www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

CT-based radiomics and deep

learning models for predicting
thyroid cartilage invasion and
patient prognosis in laryngeal
carcinoma
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Accurate assessment of thyroid cartilage invasion is crucial for treatment decision-making and
prognosis evaluation in laryngeal squamous cell carcinoma (LSCC). This study aimed to compare the
performance of the radiomics and deep learning (DL) models for predicting thyroid cartilage invasion
in LSCC patients, and evaluate prognostic value of the optimal predictive model. A total of 418
pathologically confirmed LSCC patients from two centers were enrolled and divided into a training
cohort (n=247), an internal validation cohort (n=110), and an external validation cohort (n=61).
Models were developed based on venous-phase CT images and compared with two radiologists. A
nomogram incorporating the optimal model and clinical risk factors was also constructed. Additionally,
the prognostic value of the optimal model was assessed regarding disease-free survival (DFS). The 2D
DL model showed better performance in predicting thyroid cartilage invasion, and the corresponding
nomogram integrating 2D DL signature and clinical risk factors achieved the highest AUCs. However,
no differences in AUCs were found in the external validation cohort (p>0.05 for all). Additionally, the
2D DL signature and clinical N stage were independent predictors of DFS. The 2D DL-based nomogram
demonstrated satisfactory predictive performance for thyroid cartilage invasion and prognosis in
patients with LSCC.

Keywords Laryngeal squamous cell carcinoma, Thyroid cartilage invasion, Deep learning, Radiomics,
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Thyroid cartilage invasion serves as a crucial determinant in TNM staging of laryngeal squamous cell carcinoma
(LSCC), with medial cortex invasion classified as stage T3 and extralaryngeal tissue penetration as stage T4.
Previous studies have reported thyroid cartilage invasion in 12%-43% of laryngeal carcinoma patients, with
missed diagnoses possibly resulting in staging errors in 40%-50% of cases?. Clinically, thyroid cartilage
invasion significantly impacts the choice of treatment strategies. For cases with thyroid cartilage invasion,
radiotherapy alone is often insufficient, making concurrent chemoradiotherapy a common option for organ-
preserving treatment. However, when the tumor extensively involves the cartilage or invades extralaryngeal
tissues, total laryngectomy is necessary to ensure complete resection’®. Additionally, thyroid cartilage invasion
closely correlates with radiotherapy response and tumor recurrence*’. Hence, it is of great significance to
accurately evaluate thyroid cartilage invasion for making treatment decisions and assessing prognosis in patients
with LSCC.

CT is frequently utilized to predict thyroid cartilage invasion, with a sensitivity of approximately 80%°.
However, its accuracy and specificity are unsatisfactory, which may be attributed to the asymmetric ossification
of normal thyroid cartilage, and the similar CT values between tumor tissue and non-ossified cartilage may
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also affect the identification”®. Although MRI has a higher sensitivity for diagnosing thyroid cartilage invasion,
cartilage edema or inflammatory changes may resemble tumor infiltration’. Dual-energy CT technology,
particularly iodine overlay (I0) image, can help differentiate between iodine-enhanced tumors and non-ossified
cartilage!®!!. However, IO image has limitations in identifying lesions in previously ossified cartilage, potentially
overestimating iodine distribution'?. Currently, there is a lack of robust and precise methods for discerning
thyroid cartilage invasion in LSCC.

Recently, artificial intelligence, particularly machine learning and deep learning (DL), has seen extensive use
in medical imaging. Radiomics, a key aspect of machine learning, extracts high-dimensional features and offers
valid quantitative data for tumor analysis. DL, on the other hand, automatically captures and learns discriminative
features in an end-to-end manner, improving prediction accuracy. Radiomics and DL have been reported to
be valuable in predicting tumor stage'?, early recurrence'®, treatment response'®, and prognosis'® in laryngeal
carcinoma. To our knowledge, few studies have investigated radiomics and DL techniques in predicting thyroid
cartilage invasion. Given the complexity of laryngeal tumor, we also developed a 3D DL model, which usually
requires an extensive training dataset to achieve precision!”!8.

Collectively, this study aimed to construct a radiomics model, a 2D DL model, and a 3D DL model using
venous-phase CT images to evaluate thyroid cartilage invasion, and compare these models with two radiologists.
A nomogram incorporating the optimal predictive model and clinical risk factors was also developed.
Additionally, we further explored the prognostic value of the optimal predictive model for thyroid cartilage
invasion.

Materials and methods

Patients

This retrospective multicenter study analyzed data from 418 patients with pathologically confirmed LSCC. The
study utilized data from two institutions: The First Affiliated Hospital of Chongqing Medical University (center 1),
which contributed 357 patients between March 1, 2011, and January 1, 2021, and Tianjin First Central Hospital,
School of Medicine, Nankai University (center 2), which provided data from 61 patients between March 1, 2017,
and January 1, 2021. Patients were categorized into a training cohort and an internal validation cohort at a 7:3
ratio for center 1, while data from center 2 was used for external validation (Fig. 1). All patients were enrolled via
the following inclusion criteria: (1) pathologically confirmed diagnosis of LSCC, (2) comprehensive clinical and
imaging data, and (3) preoperative contrast-enhanced CT (CECT) performed within 2 weeks before surgery. The
exclusion criteria included: (1) tumor recurrence or history of other malignant tumors, (2) poor quality of CT
images, and (3) preoperative anti-tumor therapy.

Baseline clinical data included age, sex, smoking status, alcohol consumption, tumor location, CT-reported
anterior commissure (AC) invasion, histological grade, clinical T stage, clinical N stage, and overall clinical
stage. All patients in this study underwent surgical resection, and the postoperative pathological findings
were considered the gold standard for determining the presence of thyroid cartilage invasion. Representative
diagnostic examples are shown in Fig. 2.

Patient confirmed as laryngeal Patient confirmed as laryngeal
carcinoma from March 1, 2011 to carcinoma from March 1, 2017 to
January 1, 2021 at center 1 (n=410) January 1, 2021 at center 2 (n = 104)

Inclusion criteria:

(1) Pathologically confirmed diagnosis of LSCC

(2) Comprehensive clinical and imaging data

(3) Preoperative contrast-enhanced CT (CECT) performed within 2 weeks before surgery

Exclusion criteria: Exclusion criteria:

(1) tumor recurrence or history of (1) poor quality of CT images (n = 8)
other malignant tumors (n = 22) (2) preoperative anti-tumor therapy (n
(2) poor quality of CT images (n = 15) =12)

(3) preoperative anti-tumor therapy (3) insufficient follow-up information
(n=16) (n=23)

357 patients enrolled in this study and randomly
divided at a ratio of 7:3

\4 A\ 4 \4
Training cohort (n = 247) Internal validation cohort (n = 110) External validation cohort (n=61)
without invasion = 158; with invasion = 89| | without invasion = 67; with invasion = 43 without invasion = 38; with invasion =23

Fig. 1. Flowchart of patient recruitment. LSCC, laryngeal squamous cell carcinoma; center 1, The First
Aftiliated Hospital of Chongqing Medical University; center 2, Tianjin First Central Hospital, School of
Medicine, Nankai University.
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Fig. 2. Thyroid cartilage invasion was evaluated on full sections of LSCC stained with H&E. Representative
samples classified as with thyroid cartilage invasion (A) and without thyroid cartilage invasion (B). The red
dashed line indicates the margin of the thyroid cartilage.

Endpoints and follow-up

In this study, a comprehensive postoperative follow-up plan was implemented to ensure accurate tracking of
patient conditions. The schedule of follow-up was designed every 3 months in the first year, every 6 months
from the second to the fifth year, and annually thereafter. Follow-up continued for at least 3 years or until death.
For patients lost to follow-up, survival time was calculated from the date of surgery to the last recorded follow-
up. The primary objective was to assess disease-free survival (DFS), which measures the time from surgery to
disease progression, the last follow-up, or death from any cause.

CT imaging acquisition and tumor segmentation

Each patient underwent CECT scanning using the multislice spiral CT scanners from two centers. After the
plain scan, the contrast agent was administered intravenously at a flow rate of 2.5-4.0 mL/s to obtain contrast-
enhanced images. The detailed CT acquisition parameters for the two centers are provided in Table S1.

The venous-phase CT images, most commonly used in laryngeal cancer research'®2’, were chosen for further
analysis. Tumor regions of interests (ROIs) were manually delineated slice-by-slice on each transverse section
by radiologist A (C.X.W.). A 3D volume of interest (VOI) was formed by merging the corresponding ROIs. To
assess the inter- and intraobserver reproducibility of radiomics features, 30 patients were randomly selected
and re-segmented by both radiologist A and radiologist B (J.H.) after one month. Figure 3 shows the overall
workflow of this study.

Radiomics feature extraction/selection and radiomics model Building

Utilizing PyRadiomics (version 2.2.0, https://github.com/Radiomics/pyradiomics), features were extracted from
the VOIs to ensure a robust analysis. The image processing and feature extraction procedures in this study
were conducted in accordance with the Image Biomarker Standardization Initiative (IBSI) standards. Prior
to extraction, data preprocessing was performed to ensure internal consistency across the dataset, including
resampling VOISs to a voxel spacing of 1 x1x1 mm® and discretizing voxel intensities using a bin width of 25
Hounsfield units (HU). A total of 1,106 radiomics features were initially extracted, encompassing four categories:
first-order statistics, shape-based features, texture features, and wavelet-transformed features. The reliability
of these features were assessed through intraclass correlation coeflicient (ICC) analysis. To refine the feature
set, an initial screening procedure was conducted using the Spearman correlation coeflicient, which helped in
identifying and removing highly correlated features. Subsequently, the remaining features normalized by z-score
were followed by a more precise selection process using the least absolute shrinkage and selection operator
(LASSO) method, which retained the non-zero coefficient features for modeling. Finally, a radiomics model was
constructed using a support vector machine (SVM) classifier, chosen for its effectiveness in binary classification
tasks.

2D DL model construction and visualization

In this study, ResNet-50, pretrained on ImageNet, was used for the backbone network of the 2D DL model (see
Supplementary Material). The 2D ROIs were semi-automatically cropped by a rectangular box in the largest
tumor cross-section. Before model training, all cropped ROIs were resized to a standardized resolution of
224 x 224 pixels using bilinear interpolation. Data augmentation strategies, including random horizontal and
vertical flipping and random cropping, were applied to increase training robustness. The 2D ROIs were then
input into ResNet-50 for a binary classification task, with the output aimed at predicting the risk of thyroid
cartilage invasion. Model training encompassed forward computation and backpropagation, and categorical
cross-entropy served as the loss function. In terms of training parameters, we incorporated a stochastic gradient
descent optimizer with a base learning rate of 0.01, a weight decay of 0.01, a batch size of 64, and 50 training
epochs. L2 regularization and an early stopping strategy were applied to prevent overfitting. In addition, we
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Fig. 3. The pipeline of this retrospective study. In this study, an SVM classifier was applied to construct the
radiomics model. The 2D DL model was built using cropped 2D ROIs by ResNet-50, and Grad-CAM was used
for model visualization. 3D-ShuftleNet V1 was adopted as the backbone for the 3D DL model, and its input
was the bounding cube of the 2D ROIs. Additionally, the performance of two readers was also evaluated for
comparison with that of the predictive models. Eventually, the optimal predictive model would be obtained
and was utilized to assess patient prognosis.

utilized gradient information from the final convolutional layer to generate gradient-weighted class activation
mapping (Grad-CAM), which provides visual explanations for the 2D DL model.

3D DL model development and validation

Considering that 2D ROIs may not fully capture the structural intricacies of laryngeal tumors, we propose a 3D
DL model for a more exhaustive analysis (see Supplementary Material). In the context of 3D DL, a rectangular
bounding box was used to mark the bounding cube of the 2D ROIs, with linear interpolation standardizing
all cubic ROIs to dimensions of 96x96x96. To improve data diversity and model generalizability, data
augmentation strategies such as random flipping along the X, Y, and Z axes were applied. Preprocessed cubic
tumor images were subsequently fed into the 3D-ShuffleNet network, where operations such as tridimensional
convolutional layers, batch normalization, ReLU activation, and channel shuffling were leveraged for image
analysis. Ultimately, the 3D DL model would output the probability of thyroid cartilage invasion for each patient.
The 3D network was trained via an adaptive moment estimation optimizer, with a learning rate of 0.02, a batch
size of 16, and 100 training epochs.

Radiologists’ visual evaluations

Two experienced radiologists (PJ. and L.Q.J.) independently evaluated patients from the two validation cohorts.
They referred to the multiphase CT images of each patient for the precise assessment and were encouraged
to make a rating on a five-level scale: 1, definitely negative, 2, probably negative, 3, erosion, 4, lysis, and 5,
extralaryngeal spread through the cartilage!>?!. More detailed information is provided in Supplementary
Material. Throughout this procedure, two radiologists were completely blinded to patients’ clinical data. To
estimate the agreement of the ratings between the two radiologists, Cohen’s kappa concordance analysis was
employed. Details of the radiologists’ ratings are provided in the Supplementary Excel File.

Nomogram for thyroid cartilage invasion prediction

In the training cohort, the candidate clinical factors were tested via univariate analysis to screen out key variables
(p<0.05). Meanwhile, the performances of the radiomics model, 2D DL model, and 3D DL model were compared
to determine the optimal predictive model. Subsequently, the optimal predictive model collaborating with key
clinical variables was subsequently utilized to develop the nomogram. Furthermore, the performance of the
nomogram was independently tested in two validation cohorts.
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Statistical analysis

The data were analyzed using SPSS software (version 26.0) and R software (version 4.1.0). Differences in
clinical features were analyzed by Mann-Whitney U-test (continuous variables) and chi-square test (categorical
variables). A p value<0.05 was considered statistically significant. The area under the receiver operating
characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) were calculated. The calibration curve and Hosmer-Lemeshow (HL) test are utilized to
assess the calibration of the model. Decision curve analysis (DCA) curves were utilized to appraise the model’s
clinical utility.

Results

Patient characteristics

Table 1 presents comprehensive clinical details pertaining to LSCC patients. The rates of thyroid cartilage
invasion were 36.0% in the training cohort, 39.1% in the internal validation cohort, and 37.7% in the external
validation cohort. No significant differences were found in age, sex, smoking status, histological grade, alcohol
consumption, tumor location, or clinical N stage between patients with and without thyroid cartilage invasion in
the training cohort, while the differences in CT-reported AC invasion, clinical T stage, and overall clinical stage
between the two groups were statistically significant. In addition, Cohen’s kappa value of the ratings for thyroid
cartilage invasion was 0.784, indicating good consistency between the two radiologists (Table S2).

Training cohort (n=247) Internal validation cohort (n=110) External validation cohort (n=61)
Without Without
invasion With invasion Without With invasion invasion With invasion
Clinical characteristics | (n=158) (n=89) P invasion (n=67) | (n=43) P (n=38) (n=23) ?P
Age (years, mean+SD) 61.39+£9.06 | 63.17+7.53 0.205 63.16+£7.83 63.74+7.32 0.698 61.08+6.70 | 63.57£6.13 0.153
Sex 1.000 0.027* 0.833
Female 8 4 1 6 3 3
Male 150 85 66 37 35 20
Smoking status 0.464 0.609 1.000
Never smoked 12 10 2 3 4 3
Smoker 146 79 65 40 34 20
Alcohol consumption 0.476 1.000 1.000
No 45 30 17 11 11 7
Yes 113 59 50 32 27 16
Tumor location 0.149 0.173 0.002*
Glottic 126 63 54 29 36 15
Supraglottic 29 21 12 11 1 8
Subglottic 3 5 1 3 1 0
CT-reported AC invasion 0.017* 0.028* 0.251
No 48 14 17 3 15 5
Yes 110 75 50 40 23 18
Histological grade 0.939 1.000 0.365
Poorly/poorly-middle 34 18 14 9 8 2
Middle/well 124 71 53 34 30 21
Clinical T stage <0.001% <0.001* 0.007*
cT1 40 2 22 1 14 2
cT2 59 1 27 1 13 4
cT3 57 51 13 25 9 13
cT4 2 35 5 16 2 4
Clinical N stage 0.651 0.006 0.051
cNO 126 68 55 24 35 16
cN1-3 32 21 12 19 3 7
Overall clinical stage <0.001* <0.001* <0.001*
I 38 4 21 1 14 1
11 55 2 22 0 13 3
11 46 41 13 19 9 13
v 19 42 11 23 2 6

Table 1.

Baseline clinical characteristics of the patients in the datasets. HR hazard ratio, CI confidence interval,
AC anterior commissure, SD standard deviation. *p <0.05.
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Performance analysis of the radiomics model, the 2D DL model, the 3D DL model, and two
readers

Thirteen radiomics features were screened to develop the radiomics model (Table S3 and Figure S1), which
yielded an AUC of 0.867 (95% confidence interval [CI]: 0.819-0.916) in the training cohort. Additionally, the 2D
DL model achieved an AUC of 0.846 (95% CI: 0.797-0.895), and the 3D DL model achieved the highest AUC of
0.959 (95% CI: 0.934-0.984), as shown in Table 2 and Figure S2.

In two validation cohorts, the 2D DL model exhibited superior performance than other models and two
readers (PJ. as reader 1 and L.Q.J. as reader 2, respectively) (Table 2; Fig. 4A, B). Specifically, the 2D DL model
achieved superior performance in predicting thyroid cartilage invasion, with AUCs of 0.835 (95% CI: 0.758-
0.911) in the internal validation cohort and 0.804 (95% CI: 0.696-0.913) in the external validation cohort. In
comparison, the 3D DL model yielded AUCs of 0.732 (95% CI: 0.638-0.827) and 0.698 (95% CI: 0.569-0.836),
the radiomics model achieved AUCs of 0.727 (95% CI: 0.621-0.823) and 0.705 (95% CI: 0.567-0.843), reader
1 had AUCs of 0.742 (95% CI: 0.644-0.841) and 0.726 (95% CI: 0.598-0.854), and reader 2 had AUCs of 0.727
(95% CI: 0.630-0.824) and 0.715 (95% CI: 0.790-0.944), respectively—all of which were inferior to the 2D DL
model. Detailed comparisons of the AUCs are provided in Figure S3.

The calibration curves of the 2D DL model in two validation cohorts had a good fit (p>0.05 for both, HL
test) (Fig. 4C, D). The DCA curves indicated that the 2D DL model provided greater net benefit (Fig. 4E, F). In
addition, the Grad-CAM heatmaps confirmed the validity of the 2D DL model (Figure S4).

Development and performance of the nomogram

In this study, three key clinical risk factors for predicting thyroid cartilage invasion were identified via univariate
analysis, including CT-reported AC invasion, clinical T stage, and overall clinical stage (Table 1). As shown in
Fig. 5, we constructed a nomogram that integrates the 2D DL signature (the optimal model) and the three factors,
which achieved further improvement and delivered the best predictive performance. In the internal validation
cohort, the nomogram achieved an AUC of 0.867 (95% CI: 0.799-0.936), which was significantly higher than
that of the 3D DL model, the radiomics model, and both radiologists (p <0.05 for all, DeLong test), with no
statistically significant difference from the 2D DL model. In the external validation cohort, the nomogram
achieved an AUC of 0.823 (95% CI: 0.714-0.931), with no statistically significant differences compared to other
models (p>0.05 for all, DeLong test) (Fig. S3). The calibration curves and DCA curves demonstrated that the
nomogram had good consistency (p >0.05, HL test) and excellent clinical utility (Fig. 4C-F).

Survival prediction

The median follow-up time of the whole dataset (418 patients) was 38.6 months, varying from 1.6 to 82.0 months.
More detailed information is shown in Table S4. Before performing cox regression analysis, the proportional
hazards assumption was assessed for all variables, as shown in Table S5. Ultimately, the 2D DL signature (hazard
ratio [HR] =4.666) and clinical N stage (HR =2.191) were found to be independent prognostic factors associated
with DES (Table 3; Fig. 6). By utilizing the ‘survminer’ R package, we calculated the optimal cut-off point (0.51)
for 2D DL signature, which stratified LSCC patients into high-risk and low-risk groups (Figure S5). Kaplan-Meier
survival analysis revealed that the low-risk group with a lower 2D DL signature had significantly better DFS than
the high-risk group with a higher 2D DL signature (p <0.05, log-rank test). Similar results were observed for
clinical N stage (p<0.05, log-rank test). Eventually, we developed a prognostic nomogram integrating 2D DL
signature and clinical N stage to predict the DFS of LSCC patients, yielding a 3-year AUC of 0.620, a 4-year AUC
0f 0.650, and a 5-year AUC of 0.653 (Fig. 6E).

Cohort AUC (95%CI) Accuracy | Sensitivity | Specificity | PPV | NPV
Radiomics model | 0.867 [0.819-0.916] | 0.810 0.798 0.816 0.710 | 0.878
2D DL model 0.846 [0.797-0.895] | 0.794 0.640 0.880 0.750 | 0.813
Training cohort
3D DL model 0.959 [0.934-0.984] | 0.923 0.888 0.943 0.898 | 0.937
Nomogram 0.873 [0.831-0.915] | 0.749 0.933 0.646 0.597 | 0.944
Reader 1 0.742 [0.644-0.841] | 0.727 0.558 0.836 0.686 | 0.747
Reader 2 0.727 [0.630-0824] | 0.700 0.512 0.821 0.647 | 0.724
Radiomics model | 0.727 [0.621-0.823] | 0.682 0.605 0.731 0.591 | 0.742
Internal validation cohort
2D DL model 0.835 [0.758-0.911] | 0.791 0.744 0.821 0.727 | 0.833
3D DL model 0.732 [0.638-0.827] | 0.682 0.674 0.687 0.580 | 0.774
Nomogram 0.867 [0.799-0.936] | 0.836 0.953 0.761 0.719 | 0.962
Reader 1 0.726 [0.598-0.854] | 0.689 0.565 0.763 0.591 | 0.843
Reader 2 0.715 [0.790-0.944] | 0.689 0.478 0.816 0.591 | 0.744
Radiomics model | 0.705 [0.567-0.843] | 0.721 0.391 0.921 0.750 | 0.714
External validation cohort
2D DL model 0.804 [0.696-0.913] | 0.705 0.957 0.553 0.564 | 0.955
3D DL model 0.698 [0.569-0.836] | 0.607 0.870 0.447 0.488 | 0.850
Nomogram 0.823 [0.714-0.931] | 0.754 0.826 0.711 0.633 | 0.871

Table 2. The performance of predictive models and readers. DL deep learning, AUC area under the curve, CI

confidence interval, PPV positive predictive value, NPV negative predictive value.
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Fig. 4. The ROC curves of different models and readers in the internal validation cohort (A) and the external
validation cohort (B), respectively. The calibration curves of different models and readers in the internal
validation cohort (C) and external validation cohort (D), respectively. The DCA curves of different models and
readers in the internal validation cohort (E) and external validation cohort (F), respectively.

Discussion

In this study, the 2D DL model achieved better performance than the 3D DL model, the radiomics model, and
two readers in evaluating thyroid cartilage invasion. In addition, the proposed nomogram incorporating 2D
DL signature and clinical risk factors (CT-reported AC invasion, clinical T stage, and overall clinical stage)
demonstrated the best classification performance. Furthermore, the 2D DL signature significantly correlated
with DFS, offering important information for clinical decision-making and prognosis evaluation for LSCC

patients.
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Fig. 5. The nomogram for identifying thyroid cartilage invasion in this study. The comprehensive nomogram

was built from 2D DL signature and clinical risk factors, including CT-reported AC invasion, clinical T stage

and overall clinical stage.

Univariate cox regression Multivariate cox regression
Clinical characteristics | HR | 95% CI ? HR |95%CI ?
Age 1.941 | 0.612-6.155 | 0.260
Sex 1.016 | 0.990-1.034 | 0.236
Smoking status 1.052 | 0.457-2.421 | 0.905
Alcohol consumption 1.006 | 0.637-1.589 | 0.980
Tumor location
Glottic Ref
Supraglottic 1.517 | 0.934-2.463 | 0.092
Subglottic 0.938 | 0.285-3.083 | 0.916
CT-reported AC invasion | 1.205 | 0.723-2.010 | 0.475
Histological grade 1.250 | 0.676-2.311 | 0.477
Clinical T stage
cT1 Ref Ref
cT2 0.868 | 0.425-1.775 | 0.699 | 0.606 | 0.149-2.466 | 0.484
cT3 2.134 | 1.169-3.894 | 0.014* | 1.015 | 0.221-4.664 | 0.985
cT4 0.750 | 0.312-1.806 | 0.522 | 0.324 | 0.059-1.780 | 0.195
Clinical N stage 2.138 | 1.384-3.303 | 0.001* | 2.191 | 1.241-3.869 | 0.007*
Overall clinical stage
I Ref Ref
1I 0.999 | 0.478-2.087 | 0.998 | 1.206 | 0.293-4.964 | 0.795
I 2.112 | 1.111-4.015 | 0.023* | 1.284 | 0.263-6.272 | 0.757
v 1.593 | 0.801-3.167 | 0.184 | 0.888 | 0.155-5.074 | 0.894
2D DL signature 3.961 | 1.769-8.867 | 0.001* | 4.666 | 1.861-11.698 | 0.001*

Table 3. Univariate and multivariate analyses of predictors of DFS. DES disease-free survival, HR hazard ratio,
CI confidence interval, AC anterior commissure, DL deep learning. *p <0.05.
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Fig. 6. The relationship between 2D DL signature and patient prognosis inn the whole cohort. (A) The 2D
DL signature and clinical N stage were found to be independent prognostic factors for LSCC patients, and a
corresponding nomogram was developed. Survival analysis stratified by the optimal cut-off value of 2D DL
signature (B) and clinical N stage (C) in the whole cohort. Patients with high 2D DL signature or clinical N
stage positive (cN+) status had poorer DFS (p <0.05, log-rank test). (D) Forest plot illustrating multivariable
cox regression analyses for prognosis in the whole cohort. (E) Time-dependent ROC curves of the nomogram
in the whole cohort.

Accurate assessment of thyroid cartilage invasion can assist clinicians in individualized clinical treatment.
However, relying on macroscopic appearance of the tumor on CT/MRI to identify thyroid cartilage invasion
leads to discrepancies in accuracy. Our findings indicated that the AUCs of the 2D DL model surpassed those of
two readers in two validation cohorts. It showed that a considerable proportion of patients were misdiagnosed
on the basis of radiologists’ visual interpretations'>!°, which may arise from inherent limitations of human visual
perception. In addition, our study revealed that patients with advanced T stage or overall stage, as well as those
with AC involvement, were more susceptible to thyroid cartilage invasion, aligning with other studies?>%3.
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Recently, radiomics and DL have showcased great potential in tumor staging, molecular typing, and
prognosis evaluation'>52%, Guo et al. ! established a radiomics model to predict thyroid cartilage invasion in
laryngeal and hypopharyngeal carcinoma. By applying a synthetic minority oversampling algorithm to correct
data imbalance, they improved the AUC of the model in the training set to 0.905. However, this study did not
include an additional validation set. Currently, there still exist many single-center studies on laryngeal cancer,
leaving the models’ robustness unconfirmed. Moreover, few studies have utilized 3D DL technology in laryngeal
carcinoma. This study compared the performance of the radiomics model, 2D DL model, 3D DL model, and two
readers in predicting thyroid cartilage invasion, and demonstrated that the 2D DL model and corresponding
nomogram displayed outstanding predictive performance. However, the radiomics model revealed unsatisfactory
performance, especially since the sensitivity of the external validation set was only 0.391, which may be partially
attributed to the differences in CT devices between the two centers®>?. Nevertheless, our study had a relatively
large sample size with independent external validation, enhancing the credibility of the findings. Consistent with
previous radiomics studies on laryngeal cancer!>!*%, our study employed venous-phase CT images for model
construction. This decision was based on the fact that the delayed enhancement allows better visualization of
tumor neovasculature and stromal components, thereby enabling more comprehensive and informative features
extraction'>?. Although fusing radiomics features from multiple phases may improve model performance, it
also can introduce feature redundancy and instability. In certain scenarios, they may fail to provide significant
performance gains while increasing model complexity?”-*. Given these concerns, we chose to construct our
model based solely on venous-phase data.

Considering the complex structure of larynx, this study implemented a 3D DL model to capture the intricate
spatial features of laryngeal tumors. The results revealed that the 3D DL model experienced significant overfitting,
which may be due to the requirement of a larger dataset for 3D CNNs to analyze effectively?®. Additionally, 3D
CNNis also necessitate more parameter adjustments and greater storage space®3!. Conversely, the 2D DL model
indicated excellent discriminative ability in predicting thyroid cartilage invasion, surpassing other models and
two readers. Previous studies have also indicated that the 2D DL model often achieves better results in clinical
research®**%. Two possible reasons may account for this preponderance: Firstly, DL can automatically learn
more complex and discriminative features from convolutional layers, making it more effective and precise than
manually designed radiomics features®*. Secondly, the proportion of useful diagnostic information representing
lesions in the input data of the 2D DL model may be higher than that in 3D data®>%, rendering it more suitable
for clinical diagnostic tasks. Although the rates of thyroid cartilage invasion were comparable across the training,
internal, and external cohorts, there were still inherent discrepancies in patient distribution and imaging
acquisition protocols between institutions. In addition, the external validation cohort had a relatively limited
sample size. These factors likely contributed to the observed performance heterogeneity and, in particular, to
the decreased AUC of the 3D DL model on external validation, given the greater sensitivity of 3D networks to
sample size and protocol variability. The relatively stable performance of the 2D DL model across cohorts further
supported its greater generalizability in the current multi-center setting.

Importantly, the nomogram that fused the 2D DL signature with clinical risk factors (CT-reported AC
invasion, clinical T stage and overall clinical stage) achieved the best predictive performance in both validation
cohorts; this superiority was statistically significant only in the internal validation cohort, but not in the external
validation cohort, which may be attributed to the smaller size of the external validation cohort. From a clinical
perspective, such a nomogram could serve as a practical, noninvasive decision-support tool: preoperatively it may
help identify patients at high risk of cartilage invasion and thus inform surgical planning, guide multidisciplinary
decisions regarding the need for more extensive resection or adjuvant therapy in borderline cases, and enable
tailoring of postoperative surveillance intensity according to individualized risk. Moreover, this study observed
a close negative correlation between 2D DL signature and DFS, indicating that a lower 2D DL signature was
associated with longer DFS. More specifically, patients without thyroid cartilage invasion had significant survival
benefits. Our study also identified clinical N stage as another independent prognostic factor, consistent with
the findings of previous studies®®. Based on these findings, the prognostic nomogram offers a practical tool for
clinicians to customize effective therapeutic strategies and evaluate prognosis for LSCC patients.

Notably, some limitations in the study are worth emphasizing. Firstly, this was a retrospective analysis.
Although this study included an independent external validation set, the amount of data was limited due
to stringent inclusion criteria. Thus, a larger multicenter prospective research is warranted to validate the
model presented in this study. Secondly, precise manual delineation of tumor regions required specialized
radiologists, and the results were influenced by subjective experience. Therefore, future studies will focus on
automatic segmentation algorithms (e.g., U-Net) to improve consistency and reduce human bias. Thirdly,
model development in this study was based on the venous-phase CT images. More modalities for modeling may
potentially improve the model’s performance. Fourthly, there is still a lack of clear understanding on designing
network architecture and adjusting training parameters. Therefore, future work should focus on optimizing
network architectures and tuning training parameters to enhance model robustness.

Conclusion

In conclusion, we demonstrated that the 2D DL model had notable advantages over the 3D DL model, the
radiomics model, and two readers. The integrated nomogram, incorporating 2D DL signature and clinical
factors, achieved satisfactory predictive performance for thyroid cartilage invasion and patient prognosis in
LSCC. Further investigation is needed to fully generalize the clinical applicability of the proposed nomogram.
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