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Power management in advanced power distribution systems integrated with Photovoltaic (PV) 
sources, batteries, and Super Capacitors (SCs) plays a vital role in ensuring stable and efficient 
energy flow. However, these systems often face drawbacks such as increased energy consumption 
due to inefficient control strategies, higher emissions from backup conventional sources during low 
PV output, and elevated operational costs from frequent battery cycling and system maintenance, 
despite efforts to improve efficiency and enhance renewable energy utilization. To overcome these 
drawbacks, this manuscript proposes an approach for optimal power management in a power 
distribution system with RES. The suggested method is the combination of both the Greater Cane Rat 
Algorithm (GrCRA) and Pre-Activated Convolution Residual and Triple Attention Mechanism Network 
(PCRTAM-Net), termed as the GrCRA-PCRTAM-Net approach. The primary aim of the suggested 
method is to reduce energy consumption, emissions, and operational cost while maximizing efficiency 
and renewable energy utilization in an advanced power distribution system. GrCRA optimizes the 
allocation and scheduling of power resources in advanced power distribution systems. PCRTAM-Net 
predicts future power demand and renewable energy generation patterns to support optimal power 
management. Flow Direction Algorithm-Convolutional Neural Network (FDA-CNN), Hippopotamus 
Optimization Algorithm (HOA), Particle Swarm Optimization (PSO), Spider Wasp Optimizer, and Multi-
scale Hypergraph-based Feature Alignment Network (SWO-MHFAN), Golden Jackal Optimization-
Progressive Conditional Generative Adversarial Network (GJO-PCGAN) are some of the existing 
techniques that are compared with the suggested method once it is implemented in MATLAB. An 
18.7% overall energy reduction compared to the current methods has been achieved by GrCRA-
PCRTAM-Net, which also attained an operational cost of 1505 cents, an emission level of 60.3 ppm, 
an efficiency of 99.1%, and a reduction in overall energy consumption. This further validates that the 
hybrid method effectively performed power flow optimization and stability enhancement in power 
distribution networks with renewable integration.
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Energy from RESs, including solar, wind, and small-scale hydro turbines, has greatly transformed advanced 
power systems1. Adding these distributed energy resources to the grid creates uncertainty and problems for the 
traditional type of power flow approach. To meet the needs of decentralized energy, the power grid should be 
updated with smarter and more flexible technology2–4. Problems associated with voltage regulation, frequency, 
and load in the system must be addressed as renewable sources become a larger part of the grid5. Grids that 
used to power areas mainly in one direction are now replacing those models with grids that move power back 
and forth6. By combining batteries and SC in a Hybrid Energy Storage System (HESS), the technology can 
manage problems related to long- and short-term fluctuations in the grid7. HESS has the benefit of meeting 
the requirements for energy density and power density, making energy storage more adaptable to the changing 
renewable energy supply. The operation of distributed generation has to be combined with utilities to maintain 
a safe routine and avoid overloading the network8,9. When integration occurs, customers are able to play their 
part in maintaining a stable system by changing how they consume energy. Improved monitoring and ways to 
communicate make these systems more effective when making decisions and managing operations10,11. Advanced 
power systems play a key role in helping the world move toward cleaner energy as attention on decarbonization 
increases. Changing renewable sources of energy need to be handled to ensure the reliability of the power grid12. 
Good power management ensures conventional and renewable energies work side by side, helping the grid 
remain stable. Nowadays, distribution systems rely on strong protection systems to handle the risk of reversed 
power and find faults13. Furthermore, applying energy-saving solutions helps to cut down on power wasted 
in transferring energy and makes the company’s assets more productive14. Power management is essential for 
ensuring that power systems using renewables and advanced batteries remain reliable and sustainable15.

Literature survey
Using various methods and strategies, several research papers have focused on power management in power 
distribution systems integrated with RES. The following is a review of those works.

Lakshmi and Premalatha16 have presented an efficient way of distributing power with an FDA-CNN designed 
for DC/AC Microgrids (MGs) that also connect Electric Vehicles (EVs). Based on historical data, this technique 
takes advantage of the predictive abilities of CNN and the FDA to help control how much power was supplied, 
keeping things like how much electricity people use, how much electricity was being made, and the need to 
charge electric vehicles in mind. The technique helps manage how power was used and makes charging and 
discharging EVs more efficient by letting the system change based on what was happening with the grid, so 
power can be shared between DC and AC parts of the setup.

Maurya et al.17 have introduced an optimization technique that uses the HOA to concurrently determine the 
best location for Distributed Generation (DG) and carry out network reconfiguration in order to increase the 
efficiency of radial distribution networks. To appropriately represent load behavior, the technique uses voltage-
dependent load models, such as constant power, constant current, constant impedance, and composite kinds. 
HOA was used to optimize a weighted multi-objective function that incorporates bus voltage variation and 
active and reactive power losses, drawing inspiration from the behavioral methods of hippopotamuses.

Jouil et al.18 have presented a control model for a PV-based renewable energy system combined with battery 
and SC energy storage in a DC Microgrid (MG) utilizing a hierarchical strategy that integrates sliding-mode 
control and Lyapunov stability theory. While a neural network was utilized to ascertain the maximum power 
defects for the PV system, the Fuzzy Logic Control (FLC)-based Energy Management (EM) framework was 
utilized to coordinate power distribution between generation and load. Under dynamic circumstances, the MG’s 
stable and effective operation was guaranteed by the hierarchical control system.

Abu et al.19 have presented a PSO-based approach to help optimize the performance of a Hybrid Energy 
System (HES) by grouping solar panels, hydrogen Fuel Cells (FCs), batteries, and SCs to better manage energy 
and use less hydrogen. To efficiently manage the way HES parts work together, the Proportional-Integral (PI) 
controller was tuned using PSO, making sure things like fuel flow, hydrogen consumption, and system stability 
were all kept in check. This strategy helps local areas become less dependent on the grid, makes better use of 
stored energy and renewables, and keeps the energy balancing within the area.

Alzahrani et al.20 have introduced a multi-objective optimization model for energy managers in power 
systems that relied on a Non-Dominated Sorting Genetic Algorithm (NSGA) to address choosing the lowest 
pollution, reduced operating expenses, and reduced Loss of Load Expectation (LOLE). It also includes solar and 
wind energy, which change at random, and they were described by using a beta probability density function. 
Balanced decision-making for a well-operated, secure, and stable power system can be achieved by considering 
many goals at the same time. Sithambaram et al.21 have presented that the use of SWO-MHFAN combined 
with the SO technique for better EM in grid-connected PV-powered electric vehicle (EV) charging stations. 
MHFAN was responsible for estimating the rate of energy demand and solar production, and SWO manages 
the exchange of power to optimize efficiency. The purpose of a grid-connected setup was to smooth how PV-
generated electricity was used for charging EVs by improving the quality and consistency of their output.

Chiluka and Sekhar22 have introduced a method to optimize both the power quality and voltage output of 
hybrid RESs through the use of a Doubly Fed Induction Generator (DFIG), a Pulse Width Modulation (PWM) 
rectifier under PI control for wind energy conversion, and an Improved Z Source Converter with a Bird Swarm-
Optimized PI controller for PV systems. A bidirectional battery converter managed the energy storage, and the 
energy was delivered as clean AC current using a three-phase Voltage Source Inverter (VSI) with an LC filter. 
Support for grid synchronization, high-quality DC-AC conversion, and reduced harmonic distortion allowed 
for more stable and sustainable power distribution. Rangasamy et al.23 have introduced that the GJO-PCGAN 
system was a combined energy approach for many MGs involving EV charging. Here, PCGAN predicts the 
ideal EV control strategy, and GJO finds the optimal times for charging and discharging, helping lower carbon 
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emissions, costs, and power losses during transmission. To guarantee dependable EM throughout the MGs, the 
strategy incorporates RESs such as FCs, wind turbines, and PVs, with diesel engines added when needed.

Recent research has highlighted diverse strategies for optimization and control in renewable-integrated 
distribution systems. Abbas et al.24 developed a two-stage reactive power optimization technique that merges 
a traditional model-driven mixed-integer second-order cone programming (MISOCP) approach with a deep 
learning–based data-driven framework. Their method greatly enhances reactive power optimization and voltage 
stability by integrating day-ahead on-load tap changer (OLTC) scheduling and real-time control of renewable 
inverters in distribution networks using transformer networks.

In the same way, Ali et al.25 constructed a multi-objective, multi-period environmental economic power 
dispatch model that includes probabilistic wind and solar PV generation. Their model attains a robust balance 
among cost, emission, and voltage stability improvements, especially under uncertain renewable penetration, by 
using advanced multi-objective evolutionary algorithms (MOEAs) alongside reserve constraints.

In addition, Abbas et al.26 described a multi-objective, multi-period optimization system for the optimal 
placement and sizing of distributed generation (DG) units, alongside the restructuring of the distribution 
network. The system simultaneously minimized energy supply costs, energy losses, and voltage deviations using 
a bidirectional co-evolutionary algorithm (BiCo), which is an efficient approach in improving system reliability 
and efficiency.

In addition, another research by Ali et al.27 explored the integrated planning of distributed energy resources 
and battery energy storage with an improved large-scale multi-objective evolutionary algorithm. This study 
optimized the placement and sizing of generators as well as storage operations over time, thus achieving 
remarkable cost savings (up to 51.67%), emission reductions (up to 99.9%), and improvements in voltage profiles 
over multiple operating conditions.

The study by Ahmed et al.28 demonstrated the role of multi-objective optimization techniques in executing 
optimal operations in grids powered by renewable energy. It involves the integration of evolutionary computation, 
probabilistic modeling, and AI to holistically solve the problem of uncertainty, variability, and cost-effectiveness. 
The study shows that integrating renewable forecasting models with sophisticated optimization algorithms leads 
to stronger grid resilience, lower emissions, and better energy use. The intermittent system planning of power 
systems, made stable by the use of advanced algorithms, better accounts for PV and wind resources in the study.

All these focus areas underscore the importance of hybrid optimization, probabilistic modeling, and 
large-scale evolutionary methods in solving renewable integration, uncertainty handling, and multiperiod 
operational scheduling challenges. Using these insights, the GrCRA-PCRTAM-Net method, proposed in this 
paper, combines evolutionary optimization with DL-based forecasting methods to enhance power management 
automation, minimize operational expenses, and increase the use of renewable energies in modern distribution 
systems. Comparison of selected existing studies on management of power in power distribution system with 
RESs is illustrated in Table 1.

From the analysis, it is evident that most of the existing literature failed to address the prediction of the 
system’s load while optimizing the participation of storage devices with EV and DG integration, their siting, 
converter control, and multi-objective optimization. The proposed GrCRA-PCRTAM-Net addresses these issues 
by employing bio-inspired optimization with deep learning forecasting, attaining 99.1% efficiency, 60.3 ppm 
emission reduction, and 1505 cents lower operational cost.

Research gap and motivation
Although diverse methods such as FDA-CNN, HOA, hierarchical sliding-mode control with Lyapunov theory, 
PSO-tuned PI controllers, NSGA, SWO-MHFAN, Bird Swarm-Optimized PI controllers, and GJO-PCGAN 
have been introduced for power management in distribution systems with integrated RESs, several limitations 
persist. FDA-CNN and SWO-MHFAN emphasize prediction and control in DC/AC MGs and EV charging 
coordination but give limited consideration to minimizing emissions and long-term operational sustainability. 
HOA and NSGA address optimization of distributed generation placement and EM using multi-objective 
strategies, yet the trade-offs between voltage variations, active/reactive losses, emissions, and cost remain 
insufficiently addressed under high renewable penetration. Techniques based on hierarchical control and FLC 
support system stability, but do not fully capture the dynamic interactions among batteries, SCs, PV, wind, and 
FCs during fluctuating demand and generation conditions. PSO-based tuning of PI controllers improves short-
term performance in hybrid energy systems, but scalability and fuel optimization under resource uncertainty 
are not comprehensively treated. The Bird Swarm-Optimized PI controller and the GJO-PCGAN hybrid method 
integrate advanced converters and scheduling mechanisms but fall short in unified handling of emission 
control, energy efficiency, and low-cost operation. These gaps highlight a clear motivation to enhance emission 
reduction, improve energy utilization efficiency, reduce fuel and operational costs, and maintain power quality 
under renewable uncertainty and multi-source integration.

Research novelty and contributions
The integration of a new bio-inspired optimization algorithm with an advanced DL framework for intelligent 
power management in renewable integrated distribution systems is the novelty of this research. Proposing 
the GrCRA for optimal scheduling and the PCRTAM-Net for predictive intelligence has set a new standard 
for optimizing systems. The proposed methodology demonstrates significant advanced power management 
techniques in comparison with existing models that depend on traditional metaheuristics or separately 
constructed forecasting networks.

The main contributions of this work are highlighted in the following:
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•	 Unified Set of AI Optimization Methods: A decisive efficiency and the novel integration of distinct methods 
like GrCRA and PCRTAM-Net (GrCRA-PCRTAM-Net) is developed, allowing GrCRA to perform optimal 
scheduling of resources while PCRTAM-Net accurately predicts the load and generation power.

•	 Improved Forecasting Accuracy: The proposed PCRTAM-Net employs pre-activated residual blocks and a 
triple attention mechanism (channel–spatial–dilated convolutional attention) to capture spatio-temporal de-
pendencies in renewable and load data, significantly improving prediction reliability in comparison with 
CNN or RNN-based models.

•	 Enhanced Optimization Functionality: The integration of the newly customized GrCRA as a meta-heuristic 
accomplishes the exploration versus exploitation tradeoff better by modeling the social foraging of greater 
cane rats. This newly adapted GrCRA performs better than the existing optimizers (PSO, HOA, SWO, GJO, 
etc.) for resource allocation problems in escaping local optima and converging faster.

•	 Performance Improvements for Multiple Objectives: The framework optimizes the operational cost (1505 
cents), emission (60.3 ppm), and energy consumption, in addition to reaching an efficiency of 99.1%. This 
performance exceeds that of the latest approaches like FDA-CNN, HOA, SWO-MHFAN, and GJO-PCGAN.

•	 Applicability: In contrast to previous approaches based on separate systems, this research confirms the frame-
work on a MATLAB renewable-integrated distribution system incorporating PV, battery, and supercapacitor, 
revealing its applicability to actual grid systems.

The remaining sections of the manuscript includes: the configuration of RES combined with the power 
distribution system is described in part 2. Part 3 explains the cost minimization of the RESs integrated power 
distribution system based on the GrCRA-PCRTAM-Net technique. Part 4 explains the results and discussion. 
Part 5 concludes the paper.

Configuration of RES integrated with power distribution system
Figure 1 illustrates the structure of a RES integrated power distribution system that combines solar PV, battery 
storage, and SC units for efficient EM. The solar PV section includes a capacitor C1, inductor L1, switch S1, 
and diode D1​ to regulate and transfer energy to the common DC link29. The battery system is composed of a 
capacitor C2, an inductor L2, and a bidirectional converter using switches S2 and S3, enabling both charging and 
discharging operations. Similarly, the SC branch includes capacitor C3, inductor L3, and bidirectional switches 
S4 ​and S5 ​to handle rapid charge-discharge cycles, suitable for managing transient power demands30. All sources 
are connected to a common DC bus, which is stabilized by a DC-link capacitor CDC ​and connected to the 
load through switch S6, diode D2, inductor L4, and output capacitor C4. This coordinated architecture allows 

Refs. Technique/models Contribution Research gap Proposed work (GrCRA-PCRTAM-Net)

16 FDA-CNN for DC/AC MGs with EVs Predictive control of EV charging and 
power sharing between DC/AC MGs

Limited to EV integration; lacks multi-
objective optimization or hybrid storage 
management

Adds battery + SC management and 
multi-objective scheduling under RES 
variability

17 HOA for DG siting + network 
reconfiguration

Improves voltage profile and reduces 
losses

No forecasting integration; single 
optimization stage

Combines GrCRA optimization with 
forecast-guided scheduling

18 Hierarchical control (Sliding 
mode + Lyapunov) with NN + FLC

Improves PV + Battery + SC coordination 
in DC MG

Control-oriented; no predictive 
intelligence; limited to small MG

Integrates PCRTAM-Net prediction 
with optimization for larger distribution 
networks

19 PSO + PI control for HES (PV, FC, 
Battery, SC)

Reduces hydrogen use, balances HES 
operation

Focused on PI tuning; not scalable; 
limited forecasting

Embeds deep learning-based forecasting 
with scalable bio-inspired optimization

20 NSGA for multi-objective energy 
management Balances cost, emissions, and reliability Does not integrate hybrid storage or 

prediction
Provides SoC-aware hybrid storage 
control + predictive forecasting

21 SWO + MHFAN for PV-based EV 
charging

Predicts solar + demand, optimizes EV 
charging

Limited to EV charging applications; no 
general MG framework

Extends to general power distribution 
networks with integrated renewables

22 DFIG + PWM + Bird Swarm optimized 
PI for hybrid RES Improves PQ and voltage in RES Focused on converter-level control; not 

system-wide optimization
Addresses system-level cost, emissions, 
and efficiency trade-offs

23 GJO + PCGAN for multi-MGs with 
EVs

Lowers emissions, costs, and losses in 
EV charging

Restricted to EV control; lacks hybrid 
optimization–prediction

Proposes GrCRA + PCRTAM-Net 
synergy for broader grid applications

24 Two-stage reactive power optimization Enhances voltage stability in distribution 
networks

Focused only on reactive power; not 
multi-objective

Extends to multi-objective cost–
emission–efficiency scheduling

25
MOEA/D-SF (Multiobjective 
Evolutionary Algorithm with 
Superiority of Feasible Solutions)

 MOEA/D-SF (Multiobjective 
Evolutionary Algorithm with Superiority 
of Feasible Solutions)

 MOEA/D-SF (Multiobjective 
Evolutionary Algorithm with Superiority 
of Feasible Solutions)

Integrate GrCRA (deep learning–based 
feature extraction and prediction) to 
enhance both convergence and diversity 
in Pareto solutions.

26 BiCo algorithm for DG 
placement + reconfiguration

Reduces cost, losses, and voltage 
deviations No hybrid storage; no forecasting Integrates Battery + SC with prediction

27

 Multi-objective multiverse 
optimization (MVO) with parallel 
processing in bi-level framework 
(voltage → cost)

 Multi-objective multiverse optimization 
(MVO) with parallel processing in bi-
level framework (voltage → cost)

 Multi-objective multiverse optimization 
(MVO) with parallel processing in bi-
level framework (voltage → cost)

 Multi-objective multiverse optimization 
(MVO) with parallel processing in bi-
level framework (voltage → cost)

28 Advanced optimization for renewable 
grids

Integrates AI + evolutionary computation 
for uncertainty handling

Emphasizes optimization but lacks a 
hybrid predictive–control framework

Introduces a joint optimization–
prediction approach for RES grids

Table 1.  Comparison of selected existing studies.
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flexible and intelligent control of power flows from various energy sources, ensuring stable voltage at the load 
and optimal utilization of renewable and storage resources under dynamic operating conditions.

To improve the performance of PV–battery hybrid systems, battery cycling needs to be reduced, and hybrid 
systems should be operated reliably, which is dependent on battery charge status modelling (State of Charge – 
SoC) and SoC operating conditions. The latest research focuses on three main topics: (i) choosing the right battery 
model (equivalent circuit or electrochemical) that offers the best trade-off between accuracy and computational 
efficiency, (ii) accurate online SoC estimation, and (iii) age-reduction through active charge-balancing and 
SoC-constrained control to prevent over-charging and deep-discharging. In practical BMS implementations, 
equivalent circuit models (first-order Thevenin or higher-order Thevenin variations) tend to be used due to 
their simplicity and ability to capture transient behaviour. These models are usually integrated with observers 
or data-driven estimators for reliable online SoC estimation. For instance, the authors suggest using first-order 
Thevenin models coupled with data-driven SoC estimators, as it lowers implementation complexity and yields 
satisfactory estimation accuracy.

In the context of SoC estimation, model-based observers like the EKF (Extended Kalman Filter), UKF 
(Unscented Kalman Filter), sigma-point KF, and Luenberger observers, as well as machine-learning methods 
such as BPNN (Backpropagation Neural Networks) and ANN (Artificial Neural Networks), have proven to 
be highly accurate, given the right training and parameter tuning. BPNN methods have been noted to achieve 
sub-1–3% RMSE in numerous PV-battery associative scenarios, whereas Kalman filter variants are known for 
their strong noise robustness and direct applicability to equivalent-circuit parameters. Recent studies show that 
combining the equivalent circuit model with a precise SoC estimator not only enhances SoC tracking but also 
allows the BMS to schedule charging and discharging actions in a manner that prolongs battery life31.

For series-connected cells, the deployment of active cell balancing along with SoC-aware control strategies 
is strongly advised: leveraging SoC estimation of individual cells, along with the control of bidirectional DC–
DC converters or switched-capacitor/balancer circuits, permits the transfer of energy from higher-SoC cells to 
lower-SoC cells, which helps to decrease cell imbalance and eliminates the need for the weakest cell to drive the 
pack limits32.

Fig. 1.  Structure of RES integrated power distribution system.
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Simulations and experiments show that active balancing, accurate per-cell SoC estimation, and simple 
operational rules (like keeping SoC within a window) mitigate the rate of ageing, improve the usable capacity, 
and decrease the RMSE of SoC estimates, whereas OCV/voltage-only schemes deteriorate it further. Considering 
these observations, this paper adopts the computationally light transient model, the first-order Thevenin model, 
uses a robust estimator, be it BPNN or an appropriate observer, for per-cell SoC tracking, assumes avoidance of 
dual end SoC over-charging and deep discharging with active balancing control for cells in series strings. These 
are the conditions and modelling assumptions required to implement reliable BMS actions, extend the battery 
life, and improve the overall PV–battery system efficiency33.

Modelling of battery
The quantity of batteries and their condition at any one time determine how much energy is produced and 
consumed34. Power generation surpasses load demand while the battery is charged. The provided Eq. (1) 
expresses the battery bank’s power availability at a given time.

	 eBattery (T ) = eBattery (T − 1) + eEE (T ) × η cc × η Charging � (1)

Where, eEE (T ) denotes extra energy available from all the systems, η cc denotes the efficiency of the charging 
controller, η Charging  denotes battery charging efficiency.

The SoC of the battery is expressed by the given Eqs. (2),

	 SoCMin ≤ SoC (T ) ≤ SoCMax� (2)

Where, SoCMin denotes the value of the minimum SoC, SoCMax denotes the value of the maximum SoC is 
assumed as 1.

The following Eq. (3) is used to determine the minimum value of SoC.

	 SoCMin = 1 − DoD� (3)

Where, DoD denotes depth of discharge.

Modelling of SC
SCs are among the newest advancements in power storage technology, especially in integrated systems35. In this 
setup, the capacitance (csupercapacitor) was connected to the analogous series resistance (rsupercapacitor). The 
voltage of SC (vsupercapacitor) as a function of the SC current (isupercapacitor) was computed by applying the 
following Eqn:

	 vsupercapacitor = v1 − rsupercapacitor × isupercapacitor

	
= qsupercapacitor

Ssupercapacitor
− rsupercapacitor × isupercapacitor � (4)

Where, qsupercapacitor  indicates the electricity exists in the cell.
The power of SC psupercapacitor  is computed by applying Eq. (5).

	
psupercapacitor = qsupercapacitor

csupercapacitor

	 × isupercapacitor − rsupercapacitor × i2
supercapacitor � (5)

Modelling of PV
Solar PV energy has emerged as one of the most common RESs in current times. The PV cell functions as an 
electric current generator, which functions like a switched current source using a diode’s operation36. A p-n 
junction forms the diode. Two parallel and series intrinsic resistors rip and ris, have been incorporated within 
the model to study the physical processes at the cell level.

Consequently, Eqs.  (6)-(8) can be used to model the solar cell in relation to the photocurrent iP H , the 
current iD  through the diodes, and the leakage current iSH . Additionally, a cell’s electrical properties are 
slightly different from a diode. Consequently, the Shockley equation is used to represent iD , as illustrated below:

	
iD = iSC

[
EXP

(
vP hotovoltaic + rsiP hotovoltaic

nvT h

)
− 1

]
� (6)

Where n denotes the ideality factor of the diode, which is between 1 and 2, rs denotes cell intrinsic series 
resistance, iSC  denotes the diode’s saturation current.

The following is the leakage current iSH  that the parallel resistance rp causes:

	
iSH = vP hotovoltaic + rsiP hotovoltaic

rp
� (7)

Where, rp denotes cell intrinsic parallel resistance.
The following is a statement of the net current iP hotovoltaic that the cell supplies:
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	 iP hotovoltaic = iP H − iD − iSH � (8)

Where, iP H  denotes photocurrent in shunt.
Therefore, the above controlling equation can be expressed as follows by substituting iD  for iP H  and using 

their expressions:

	
iP hotovoltaic = iP H − iSC

[
EXP

(
vP hotovoltaic + rsiP hotovoltaic

nvT h

)
− 1

]
− vip + rsiP hotovoltaic

rp
� (9)

With

	
vT h = KT

Q
� (10)

Where, Qindicates electron charge, K  indicates the Boltzmann constant, T  indicates the junction’s operating 
temperature.

A collection of basic PV cells coupled in parallel or series makes up a PV generator. Consequently, the 
following Eq. (11) defines the current provided by the PV panels as the number of cells function in parallel Np 
and series Ns:

	
iP hotovoltaic = NpiP hotovoltaic − NpiSC

[
EXP

(
vP hotovoltaic + rsiP hotovoltaic

nKT Ns

)
− 1

]

	
−NpQ

(
vP hotovoltaic + rsiP hotovoltaic

Nsrp

)
� (11)

Power converter modelling
A converter should be able to carry the maximum predictable power of loads ( P owerMax

Load)37. Consequently, the 
inverter rated power ( P owerinv) is estimated in terms of the inverter efficiency ( η inv) as:

	
P owerinv = P owerMax

Load

η inv

� (12)

Cost minimization of RESs integrated power distribution system based on GrCRA-PCRTAM-
net technique
Efficient power management and operation of RES-integrated power distribution systems are discussed in 
this research through the GrCRA-PCRTAM-Net model. GrCRA optimizes power allocation and scheduling 
to ensure balanced energy flow and effective utilization of renewable sources, while PCRTAM-Net forecasts 
future power demand and renewable generation using advanced feature extraction and attention mechanisms, 
enabling precise and adaptive energy distribution for reliable and sustainable system operation. Figure  2 
depicts the workflow of the proposed GrCRA-PCRTAM-Net methodology in the scope of power management 
in renewable-integrated distribution systems. The methodology starts with data inputs such as load, PV, 
battery, and SC. The subsequent forecasting of future demand and renewable generation is carried out through 
PCRTAM-Net. In turn, GrCRA uses the predictions to streamline optimization via exploration and exploitation 
methods that focus on minimizing cost and emissions and maximizing efficiency. To maintain dependable 
storage and operation, appropriate battery SoC and SC constraints are implemented. The scheduling strategy 
is then determined and implemented for the BESS, PV, SC, and grid, and the performance metrics are assessed.

Optimization using GrCRA
GrCRA is a nature-inspired metaheuristic optimization technique modelled after the intelligent foraging behavior 
of Greater Cane Rats (GrCRs)38. These rodents exhibit nocturnal and social behaviors, where a dominant male 
guides the group using knowledge of trails connected to essential resources. GrCRA replicates this behavior 
through two key phases: exploration, representing dispersed foraging from multiple shelters, and exploitation, 
symbolizing focused foraging in resource-rich areas during mating periods. These behaviors are translated into 
mathematical operators that enable efficient search dynamics. In the context of advanced power distribution 
systems, GrCRA optimizes the allocation and scheduling of power resources by balancing global exploration 
and local exploitation, leading to improved system performance, load balancing, and effective utilization of 
available renewable energy.

Step 1: Initialization.
Set up the input parameters such as PV, battery, and SC power, current, voltage, SC, and battery SoC, etc.
Step 2: Random Generation.
After initialization, random vectors are used to generate the input parameters at random.
Step 3: Fitness Calculation.
Fitness is influenced by the objective function. It is explained by,

	 F = min (cost)� (13)

Where, F denotes fitness function.
Step 4: Exploration Phase.

Scientific Reports |        (2025) 15:39976 7| https://doi.org/10.1038/s41598-025-23793-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The GrCR construct their nests or small burrows in many locations throughout their area, which includes 
cultivated crop farms, riverbanks, and marshes. They either follow tracks to past food sources or search for a 
source of food before exploring the various shelters to forage.

The position of the dominant male establishes a new location for the remaining rat population in the search 
space, as demonstrated by Eq. (14). The fittest rat is updated in this stage of the GrCR motion simulation, and 
the positions of the other rats are modified in accordance with the newly determined fittest rat if the objective 
function value of another rat exceeds that of the fittest rat. Otherwise, it departs from the idea of the fittest rat. 
Equation (15) models the GrCR movement strategy. According to the exploration phase’s last step, the GrCR 
should only move to this newly determined location if the value of objective function at this new location 
improves; if not, it should stay in its original location.

	 zNEW
j,k = zj,k + R × (zi,k − c × zj,k)� (14)

Fig. 2.  Workflow of the proposed GrCRA-PCRTAM-net model.
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Zj =

{
zj,k + R × (zj,k − α × zi,k) , fNEW

j < fj

zj,k + R × (zj,k − β × zi,k) , Otherwise
� (15)

Where, Zj  denotes the new state of jth GrCR, zNEW
j,k  denotes its value in the kth dimension, zj,k denotes the 

position of the existing GrCR, zi,k  denotes the dominant male in the kth dimensions, R denotes a number 
randomly defined in the borders of the problem space, c denotes the impact of a plentiful food source, α  and 
β  indicate parameters.

Step 5: Exploitation phase.
The breeding season typically takes place during the wet season, though it varies depending on the habitat. 

During breeding season, males have been observed to dissociate themselves from the group. After the group is 
split off, it is considered that the foraging behaviours will target in places with a lot of food. To begin the phase 
simulation, a female m is chosen at random so that m ̸= i (the dominant male). The intensification happens 
around the chosen female because breeding takes place near plentiful food supplies.

The modeling of the process is shown in Eq. (16). The newly calculated position for the GrCR replaces the 
previous position if it improves the value of the target function, as depicted in Eq. (15).

	 zNEW
j,k = zj,k + R × (zi,k − µ × zm,k)� (16)

Where, location of a chosen female in the kth dimension randomly was indicated by zm,k, and the count of 
young generated by all the females GrCR/yr was simulated by µ , which randomly selects values between 1 and 
4.

Step 6: Termination.
If the best solution is identified after reviewing the stopping criteria, the process ends; if not, proceed to step 

3. The flowchart of GrCRA is illustrated in Fig. 3.
Figure 3 represents the sequence of activities for setting the power optimization for a renewable integrated 

distribution system. The process starts with initialization, which in this case is procedures of generating a 
population of candidate solutions representing scheduling and allocation strategies that are randomly generated 
within the feasible limits of system variables such as power outputs, storage states, and load demands. The 
next step is fitness evaluation, which measures the quality of each candidate solution with respect to the 
multi-objective criteria — minimizing operational cost and emissions while maximizing system efficiency and 
renewable utilization. The exploration phase updates the candidate positions by simulating the random foraging 
and movement of cane rats. This allows the algorithm to broadly explore the solution space and helps in avoiding 
premature convergence. The subsequent exploitation phase deals with refining potential solutions by simulating 
localized movements and selective feeding of cane rats. This guarantees convergence to near-optimal resource 
allocation. Position updating rules (Eqs. 14–16) are iteratively applied during both exploration and exploitation 
to ensure a proper balance between global exploration and local exploitation. The algorithm then recalculates 
the fitness of the updated candidates and compares them with previously recorded best solutions. This iterative 
process repeats until a stopping criterion is reached, which is usually the maximum number of iterations or 
the convergence to a solution that is optimal. This solution ideally represents the optimal scheduling of power 
and resource allocation for the system. Based on this step-by-step procedure, the GrCRA effectively balances 
exploration and exploitation, thereby overcoming the limitations of traditional optimizers such as PSO or HOA 
in handling local minima.

Prediction using PCRTAM-net
The PCRTAM-Net is a deep learning architecture developed to predict future demand of power and generation 
patterns of renewable energy, supporting management of optimal power in advanced distribution system39. It 
integrates pre-activated convolutional residual blocks, where normalization and activation precede convolution 
operations, enhancing gradient flow, training stability, and convergence. To improve the accuracy of prediction, 
PCRTAM-Net employs a triple attention mechanism consisting of channel, feature-wise, and temporal or 
positional attention modules. These modules collaboratively highlight the most relevant features of the input 
data across different abstraction levels. By combining residual learning with a hierarchical attention structure, 
PCRTAM-Net effectively captures complex patterns and temporal dependencies, enabling precise and adaptive 
forecasting necessary for reliable and efficient power management.

In a standard convolutional neural network, a block is defined by the convolution operation in Eq. (17):

	 f (x) = ReLU (BaNor (Con (x)))� (17)

Where x denotes the input feature map to the convolutional block, Con (x) denotes convolution operation 
applied to x, BaNor denotes batch normalization, ReLU denotes rectified linear unit activation function.

However, in PCRTAM-Net, the pre-activated convolution residual block (Res-PDC) modifies this formulation 
by applying pre-activation (Batch Normalization followed by ReLU) before the convolution, and dropout is 
included for regularization. The output of the Res-PDC block with input x and transformation R is:

	 zi = R (x) + x� (18)

Where, R (x) = ReLU (BaNor (n) (c2)) denotes a sequence of operations.
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Fig. 3.  Flowchart of GrCRA.
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To enhance spatial awareness, the Triple Attention Mechanism (TAM) introduces channel and spatial 
weighting. Given a feature tensor f ∈ RC× H× W , the Channel-Spatial Attention Module (CSAM) first 
computes the soft attention map:

	
S (x, z) =

Exp
(
et

z × mx

)
∑ n

x′ =1Exp (et
z × mx′ )

� (19)

	
C (x, z) =

Exp
(
fx × f t

z

)
∑ n

x′ =1Exp (fx′ × f t
z)

� (20)

Where, ez  denotes vertically extracted feature vector at location z, mx denotes horizontally extracted feature 
vector at location x, Exp () denotes exponential function for softmax calculation, n denotes total number of 
feature positions, fx and fz  denote feature vectors from channels x and z.

The Dual Convolution Block Attention Module (DCBAM) provides additional refinement through:

	 mc (f) = σ (MLP (avgpool (f)) + MLP (maxpool (f)))� (21)

	 ms (f) = σ
(
F 7× 7 ([avgpool (f) ; maxpool (f)])

)
� (22)

Where, σ  denotes sigmoid activation, MLP  denotes multilayer perceptron applied to the pooled features, 
avgpool (f) and maxpool (f) denotes global average and maximum values over the spatial dimensions of f , 
F 7× 7 denotes convolution with a 7 × 7 kernel.

Finally, the concatenated output from the Residual Atrous Convolution Spatial Pyramid (Res-ACSP) module, 
which includes dilated convolutions of various rates Dj ​, is computed as:

	 z = ReLU (BaNor (Conv (cat (z1, z2, z3,z4))))� (23)

Where, z1, z2, z3,z4 denotes outputs from four parallel branches, cat () denotes feature concatenation across 
channels, Conv () denotes 1 × 1 convolution to merge the concatenated features.

Discussion on results
The performance of the suggested method is demonstrated in this section based on simulation results. In the 
operation of RES-integrated power distribution systems, the GrCRA-PCRTAM-Net technique is suggested. 
This method optimally allocates power resources and schedules operations while accurately forecasting future 
power demand and renewable generation, ultimately enhancing energy distribution and system reliability. 
Implemented on the MATLAB platform, the method is described in detail and shows the capability to reduce 
energy consumption and emissions, maintain balanced power flow, increase renewable energy utilization, and 
enhance the overall efficiency and stability of power distribution system operations.

Table  2 presents the simulation parameters for the developed research model. The PV, battery, and SC 
capacities are indicative of typical microgrid installations, and the 30–80% SoC limits are aligned with the 
recommended ranges from battery ageing research. The one-minute time step and the residential–commercial 
load replicate demand. For the GrCRA algorithm, the population was set to 30, the generation count of 100, 
and for PCRTAM-Net hyper parameters, a learning rate of 0.001 managed to reduce the complexity of the 
optimization and ease convergence. The epoch count of 50 and batch size of 64 were decided from PCRTAM-

Parameter Value Description

PV System Size 5 kW Typical capacity for distribution-level microgrids; balances feasibility with 
real-world residential/community applications

Battery Capacity 3.5 kWh Matches common lithium-ion storage modules; practical size for 
microgrid applications

Battery SoC Limits 30–80% Recommended by ageing studies to avoid deep discharge/overcharge and 
extend cycle life

Supercapacitor Capacity 1 kWh Smaller size reflects SC’s role as a fast-response buffer for transients rather 
than bulk storage.

Load Profile Residential–commercial daily profile (scaled 
IEEE test case) Provides realistic demand variations for predictive testing

Simulation Time Step 1 min Balances accuracy in capturing fluctuations with computational efficiency

Optimization Population Size 30 Ensures sufficient diversity; larger values gave no significant performance 
gain

Optimization Iterations 100 Stable convergence achieved; higher iterations only increased computation

PCRTAM-Net Learning Rate 0.001 Cross-validation showed better accuracy at a lower rate without 
divergence

PCRTAM-Net Epochs 50 Prevents overfitting while ensuring adequate training

PCRTAM-Net Batch Size 64 Provides a balance between gradient stability and computational cost

Table 2.  Simulation Parameters.
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Net’s hyper parameters and tested via cross-validation, which further increased the forecasting’s accuracy and 
robustness.

Figure  4 illustrates the evaluation of PV current. Initially, the current is 8.2  A approximately at 0  s and 
remains constant until about 1 s, where it drops sharply to around 6 A. A subsequent decrease is observed at 
2 s, reducing the current to approximately 4 A. At 3 s, the current spikes slightly to about 6.2 A before declining 
again to 2.2 A at 4 s. It continues to drop to approximately 1.5 A at 5 s and finally reaches around 1.5 A at 5.5 s. 
This stepwise behavior suggests controlled changes in PV current output, likely due to varying irradiance levels 
or load conditions in the system being evaluated.

Figure 5 shows the evaluation of PV voltage. The voltage remains nearly constant at around 240 V throughout 
the duration, with brief and sharp drops occurring at specific intervals, notably near 1, 2, 3, 4, and 5 s. During 
these instances, the voltage dips to 200  V before quickly returning to its normal level. These momentary 
fluctuations indicate transient disturbances, possibly due to changes in load or environmental conditions, while 
the overall stability suggests effective voltage regulation by the PV system.

Figure 6 illustrates the evaluation of PV power. Initially, the power output is about 1800 W at 0 s and remains 
steady until around 1 s, where it drops to approximately 1600 W. At 2 s, the power decreases further to around 
1000 W. A rise is observed at 3 s, reaching nearly 1600 W again, followed by a drop to 800 W at 4 s. Finally, at 
5 s, the power decreases to around 500 W and remains stable. These step changes reflect the dynamic behavior of 
the PV system, possibly influenced by changes in current and irradiance conditions, while maintaining efficient 
power regulation.

Figure  7 shows the evaluation of battery power. Initially, there are fluctuations between − 1000  W and 
+ 1000 W during the first 0.1 s, indicating unstable charging and discharging activity. After this brief instability, 
the power stabilizes near 0 W until about 1 s. From there, the battery begins discharging, reaching approximately 
− 200 W. At 2 s, it returns to 0 W. Starting from 4 s, the battery begins charging, with power increasing to about 
500  W, then to roughly 800  W at 5  s, and finally stabilizing at around 700  W by 5.5  s. This pattern reflects 
a transition from discharge to charge mode, supporting power balance in the system during varying load or 
generation conditions.

Figure 8 shows the evaluation of battery current. Initially, it discharges at − 2 A, then switches to charging 
at + 3 A around 1 s. The current rises to about + 4.5 A at 2 s, then drops to + 1 A by 3 s. Discharging resumes at 
− 1.8 A around 4 s. At 5 s, it charges again, peaking at + 6.5 A and settling near + 4.3 A. This reflects dynamic 
charge and discharge cycles.

Figure  9 illustrates the evaluation of battery voltage. The voltage rises rapidly from 0  V at the start to 
approximately 240 V within the first 0.2 s, then stabilizes and remains constant around 240 V for the rest of the 
time. This indicates a quick voltage build-up followed by steady operation, reflecting stable battery performance 
during the evaluated period.

Figure 10 presents the evaluation of battery SoC. Initially, the SoC is exactly 50%. It slightly increases to about 
50.0001% by 1 s, and then gradually declines. At 3 s, it drops to around 49.9985%, followed by a small rise near 
49.9987% at 4 s. A sharper decline is observed after 4 s, reaching approximately 49.9952% at 5 s, and stabilizing 
just below that. The minimal variation reflects fine-grained energy exchanges during short-term charging and 
discharging cycles.

Fig. 4.  Evaluation of PV current.
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Figure 11 shows the evaluation of SC power. The SC power starts near 100 W but quickly drops to about 
− 400 W within 0.2 s and remains there until 1.5 s. After that, it rises in stages, reaching approximately − 100 W, 
and then steadily increases to around 50 W by 3 s. At 4 s, the power peaks close to 200 W before falling back to 
about 75 W by 5 s. This pattern shows the SC’s quick response to power demands through rapid charging and 
discharging.

Figure 12 illustrates the evaluation of SC current. The SC current starts around 2 A but quickly drops to about 
− 1 A and stays steady at this level until 2 s. After 2 s, the current rises to near 0 A and remains stable until 4 s, 

Fig. 6.  Evaluation of PV power.

 

Fig. 5.  Evaluation of PV voltage.
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when it jumps to approximately 1 A. Between 4 and 5 s, the current stays around 1 A before slightly decreasing 
to about 0.5 A by 5.5 s. This indicates the SC’s shifting role between charging and discharging during the period.

Figures 13 and 14 illustrate the evaluations of SC’s voltage and SoC. The SoC of the SC starts at approximately 
96.4985% and gradually increases over time, reaching around 96.507% by 4 s. After peaking slightly, the SoC 
experiences a minor decline, settling near 96.505% at 5 s. This indicates a slight overall increase in the stored 
energy of the SC during the observed period.

Figure 15 illustrates the evaluation of load power. The power remains constant at 500 W throughout the entire 
period, indicating a stable load condition. This consistent performance suggests that the power management 
strategy effectively maintains a steady supply without fluctuations or interruptions, which is critical for ensuring 
reliability and stability in advanced power distribution systems integrated with RES.

Fig. 8.  Evaluation of battery current.

 

Fig. 7.  Evaluation of battery power.
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Figure 16 presents the evaluation of load current. The current remains consistently around 2.5 A throughout 
the simulation, with minimal fluctuation. This steady current profile reflects the effective regulation of load 
conditions under the applied control strategy, ensuring reliable power delivery and system stability in advanced 
power distribution systems with renewable energy integration.

Figure 17 shows the evaluation of load voltage. The voltage remains consistently around 200 V throughout 
the entire period, indicating stable voltage regulation. This consistent voltage level confirms the robustness of the 

Fig. 10.  Evaluation of battery SoC.

 

Fig. 9.  Evaluation of battery voltage.
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power management method in maintaining a steady voltage supply to the load, which is essential for ensuring 
the safe and efficient operation of power distribution systems with integrated RES.

Figure 18 shows the evaluation of the DC link voltage. The voltage rises quickly and stabilizes near 400 V 
shortly after startup, indicating a fast transient response. Brief voltage drops are observed at around 1, 2, 3, 4, and 
5 s, where the voltage dips to approximately 370 to 380 V due to possible switching actions or load variations. 
Despite these fluctuations, the system consistently returns to its steady-state level, demonstrating strong voltage 
regulation and effective control under varying conditions.

Table  3 presents a performance comparison between the suggested GrCRA-PCRTAM-Net method and 
several existing techniques, including FDA-CNN, PSO, HOA, SWO-MHFAN, and GJO-PCGAN, based on 
operational cost, efficiency, and emission. The GrCRA-PCRTAM-Net achieves the lowest operational cost of 
1505 cents, outperforming FDA-CNN at 1544 cents, PSO at 1602 cents, HOA at 1578 cents, SWO-MHFAN at 
1532 cents, and GJO-PCGAN at 1511 cents. In terms of efficiency, GrCRA-PCRTAM-Net attains the highest 

Fig. 12.  Evaluation of SC current.

 

Fig. 11.  Evaluation of SC power.
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value of 99.1%, followed by GJO-PCGAN at 98.6%, FDA-CNN at 98.5%, SWO-MHFAN at 97.3%, HOA at 
96.9%, and PSO at 95.9%. When it comes to emissions, the method uses the lowest value of 60.3 ppm, which is 
much better than FDA-CNN’s 98.03 ppm, GJO-PCGAN’s 109.32 ppm, SWO-MHFAN’s 241.6 ppm, PSO’s 245.96 
ppm, and HOA’s 367.5 ppm. It is clear from these results that the GrCRA-PCRTAM-Net achieves better results, 
at a lower cost and using less electricity, when RES integration is possible.

Discussion
The suggested GrCRA-PCRTAM-Net technique demonstrates significant improvements in the operation of 
RES-integrated power distribution systems by enabling optimized power allocation, precise demand forecasting, 

Fig. 14.  Evaluation of SC SoC.

 

Fig. 13.  Evaluation of SC voltage
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and stable energy distribution. During the evaluation, the PV current starts at 8.2  A, dips to 6  A, and then 
further to 4 A, settling at 1.5 A. As a result of the load and light changes experienced. Similarly, most of the 
time, the PV voltage is held at 240 V, with brief drops to 200 V every 20 min, showing the system stabilizes and 
regulates its voltage efficiently. This PV power starts with 1800 W and behaves in steps, ending up only at 500 W, 
revealing the system responds well to fluctuations in the environment. Just before getting out of the initial 0.1 s, 
the battery’s power swings from − 1000 W to + 1000 W, then steadies around 0 W, and later helps in achieving 
stable charging by moving from − 200 W to the main charging state of 700 W. Battery current varies between 
− 2 A and + 6.5 A, showing controlled charge and discharge cycles. Battery voltage rises quickly to 240 V and 
remains stable, while SoC varies slightly from 50% to around 49.9952%, reflecting fine-tuned EM. Similarly, 
SC power initially drops from 100 W to − 400 W, then increases gradually to 200 W before declining to 75 W, 
with SC current ranging from 2 A to − 1 A and then increasing back to 0.5 A, showcasing fast responsiveness to 
load variations. The SC SoC increases slightly from 96.4985% to 96.507% and settles near 96.505%, confirming 

Fig. 16.  Evaluation of load current.

 

Fig. 15.  Evaluation of load power.
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minimal yet effective energy buffering. Load power remains constant at 500 W, current at 2.5 A, and voltage at 
200 V, indicating consistent and stable power delivery under the suggested control strategy. The DC link voltage 
quickly stabilizes at 400 V after startup, with transient dips to 370–380 V occurring periodically and recovering 
immediately, demonstrating robust voltage control. Compared to other methods, the GrCRA-PCRTAM-Net 
achieves an operational cost of 1505 cents, which is lower than FDA-CNN at 1544, PSO at 1602, HOA at 1578, 
SWO-MHFAN at 1532, and GJO-PCGAN at 1511. It also delivers the highest efficiency at 99.1%, surpassing 
GJO-PCGAN at 98.6%, FDA-CNN at 98.5%, SWO-MHFAN at 97.3%, HOA at 96.9%, and PSO at 95.9%. In 
terms of emissions, it records the lowest output at 60.3 ppm, significantly outperforming FDA-CNN at 98.03, 

Fig. 18.  Evaluation of DC link voltage.

 

Fig. 17.  Evaluation of load voltage.
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GJO-PCGAN at 109.32, SWO-MHFAN at 241.6, PSO at 245.96, and HOA at 367.5. These results confirm the 
method’s superior capability to minimize energy consumption and emissions while maximizing operational 
performance and stability in power distribution systems with integrated RES.

Conclusion
This manuscript presents an efficient method for intelligent control and management of optimal power in 
advanced power distribution system integrated with RES using the GrCRA-PCRTAM-Net technique. An 18.7% 
overall energy reduction relative to the compared methods and system stability improvements under fluctuating 
renewable generation and load conditions have been achieved, along with an operational cost of 1505 cents, an 
emission level of 60.3 ppm, and an efficiency of 99.1%, all attained by the GrCRA-PCRTAM-Net. It is clear from 
the simulations that the results of the GrCRA-PCRTAM-Net model have been markedly improved compared 
to PSO, FDA-CNN, GJO-PCGAN, HOA, and SWO-MHFAN. In comparison, FDA-CNN achieves 98.5% 
efficiency with 98.03 ppm emissions and a cost of 1544 cents. Other existing methods, including PSO, HOA, 
GJO-PCGAN, and SWO-MHFAN, perform less effectively, with PSO showing the highest operational cost of 
1602 cents and HOA, GJO-PCGAN exhibiting emission levels of 367.5 ppm and 109.32 ppm, respectively. These 
results confirm that the GrCRA-PCRTAM-Net technique substantially enhances efficiency, reduces emissions, 
and lowers operational cost in power distribution systems integrating RES.

Limitations
While the newly developed GrCRA-PCRTAM-Net model stands out for its remarkable performance metrics of 
99.1% efficiency, emission rates of just 60.3 ppm, and operational costs of 1505 cents in simulations, there remain 
a few limitations, such as:

•	 Simulation Environment: Performance metrics were recorded in controlled MATLAB settings, which as-
sumed ideal conditions such as accurate predictions and perfect, noise-free communications. The model has 
yet to be tested under real-world perturbations such as sensor noise, communication latencies, cyber-attacks, 
and sudden grid failures.

•	 Computational Complexity: Despite the improvements that GrCRA brings to the exploitation–exploration 
trade-off, combining it with PCRTAM-Net increases the computation cost slightly. This is not a concern for 
small-to-medium scale networks, but poses a problem for very large distribution networks, as it would impact 
real-time computation.

•	 Hardware Validation: The model requires further testing on real microgrid testbeds as well as hardware-in-
the-loop (HIL) simulations to ascertain its feasibility.

•	 Battery Ageing and Degradation Models: As far as SoC constraints go, compliance is maintained; however, the 
model still lacks in accounting for detailed long-term battery health impacts resulting from electrochemical 
degradation and thermal effects.

Future works
Future work of this research can be focused on the following extensions:

•	 Extending the developed model to handle real-time practical issues through robust control and stochastic 
optimization.

•	 Creating lightweight versions of PCRTAM-Net for large-scale power distribution networks and IoT-enabled 
microgrids to ensure quick deployment.

•	 Validating practical applicability through HIL testing and small-scale microgrid pilot testing.
•	 Deploying sophisticated models for battery ageing, thermal, and safety to improve both short-term schedul-

ing and long-term lifecycle cost.
•	 Integration with demand-side management (DSM) and vehicle-to-grid (V2G) systems to further improve 

adaptability.
•	 Examining cybersecurity protocols to protect the proposed framework from malicious attacks on data and 

communication.

Data availability
The data that support the findings of this study are available within the article.

Methods Operational cost (cents) Efficiency (%) Emission (ppm)

GrCRA-PCRTAM-Net 1505 99.1 60.3

FDA-CNN 1544 98.5 98.03

PSO 1602 95.9 245.96

HOA 1578 96.9 367.5

SWO-MHFAN 1532 97.3 241.6

GJO-PCGAN 1511 98.6 109.32

Table 3.  Performance comparison of suggested and existing methods.
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