

OPEN

Developmental and environmental stability of candidate reference genes in the wild bee *Ceratina calcarata*

Zixiao Zhao ^{1,4}, Rameshwor Pudasaini ^{1,4}, Camiyah Woods ^{1,3}, Danielle Kroh ¹, Sandra M. Rehan ² & Hongmei Li-Byarlay ^{1,3}✉

Quantitative real-time PCR (q-RT-PCR) is a widely used method for measuring gene expression, but its accuracy depends on the use of stable reference genes for data normalization. In this study, we evaluated the expression stability of seven candidate reference genes (*RPS18*, *RPS5*, *RPL32*, *RPL8*, *EF-1 α* , β -Actin, and *GAPDH*) in the small carpenter bee *Ceratina calcarata* across developmental stages (larvae, pupae, adults) and different landscape environments (conventional farms, organic farms, and roadside sites). Using four analytical algorithms, GeNorm, NormFinder, BestKeeper, and the comparative ΔCt method, we identified *RPS18* and *RPL8* as the most stable reference genes under varying biological and environmental conditions. These findings were further supported by RefFinder, which integrates results from all algorithms. Our study provides the first validated reference genes for *C. calcarata*, enabling more accurate and reproducible gene expression analysis in this ecologically important wild bee species. This work will support future research in pollinator biology, environmental stress responses, and conservation genomics.

Keywords Small carpenter bee, Gene expression stability, Q-RT-PCR, Reference gene, *RPS18*, *RPL8*

The service provided by pollinators is essential for global ecosystems. About 87.5% of flowering plants worldwide require pollination service by animals¹. About 75% of the agricultural crops benefit from pollinators, resulting in a 35% increase in yield and generating billions of dollars in value^{2,3}. The honeybee (*Apis mellifera*) is the most important managed pollinator for crop and fruit productions^{4,5}. Native wild bees are far more numerous than managed bees⁶. They provide complementary pollination service thought to surpass managed bees, which contribute to the ecological and agricultural stability^{7,8}. The small carpenter bees refer to a large group of more than 300 species from genus *Ceratina* (Apidae: Xylocopinae)⁹. *Ceratina calcarata* Robertson is a species native to eastern North America, ranging Florida to the south, Ontario to the north, and Nova Scotia to the east¹⁰. The species, as well as the sympatric species *C. dupla* Say, can effectively pollinate many fruit, vegetable, and other crops^{11,12} and are among the most abundant pollinator species in recent restored land^{12,13}. Similar to honey bees, native wild bees also suffered from declining populations, potentially caused by loss of habitat, the use of agrochemicals, land-scape alternation, and parasitism^{14,15}.

Besides its economic and ecological importance, *C. calcarata* is considered as a subsocial species with features of prolonged maternal care and mother-adult offspring interaction. It also demonstrates traits of facultative sociality such as division of labor and cooperative brood care¹⁶. The eldest daughters are dwarf in body size and responsible for foraging, guarding and feeding their younger siblings^{17–19}. Their roles resemble worker-like behavior in eusocial species and they do not have chance to overwinter or reproduce the next spring. Therefore, *C. calcarata* is an ideal model to study the evolution and mechanism of sociality in hymenopteran insects.

To date, many molecular and genomics approaches have been adopted to study the phylogeny^{10,20,21}, adaptation^{22,23} and reproduction²⁴ of *Ceratina* species. The reference genome of *C. calcarata*²⁵ and *C. australensis*²⁶ has been sequenced and assembled. The transcriptome and metatranscriptome of *C. calcarata* have been sequenced, which revealed the gene and microbiome regulations associated with overwintering²⁷, maternal and sibling care^{18,28,29}, social behavior³⁰, and landscape adaptation³¹. Compared to high-throughput sequencing,

¹Agricultural Research Development Program, Central State University, Wilberforce, OH, USA. ²Department of Biology, York University, Toronto, ON, Canada. ³Department of Agricultural and Life Sciences, Central State University, Wilberforce, OH, USA. ⁴Zixiao Zhao and Rameshwor Pudasaini contributed equally to this work. ✉email: hli-byarlay@centralstate.edu

real-time quantitative reverse transcription polymerase chain reaction (q-RT-PCR) provides a fast and accurate approach to quantify genes^{32–34}. It involves the reverse transcription of RNA into complementary DNA (cDNA), followed by real-time PCR amplification. This method is cost-effective when a small number of target genes are analyzed from a large number of samples. The calculation of relative expression is relied on internal controls, which are housekeeping genes with constant expression levels across the treatments³⁵. However, as a prerequisite procedure for studying gene expressions associated with development and adaptation to agricultural landscapes, there is a lack of highly conserved reference genes in *C. calcarata* for q-RT-PCRs. Thus, it is a challenge to study target gene expressions in this bee species.

In this study, we tested the expressional stability of seven commonly used reference genes, including four ribosomal binding proteins: ribosomal protein L8 (*RPL8*) and L32 (*RPL32*) binding to large subunits, S5 (*RPS5*) and S18 (*RPS18*) binding to small subunit, a cytoskeleton protein: β -actin (*ACT*), a translation elongation protein: elongation factor 1-alpha F2 (*EF-1\alpha*), and a housekeeping enzyme: glyceraldehyde 3-phosphate dehydrogenase (*GADPH*). We used four methods to compare the stability of each gene: comparative ΔCt analysis³⁶, NormFinder³⁷, geNorm³⁸, and BestKeeper³⁹. Further RefFinder was utilized for integrated analysis with incorporating GeNorm, BestKeeper, NormFinder, and ΔCt analysis⁴⁰. Our results present the most stable genes across landscapes and developmental stages, which can be used in studies of gene expression analysis under similar scenarios.

Materials and methods

Sample collection and total RNA extraction

C. calcarata individuals were collected from multiple sites in Western Ohio during the spring 2024. The sites include three types of landscape: conventional farms with regular applications of pesticides and other agrochemicals, organic farms with natural based pesticides, and roadside landscape without agricultural activity. Given that *C. calcarata* nests in raspberry (*Rubus idaeus* L.)^{17,41}, raspberry stems with diameters over 7 mm from the previous growing season were cut to 1.20 m stems, attached to bamboo sticks with twist ties, and vertically inserted into the ground randomly for about 20 cm in early May to attract *C. calcarata* (Supplementary figure S1).

After four weeks, the nesting individuals were collected from stems and their life stages were visually identified as larva, pupa and adult stages. Immature were categorized into small larvae, large larvae, pre-pupae, white-eyed pupae³¹. For RNA extraction, we used large larvae which may be either 4th or 5th instar. However, we did not determine the sex of the larvae, and sex differences may contribute to variation in gene expression. The samples were frozen in dry ice and stored temporarily at -80°C . Individual total RNA was extracted using TRIzol and purified by ZYMO Direct-zol RNA Miniprep Kit (Zymo Research, Irvine, CA, USA). Genomic DNA (gDNA) was removed by DNase I (Zymo Research) using in-column digestion method. The concentrations of RNA were measured by Qubit RNA BR Assay (Thermo Fisher Scientific, Waltham, MA). The RNA samples were preserved at -80°C for future use.

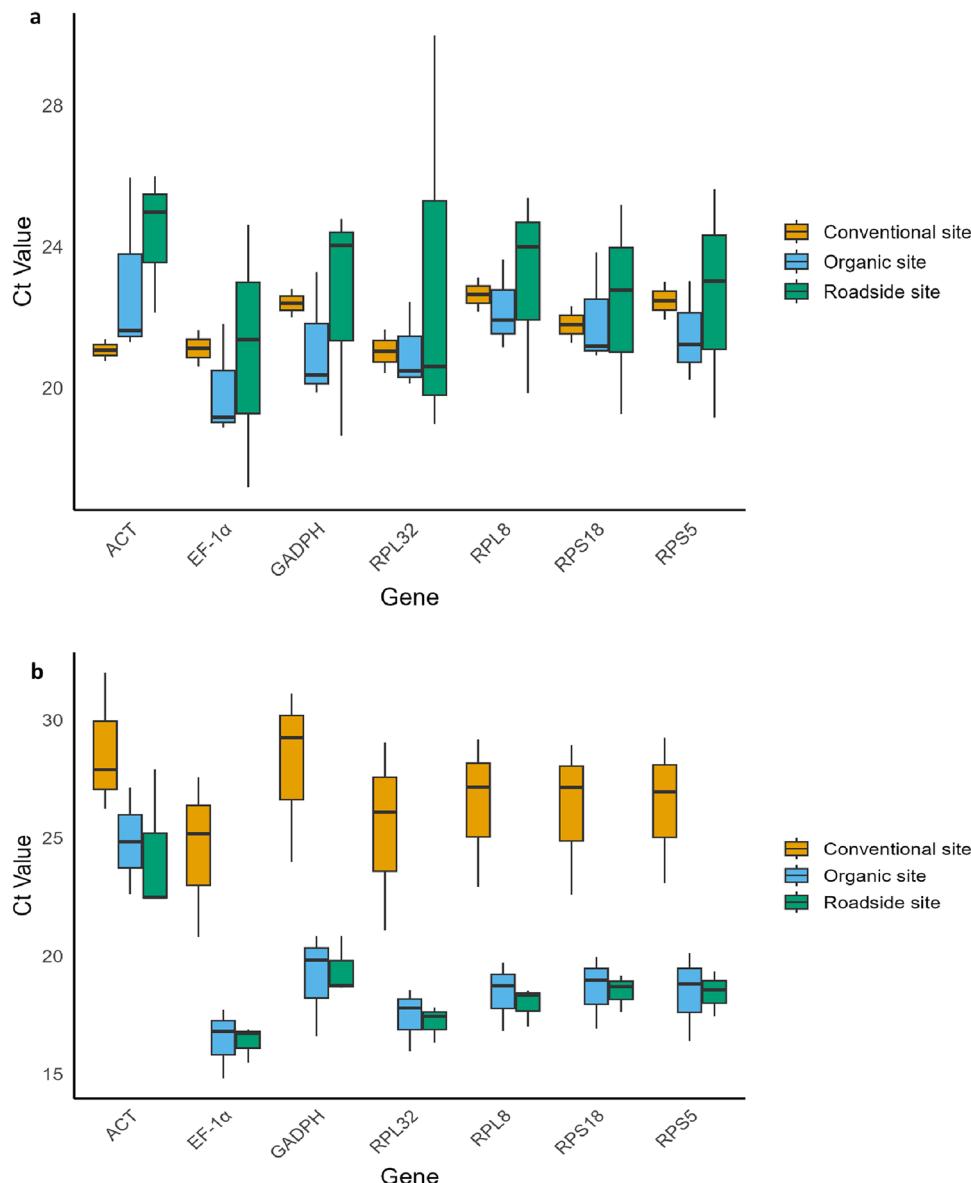
Primer design and q-RT-PCR experiments, and efficiency test

The predicted coding sequences of candidate genes were searched from *C. calcarata* genome assembly annotation²⁵ and confirmed by PCR. The primers were designed using Primer3Plus with default settings with q-RT-PCR module targeting amplicons of 90–130 bp⁴². The details of the primers are presented in Supplementary Table S1. Where possible, primers were designed to span exon-exon junctions to avoid amplification of gDNA. Primer specificity was confirmed by reverse transcription polymerase chain reaction (RT-PCR) followed by 1% agarose gel electrophoresis, which produced a single band of the expected size for each primer set. A single peak in the melting curve further verified the specificity of the amplification. Primer efficiency was determined using a five-point, 10-fold serial dilution of pooled cDNA as standard. The amplification efficiencies ranged from 91.05% to 108.40%.

The first strand cDNA for each sample was synthesized by iScript cDNA Synthesis Supermix (Bio-Rad, Hercules, CA) following the factory protocol. A mixture of oligo(dT) and random hexamers were used to prime the reaction. Samples were normalized to 1 μg total RNA per 20 μl reaction mix. Real time PCR were conducted using PowerUp SYBR Green Mix (Thermo Fisher Scientific) in QuantStudio 3 Real-Time PCR System (Thermo Fisher Scientific) by following procedure: 50 $^{\circ}\text{C}$ for 2 min, 95 $^{\circ}\text{C}$ for 2 min; 40 cycles of 95 $^{\circ}\text{C}$ for 15 s, 60 $^{\circ}\text{C}$ for 30 s; then a 60–95 $^{\circ}\text{C}$ melting curve to confirm the specificity of amplification. Three technical replications were incorporated for each sample. To obtain the PCR efficiency of each primer set, q-RT-PCR was also performed on 10X serial dilution of cDNA. The efficiency of each primer set was calculated by formula $Efficiency = 10^{-1/slope}$.

Data analysis

The cycle threshold (Ct) value of each reaction was obtained by Design & Analysis 2 (DA2) software (version 2.8.0, Thermo Fisher Scientific). Standard curves of Ct were made by liner regression, and the efficiency of each primer set was calculated by formula as mentioned above. We addressed the expression stabilities under developmental stages or agricultural landscapes using following algorithms: comparative ΔCt method³⁶, NormFinder³⁷, geNorm³⁸, and BestKeeper³⁹. R Package ctrlGene (version 1.0.1)⁴³ were used to address geNorm and BestKeeper analysis. RefFinder was utilized for integrated analysis with incorporating GeNorm, BestKeeper, NormFinder, and ΔCt analysis⁴⁰.


Results

Primer specificity and efficiency test

The specificity of primers was confirmed by reverse transcription PCR. The results of 1% agarose gel electrophoresis followed presented the unique bands for each primer set within the expected size range. The single peak in melting curves also confirmed the result. Using cDNA serial dilution as standard, the primers present efficiency from 91.05% to 108.40%, which are within the acceptable range.

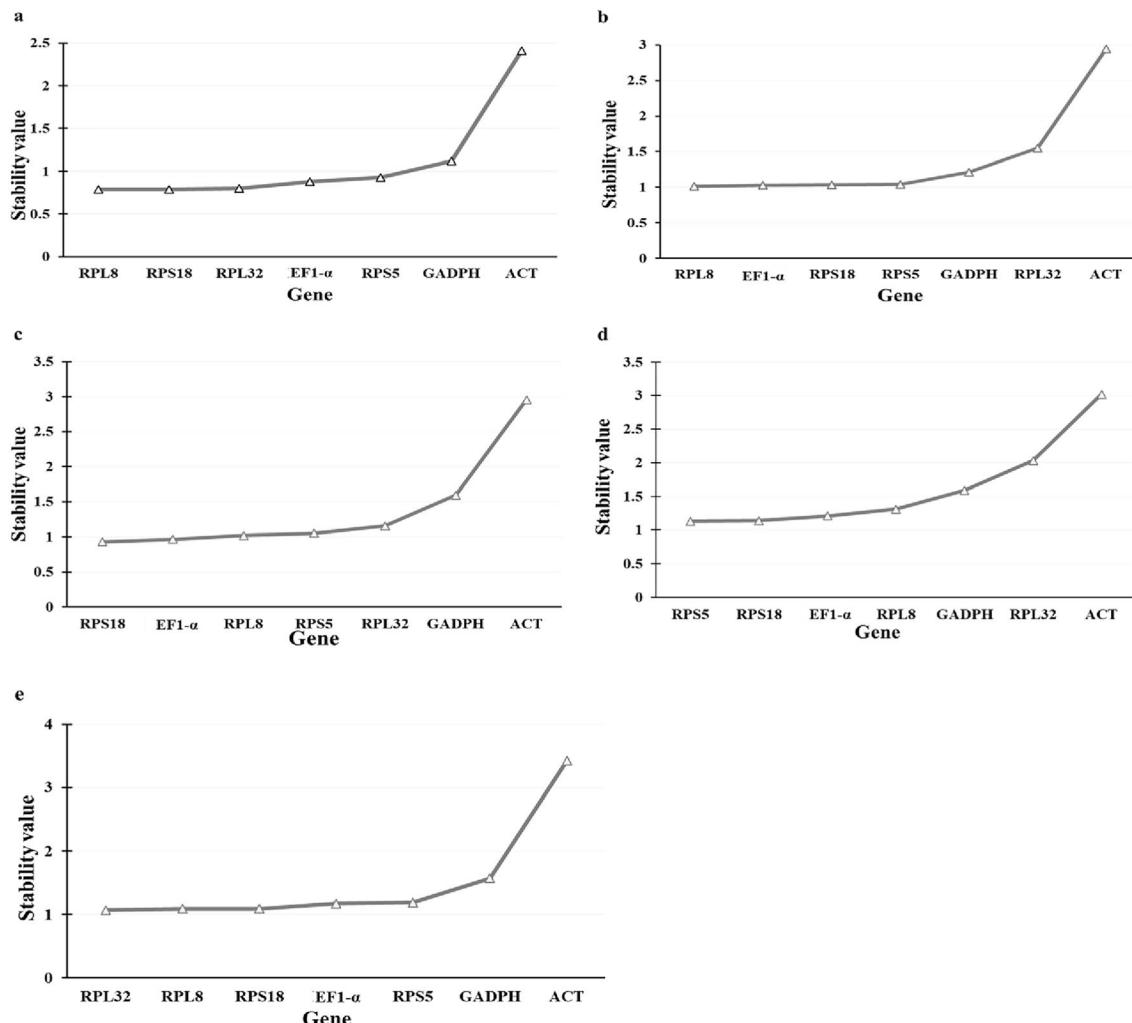
Analysis of candidate reference gene expression

The expression levels of different reference genes of *C. calcarata* under different developmental stages and landscapes is presented in the Fig. 1a, b. The results revealed a range of Ct values for analysed candidate reference genes varying from 14.83 to 32.01. The Ct values for candidate reference genes varied across developmental stages (larvae vs. adult) and collection sites (conventional vs. organic vs. roadside sites). Among all genes, *RPS18* and *RPL8* showed lower Ct variability. However, *GADPH* and *ACT* exhibited greater fluctuation.

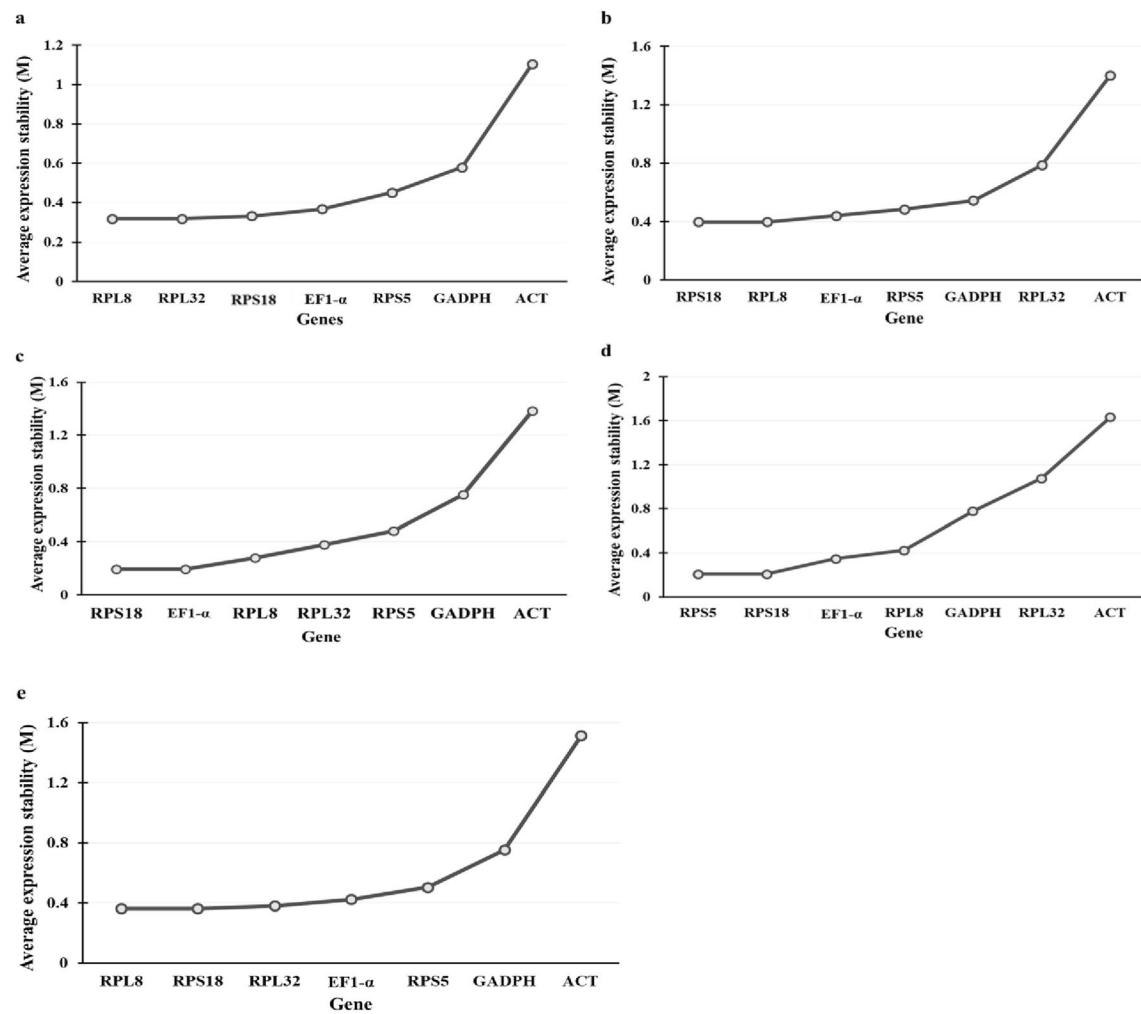
Fig. 1. Expression levels of different candidate reference genes in small carpenter bee across developmental stages and landscapes. The x-axis shows the tested candidate reference genes and the y-axis shows their relative expression levels (mean standard deviation of Ct values). (a) Adult stage samples (b) Larval stage samples. Bars represent mean values from biological replicates; error bars indicate standard deviation.

Stability of candidate reference genes

ΔCt method


The ΔCt method utilizes the standard deviations of Ct values to assess gene expression stability of genes. In both larval and adult stages, *RPL8* was the most stable gene among the seven investigated genes. While analyzing the data based on collection sites as organic, roadside and conventional sites, *RPS18*, *RPS5* and *RPS32* were the more stable genes, respectively (Fig. 2a-e).

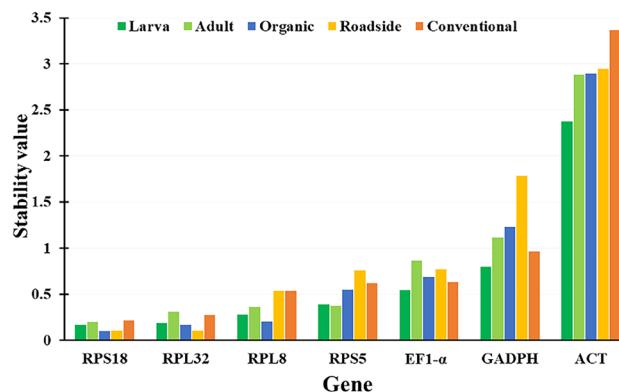
GeNorm analysis


GeNorm analysis uses expression stability measurement (M) value based on the average pairwise variation to calculate the stability of expression levels. The M of different candidate reference genes using geNorm are presented in Fig. 3a-e. *RPL8* followed by *RPL32* were the most stable genes in the larval stage, whereas *RPS18* followed by *RPL8* were the most stable genes in adult stage. In addition, *RPS18*, *RPS5* and *RPL8* were the most stable genes based on the organic, roadside and conventional sites of collection, respectively.

BestKeeper analysis

BestKeeper uses both the coefficient of variations (CVs) and standard deviations (SDs) to determine the stability of each candidate reference gene. The SDs used by BestKeeper were from Ct values. The stability of a reference gene is considered better if it has a lower $CV \pm SD$ value⁴⁴. According to BestKeeper analysis, *ACT* and *RPS18* were the top two most stable genes in the larval stage and *RPS18* and *RPL8* were the top most stable genes in the adult stage. The most stable candidate reference genes identified were *RPL32* and *RPLS18* on the organic area, *RPS18* and *RPS5* on the roadside area, and *ACT* and *RPS18* on the conventional area (Table 1).

Fig. 2. Expression stability of candidate reference genes in small carpenter bee across different developmental stages and landscapes using ΔCt method. The x-axis shows the candidate reference genes, and y-axis shows mean ΔCt values, where lower values indicate higher expression stability. (a) Larval stage (b) Adult stage (c) Organic sites (d) Roadside sites (e) Conventional sites.


Fig. 3. Expression stability measurement (M value) of candidate reference genes in small carpenter bee across developmental stages and landscapes using geNorm analysis. The x-axis shows the candidate reference genes, and the y-axis shows their average expression stability value (M value), where lower M indicates higher stability. (a) Larval stage (b) Adult stage (c) Organic sites (d) Roadside sites (e) Conventional sites.

Larva		Adult		Organic site		Roadside site		Conventional site	
Gene	CV \pm SD	Gene	CV \pm SD	Gene	CV \pm SD	Gene	CV \pm SD	Gene	CV \pm SD
ACT	8.53 \pm 2.12	RPS18	8.42 \pm 1.66	RPL32	5.67 \pm 1.06	RPS18	7.69 \pm 1.48	ACT	11.20 \pm 2.59
RPS18	10.78 \pm 2.02	RPL8	8.81 \pm 1.77	RPS18	6.35 \pm 1.24	RPS5	8.27 \pm 1.59	RPS18	13.02 \pm 2.48
RPL8	11.48 \pm 2.14	RPL32	9.41 \pm 1.80	RPL8	6.54 \pm 1.28	RPL8	8.76 \pm 1.70	RPL8	14.09 \pm 2.71
EF-1 α	11.92 \pm 2.01	EF-1 α	10.13 \pm 1.83	RPS5	6.72 \pm 1.28	GADPH	9.14 \pm 1.78	RPL32	15.13 \pm 2.72
RPL32	12.23 \pm 2.15	RPS5	10.13 \pm 1.96	EF-1 α	6.92 \pm 1.21	EF-1 α	9.71 \pm 1.69	EF-1 α	15.35 \pm 2.68
RPS5	12.69 \pm 2.34	ACT	10.2 \pm 2.27	GADPH	8.26 \pm 1.56	ACT	10.14 \pm 2.36	RPS5	16.52 \pm 2.99
GADPH	12.73 \pm 2.53	GADPH	11.31 \pm 2.14	ACT	9.16 \pm 2.25	RPL32	10.82 \pm 2.02	GADPH	16.52 \pm 3.23

Table 1. Expression stability of candidate reference genes in small carpenter bee under different developmental stages and landscapes using bestkeeper analysis. CV: Coefficient of variation, SD: Standard deviation.

NormFinder analysis

NormFinder identifies the most suitable reference gene by an expression stability value, where lower values indicate more stable expression. The expression stability of candidate reference genes of *C. calcarata* under different developmental stages and landscapes using NormFinder is presented in Fig. 4. *RPS18* and *RPL32* were identified as the most stable candidate reference genes based on the NormFinder analysis.

Fig. 4. Expression stability of reference genes in small carpenter bee across different developmental stages and landscapes using NormFinder analysis. The x-axis shows the candidate reference genes, and the y-axis shows their stability value calculated by NormFinder, where lower values indicate more stable expression.

Larva		Adult		Organic site		Roadside site		Conventional site	
Gene	Stability value	Gene	Stability value						
RPL8	1.68	RPS18	1.31	RPS18	1.31	RPS5	1.19	RPS18	1.32
RPS18	1.86	RPL8	1.68	EF-1 α	1.86	RPS18	1.41	RPL8	2.21
RPL32	2.59	EF-1 α	2.63	RPL32	3.16	EF-1 α	3.00	RPL32	2.34
EF-1 α	2.83	RPS5	3.93	RPL8	3.46	RPL8	4.00	EF-1 α	3.94
RPS5	5.23	RPL32	5.04	RPS5	3.76	GADPH	5.00	RPS5	4.95
ACT	5.66	GADPH	5.23	GADPH	6.00	RPL32	6.00	ACT	5.12
GADPH	6.24	ACT	7.00	ACT	7.00	ACT	7.00	GADPH	6.24

Table 2. Expression stability of candidate reference genes in small carpenter bee under different developmental stages and landscapes using reffinder analysis.

RefFinder analysis

RefFinder is an integrated analysis tool used for the validation of reference genes that incorporates several methods including GeNorm, BestKeeper, NormFinder, and ΔCt analysis. Based on the RefFinder, *RPL8* and *RPS18* were the top two most stable genes in the larval and adult stages. *RPS18* consistently ranked among the most stable candidate reference genes across all collection sites, paired with *EF-1 α* in the organic site, *RPS5* in the roadside site and *RPL8* in the conventional site (Table 2).

Discussion

C. calcarata is considered an indicator species of healthy ecosystems and an important pollinator for natural and agricultural ecosystems^{45,46}. This species is commonly used for studying pollinator ecology, behavior, evolution and genomics^{17,47}. In this study, we collected larval and adult stages of *C. calcarata* from different habitats, namely organic, roadside and conventional landscapes and evaluated the expression stability of seven candidate reference genes as *ACT*, *EF-1 α* , *GADPH*, *RPL8*, *RPL32*, *RPS5* and *RPS18* using widely adopted analytical tools. Integrated analysis using RefFinder revealed that *RPS18* consistently ranked among the top two most stable genes across both developmental stages and all habitat types. Similarly, *RPS5* was identified as one of the two most stable genes in larvae, adults and roadside habitat. However, *EF-1 α* and *RPL8* were among the other two most stable genes in the organic and conventional site, respectively. In a study of a solitary bee, *Megachile rotundata*, also reported *RPS18*, and *RPL8* as stable reference genes across all life stages and under a variety of environmental conditions⁴⁸. Similarly, a transcriptional study of *C. calcarata* reported significant variation in gene expression associated with overwintering²⁷. These findings suggest that *RPS18* and *RPL8* exhibit overall high expression stability and are suitable reference genes for gene expression studies in *C. calcarata* across different developmental stages and habitat conditions. To our knowledge, no study has investigated the gene expression stability of *C. calcarata*. Therefore, the present findings will be an important basis for future studies in *C. calcarata* with broader implications for native wild bees.

The expression stability of candidate reference genes varied across developmental stages and habitat types, suggesting that both intrinsic and environmental factors influence gene expression. In other bee species, such as *Euglossa viridissima* also exhibited age-related gene expression patterns⁴⁹. Differences between larvae and adults may reflect distinct physiological processes, such as growth and differentiation in larvae and processes like reproduction, foraging or immune function in adults⁵⁰. Additionally, environmental stressors such as pesticide exposure and resource availability may affect gene expression in bees⁵¹. These findings highlight the

need to carefully validate reference genes across both developmental stages and ecological contexts for accurate normalization in q-RT-PCR studies.

In conclusion, the present study evaluated the expression stability of seven candidate reference genes in *C. calcarata* across different developmental stages and habitat types. The results demonstrate that gene stability varies with both developmental stages and environmental conditions, underscoring the importance of selecting appropriate reference genes for accurate normalization in q-RT-PCR. Our findings provide a valuable resource for future gene expression studies in wild bees and highlight the necessity of validating reference genes under specific conditions.

Data availability

All raw data and related metadata of this report was deposited in Zenodo, <https://doi.org/10.5281/zenodo.16414347>.

Received: 28 July 2025; Accepted: 9 October 2025

Published online: 07 November 2025

References

- Klein, A.-M., Boreux, V., Fornoff, F., Mupepele, A.-C. & Pufal, G. Relevance of wild and managed bees for human well-being. *Curr. Opin. Insect Sci.* **26**, 82–88. <https://doi.org/10.1016/j.cois.2018.02.011> (2018).
- Classen, A. et al. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. *Proc. Biol. Sci.* **281**(1779), 20133148 (2014). <https://doi.org/10.1098/rspb.2013.3148>
- Stein, K. et al. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. *Sci. Rep.* **7**, 17691. <https://doi.org/10.1038/s41598-017-17970-2> (2017).
- Li-Byarlay, H. et al. Transcriptomic and epigenomic dynamics of honey bees in response to lethal viral infection. *Front. Genet.* **11**, 566320. <https://doi.org/10.3389/fgene.2020.566320> (2020).
- Li-Byarlay, H. et al. Biting behavior against *Varroa* mites in honey bees is associated with changes in mandibles, with tracking by a new mobile application for mite damage identification. *Apidologie* **56**, 3. <https://doi.org/10.1007/s13592-024-01126-z> (2025).
- Wang, F. et al. Insights into adult worker foraging dynamics within a *Bombus terrestris* (Hymenoptera: Apidae) colony. *J. Econ. Entomol.* **118** (1), 28–36. <https://doi.org/10.1093/jee/toae295> (2025).
- Brittain, C., Kremen, C. & Klein, A.-M. Biodiversity buffers pollination from changes in environmental conditions. *Glob Change Biol.* **19** (2), 540–547. <https://doi.org/10.1111/gcb.12043> (2013).
- Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Native bees provide insurance against ongoing honey bee losses. *Ecol. Lett.* **10** (11), 1105–1113. <https://doi.org/10.1111/j.1461-0248.2007.01110.x> (2007).
- Michener, C. D. *The Bees of the World* 2nd edn (John Hopkins University, 2007).
- Rehan, S. M. & Sheffield, C. S. Morphological and molecular delineation of a new species in the *Ceratina dupla* species-group (Hymenoptera: apidae: Xylocopinae) of Eastern North America. *Zootaxa* **2873** (1), 35–50. <https://doi.org/10.11646/zootaxa.2873.1.3> (2011).
- Hung, A. C. F. & Norden, B. B. Biochemical systematics of bees in the *Ceratina calcarata-dupla* complex. *Biochem. Syst. Ecol.* **15** (6), 691–693. [https://doi.org/10.1016/0305-1978\(87\)90048-2](https://doi.org/10.1016/0305-1978(87)90048-2) (1987).
- Lawson, S. P., Kennedy, K. B. & Rehan, S. M. Pollen composition significantly impacts the development and survival of the native small carpenter bee, *Ceratina calcarata*. *Ecol. Entom.* **46** (2), 232–239. <https://doi.org/10.1111/een.12955> (2021).
- Fiedler, A. K., Landis, D. A. & Arduser, M. Rapid shift in pollinator communities following invasive species removal. *Restor. Ecol.* **20** (5), 593–602. <https://doi.org/10.1111/j.1526-100X.2011.00820.x> (2012).
- Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. *Science* **347** (6229), 1255957. <https://doi.org/10.1126/science.1255957> (2015).
- Winfree, R. The conservation and restoration of wild bees. *Ann. N Y Acad. Sci.* **1195** (1). <https://doi.org/10.1111/j.1749-6632.2010.05449.x> (2010). ,169–97.
- Costa, J. T. The other insect societies: overview and new directions. *Curr. Opin. Insect Sci.* **28**, 40–49. <https://doi.org/10.1016/j.cois.2018.04.008> (2018).
- RehanSM & RichardsMH Nesting biology and subsociality in ceratina calcarata (Hymenoptera: Apidae). *Can. Ent.* **142** (1), 65–74. <https://doi.org/10.4039/n09-056> (2010).
- Rehan, S. M., Berens, A. J. & Toth, A. L. At the Brink of eusociality: transcriptomic correlates of worker behaviour in a small carpenter bee. *BMC Evol. Biol.* **14** (1), 260. <https://doi.org/10.1186/s12862-014-0260-6> (2014).
- Lawson, S. P., Ciaccio, K. N. & Rehan, S. M. Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. *Behav. Ecol. Sociobiol.* **70** (11), 1891–1900. <https://doi.org/10.1007/s00265-016-2194-z> (2016).
- Shell, W. A. & Rehan, S. M. Development of multiple polymorphic microsatellite markers for *Ceratina calcarata* (Hymenoptera: Apidae) using genome-wide analysis. *J. Insect Sci.* **16** (1), 57. <https://doi.org/10.1093/jis/ewu042> (2016).
- Sless, T. J. L. et al. Phylogenomics and biogeography of the small carpenter bees (Apidae: xylocopinae: Ceratina). *Mol. Phylogenet. Evol.* **198**, 108133. <https://doi.org/10.1016/j.ympev.2024.108133> (2024).
- Brasil, S. N. R., Kelemen, E. P. & Rehan, S. M. Historic DNA uncovers genetic effects of climate change and landscape alteration in two wild bee species. *Conserv. Genet.* **24** (1), 85–98. <https://doi.org/10.1007/s10592-022-01488-w> (2023).
- Rehan, S. M. et al. Molecular phylogeny of the small carpenter bees (Hymenoptera: apidae: Ceratinini) indicates early and rapid global dispersal. *Mol. Phylogenet. Evol.* **55** (3), 1042–1054. <https://doi.org/10.1016/j.ympev.2010.01.011> (2010).
- Mikát, M. & Straka, J. Genetic evidence for parthenogenesis in the small carpenter bee *Ceratina dallatorreana* (Apidae, Ceratinini) in its native distribution range. *J. Hymenopt. Res.* **95**, 199–213. <https://doi.org/10.3897/jhr.95.87165> (2023).
- Rehan, S. M., Glastad, K. M., Lawson, S. P. & Hunt, B. G. The genome and methylome of a subsocial small carpenter bee, *Ceratina calcarata*. *GBE* **8** (5), 1401–1410. <https://doi.org/10.1093/gbe/evw079> (2016).
- Rehan, S. M. et al. Conserved genes underlie phenotypic plasticity in an incipiently social bee. *GBE* **10** (10), 2749–2758. <https://doi.org/10.1093/gbe/evy212> (2018).
- Durant, D. R., Berens, A. J., Toth, A. L. & Rehan, S. M. Transcriptional profiling of overwintering gene expression in the small carpenter bee, *Ceratina calcarata*. *Apidologie* **47** (4). <https://doi.org/10.1007/s13592-015-0402-x> (2016). ,572–82.
- Arsenault, S. V., Hunt, B. G. & Rehan, S. M. The effect of maternal care on gene expression and DNA methylation in a subsocial bee. *Nat. Commun.* **9** (1), 3468. <https://doi.org/10.1038/s41467-018-05903-0> (2018).
- Chau, K. D., Shamekh, M., Huisken, J. & Rehan, S. M. The effects of maternal care on the developmental transcriptome and metatranscriptome of a wild bee. *Commun. Biol.* **6** (1), 904. <https://doi.org/10.1038/s42003-023-05275-2> (2023).
- Withee, J. R. & Rehan, S. M. Social aggression, experience, and brain gene expression in a subsocial bee. *Integr. Comp. Biol.* **57** (3), 640–648. <https://doi.org/10.1093/icb/icx005> (2017).

31. Nguyen, P. N. & Rehan, S. M. Developmental Microbiome of the small carpenter bee. *Ceratina Calcarata* eDNA. **4** (4), 808–819. <https://doi.org/10.1002/edn3.291> (2022).
32. Gibson, U. E. M., Heid, C. A. & Williams, P. M. A novel method for real time quantitative RT-PCR. *Genome Res.* **6** (10), 995–1001. <https://doi.org/10.1101/gr.6.10.995> (1996).
33. Li-Byarlay, H. et al. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honeybee. *Proc. Natl. Acad. Sci. USA* **110**, 12750–12755 (2013). <https://doi.org/10.1073/pnas.1310735110>
34. Li, H., Buczkowski, G. & Mittapalli, G. Transcriptomic profiles of *Drosophila melanogaster* third instar larval midgut and responses to oxidative stress. *Insect Mol. Biol.* **17**, 325–339. <https://doi.org/10.1111/j.1365-2583.2008.00808.x> (2008).
35. Ho, K. H. & Patrizi, A. Assessment of common housekeeping genes as reference for gene expression studies using RT-qPCR in mouse choroid plexus. *Sci. Rep.* **11**, 3278. <https://doi.org/10.1038/s41598-021-82800-5> (2021).
36. Silver, N., Best, S., Jiang, J. & Thein, S. L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. *BMC Mol. Biol.* **7** (1), 33. <https://doi.org/10.1186/1471-2199-7-33> (2006).
37. Andersen, C. L., Ldet-Jensen, J. & Ørnloft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance Estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res.* **64** (15), 5245–5250. <https://doi.org/10.1158/0008-5472.CAN-04-0496> (2004).
38. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* **3** (7), research0034. <https://doi.org/10.1186/gb-2002-3-7-research0034> (2002).
39. Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. *Biotechnol. Lett.* **26** (6). <https://doi.org/10.1023/B:BILE.0000019559.84305.47> (2004). ,509–15.
40. Xie, F., Xiao, P., Chen, D., Xu, L. & Zhang, B. MiRDeepFinder: a MiRNA analysis tool for deep sequencing of plant small RNAs. *Plant. Mol. Biol.* **80**, 75–84. <https://doi.org/10.1007/s11103-012-9885-2> (2012).
41. Vickruck, J. L., Rehan, S. M., Sheffield, C. S. & Richards, M. H. Nesting biology and DNA barcode analysis of *Ceratina dupla* and *C. mikkamqi*, and comparisons with *C. calcarata* (Hymenoptera: apidae: Xylocopinae). *Can. Entomol.* **143** (3), 254–262. <https://doi.org/10.4039/n11-006> (2011).
42. Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. *Nucleic Acids Res.* **35**, W71–W4. <https://doi.org/10.1093/nar/gkm306> (2007).
43. Zhong, S. & ctrlGene Assess the Stability of Candidate Housekeeping Genes. R package version 1.0.1 ed. (2019).
44. De Spieghelaere, W. et al. Reference gene validation for RT-qPCR, a note on different available software packages. *PLoS One.* **10** (3), e0122515. <https://doi.org/10.1371/journal.pone.0122515> (2015).
45. Lawson, S. P., Kennedy, K. B. & Rehan, S. M. Pollen composition significantly impacts the development and survival of the native small carpenter bee, *Ceratina calcarata*. *Ecol. Entomol.* **46** (2), 232–239. <https://doi.org/10.1111/een.12955> (2021).
46. Nooten, S. S. & Rehan, S. M. Agricultural land use yields reduced foraging efficiency and unviable offspring in the wild bee *Ceratina calcarata*. *Ecol. Entomol.* **44** (4), 534–542. <https://doi.org/10.1111/een.12730> (2019).
47. Brenman-Suttner, D. B., Rehan, S. M. & Zayed, A. Exploring the genetics of social behaviour in *C. calcarata*. *Sci. Rep.* **15**, 5580. <https://doi.org/10.1038/s41598-025-89870-9> (2025).
48. Xu, J., Welker, D. L. & James, R. R. Variation in expression of reference genes across life stages of a bee, *Megachile rotundata*. *Insects* **12** (1), 36. <https://doi.org/10.3390/insects1201003> (2021).
49. Séguret, A. et al. Transcriptomic signatures of ageing vary in solitary and social forms of an Orchid bee. *GBE* **13** (6), evab075. <https://doi.org/10.1093/gbe/evab075> (2021).
50. Page, R. E. Jr & Peng, C. Y. S. Aging and development in social insects with emphasis on the honey bee, *Apis mellifera* L. *Exp. Gerontol.* **36**(4–6),695–711 (2001). [https://doi.org/10.1016/S0531-5565\(00\)00236-9](https://doi.org/10.1016/S0531-5565(00)00236-9)
51. Costa, C. P. et al. Pollen diet mediates how pesticide exposure impacts brain gene expression in nest-founding bumble bee queens. *Sci. Total Environ.* **833**, 155216. <https://doi.org/10.1016/j.scitotenv.2022.155216> (2022).

Acknowledgements

We thank Sakthi Kumaran Subburayalu for their valuable information and technical assistance, and appreciate Heaven Strachan, Laverne Ambrister, and Keara Clarke for assisting with sample collections.

Author contributions

Conceptualization : Hongmei Li-Byarlay, Zixiao Zhao, Sandra M. Rehan
 Sample Collection : Hongmei Li-Byarlay, Zixiao Zhao, Danielle Kroh
 Formal analysis : Rameshwor Pudasaini
 Investigation : Zixiao Zhao, Camiyah Woods, Hongmei Li-Byarlay
 Resources : Hongmei Li-Byarlay
 Validation : Hongmei Li-Byarlay
 Writing – original draft : Rameshwor Pudasaini, Zixiao Zhao
 Writing – review & editing : all authors.

Funding

The research is funded by USDA NIFA award 2021-38821-34576.

Declarations

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1038/s41598-025-23816-z>.

Correspondence and requests for materials should be addressed to H.L.-B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025, corrected publication 2025