state-of-the-art CNN models have been trained and tested on the limited new dataset.

Our results demonstrate that SAM is effective for aligning FIB-SEM tomography data. Additionally, we 
showed that PBCNN techniques can identify complex microstructures and accelerate the analysis process of 
FIB-SEM tomography data. Among the tested models, U-Net, Attention U-Net, and Residual U-Net exhibited 
excellent segmentation performance, with U-Net slightly outperformed the others and showing more consistent 
results during the ablation of input parameters.

Applying the best-performing PBCNN model to unseen FIB-SEM tomography data of the studied material, 
we identified the Fuel-Cladding Chemical Interaction (FCCI) region where iron from the cladding has intruded 
into the fuel and most lanthanides generated during irradiation are localized at the cladding-fuel interface. 
Another finding from the 3D reconstruction results is that isolated lanthanides are located at the boundary of 
pores.

Fig. 12.  Segmented 3D visualization of microstructure groups on high resolution SEM images without EDS 
maps.

 

Fig. 11.  Segmented 3D visualization of 5 microstructure groups on lower resolution SEM images.
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To the best of our knowledge, this is the first framework of combining SAM and PBCNN models for semantic 
segmentation of irradiated nuclear material. We believe that the proposed workflow will be easily accessible and 
employed on other tomography datasets.

Data availability
The data that supports the findings of this study is available from the corresponding author upon reasonable 
request.
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