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Accurate assessment of thyroid cartilage invasion is crucial for treatment decision-making and 
prognosis evaluation in laryngeal squamous cell carcinoma (LSCC). This study aimed to compare the 
performance of the radiomics and deep learning (DL) models for predicting thyroid cartilage invasion 
in LSCC patients, and evaluate prognostic value of the optimal predictive model. A total of 418 
pathologically confirmed LSCC patients from two centers were enrolled and divided into a training 
cohort (n = 247), an internal validation cohort (n = 110), and an external validation cohort (n = 61). 
Models were developed based on venous-phase CT images and compared with two radiologists. A 
nomogram incorporating the optimal model and clinical risk factors was also constructed. Additionally, 
the prognostic value of the optimal model was assessed regarding disease-free survival (DFS). The 2D 
DL model showed better performance in predicting thyroid cartilage invasion, and the corresponding 
nomogram integrating 2D DL signature and clinical risk factors achieved the highest AUCs. However, 
no differences in AUCs were found in the external validation cohort (p > 0.05 for all). Additionally, the 
2D DL signature and clinical N stage were independent predictors of DFS. The 2D DL-based nomogram 
demonstrated satisfactory predictive performance for thyroid cartilage invasion and prognosis in 
patients with LSCC.
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Disease-free survival

Thyroid cartilage invasion serves as a crucial determinant in TNM staging of laryngeal squamous cell carcinoma 
(LSCC), with medial cortex invasion classified as stage T3 and extralaryngeal tissue penetration as stage T4. 
Previous studies have reported thyroid cartilage invasion in 12%–43% of laryngeal carcinoma patients, with 
missed diagnoses possibly resulting in staging errors in 40%–50% of cases1,2. Clinically, thyroid cartilage 
invasion significantly impacts the choice of treatment strategies. For cases with thyroid cartilage invasion, 
radiotherapy alone is often insufficient, making concurrent chemoradiotherapy a common option for organ-
preserving treatment. However, when the tumor extensively involves the cartilage or invades extralaryngeal 
tissues, total laryngectomy is necessary to ensure complete resection3. Additionally, thyroid cartilage invasion 
closely correlates with radiotherapy response and tumor recurrence4,5. Hence, it is of great significance to 
accurately evaluate thyroid cartilage invasion for making treatment decisions and assessing prognosis in patients 
with LSCC.

CT is frequently utilized to predict thyroid cartilage invasion, with a sensitivity of approximately 80%6. 
However, its accuracy and specificity are unsatisfactory, which may be attributed to the asymmetric ossification 
of normal thyroid cartilage, and the similar CT values between tumor tissue and non-ossified cartilage may 
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also affect the identification7,8. Although MRI has a higher sensitivity for diagnosing thyroid cartilage invasion, 
cartilage edema or inflammatory changes may resemble tumor infiltration9. Dual-energy CT technology, 
particularly iodine overlay (IO) image, can help differentiate between iodine-enhanced tumors and non-ossified 
cartilage10,11. However, IO image has limitations in identifying lesions in previously ossified cartilage, potentially 
overestimating iodine distribution12. Currently, there is a lack of robust and precise methods for discerning 
thyroid cartilage invasion in LSCC.

Recently, artificial intelligence, particularly machine learning and deep learning (DL), has seen extensive use 
in medical imaging. Radiomics, a key aspect of machine learning, extracts high-dimensional features and offers 
valid quantitative data for tumor analysis. DL, on the other hand, automatically captures and learns discriminative 
features in an end-to-end manner, improving prediction accuracy. Radiomics and DL have been reported to 
be valuable in predicting tumor stage13, early recurrence14, treatment response15, and prognosis16 in laryngeal 
carcinoma. To our knowledge, few studies have investigated radiomics and DL techniques in predicting thyroid 
cartilage invasion. Given the complexity of laryngeal tumor, we also developed a 3D DL model, which usually 
requires an extensive training dataset to achieve precision17,18.

Collectively, this study aimed to construct a radiomics model, a 2D DL model, and a 3D DL model using 
venous-phase CT images to evaluate thyroid cartilage invasion, and compare these models with two radiologists. 
A nomogram incorporating the optimal predictive model and clinical risk factors was also developed. 
Additionally, we further explored the prognostic value of the optimal predictive model for thyroid cartilage 
invasion.

Materials and methods
Patients
This retrospective multicenter study analyzed data from 418 patients with pathologically confirmed LSCC. The 
study utilized data from two institutions: The First Affiliated Hospital of Chongqing Medical University (center 1), 
which contributed 357 patients between March 1, 2011, and January 1, 2021, and Tianjin First Central Hospital, 
School of Medicine, Nankai University (center 2), which provided data from 61 patients between March 1, 2017, 
and January 1, 2021. Patients were categorized into a training cohort and an internal validation cohort at a 7:3 
ratio for center 1, while data from center 2 was used for external validation (Fig. 1). All patients were enrolled via 
the following inclusion criteria: (1) pathologically confirmed diagnosis of LSCC, (2) comprehensive clinical and 
imaging data, and (3) preoperative contrast-enhanced CT (CECT) performed within 2 weeks before surgery. The 
exclusion criteria included: (1) tumor recurrence or history of other malignant tumors, (2) poor quality of CT 
images, and (3) preoperative anti-tumor therapy.

Baseline clinical data included age, sex, smoking status, alcohol consumption, tumor location, CT-reported 
anterior commissure (AC) invasion, histological grade, clinical T stage, clinical N stage, and overall clinical 
stage. All patients in this study underwent surgical resection, and the postoperative pathological findings 
were considered the gold standard for determining the presence of thyroid cartilage invasion. Representative 
diagnostic examples are shown in Fig. 2.

Fig. 1.  Flowchart of patient recruitment. LSCC, laryngeal squamous cell carcinoma; center 1, The First 
Affiliated Hospital of Chongqing Medical University; center 2, Tianjin First Central Hospital, School of 
Medicine, Nankai University.
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Endpoints and follow-up
In this study, a comprehensive postoperative follow-up plan was implemented to ensure accurate tracking of 
patient conditions. The schedule of follow-up was designed every 3 months in the first year, every 6 months 
from the second to the fifth year, and annually thereafter. Follow-up continued for at least 3 years or until death. 
For patients lost to follow-up, survival time was calculated from the date of surgery to the last recorded follow-
up. The primary objective was to assess disease-free survival (DFS), which measures the time from surgery to 
disease progression, the last follow-up, or death from any cause.

CT imaging acquisition and tumor segmentation
Each patient underwent CECT scanning using the multislice spiral CT scanners from two centers. After the 
plain scan, the contrast agent was administered intravenously at a flow rate of 2.5–4.0 mL/s to obtain contrast-
enhanced images. The detailed CT acquisition parameters for the two centers are provided in Table S1.

The venous-phase CT images, most commonly used in laryngeal cancer research19,20, were chosen for further 
analysis. Tumor regions of interests (ROIs) were manually delineated slice-by-slice on each transverse section 
by radiologist A (C.X.W.). A 3D volume of interest (VOI) was formed by merging the corresponding ROIs. To 
assess the inter- and intraobserver reproducibility of radiomics features, 30 patients were randomly selected 
and re-segmented by both radiologist A and radiologist B (J.H.) after one month. Figure 3 shows the overall 
workflow of this study.

Radiomics feature extraction/selection and radiomics model Building
Utilizing PyRadiomics (version 2.2.0, https://github.com/Radiomics/pyradiomics), features were extracted from 
the VOIs to ensure a robust analysis. The image processing and feature extraction procedures in this study 
were conducted in accordance with the Image Biomarker Standardization Initiative (IBSI) standards. Prior 
to extraction, data preprocessing was performed to ensure internal consistency across the dataset, including 
resampling VOIs to a voxel spacing of 1 × 1 × 1 mm³ and discretizing voxel intensities using a bin width of 25 
Hounsfield units (HU). A total of 1,106 radiomics features were initially extracted, encompassing four categories: 
first-order statistics, shape-based features, texture features, and wavelet-transformed features. The reliability 
of these features were assessed through intraclass correlation coefficient (ICC) analysis. To refine the feature 
set, an initial screening procedure was conducted using the Spearman correlation coefficient, which helped in 
identifying and removing highly correlated features. Subsequently, the remaining features normalized by z-score 
were followed by a more precise selection process using the least absolute shrinkage and selection operator 
(LASSO) method, which retained the non-zero coefficient features for modeling. Finally, a radiomics model was 
constructed using a support vector machine (SVM) classifier, chosen for its effectiveness in binary classification 
tasks.

2D DL model construction and visualization
In this study, ResNet-50, pretrained on ImageNet, was used for the backbone network of the 2D DL model (see 
Supplementary Material). The 2D ROIs were semi-automatically cropped by a rectangular box in the largest 
tumor cross-section. Before model training, all cropped ROIs were resized to a standardized resolution of 
224 × 224 pixels using bilinear interpolation. Data augmentation strategies, including random horizontal and 
vertical flipping and random cropping, were applied to increase training robustness. The 2D ROIs were then 
input into ResNet-50 for a binary classification task, with the output aimed at predicting the risk of thyroid 
cartilage invasion. Model training encompassed forward computation and backpropagation, and categorical 
cross-entropy served as the loss function. In terms of training parameters, we incorporated a stochastic gradient 
descent optimizer with a base learning rate of 0.01, a weight decay of 0.01, a batch size of 64, and 50 training 
epochs. L2 regularization and an early stopping strategy were applied to prevent overfitting. In addition, we 

Fig. 2.  Thyroid cartilage invasion was evaluated on full sections of LSCC stained with H&E. Representative 
samples classified as with thyroid cartilage invasion (A) and without thyroid cartilage invasion (B). The red 
dashed line indicates the margin of the thyroid cartilage.
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utilized gradient information from the final convolutional layer to generate gradient-weighted class activation 
mapping (Grad-CAM), which provides visual explanations for the 2D DL model.

3D DL model development and validation
Considering that 2D ROIs may not fully capture the structural intricacies of laryngeal tumors, we propose a 3D 
DL model for a more exhaustive analysis (see Supplementary Material). In the context of 3D DL, a rectangular 
bounding box was used to mark the bounding cube of the 2D ROIs, with linear interpolation standardizing 
all cubic ROIs to dimensions of 96 × 96 × 96. To improve data diversity and model generalizability, data 
augmentation strategies such as random flipping along the X, Y, and Z axes were applied. Preprocessed cubic 
tumor images were subsequently fed into the 3D-ShuffleNet network, where operations such as tridimensional 
convolutional layers, batch normalization, ReLU activation, and channel shuffling were leveraged for image 
analysis. Ultimately, the 3D DL model would output the probability of thyroid cartilage invasion for each patient. 
The 3D network was trained via an adaptive moment estimation optimizer, with a learning rate of 0.02, a batch 
size of 16, and 100 training epochs.

Radiologists’ visual evaluations
Two experienced radiologists (P.J. and L.Q.J.) independently evaluated patients from the two validation cohorts. 
They referred to the multiphase CT images of each patient for the precise assessment and were encouraged 
to make a rating on a five-level scale: 1, definitely negative, 2, probably negative, 3, erosion, 4, lysis, and 5, 
extralaryngeal spread through the cartilage12,21. More detailed information is provided in Supplementary 
Material. Throughout this procedure, two radiologists were completely blinded to patients’ clinical data. To 
estimate the agreement of the ratings between the two radiologists, Cohen’s kappa concordance analysis was 
employed. Details of the radiologists’ ratings are provided in the Supplementary Excel File.

Nomogram for thyroid cartilage invasion prediction
In the training cohort, the candidate clinical factors were tested via univariate analysis to screen out key variables 
(p < 0.05). Meanwhile, the performances of the radiomics model, 2D DL model, and 3D DL model were compared 
to determine the optimal predictive model. Subsequently, the optimal predictive model collaborating with key 
clinical variables was subsequently utilized to develop the nomogram. Furthermore, the performance of the 
nomogram was independently tested in two validation cohorts.

Fig. 3.  The pipeline of this retrospective study. In this study, an SVM classifier was applied to construct the 
radiomics model. The 2D DL model was built using cropped 2D ROIs by ResNet-50, and Grad-CAM was used 
for model visualization. 3D-ShuffleNet V1 was adopted as the backbone for the 3D DL model, and its input 
was the bounding cube of the 2D ROIs. Additionally, the performance of two readers was also evaluated for 
comparison with that of the predictive models. Eventually, the optimal predictive model would be obtained 
and was utilized to assess patient prognosis.
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Statistical analysis
The data were analyzed using SPSS software (version 26.0) and R software (version 4.1.0). Differences in 
clinical features were analyzed by Mann–Whitney U-test (continuous variables) and chi-square test (categorical 
variables). A p value < 0.05 was considered statistically significant. The area under the receiver operating 
characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV) were calculated. The calibration curve and Hosmer-Lemeshow (HL) test are utilized to 
assess the calibration of the model. Decision curve analysis (DCA) curves were utilized to appraise the model’s 
clinical utility.

Results
Patient characteristics
Table  1 presents comprehensive clinical details pertaining to LSCC patients. The rates of thyroid cartilage 
invasion were 36.0% in the training cohort, 39.1% in the internal validation cohort, and 37.7% in the external 
validation cohort. No significant differences were found in age, sex, smoking status, histological grade, alcohol 
consumption, tumor location, or clinical N stage between patients with and without thyroid cartilage invasion in 
the training cohort, while the differences in CT-reported AC invasion, clinical T stage, and overall clinical stage 
between the two groups were statistically significant. In addition, Cohen’s kappa value of the ratings for thyroid 
cartilage invasion was 0.784, indicating good consistency between the two radiologists (Table S2).

Clinical characteristics

Training cohort (n = 247) Internal validation cohort (n = 110) External validation cohort (n = 61)

Without 
invasion 
(n = 158)

With invasion 
(n = 89) p

Without 
invasion (n = 67)

With invasion 
(n = 43) p

Without 
invasion 
(n = 38)

With invasion 
(n = 23) p

Age (years, mean ± SD) 61.39 ± 9.06 63.17 ± 7.53 0.205 63.16 ± 7.83 63.74 ± 7.32 0.698 61.08 ± 6.70 63.57 ± 6.13 0.153

Sex 1.000 0.027* 0.833

Female 8 4 1 6 3 3

Male 150 85 66 37 35 20

Smoking status 0.464 0.609 1.000

Never smoked 12 10 2 3 4 3

Smoker 146 79 65 40 34 20

Alcohol consumption 0.476 1.000 1.000

No 45 30 17 11 11 7

Yes 113 59 50 32 27 16

Tumor location 0.149 0.173 0.002*

Glottic 126 63 54 29 36 15

Supraglottic 29 21 12 11 1 8

Subglottic 3 5 1 3 1 0

CT-reported AC invasion 0.017* 0.028* 0.251

No 48 14 17 3 15 5

Yes 110 75 50 40 23 18

Histological grade 0.939 1.000 0.365

Poorly/poorly–middle 34 18 14 9 8 2

Middle/well 124 71 53 34 30 21

Clinical T stage < 0.001* < 0.001* 0.007*

cT1 40 2 22 1 14 2

cT2 59 1 27 1 13 4

cT3 57 51 13 25 9 13

cT4 2 35 5 16 2 4

Clinical N stage 0.651 0.006 0.051

cN0 126 68 55 24 35 16

cN1–3 32 21 12 19 3 7

Overall clinical stage < 0.001* < 0.001* <0.001*

I 38 4 21 1 14 1

II 55 2 22 0 13 3

III 46 41 13 19 9 13

IV 19 42 11 23 2 6

Table 1.  Baseline clinical characteristics of the patients in the datasets. HR hazard ratio, CI confidence interval, 
AC anterior commissure, SD standard deviation. *p < 0.05.
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Performance analysis of the radiomics model, the 2D DL model, the 3D DL model, and two 
readers
Thirteen radiomics features were screened to develop the radiomics model (Table S3 and Figure S1), which 
yielded an AUC of 0.867 (95% confidence interval [CI]: 0.819–0.916) in the training cohort. Additionally, the 2D 
DL model achieved an AUC of 0.846 (95% CI: 0.797–0.895), and the 3D DL model achieved the highest AUC of 
0.959 (95% CI: 0.934–0.984), as shown in Table 2 and Figure S2.

In two validation cohorts, the 2D DL model exhibited superior performance than other models and two 
readers (P.J. as reader 1 and L.Q.J. as reader 2, respectively) (Table 2; Fig. 4A, B). Specifically, the 2D DL model 
achieved superior performance in predicting thyroid cartilage invasion, with AUCs of 0.835 (95% CI: 0.758–
0.911) in the internal validation cohort and 0.804 (95% CI: 0.696–0.913) in the external validation cohort. In 
comparison, the 3D DL model yielded AUCs of 0.732 (95% CI: 0.638–0.827) and 0.698 (95% CI: 0.569–0.836), 
the radiomics model achieved AUCs of 0.727 (95% CI: 0.621–0.823) and 0.705 (95% CI: 0.567–0.843), reader 
1 had AUCs of 0.742 (95% CI: 0.644–0.841) and 0.726 (95% CI: 0.598–0.854), and reader 2 had AUCs of 0.727 
(95% CI: 0.630–0.824) and 0.715 (95% CI: 0.790–0.944), respectively—all of which were inferior to the 2D DL 
model. Detailed comparisons of the AUCs are provided in Figure S3.

The calibration curves of the 2D DL model in two validation cohorts had a good fit (p > 0.05 for both, HL 
test) (Fig. 4C, D). The DCA curves indicated that the 2D DL model provided greater net benefit (Fig. 4E, F). In 
addition, the Grad-CAM heatmaps confirmed the validity of the 2D DL model (Figure S4).

Development and performance of the nomogram
In this study, three key clinical risk factors for predicting thyroid cartilage invasion were identified via univariate 
analysis, including CT-reported AC invasion, clinical T stage, and overall clinical stage (Table 1). As shown in 
Fig. 5, we constructed a nomogram that integrates the 2D DL signature (the optimal model) and the three factors, 
which achieved further improvement and delivered the best predictive performance. In the internal validation 
cohort, the nomogram achieved an AUC of 0.867 (95% CI: 0.799–0.936), which was significantly higher than 
that of the 3D DL model, the radiomics model, and both radiologists (p < 0.05 for all, DeLong test), with no 
statistically significant difference from the 2D DL model. In the external validation cohort, the nomogram 
achieved an AUC of 0.823 (95% CI: 0.714–0.931), with no statistically significant differences compared to other 
models (p > 0.05 for all, DeLong test) (Fig. S3). The calibration curves and DCA curves demonstrated that the 
nomogram had good consistency (p > 0.05, HL test) and excellent clinical utility (Fig. 4C–F).

Survival prediction
The median follow-up time of the whole dataset (418 patients) was 38.6 months, varying from 1.6 to 82.0 months. 
More detailed information is shown in Table S4. Before performing cox regression analysis, the proportional 
hazards assumption was assessed for all variables, as shown in Table S5. Ultimately, the 2D DL signature (hazard 
ratio [HR] = 4.666) and clinical N stage (HR = 2.191) were found to be independent prognostic factors associated 
with DFS (Table 3; Fig. 6). By utilizing the ‘survminer’ R package, we calculated the optimal cut-off point (0.51) 
for 2D DL signature, which stratified LSCC patients into high-risk and low-risk groups (Figure S5). Kaplan-Meier 
survival analysis revealed that the low-risk group with a lower 2D DL signature had significantly better DFS than 
the high-risk group with a higher 2D DL signature (p < 0.05, log-rank test). Similar results were observed for 
clinical N stage (p < 0.05, log-rank test). Eventually, we developed a prognostic nomogram integrating 2D DL 
signature and clinical N stage to predict the DFS of LSCC patients, yielding a 3-year AUC of 0.620, a 4‐year AUC 
of 0.650, and a 5‐year AUC of 0.653 (Fig. 6E).

Cohort AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

Training cohort

Radiomics model 0.867 [0.819–0.916] 0.810 0.798 0.816 0.710 0.878

2D DL model 0.846 [0.797–0.895] 0.794 0.640 0.880 0.750 0.813

3D DL model 0.959 [0.934–0.984] 0.923 0.888 0.943 0.898 0.937

Nomogram 0.873 [0.831–0.915] 0.749 0.933 0.646 0.597 0.944

Internal validation cohort

Reader 1 0.742 [0.644–0.841] 0.727 0.558 0.836 0.686 0.747

Reader 2 0.727 [0.630–0824] 0.700 0.512 0.821 0.647 0.724

Radiomics model 0.727 [0.621–0.823] 0.682 0.605 0.731 0.591 0.742

2D DL model 0.835 [0.758–0.911] 0.791 0.744 0.821 0.727 0.833

3D DL model 0.732 [0.638–0.827] 0.682 0.674 0.687 0.580 0.774

Nomogram 0.867 [0.799–0.936] 0.836 0.953 0.761 0.719 0.962

External validation cohort

Reader 1 0.726 [0.598–0.854] 0.689 0.565 0.763 0.591 0.843

Reader 2 0.715 [0.790–0.944] 0.689 0.478 0.816 0.591 0.744

Radiomics model 0.705 [0.567–0.843] 0.721 0.391 0.921 0.750 0.714

2D DL model 0.804 [0.696–0.913] 0.705 0.957 0.553 0.564 0.955

3D DL model 0.698 [0.569–0.836] 0.607 0.870 0.447 0.488 0.850

Nomogram 0.823 [0.714–0.931] 0.754 0.826 0.711 0.633 0.871

Table 2.  The performance of predictive models and readers. DL deep learning, AUC area under the curve, CI 
confidence interval, PPV positive predictive value, NPV negative predictive value.
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Discussion
In this study, the 2D DL model achieved better performance than the 3D DL model, the radiomics model, and 
two readers in evaluating thyroid cartilage invasion. In addition, the proposed nomogram incorporating 2D 
DL signature and clinical risk factors (CT-reported AC invasion, clinical T stage, and overall clinical stage) 
demonstrated the best classification performance. Furthermore, the 2D DL signature significantly correlated 
with DFS, offering important information for clinical decision-making and prognosis evaluation for LSCC 
patients.

Fig. 4.  The ROC curves of different models and readers in the internal validation cohort (A) and the external 
validation cohort (B), respectively. The calibration curves of different models and readers in the internal 
validation cohort (C) and external validation cohort (D), respectively. The DCA curves of different models and 
readers in the internal validation cohort (E) and external validation cohort (F), respectively.
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Clinical characteristics

Univariate cox regression Multivariate cox regression

HR 95% CI p HR 95% CI p

Age 1.941 0.612–6.155 0.260

Sex 1.016 0.990–1.034 0.236

Smoking status 1.052 0.457–2.421 0.905

Alcohol consumption 1.006 0.637–1.589 0.980

Tumor location

Glottic Ref

Supraglottic 1.517 0.934–2.463 0.092

Subglottic 0.938 0.285–3.083 0.916

CT-reported AC invasion 1.205 0.723–2.010 0.475

Histological grade 1.250 0.676–2.311 0.477

Clinical T stage

cT1 Ref Ref

cT2 0.868 0.425–1.775 0.699 0.606 0.149–2.466 0.484

cT3 2.134 1.169–3.894 0.014* 1.015 0.221–4.664 0.985

cT4 0.750 0.312–1.806 0.522 0.324 0.059–1.780 0.195

Clinical N stage 2.138 1.384–3.303 0.001* 2.191 1.241–3.869 0.007*

Overall clinical stage

I Ref Ref

II 0.999 0.478–2.087 0.998 1.206 0.293–4.964 0.795

III 2.112 1.111–4.015 0.023* 1.284 0.263–6.272 0.757

IV 1.593 0.801–3.167 0.184 0.888 0.155–5.074 0.894

2D DL signature 3.961 1.769–8.867 0.001* 4.666 1.861–11.698 0.001*

Table 3.  Univariate and multivariate analyses of predictors of DFS. DFS disease-free survival, HR hazard ratio, 
CI confidence interval, AC anterior commissure, DL deep learning. *p < 0.05.

 

Fig. 5.  The nomogram for identifying thyroid cartilage invasion in this study. The comprehensive nomogram 
was built from 2D DL signature and clinical risk factors, including CT-reported AC invasion, clinical T stage 
and overall clinical stage.
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Accurate assessment of thyroid cartilage invasion can assist clinicians in individualized clinical treatment. 
However, relying on macroscopic appearance of the tumor on CT/MRI to identify thyroid cartilage invasion 
leads to discrepancies in accuracy. Our findings indicated that the AUCs of the 2D DL model surpassed those of 
two readers in two validation cohorts. It showed that a considerable proportion of patients were misdiagnosed 
on the basis of radiologists’ visual interpretations13,19, which may arise from inherent limitations of human visual 
perception. In addition, our study revealed that patients with advanced T stage or overall stage, as well as those 
with AC involvement, were more susceptible to thyroid cartilage invasion, aligning with other studies22,23.

Fig. 6.  The relationship between 2D DL signature and patient prognosis inn the whole cohort. (A) The 2D 
DL signature and clinical N stage were found to be independent prognostic factors for LSCC patients, and a 
corresponding nomogram was developed. Survival analysis stratified by the optimal cut-off value of 2D DL 
signature (B) and clinical N stage (C) in the whole cohort. Patients with high 2D DL signature or clinical N 
stage positive (cN+) status had poorer DFS (p < 0.05, log-rank test). (D) Forest plot illustrating multivariable 
cox regression analyses for prognosis in the whole cohort. (E) Time-dependent ROC curves of the nomogram 
in the whole cohort.
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Recently, radiomics and DL have showcased great potential in tumor staging, molecular typing, and 
prognosis evaluation13,15,24. Guo et al. 19 established a radiomics model to predict thyroid cartilage invasion in 
laryngeal and hypopharyngeal carcinoma. By applying a synthetic minority oversampling algorithm to correct 
data imbalance, they improved the AUC of the model in the training set to 0.905. However, this study did not 
include an additional validation set. Currently, there still exist many single-center studies on laryngeal cancer, 
leaving the models’ robustness unconfirmed. Moreover, few studies have utilized 3D DL technology in laryngeal 
carcinoma. This study compared the performance of the radiomics model, 2D DL model, 3D DL model, and two 
readers in predicting thyroid cartilage invasion, and demonstrated that the 2D DL model and corresponding 
nomogram displayed outstanding predictive performance. However, the radiomics model revealed unsatisfactory 
performance, especially since the sensitivity of the external validation set was only 0.391, which may be partially 
attributed to the differences in CT devices between the two centers25,26. Nevertheless, our study had a relatively 
large sample size with independent external validation, enhancing the credibility of the findings. Consistent with 
previous radiomics studies on laryngeal cancer13,19,20, our study employed venous-phase CT images for model 
construction. This decision was based on the fact that the delayed enhancement allows better visualization of 
tumor neovasculature and stromal components, thereby enabling more comprehensive and informative features 
extraction13,20. Although fusing radiomics features from multiple phases may improve model performance, it 
also can introduce feature redundancy and instability. In certain scenarios, they may fail to provide significant 
performance gains while increasing model complexity27,28. Given these concerns, we chose to construct our 
model based solely on venous-phase data.

Considering the complex structure of larynx, this study implemented a 3D DL model to capture the intricate 
spatial features of laryngeal tumors. The results revealed that the 3D DL model experienced significant overfitting, 
which may be due to the requirement of a larger dataset for 3D CNNs to analyze effectively29. Additionally, 3D 
CNNs also necessitate more parameter adjustments and greater storage space30,31. Conversely, the 2D DL model 
indicated excellent discriminative ability in predicting thyroid cartilage invasion, surpassing other models and 
two readers. Previous studies have also indicated that the 2D DL model often achieves better results in clinical 
research32,33. Two possible reasons may account for this preponderance: Firstly, DL can automatically learn 
more complex and discriminative features from convolutional layers, making it more effective and precise than 
manually designed radiomics features34. Secondly, the proportion of useful diagnostic information representing 
lesions in the input data of the 2D DL model may be higher than that in 3D data32,35, rendering it more suitable 
for clinical diagnostic tasks. Although the rates of thyroid cartilage invasion were comparable across the training, 
internal, and external cohorts, there were still inherent discrepancies in patient distribution and imaging 
acquisition protocols between institutions. In addition, the external validation cohort had a relatively limited 
sample size. These factors likely contributed to the observed performance heterogeneity and, in particular, to 
the decreased AUC of the 3D DL model on external validation, given the greater sensitivity of 3D networks to 
sample size and protocol variability. The relatively stable performance of the 2D DL model across cohorts further 
supported its greater generalizability in the current multi-center setting.

Importantly, the nomogram that fused the 2D DL signature with clinical risk factors (CT-reported AC 
invasion, clinical T stage and overall clinical stage) achieved the best predictive performance in both validation 
cohorts; this superiority was statistically significant only in the internal validation cohort, but not in the external 
validation cohort, which may be attributed to the smaller size of the external validation cohort. From a clinical 
perspective, such a nomogram could serve as a practical, noninvasive decision-support tool: preoperatively it may 
help identify patients at high risk of cartilage invasion and thus inform surgical planning, guide multidisciplinary 
decisions regarding the need for more extensive resection or adjuvant therapy in borderline cases, and enable 
tailoring of postoperative surveillance intensity according to individualized risk. Moreover, this study observed 
a close negative correlation between 2D DL signature and DFS, indicating that a lower 2D DL signature was 
associated with longer DFS. More specifically, patients without thyroid cartilage invasion had significant survival 
benefits. Our study also identified clinical N stage as another independent prognostic factor, consistent with 
the findings of previous studies36. Based on these findings, the prognostic nomogram offers a practical tool for 
clinicians to customize effective therapeutic strategies and evaluate prognosis for LSCC patients.

Notably, some limitations in the study are worth emphasizing. Firstly, this was a retrospective analysis. 
Although this study included an independent external validation set, the amount of data was limited due 
to stringent inclusion criteria. Thus, a larger multicenter prospective research is warranted to validate the 
model presented in this study. Secondly, precise manual delineation of tumor regions required specialized 
radiologists, and the results were influenced by subjective experience. Therefore, future studies will focus on 
automatic segmentation algorithms (e.g., U-Net) to improve consistency and reduce human bias. Thirdly, 
model development in this study was based on the venous-phase CT images. More modalities for modeling may 
potentially improve the model’s performance. Fourthly, there is still a lack of clear understanding on designing 
network architecture and adjusting training parameters. Therefore, future work should focus on optimizing 
network architectures and tuning training parameters to enhance model robustness.

Conclusion
In conclusion, we demonstrated that the 2D DL model had notable advantages over the 3D DL model, the 
radiomics model, and two readers. The integrated nomogram, incorporating 2D DL signature and clinical 
factors, achieved satisfactory predictive performance for thyroid cartilage invasion and patient prognosis in 
LSCC. Further investigation is needed to fully generalize the clinical applicability of the proposed nomogram.
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