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Integrating machine learning and
experimental validation identifies
a post-translational modification
gene signature for prognosis and
treatment response in breast
cancer

Lina Zhao™?, Lijuan Song™?, Hongzhi Wang¥?, Wen Tian?, Junfeng Xi', Bo Zhang***,
Yue Cai'™ & Lei Hou'™

Breast cancer (BC) is the most prevalent malignancy among women, and the steadily increasing
disease burden has garnered considerable global attention. Post-translational modifications (PTMs) are
critical in the initiation and progression of BC. This study aimed to elucidate the associations between
diverse PTMs and the prognosis of patients with BC. We collected genes associated with multiple
PTMs and evaluated the activity of each PTM using GSVA. We aggregated PTM scores to derive the
PTMS and identified differentially expressed genes between the high- and low-PTMS groups. A
PTM-related gene signature (PTMRS) was developed based on the optimal combination among 117
machine learning models, and its predictive performance was benchmarked against other published
signatures. In addition, we investigated the associations between PTMRS, tumor immunity, and
treatment response. Gene expression across different cell types was evaluated using single-cell and
spatial transcriptomic analyses. Gene expression levels in cancerous and paired adjacent noncancerous
tissues were validated by PCR. The results of GSVA showed that most of the PTMs were dysregulated
in cancer. Tumor immunity levels were elevated in the low-PTMS group compared with the high-

PTMS group. The PTMRS comprised five genes: SLC27A2, TNFRSF17, PEX5L, FUT3, and COL17A1.
The predictive performance of the PTMRS exceeded that of the clinical profile and 14 other published
gene signatures. Patients in the high-PTMRS group exhibited poorer prognosis and reduced anti-
tumor immunoreactivity. In addition, patients in the low-PTMRS group showed improved responses
to chemotherapy and immune checkpoint inhibitors. Spatial transcriptomics analysis revealed that
SLC27A2 exhibited higher expression in malignant spots, whereas COL17A1 and TNFRSF17 showed
lower expression in malignant spots. SLC27A2 mRNA expression was elevated in tumor tissues
relative to adjacent noncancerous tissues, whereas the mRNA expression levels of the other four
genes were decreased. This study reveals the important role of PTMs in BC prognosis and provides new
perspectives for the prognostic assessment of BC patients as well as personalized treatment.
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Breast cancer (BC), a major global public health concern that poses a serious threat to women’s health, has
garnered considerable attention due to its increasing disease burden. Global cancer statistics show that breast
cancer ranks first among female malignant tumors with about 2.3 million new cases per year!, and its incidence
is still on the rise, which is predicted to exceed 3 million new cases per year by 20402 Although substantial
advances have been achieved in early screening and diagnostic technologies for BC in recent years, challenges
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such as diagnostic delays and heterogeneity in treatment outcomes persist, adversely affecting patient prognosis>.
With the continuous advancement of molecular biology, biomarkers have become pivotal in the diagnosis and
prognosis of BC. Recent studies have demonstrated that both individual genes and multigene signatures can
serve as biomarkers for BC**. High expression of AIMP2 has been shown to be closely associated with poor
prognosis in BC patients, whereas AIMP2 knockout inhibits BC proliferation and invasion, suggesting its
potential as a prognostic biomarker®. As one of the tools for assessing patient prognosis, gene signature not only
predicts disease progression and treatment response, but also provides a scientific basis for the development of
individualized treatment plans”®. Therefore, the establishment and application of robust gene signatures are of
great significance for enhancing the therapeutic efficacy of BC and improving patient prognosis.

In recent years, PTMs have emerged as a research focus due to their pivotal roles in the dynamic regulatory
networks governing protein function. As a core mechanism of protein functional regulation, PTMs modulate
protein activity, stability, and subcellular localization by covalently adding or removing specific chemical
groups’. Currently recognized PTMs include acetylation, ubiquitination, sumoylation, phosphorylation, and
glycosylation'?. PTMs are dynamically regulated processes, and this process is usually regulated by three
key components: writers, readers, and erasers'!. Dysregulated PTMs have been shown to drive malignant
phenotypes, including uncontrolled cell proliferation, metabolic reprogramming, and immune evasion, thereby
promoting BC progression'?. As one of the earliest identified PTMs, dysregulated deubiquitination has been
shown to be closely associated with the onset and progression of BC'>. Another study reported that sumoylation
promotes BC cell progression via cancer-associated fibroblasts'%. Moreover, drugs targeting key enzymes
involved in various PTMs have been developed and entered clinical evaluation!®. Given the critical role of PTMs
in cancer, the development of PTM-related gene signatures offers novel perspectives for prognostic assessment
and personalized treatment of BC patients.

In this study, we collected genes associated with various PTMs and evaluated their activity. We then aggregated
the PTM scores to derive the PTMS and analyzed the immune landscape and biological processes associated
with it. We identified differentially expressed genes between the high- and low-PTMS groups and screened
prognosis-related genes using univariate Cox regression. Based on these prognosis-related genes, we developed
a PTM-related gene signature (PTMRS) within a machine learning framework. In addition, we examined the
associations of the PTMRS with tumor immunity, treatment response, and cancer-related biological processes.
Finally, we verified the expression levels of the genes in the PTMRS by PCR and spatial transcriptome.

Results

Characterization of the PTMS

PTM-related genes were collected from the GeneCards database (https://www.genecards.org/) and previous
studies !¢, which included 17 different PTMs. The details are as follows: Acetylation (n=41), Succinylation (n="7),
Malonylation (n=4), Crotonylation (n=7), Palmitoylation (n=27), Myristoylation (n=5), Ubiquitination
(n=415), Sumoylation (n=17), Neddylation (n=22), ISGylation (n=8), ATG8ylation (n=12), FAT10ylation
(n=4), UFMylation (n=5), Methylation (n=50), Glycosylation (n=59), Phosphorylation (n=33), and
Deubiquitination (n=127). We assessed the levels of 17 PTMs in normal and breast cancer patients and
summed multiple PCD scores to obtain the PCDS. Most of the PTM scores differed between the two groups
except for the deubiquitination score (Fig. 1A). The PTMS were higher in cancer patients compared to normal
samples (Fig. 1B). In addition, the levels of PTMS were significantly higher in patients with different clinical
characteristics (stage, T, age, N, and M) (Fig. 1C-F).

Comprehensive analysis of the PTMS

Based on the median PTMS, we categorized the patients into a high PTMS group and a low PTMS group.
Compared with the low PTMS group, the high PTMS group had higher levels of immune cells (Fig. 2A).
Meanwhile, the levels of most immunomodulatory factors were significantly different between the two groups
(Fig. 2B). We analyzed the biological processes associated with PTMS. The levels of inflammatory response,
TNFA signaling via NFKB, and apoptosis were higher in the low PTMS group (Fig. 3A), while the levels of
unfolded protein response, cell cycle, and DNA repair were higher in the high PTMS group (Fig. 3B).

Acquisition of the prognostic gene
We extracted genes common to DEGs and different datasets. The venn diagrams showed a total of 204 intersecting
genes (Fig. 4A). One-way Cox analysis further identified 26 genes with prognostic significance (Fig. 4B).

Construction and validation of the PTMRS

Based on the prognostic genes obtained above, we executed a machine learning framework containing 117
machine learning combinations to screen the best combinations for constructing PTM-related gene siganture.
We calculated the C-index and the AUC value for predicting 1-year survival for the 117 combinations in different
datasets, and finally chose the combination with the highest average of C-index and AUC value to construct the
PTMRS. The combination of RSF+ Ridge algorithm ranked the top in the average of C-index and AUC value
(Fig. 5A, B), and therefore we chose this combination to construct the PTMRS. Fig. S1A-D shows scatter plots
of PTMRS and survival status in different datasets. In TCGA, GSE96058, GSE11121, and GSE131769, the high
PTMRS group had a worse prognosis (Fig. 6A-D). In TCGA, the AUC values of PTMRS predicting 1-, 3-, and
5-year survival outcomes were 0.722, 0.714, and 0.692 (Fig. 6E). In GSE96058, the AUC values for PTMRS were
0.662, 0.653, and 0.638 (Fig. 6F). In GSE11121, the AUC values for PTMRS are 0.676, 0.735, and 0.686 (Fig. 6G).
In GSE131769, the AUC values for PTMRS were 0.802, 0.643, and 0.771 (Fig. 6H).
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Fig. 1. Construction of PTMS. (A) Levels of different PTMs between normal and tumor. (B) Differences in
PTMS between normal and tumor. (C-F) Differences in PTMS between normal and different clinical features
(M, Stage, T, and N). *** p<0.001, **** p<0.0001.
Comparison of PTMRS with published gene sigantures
We compared the predictive performance of the PTMRS with 14 published features in different datasets. Since
some of the datasets lacked genes for some of the sigantures, we only compared the sigantures that these datasets
owned. It is worth noting that the C-index of PTMRS is ranked first in different datasets with high prediction
performance (Fig. 7A-D).
Relationship between PTMRS and clinical features
Fig. S2A demonstrates the relationship between clinical characteristics and PCDRS. In the TCGA cohort,
PCDRS differed significantly across Status, Stage, T, and Age (Fig. S2B-E). In addition, we further tested the
performance of PCDRS by dividing the sample into different subgroups. The results showed that PCDRS was a
good predictor of patient prognosis in different subgroups (age < 65, age> =65, stage I-11, stage III-IV, T1-T2,
and T3-T4) (Fig. S2F-K).
Scientific Reports|  (2025) 15:39962 | https://doi.org/10.1038/s41598-025-23772-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A

Rt
R ki L 48 s 3 A AT BT A

Fig. 2. PTMS-associated immune landscape. (A) Relationship of PTMS with immune cells. (B) Relationship
between PTMS and immunomodulatory factors. * p <0.05, ** p<0.01, *** p<0.001, **** p <0.0001.

Construction of PTM-related nomogram

The results of unifactorial Cox and multifactorial Cox showed that PTMRS was an independent predictor of
patient prognosis (Fig. 8A, B). We then constructed a PTM-related nomgram by combining PTMRS and clinical
characteristics (Fig. 8C). The results of the ROC curve showed that the nomgram predicted 1-, 3-, and 5-year
survival with AUC values of 0.867, 0.808, and 0.797 (Fig. 8D). The calibration curve showed that the nomogram-
predicted survival probability was close to the actual survival probability (Fig. 8E). In addition, the C-index and
AUC values of the PTMRS were significantly higher than the clinical features (Fig. 8F, G).

PTMRS-associated immune landscape

The low PTMRS group had higher levels of immune cells and immunomodulatory factors compared to the high
PTMRS group (Fig. 9A, B). The high PTMRS group had higher levels of tumor purity, while the low PCDRS
group had higher ESTIMATE score, Immune score, and Stomal score (Fig. 9C, D). Levels of the release of cancer
antigens were higher in the high PCDRS group, while levels of the other 6 immune cycle processes were higher
in the low PCDRS group (Fig. 9E).

Association of PTMRS with cancer-related features
The low PTMRS group had higher levels of inflammatory responses (Fig. S3A), whereas the high PTMRS group
had higher levels of glycolysis, hypoxia, DNA damage, DNA repair, and cell cycle ( Fig. S3B-F).

Prediction of drug sensitivity

The IPS was higher in the low PCDRS group, which suggests higher sensitivity to immune checkpoint inhibitors
in the low PTMRS group (Fig. 10A-D). The sensitivity of docetaxel, epirubicin, fludarabine, vinorelbine,
vincristine, gemcitabine, and vinblastine was better in the low PCDRS group (Fig. 10E-]).

Expression validation of core genes
The error rate plot of the RSF algorithm is illustrated in Fig. 11A.The RSF algorithm screened a total of five genes:
SLC27A2, TNFRSF17, FUT3, PEX5L, and COL17A1 (Fig. 11B). The expression of SLC27A2 was up-regulated
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Fig. 3. PTMS-related biological processes. (A, B) Differences in the level of HALLMRAK features between the
PTMS groups.

in cancer tissues compared to normal tissues, while the expression of TNFRSF17, PEX5L, FUT3, and COL17A1
was down-regulated in cancer tissues (Fig. 11C-G). Figure 11H demonstrates the expression levels of these genes
in different breast cancer cell lines. In addition, we analysed the relationship between genes and different PTMs.
The results showed that five key genes were closely associated with most of the PMTs (Fig. S4 A-F).

Enrichment analysis of core genes

We explored the potential molecular mechanisms of the genes by gene set enrichment analysis (GSEA). SLC27A2
is involved in biological processes including fatty acid metabolism, oxidative phosphorylation, and the Notch
pathway (Fig. S5A), whereas COL17A1 is involved in biological processes including endothelial mesenchymal
transition, the PI3K/AKT/mTOR pathway, and glycolysis (Fig. S5B). As shown in Fig. S5C, FUT3 is involved in
biological processes including the mTORCI1 pathway, glycolysis, and inflammatory response. PEX5L is involved
in biological processes including apoptosis, the P53 pathway, and the PI3K/AKT/mTOR pathway (Fig. S5D),
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Fig. 4. Screening of prognosis-related genes. (A) Venn diagram revealing differentially expressed genes

(adj.p <0.05 and logFC=1) and common genes in different datasets. (B) Forest plot showing genes with
prognostic significance.
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Fig. 5. Machine learning frameworks to identify the best models. (A) Heatmap showing the mean value
of C-index for 117 machine learning combinations. (B) Heatmap showing the AUC values of 117 machine
learning combinations for predicting 1-year patient survival.

whereas TNFRSF17 is involved in biological processes including inflammatory response, interferon gamma
response, and DNA repair (Fig. S5E).

Single-cell and spatial transcriptome analysis

Figure 12A shows the different cell types in the GSE161529 dataset. Figure 12B and C displays the percentage of
cells in GSE161529 and within each sample. TNFRSF17 is abundantly expressed in plasma cells (Fig. 12D), while
other genes are less expressed in different cells (Fig. 12E-H). The disease type of the BRCA_BlockASection2
sample is invasive ductal carcinoma, with a spatial resolution of 55 pm. Figure 13A depicts the various cell
types in the BRCA_BlockASection2_10x distribution of cell types. Malignant spots showed higher expression of
SLC27A2 than non-malignant spots (Fig. 13B). FUT3 expression does not differ significantly between malignant
and non-malignant spots (Fig. 13C). PEX5L expression decreased in malignant spots, but not significantly
(Fig. 13D). Malignant spots showed decreased expression of TNFRSF17 and COL17A1 (Fig. 13E, F).

Validation of expression levels of genes by PCR

Compared with paraneoplastic tissues, the expression levels of SLC7A2 mRNA were up-regulated in cancer
tissues (Fig. 14A), whereas the expression levels of TNFRSF17, FUT3, PEX5L, and COL17A1 mRNA were
down-regulated in cancer tissues (Fig. 14B-E).
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Fig. 6. Construction of PTMRS. (A-D) KM curves of PTMRS in TCGA, GSE96058, GSE11121, and
GSE131769. (E-H) ROC curves of PTMRS in different datasets.

Comprehensive analysis identifies SLC27A2 as a key gene in PTMRS

We assessed the importance of genes in the PTMRS by RSF and GBM algorithms, and the results showed that
SLC27A2 ranked first in the importance ranking (Fig. 15A, B). We evaluated the diagnostic performance of
SLC27A2 by ROC curves in different datasets. The Area Under the Curve (AUC) values of SLC27A2 in the
TCGA, GSE10780, GSE54002, GSE109169, and GSE134359 datasets were 0.616, 0.697, 0.807, 0.777, and 0.854,
respectively (Fig. S6A-E). We validated the mRNA and protein expression of SLC27A2 in different datasets.
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Compared to normal tissues, the expression of SLC27A2 was significantly upregulated in cancer tissues
(Fig. 15C-H). The results of the immunohistochemical pictures show that the SLC27A2 protein stains more
darkly in the tumour tissue (Fig. 15L, J).

Discussion

BC is among the most prevalent malignancies in women, with its development and progression governed
by multiple molecular mechanisms. Recent studies have increasingly demonstrated that PTMs are closely
associated with proliferation, invasion, metastasis, and drug resistance in BC cells!”18. For instance, elevated
phosphorylation of PI3K/AKT/mTOR pathway-associated proteins results in aberrant activation of this signaling
pathway, thereby promoting cancer development and progression'®. As a newly identified PTM, succinylation
has been reported to promote BC cell proliferation and DNA damage repair?’. USP36 has been reported to
promote BC tumorigenesis and tamoxifen resistance via deubiquitination and ERa signaling pathways?!.
Another study reported that hypoxia induces downregulation of PGK1 crotonylation in BC cells, thereby
promoting glycolysis, inhibiting TCA cycling, and ultimately facilitating BC progression®2. Recent studies have
demonstrated that various PTMs are interdependent, and their crosstalk plays a critical role in BC development
and progression®**%, Therefore, an in-depth investigation into the mechanisms of multiple PTMs in BC may not
only elucidate the molecular basis of the disease but also identify novel biomarkers and therapeutic targets for
personalized patient treatment.

In this study, we collected genes associated with various PTMs and evaluated their levels using GSVA. Most
PTMs exhibited significant differences between normal and tumor tissues, indicating that PTM dysregulation is
closely linked to BC development and progression. To quantify overall PTM activity, we aggregated individual
PTM scores to derive the PTMS. PTMS levels were significantly elevated in tumor tissues compared with normal
tissues. All BC samples were then stratified into low- and high-PTMS groups based on the median PTMS. The
high-PTMS group exhibited reduced levels of immune cells and immunomodulatory factors relative to the low-
PTMS group. Functional enrichment analysis revealed that cancer-suppressive biological processes, including
TNFA signaling via NFKB, inflammatory response, and apoptosis, were enriched in the low-PTMS group,
whereas cancer-promoting pathways, such as the PI3K/AKT/mTOR pathway, DNA repair, and Myc pathway, were
preferentially enriched in the high-PTMS group. Previous studies have demonstrated that aberrant activation of
the PI3K/AKT/mTOR and Myc pathways is closely linked to BC development and progression>?. Collectively,
these findings suggest that PTM dysregulation is associated with alterations in immune, inflammatory, and other
cancer-related biological processes, providing insight into the interplay between PTMs and tumor progression.

With the rapid development of science and technology, machine learning shows great potential in the
medical field. Owing to its powerful data mining capabilities, advantages in nonlinear modeling, and capacity
for high-dimensional feature extraction, machine learning offers a novel technological approach for early
screening, treatment decision-making, and prognosis prediction of diseases*”?%. In this study, prognosis-
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related genes were extracted from distinct PTMS groups, and PTM-related gene signatures were constructed
using 117 combinations encompassing 10 machine learning algorithms. Combinations exhibiting the highest
mean C-index and AUC values across multiple datasets were selected to construct the PTMRS. The PTMRS
demonstrated robust predictive performance in both the training and external validation sets. Moreover, the
PTMRS outperformed clinical features and maintained strong predictive performance across various clinical
subgroups. Subsequently, a PTM-associated nomogram incorporating clinical features was constructed,
demonstrating even greater predictive accuracy. Calibration curves indicated that the PTM-related nomogram
predicted prognosis in accordance with observed outcomes.

Given the pivotal role of PTMs in cancer progression, previous studies have established several gene signatures
associated with individual PTMs in BC. For example, a ubiquitination-related gene signature in BC was reported
to predict patient prognosis®’. Another study reported a glycosylation-related gene signature in BC that predicted
overall survival and immune cell infiltration levels?. We compiled 14 published BC gene signatures related to
ubiquitination, deubiquitination, immunity, and metabolism. These signatures were reconstructed following the
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methods described in the original literature, and their predictive performance was compared with that of the
PTMRS. The PTMRS exhibited superior predictive performance, achieving the highest C-index across multiple
datasets compared with other signatures. These results indicate that PTMRS may serve as a potential biomarker
for predicting prognosis in BC patients.

With the advancement of biological technologies, researchers have gradually used gene expression profiles
as a means to identify disease-associated molecular markers and as an effective approach for disease onset and
recurrence. For example, the 70-Gene Signature Test (70-GS) has been approved by the U.S. government for
the early diagnosis of breast cancer and the assessment of recurrence risk®’. Similarly, Oncotype DX (21-gene
signature) was developed to assess the prognostic risk in breast cancer patients and has been extensively validated
in clinical studies®!. Although PTMRS has demonstrated promising predictive capabilities across different
cohorts, its value in clinical practice remains largely untapped. To fully realize its clinical application potential,
further exploration is needed into the complementarity between PTMRS and established clinical biomarkers
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such as Oncotype DX. Future research should focus on integrating PTMRS with these established biomarkers to
enhance the accuracy and reliability of prognosis prediction for breast cancer patients. This integrated approach
may provide a more comprehensive and precise prognostic assessment than relying on any single biomarker
alone.

With ongoing advances in cancer research, the role of the tumor microenvironment (TME) in cancer
progression has become increasingly recognized. The TME comprises tumor cells, immune cells, cytokines,
extracellular matrix components, and stromal cells>. The immune components of the TME, including
immune cells and immunomodulatory factors, collectively constitute the tumor immune microenvironment,
and their interactions influence tumor development®*3%. In this study, higher levels of immune cells and
immunomodulatory factors were observed in the low-PTMRS group. Moreover, immune and ESTIMATE
scores were elevated in the low-PTMRS group, whereas tumor purity was higher in the high-PTMRS group.
Furthermore, beyond the release of cancer antigens, other cancer immune cycle processes were elevated in
the low-PTMRS group. Previous studies have shown that the high PTMS group with high PTMs activity had
lower levels of anticancer immunity, potentially due to immune cell dysfunction induced by multiple PTMs.
This phenomenon has been corroborated by recent studies demonstrating that diverse PTM:s facilitate immune
evasion and promote malignant progression by impairing immune cell function within the TME*>%. Patients
in the high-PTMRS group exhibited diminished anti-tumor immunity, which may contribute to their poorer
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overall survival. In summary, PTMRS may serve as a potential indicator for assessing anticancer immune status
in BC patients.

In recent years, the continuous progress of science and technology has made the treatment means of breast
cancer more and more abundant. Clinical practice increasingly emphasizes multidisciplinary integrated treatment
and the development of individualized therapeutic plans for patients. Recent studies have shown that the third-
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generation antibody-drug coupling Trastuzumab Duocarmazine significantly reduced the risk of progression
in patients with breast cancer’’*®. Additionally, Pabolizumab, a PD-L1 inhibitor, has been approved for the
treatment of patients with triple-negative breast cancer®,. For patients with early-stage BC, breast-conserving
surgery is the preferred local treatment, typically followed by adjuvant chemotherapy and radiotherapy®’. In
this study, we investigated the association between PTMRS and the response to chemotherapy and immune
checkpoint inhibitors. Compared with the high-PTMRS group, patients in the low-PTMRS group exhibited
greater sensitivity to both chemotherapeutic agents and immune checkpoint inhibitors. These findings suggest
that PTMRS may serve as a predictive biomarker for treatment response in BC patients, thereby enhancing
guidance for personalized therapeutic strategies.

The PTMRS comprises five genes: SLC27A2, TNFRSF17, PEX5L, FUT3, and COL17A1l. Previous studies
have elucidated the roles of these genes in various cancers. Reduced expression of SLC27A2 was reported to
induce cisplatin resistance in lung cancer stem cells via negative regulation of Bmil-ABCG2 signaling*!. Another
study reported that low SLC27A2 expression promoted the progression of diffuse large B-cell lymphoma by
modulating the cell cycle and apoptosis*2. TNFRSF17, a member of the TNF superfamily, promotes breast
cancer cell stemness as a co-receptor for BAFF and APRIL®. Furthermore, numerous treatment methods
targeting TNFRSF17, such as antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T
cells, have demonstrated promise efficacy in multiple myeloma**. PEX5L is closely associated with peroxisomes,
and its genetic variants have been reported to predict survival in non-small cell lung cancer®. Highly expressed
COL17A1 has been shown to promote proliferation, migration, and invasion of pancreatic cancer cells via the
epithelial-mesenchymal transition pathway and is closely associated with poor prognosis in pancreatic cancer
patients*®. As a member of the fucosyltransferase family, loss of FUT3 expression has been closely linked to
breast cancer development, and subsequent DNA sequencing revealed two variants in the FUT3 promoter
region associated with breast cancer progression?’. Furthermore, previous studies have indicated that these
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genes play crucial roles in cancer progression via PTM-related pathways. For example, FUT3 has been shown
to promote proliferation, migration, and glucose metabolism in lung adenocarcinoma through activation of the
NF-xB pathway®®. COL17A1 has been reported to activate mTORC?2 signaling, thereby promoting colorectal
cancer cell dormancy®. Another study demonstrated that COL17A1 overexpression inhibited breast cancer
cell proliferation and tumor growth via inactivation of the AKT/mTOR pathway*’. High SLC27A2 expression is
strongly associated with poor prognosis in acute lymphoblastic leukemia, and subsequent experiments revealed
that SLC27A2 knockdown suppresses proliferation of acute lymphoblastic leukemia cells via the AKT pathway®!.
Additionally, TNFRSF17 has been confirmed to promote growth of human multiple myeloma and induce
immunosuppression within the bone marrow microenvironment via the NF-xB pathway®. These findings
suggest that key genes may participate in malignant progression by regulating PTM-related pathways through
influencing PTM processes, but the specific mechanisms still require further investigation. In this study, we
analyzed the expression levels of these five genes in cancer and paired paracancerous tissues as well as breast
cancer cell lines. With the exception of SLC27A2, the expression of all genes was downregulated in tumor tissues,
and the expression of cell lines was consistent with the results of the dataset. Finally, the results of the PCR also
confirmed the differential expression of these genes.

We evaluated the prognostic significance of these genes using RSF and GBM algorithms, revealing that
SLC27A2 was the most prominent among the five genes. Subsequently, we analyzed the expression patterns and
diagnostic potential of SLC27A2 across multiple datasets. SLC27A2 exhibited robust diagnostic performance
across datasets, effectively distinguishing between healthy individuals and breast cancer patients. Moreover,
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Western blot analysis of clinical samples further validated the diagnostic potential of SLC27A2. Collectively,
these findings indicate that SLC27A2 may serve as a promising diagnostic biomarker for breast cancer.

Of course, our study has some limitations. First, the PTMRS model was constructed using retrospective
databases, potentially introducing selection bias and limiting the generalizability of the findings. Second, the
model relies on machine learning algorithms, whose black-box nature makes it difficult to fully elucidate its
underlying mechanisms. Furthermore, only a limited number of validation experiments were performed in
this study. The functional roles of key genes in breast cancer and their potential molecular mechanisms warrant
further investigation through additional experimental and clinical validation.

Conclusion

This study revealed the critical role of PTMs in BC prognosis and developed a multi-PTM-related gene signature
(PTMRS). The PTMRS exhibits strong predictive power for patient prognosis and treatment response. Overall,
this study offers novel insights into prognostic assessment and personalized therapy for patients with BC.

Materials and methods

Data acquisition and processing

The TCGA-BRCA dataset was downloaded from the TCGA database (https://portal.gdc.cancer. gov/). GSE96058,
GSE11121, GSE131769, GSE10780, GSE54002, GSE109169, and GSE134359 were downloaded from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). PTM-related genes were obtained from the GeneCards database
(https://www.genecards.org/) and from previous studies'®, which included 17 different PTMs (Table S1). The
details are as follows: Acetylation (n=41), Succinylation (n=7), Malonylation (n=4), Crotonylation (n=7),
Palmitoylation (n=27), Myristoylation (n=5), Ubiquitination (n=415), Sumoylation (n=17), Neddylation
(n=22), ISGylation (n=8), ATGS8ylation (n=12), FAT10ylation (n=4), UFMylation (n=5), Methylation
(n=50), Glycosylation (n=>59), Phosphorylation (n=33), and Deubiquitination (n=127).

Construction of the PTM score (PTMS)

The activities of 17 different PTMs in TCGA-BRCA were evaluated by GSVA analysis, and the activities of
the different PTMs in each sample were summed to constitute the PTMS. Based on the median PTMS, we
divided the samples from TCGA into high and low PTMS groups. We analyzed the immune landscape as well as
biological processes associated with PCDS. Immune cell levels were assessed using the “deconvo_tme” function
in the “IOBR” R package, which includes CIBERSORT®?, EPIC*, TIMER®>®, MCPcounter®®, quantiseq®’,
xCell*8, and ESTIMATE® algorithms. Supplementary Tables S2 and S3 present the cell annotation genes in
the xCell and EPIC algorithms. We evaluated the correlation between PCDRS and immunomodulatory factors
(immunosuppressants, immunostimulants, major histocompatibility complex molecules, chemokines, and
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chemokine receptors). In addition, we analyzed the association of PTMS with HALLMARK signatures, which
were downloaded from the MsigDB database (https://www.gsea-msigdb.org/gsea/index.jsp).

Screening of prognosis-related genes

Differentially expressed genes (DEGs) in normal and tumor tissues in TCGA were obtained by limma package
with the screening criteria of adj.p<0.05 and logFC>1. Meanwhile, we extracted differentially expressed
genes (PTMSRGs) between different PTMS groups with the screening criteria of adj.p<0.05 and logFC>2.
Subsequently, we extracted differentially expressed genes (DEGs) shared across different datasets and PTMSGs
as protein post-translational modification-related genes (PTMRGs), and screened for prognostically relevant
PTMRGs using univariate Cox analysis.
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Construction of the PTM-related gene signature

Referring to the methodology in a previous study®, a machine learning framework using 117 combinations
consisting of 10 machine learning algorithms was constructed on the TCGA-BRCA, GSE96058, GSE11121, and
GSE131769 datasets. The 10 machine learning algorithms include RSF, Enet, StepCox, Ridge, Survival-SVM,
plsRCox, Lasso, CoxBoost, and SurperPC. Due to their ability to screen features, Lasso, RSE, and CoxBoost can
be combined with other algorithms to construct prognostic models. We integrated 117 combinations into the
machine learning framework and performed tenfold cross-validation. For the parameters of these algorithms,
please refer to Supplementary Table S4. We calculated the C-index of each machine learning combination in
the four datasets, and finally chose the machine learning combination with the highest average of AUC value
and C-index in the four datasets to construct the gene signature (PTMRS). The samples were divided into high
PTMRS and low PTMRS groups based on the median PTMRS, and the survival outcomes of the patients in the
low-risk and high-risk groups were analyzed by Kaplan-Meier curves. In addition, ROC curves for PTMRS
predicting 1-, 3- and 5-year survival were plotted.

Comparison of PTMRS with published gene signatures

We collected 13 published gene sigantures (Table S5) in breast cancer, which are related to various aspects of
ubiquitination, deubiquitination, metabolism, and tumor microenvironment. We constructed these signatures
in different datasets and compared the performance of these signatures with the PTMRS.

Construction of the PTM-related nomogram

The nomogram is composed of the PTMRS and other clinical features. We also plotted 1-, 3-, and 5-year ROC
curves and calibration curves for the nomogram. In addition, we compared the predictive performance of the
nomogram with other clinical features.

Analysis of immune cell infiltration

The “IOBR” R package was used to assess immune cell infiltration in the high- and low-PTMRS groups. In
addition, the correlation of the PTMRS with immunomodulatory factors, tumor microenvironment scores, and
anticancer immune cycles was analyzed.

Assessment of cancer-related characteristics

We downloaded cancer related features from CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/) and
analyzed their differences between the various PTMRS groups. Additionally, we explored potential molecular
mechanisms involving key genes through gene set enrichment analysis (GSEA).

Drug sensitivity analysis

Drug sensitivity analyses were performed using the ‘oncoPredict’ R package, which uses the drug data from
the GDSC v2 and CTRP v2 databases. The half-maximal inhibition concentrations (IC50) were used to express
drug sensitivity. In addition, we downloaded data on immunophenotype scores (IPS) of BC patients from TCIA
(https://tcia.at/) and compared their differences between subgroups.

Single-cell and spatial transcriptome analysis

The expression levels of the key genes in different cells in the GSE161529 dataset were analyzed using the
TISCH2 database (http://tisch.compbio.cn/home/). Supplementary Table S6 presents sample information from
GSE161529. The spatial distribution of key genes in BRCA_BlockASection2_10x was analyzed by Spatial TME
database (https://www.spatialtme.yelab.site/).

Validation of expression levels of key genes

We analyzed the expression levels of key genes in cancer and paired paracancerous tissues in TCGA-BRCA, and
analyzed the expression levels of key genes in different breast cancer cell lines in the CCLE database (https://de
pmap.org/portal/).

Comprehensive analysis of the SLC27A2

We assessed the importance of the genes through GBM and RSF algorithms and selected the most important
gene (SLC27A2) for further study. We evaluated the diagnostic performance of the SLC27A2 in the TCGA ,
GSE10780, GSE54002, GSE109169, and GSE134359 datasets by ROC curves. In addition, we downloaded the
immunohistochemical images of SLC27A2 in the HPA database (https://www.proteinatlas.org/).

RT-PCR

We performed BLAST alignment and evaluated the stability of GAPDH and ACTB in our experimental system.
We selected the more stable GAPDH as the housekeeping gene for this study. The primer information of the gene
was shown in Table S7. The BLAST alignment results for the PCR primers are shown in Table S8. The Research
Ethics Committee of Shanxi Provincial Cancer Hospital has approved this study (Grant No.:KY2023163). Tissue
samples of breast cancer patients were provided by Shanxi Provincial Cancer Hospital, and total RNA was
extracted from the tissues using Trizol kit. Takara kit was used for reverse transcription and Real Time PCR
reaction. Finally, we calculated the relative expression of gene mRNA with GAPDH as an internal reference gene.

Western blotting
Tumour or paracancerous tissue was lysed using RIPA buffer , and protein concentration was measured using
the BCA Protein Assay Kit. Proteins were separated using an SDS-PAGE polyacrylamide gel and transferred
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to a PVDF membrane. The membranes were incubated with primary antibodies overnight, after which the
membranes were washed using TBST and incubated with labelled secondary antibodies for half an hour.
Primary antibodies used included anti-SLC27A2 (1:1000, mouse) and anti-GAPDH (1:100,000, rabbit). The
target bands were detected using a ChemiScope 6100 chemiluminescent imaging system and photographed on
a gel imaging system. The grey scale values of the proteins were determined using the Image] software (version
1.54p), and the relative expression of the proteins was calculated as the ratio of the target protein to the internal
reference protein.

Statistical analysis

All data analyses and statistical analyses were performed using R (version 4.4.0). The Wilcoxon test was used
to compare data between two groups, and the Kruskal-Wallis test was used to compare data between multiple
groups. p<0.05 indicates statistical significance.

Data availability
The dataset provided in this study can be downloaded in the online website. TCGA-BRCA: https://portal.gdc.ca
ncer.gov/. GEO: https://www.ncbi.nlm.nih.gov/geo/.
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