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Accurate skin lesion segmentation is critical for improving early diagnosis of skin cancer. In this 
study, we propose AttenUNeT X, a novel extension of the U-Net architecture that integrates three 
key enhancements: (i) a feedback mechanism within decoder blocks to iteratively refine spatial 
features, (ii) a custom Order Statistics Layer (OSL) to capture extreme-value lesion patterns, and (iii) 
enhanced attention modules to prioritize diagnostically relevant regions. These progresses improve 
segmentation performance by allowing for a targeted reaction to important lesion features. These 
additions work in synergy to improve boundary precision and contextual learning. The model was 
trained and validated using the International Skin Imaging Collaboration (ISIC 2018) Dataset, with 
PH2-Pedro Hispano Hospital Dataset was experimented for comparative analysis and ISIC 2017 
used for external testing and cross-validation, respectively and guarantee dependable performance 
across a range of images distributions. Our preprocessing pipeline included hair removal, resizing, 
normalization, and extensive data augmentation to promote robustness. To facilitate model 
generalizability, the preprocessing pipeline featured data augmentation and images enhancement, 
and the attention-augmented encoder-decoder layers of the design highlighted key lesion features. 
Experimental results demonstrate strong performance, achieving a Dice coefficient of 0.9211, 
Intersection over Union (IoU) of 0.8533, and pixel accuracy of 0.9824 on ISIC 2018. Similarly high 
metrics were observed on PH2 and ISIC 2017 Datasets. These outcomes validate the proposed model’s 
potential for reliable deployment in clinical dermatological workflows.
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Abbreviations
ISIC	� International skin imaging collaboration
DL	� Deep learning
CNN	� Convolutional neural network
ROI	� Region of interest
PH2	� Pedro Hispano hospital dataset

Skin cancer, particularly melanoma, remains a critical public health challenge due to its rising incidence and 
mortality. Early and accurate detection substantially improves treatment outcomes, yet dermoscopy-based 
diagnosis is often limited by subjectivity and variability among clinicians. To address these challenges, computer-
aided diagnosis (CAD) systems leveraging deep learning have become increasingly important for reliable and 
automated skin lesion analysis.

Among segmentation frameworks, U-Net and its variants dominate biomedical imaging owing to their 
encoder–decoder structure and skip connections. Enhancements such as attention mechanisms and multi-
scale feature fusion have further improved boundary detection and texture representation. However, existing 
segmentation models continue to face three major challenges: (i) limited ability to refine lesion boundaries during 
decoding, (ii) poor capture of extreme features such as irregular color and shape outliers, and (iii) insufficient 
contextual attention to subtle lesion regions. To overcome these limitations, we propose AttenUNeT X, a refined 
U-Net architecture that introduces three complementary modules: (i) an iterative feedback mechanism in 
decoder blocks for progressive spatial refinement, (ii) a novel Order Statistics Layer (OSL) to capture extreme-
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value-based lesion details, and (iii) enhanced attention in skip connections to selectively emphasize medically 
relevant regions. These components collectively enable robust segmentation, particularly in low-contrast or 
heterogeneous Datasets. We evaluate AttenUNeT X on three benchmark dermoscopic Datasets International Skin 
Imaging Collaboration (ISIC) 2018, ISIC 2017, and Pedro Hispano Hospital Dataset (PH2), achieving superior 
segmentation performance across all. Our contributions lie in designing a clinically practical and technically 
novel segmentation framework, validated across diverse Datasets with strong generalizability for dermatology 
workflows. The overall workflow of the proposed AttenUNeT X framework, including preprocessing, feature 
extraction, feedback mechanism, and segmentation output, is illustrated in Fig. 1

Literature survey
This section offers a thorough analysis of the many methods used to segment skin lesions in order to comprehend 
their working principles and pinpoint any possible drawbacks. Effective diagnostic techniques are becoming 
more and more important as the incidence of skin cancer grows worldwide. Accurately detecting and treating 
skin lesions, especially melanomas, may be extremely difficult. Manual evaluations by qualified dermatologists 
have been a major component of traditional diagnostic techniques, although they can be laborious and prone 
to inter-observer variability. Automated skin lesion segmentation systems have been created and put into use to 
overcome these inefficiencies. Recent technological developments, especially in the field of artificial-intelligence 
have significantly improved dermoscopic image analysis capabilities. In medical image processing, deep learning 
(DL) approaches have proven very useful, allowing for better skin lesion identification, segmentation, and 
classification.

These techniques make use of sophisticated neural network topologies, such U-Net, which is excellent at 
identifying the borders of lesions and identifying complicated patterns in dermoscopic images. By enabling 
the network to concentrate on important aspects of the images, the incorporation of attention mechanisms 
into these models enhances the segmentation process and raises the diagnostic accuracy. These cutting-edge 
methods greatly increase the possibility of early identification and better patient outcomes in the treatment of 
skin cancer. Conventional techniques for segmenting skin lesions have mostly depended on the extraction and 
detection of min-level features. The accuracy of segmentation has been further improved by advancements in 
feature aggregation. To improve global context extraction, the segmentation Transfers (SETR)1 modified the 
transformer for systematic segmentation and usd it in an encoder-decoder architecture. Ali et al.2 Proposes a 
two-stage SR pipeline combining SwinIR (ViT) and Diffusion Models to enhance and super-resolve RS images. 
SwinIR captures global context, while iterative DM restores fine details.

Mahmood et al.3,4 introduces an AI-enhanced microscopy framework for breast cancer diagnosis using image 
classification techniques. It employs Convolutional Neural Network (CNN) with transfer learning to classify 
breast histopathological images and demonstrates high precision in detecting cancer subtypes and emphasizes 
the need for explainable AI in medical microscopy applications. And also explore multi-modal neuroimaging 
approaches (MRI, PET, fMRI) combined with deep learning for early detection of Alzheimer’s disease. Highlights 
the effectiveness of 3D-CNN, hybrid CNN-LSTM models, and fusion architectures in integrating structural and 
functional imaging, It calls attention to real-time diagnosis, data imbalance, and clinical interpretability. As well 
as combines radiomics and deep learning (SE-ResNet152, VGGNet, CNN + LSTM) with swarm optimization 

Fig. 1.  Overview of the proposed AttenUNeT X framework showing the preprocessing, encoder–decoder 
pipeline, and iterative feedback mechanism.
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for feature selection and classification. Uses Grad-CAM for interpretability achieves Area under curve (AUC) of 
0.99 on mammography data in another proposal. Again the author Mahmood et al.3,4 proposes a deep learning 
approach to detect black fungus from CT and MRI scans using CNN-based architectures. The model achieves 
strong segmentation and classification performance. The work is relevant in post-COVID diagnostic contexts 
and focuses on early triaging and intervention. Hassan et al.5,6 introduce an attention-based deep neural network 
model for detecting dysarthria in speech data from patients with cerebral palsy and ALS. Using MFCC and 
log-Mel features, their model outperforms baseline CNNs. The study highlights how attention layers improve 
classification of subtle speech impairments. Mahmood et al.7,8 present MFF-HistoNet, a novel multiscale feature 
fusion network that integrates shallow and deep features from histopathological images. The model is designed 
for high sensitivity and accuracy in cancer subtype classification. Performance is benchmarked on public 
Datasets and shows superiority over conventional CNN models. Hassan et al.5,6 Proposes an ensemble of ResNet 
and Inception networks with GWO for feature selection. Yields high classification metrics (accuracy 96.5%, 
AUC 0.971) on WBCD and mammography Datasets.

Rehman et al.9 Uses Swin-ViT + DeepLabV3 + for segmentation and classification of kidney cancer in CT 
images. ASPP and Grad-CAM improve interpretability. Combines global and local features for tumor boundary 
delineation, Transformer topologies have recently shown remarkable results in the segmentation of skin lesions 
(Wu and Zhang10). Wang et al.11,12 efficiently address ambiguous boundary concerns, however this may miss 
important information between succeeding modules. There have also been suggestions for parallel adaptations 
in which the CNN and transformer properties are combined (Wu and Zhang10; Zhang et al.13). The investigation 
of rich multi-scale characteristics may be limited by these fusions, which frequently take place later in the 
transformer branch. With its primary classifications of edge detection with region growth techniques, image 
segmentation has undergone tremendous change. Whereas region growth divides the image based on local 
similarities, edge detection looks for discontinuities between areas. These techniques frequently have drawbacks, 
including poor segmentation accuracy, noise sensitivity, and the requirement for manual feature extraction, 
despite their fundamental function. Liu et al. highlighted the limitations of classical methods such as decision 
trees and SVMs, which require manual feature engineering, and emphasized the superiority of deep learning-
based approaches. U-Net, with its encoder–decoder structure, automates feature extraction and improves 
segmentation accuracy, while attention mechanisms further enhance feature representation. Recent models, 
including MRP-UNet, have been shown to outperform traditional methods in segmentation tasks14. Ahmed 
et al. proposed DuaSkinSeg, a dual encoder model for skin cancer segmentation that integrates MobileNetV2 
to capture local features and a ViT-CNN module to model global context. Experimental evaluation on ISIC 
Datasets demonstrated the model’s competitive performance compared with existing methods, highlighting its 
potential to improve segmentation accuracy and computational efficiency in dermatological diagnosis15.

Balraj et al. examined traditional and deep learning segmentation methods, providing a comparative analysis 
of their effectiveness in terms of Dice Similarity Coefficient (DSC) and Jaccard Index. Their proposed MADR-
Net architecture, which incorporates multi-level attention and dilated residual connections, achieved superior 
performance and outperformed several state-of-the-art approaches16. Innani et al. developed Efficient-GAN, a 
generative adversarial network framework for skin lesion segmentation from dermoscopic images. The model 
uses a generator–discriminator structure to produce accurate lesion masks and outperformed existing methods 
across multiple evaluation metrics. Furthermore, a lightweight variant, Mobile-GAN, was introduced, offering 
comparable results with significantly fewer parameters, thereby facilitating deployment in resource-constrained 
environments17,18. Soni et al. addressed segmentation challenges caused by image variability and artifacts by 
proposing ARCUNet, which combines residual convolutions with attention mechanisms. The model achieved 
outstanding results on ISIC Datasets, reporting accuracies of 98.12%, 96.45%, and 98.19%, with Jaccard scores 
of 91.14%, 88.33%, and 93.53%, demonstrating its robustness and high precision in lesion segmentation19. Bai et 
al. introduced SSR-UNet, a novel U-shaped segmentation architecture that incorporates bidirectional scanning 
to enhance feature extraction. Additionally, a spatially constrained loss function was designed to stabilize 
gradients and improve overall training performance, leading to improved segmentation accuracy20. Yang et al. 
presented a deep learning model for skin scar segmentation using a dual encoder network that integrates CNN 
and Swin Transformer architectures. The approach introduced a multi-scale feature fusion module along with 
a novel multi-pooling channel–spatial attention mechanism. Experimental results showed strong performance, 
with 96.01% accuracy, 77.43% precision, 90.17% recall, 71.38% Jaccard Index, and 83.21% Dice Coefficient, 
underscoring its potential for precise scar analysis in clinical applications21. Focus-net, which focuses on lung 
lesion and melan2oma segmentation, was developed by Kaul et al.22 by combining the Squeeze as well as Excite 
module with ResNet.

In bio-medical research, deep learning has been extensively recognized for its use in pre-segmentation 
procedures for diagnostic tasks. Using the ISIC 2018 Dataset, Mahmud et al.23 Introduces SkinNet-14, a 
lightweight transformer-based model built on Compact Convolutional Transformer (CCT) to classify skin 
cancer from 32 × 32 pixel dermoscopy images. Incorporates optimized data augmentation and preprocessing 
to handle class imbalance and noise while significantly reducing training time, making it suitable for resource-
limited clinical settings. Li et al.24 Proposes a U-Net-based architecture that integrates multiscale input fusion 
with Res2SE and pyramid dilated convolution modules for improved skin lesion segmentation. Res2SE captures 
fine-grained semantic and channel features, while the pyramid structure enhances multiscale context awareness. 
Achieves strong performance on ISIC Datasets with better boundary localization and robustness to lesion size 
variation. A detailed comparative summary of existing skin-lesion segmentation approaches is provided in Table 
1.
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Data set description
ISIC 2018 dataset
This study utilized three widely accepted dermoscopic image Datasets for training, validation, testing, and 
cross-validation: ISIC 2018, PH2 and ISIC 2017. ISIC 2018 (Task 3: Lesion Segmentation) was the primary 
Dataset used for training and validation due to its large size and diversity. It consists of 2594 expertly annotated 
dermoscopic images spanning multiple lesion types. In our setup, 1815 images were used for training, 259 for 
validation, and 520 for testing. This Dataset provides a rich variety of skin lesion morphologies and lighting 
conditions, making it suitable for training deep learning models.

PH2 dataset
The PH2 Dataset consists of 200 dermoscopic images with corresponding ground-truth masks. PH2 was not 
used in the main training pipeline, but you experimented with it by splitting it into training/validation for 
comparative analysis. For supplementary analysis, the PH2 dataset (200 images) was split into 80% training (160 
images) and 20% validation (40 images). Small-split experiment to check model adaptability on a limited dataset 
(hence PH2 appears in Table 5). This split was used only to test the adaptability of the proposed model on limited 
data, as PH2 is too small to serve as a primary training dataset.

The full PH2 dataset was also used separately as an external test set (Table 10) to evaluate cross-dataset 
generalization and complete dataset as an external test set to evaluate generalization (results reported in Table 
10). This dual usage was only for experimental comparison and does not affect the main training pipeline, which 
is based on ISIC 2018.

 ISIC 2017 dataset
ISIC 2017, which includes over 2,000 annotated dermoscopic images, was utilized for cross-validation purposes 
only. Specifically, we allocated 1400 images for training, 300 for validation, and 300 for testing, solely to evaluate 
the transferability and domain adaptability of the proposed model trained on ISIC 2017.

To mitigate overfitting risks especially when testing on smaller Datasets like PH2 we incorporated several 
measures:

Study Metrics Dataset Methodology Application

Wang and Xu11 Accuracy: 95.2%, AUC: 91.0% ISIC 2018 Boundary-Aware Method Skin lesion 
segmentation

Wu and Zhang10 Accuracy: 96.0%, ISIC, PH2 Comprehensive Review Skin lesion 
segmentation methods

Dai et al.25 Accuracy: 94.5%, Precision: 92.1%, IoU: 87.2% ISIC 2018 Multi-Scale Residual Encoding and Decoding (Ms RED) Skin lesion 
segmentation

Ta et al.26 Accuracy: 95.3%, F1 Score: 94.0% Private Dataset Complementary and Contrastive Network Stimulus segmentation 
and generalization

Deng27 AUC: 92.7%, IoU: 89.1% ISIC FAT-Net (Feature Adaptive Transformers) Automated skin lesion 
segmentation

Jalil and 
Usman28 Accuracy: 93.7%, F1 Score: 92.2% ISIC 2018 (Task 3) Improved Tuna Swarm-based U-EfficientNet Skin lesion 

segmentation

Innani et al.17,18 F1 Score: 90.5%, IoU: 85.6% PH2, ISIC 2018, ISIC 
2017 Generative Adversarial Networks (GANs) Skin lesion 

segmentation

Dinesh abd 
Lakshmanan29 Dice: 0.908 Private Dataset DeepOverlay L-U-Net Hybrid learning for 

lesion detection

Li et al.24
Dice Similarity Coefficient (DSC): 92.13% 
(ISIC 2018), 90.62% (ISIC 2017), 88.74% (ISIC 
2016)

ISIC 2016, ISIC 2017, 
ISIC 2018 Dataset

Enhanced U-Net with Multiscale input fusion Res2SE 
blocks Pyramid dilated convolution for multiscale context

Skin lesion 
segmentation

Liu et al.30 Accuracy: 95.51%; Sen: 88.57%; Spec: 93.44%; 
Jaccard: 91.28%; Dice: 92.36

ISIC 2016, ISIC 2017, 
ISIC 2018, PH2, 
and Human Against 
Machine 10,000 
Dataset (HAM10000 
Datasets)

MRP-UNet for skin lesion segmentation: U-Net with 
attention mechanisms; automated feature extraction; 
improved encoder-decoder structure

Skin lesion 
segmentation

Ahmed et al.15 Accuracy: 97.08%; Precision: 92.44%; Recall: 
91.12%; Jaccard: 84.63%; F1Score: 91.78 ISIC Datasets Dual encoder: MobileNetV2 (local features) + ViT-CNN 

(global context)
Skin lesion 
segmentation

Balraj et al.16 Accuracy: 96.36%; Precision: 92.50%; Recall: 
87.35%; Jaccard: 81.44%; Dice: 89.46

dermoscopy images, 
(ISIC) in 2017 
Datasets

MADR-Net:Comparison of traditional & DL approaches; 
DSC & Jaccard analysis

Skin lesion 
segmentation

Innani et al.17,18 Accuracy: 94.5%; Spec: 95.5%; Sen: 93.6%; 
Jaccard: 83.6%; Dice: 90.1 dermoscopic images Efficient-GAN / Mobile-GAN: GAN-based segmentation; 

generator + discriminator; lightweight Mobile-GAN
Skin lesion 
segmentation

Soni et al.19 Accuracy: 98.19%; Jaccard: 93.53%; Dice: 96.88 ISIC Datasets ARCUNet : Residual convolutions + attention mechanisms Skin lesion 
segmentation

Bai et al.20 Accuracy: 95.34%; Spec: 97.54%; Sen: 88.49%; 
Jaccard: 71.38%; Dice: 90.21 ISIC Dataset, PH2 SSR-UNet: U-shaped segmentation with bidirectional 

scanning + spatially-constrained loss
Skin lesion 
segmentation

Yang et al.21 Accuracy: 96.01%; Precision: 77.43%; Recall: 
90.17%; Jaccard: 71.38%; Dice: 83.21 Skin scar Dataset Dual Encoder (CNN + Swin Transformer) Multi-scale 

feature fusion + multi-pooling channel-spatial attention
Skin lesion 
segmentation

Table 1.  summary of existing skin-lesion segmentation approaches.
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•	 Extensive data augmentation (rotation, flipping, zooming, and shearing)
•	 Use of regularization techniques such as dropout and early stopping
•	 Architecture-level enhancements that encourage spatial feature generalization, such as feedback loops and 

attention modules

These strategies collectively enabled the model to generalize well across Datasets of varying size and complexity. 
The dataset split configuration used for training, validation, and testing is summarized in Table 2.

Methodology
The proposed AttenUNeT X model builds upon the classic U-Net architecture, incorporating three 
significant enhancements tailored for precise and robust skin lesion segmentation: Feedback Mechanism 
in Decoder Blocks, Order Statistics Layer (OSL), and Enhanced Attention Modules. These components are 
strategically designed to improve boundary delineation, capture extreme-value features in lesion texture, 
and highlight diagnostically relevant regions all of which are critical in dermatology. In preparing our 
model for skin lesion segmentation, we embarked on a journey utilizing two foundational Datasets: ISIC 
and PH2. These Datasets offered a diverse array of dermoscopic images, crucial for training our model to 
adeptly handle the various features of skin lesions. To ensure uniformity in the preparation of images and 
segmentation masks, we developed a function called load_and_preprocess_Dataset. This function serves 
as a comprehensive pipeline, meticulously designed to load, preprocess, and augment the Dataset. The 
ultimate goal was to guarantee that our model was trained on consistent and high-quality inputs.

 Pre-preprocessing
Black hat transformation for hair detection
In our preprocessing pipeline, the initial step involved employing a black hat transformation to isolate hair in the 
images. This morphological operation emphasizes darker regions, thereby facilitating the differentiation of hair 
from the lighter surrounding skin. The mathematical definition of the black hat transformation is expressed as:

	 BlackHat = fclosing (I) − I� (1)

where fclosing (I) denotes the morphological closing of the input image I using a 17 × 17 rectangular structuring 
element.

Binary thresholding
Following the black hat transformation, we applied binary thresholding to create a hair mask. This step sharpens 
the definition of detected hair regions by setting a threshold T of 50. The thresholding process can be represented 
mathematically as:

	
p (x, y) =

{ 255 if I (x, y) > T
0 otherwise � (2)

where I (x, y) denotes the intensity at each pixel.

In-painting for hair removal
With the hair regions highlighted in a binary mask, we performed in-painting to seamlessly fill these areas. 
Utilizing the Telea in-painting method, we reconstructed the identified regions by propagating pixel values from 
neighboring areas, effectively “healing” the image while preserving the integrity of the lesions.

Resizing and normalization
To ensure uniformity across all samples, we resized each image to a standardized dimension of 256 × 256 pixels. 
Subsequently, we normalized the pixel dimension values to the between [0, 1] using the formula:

	
Normalized Pixel Value = Original Pixel Value

255
� (3)

This normalization step maintains consistent brightness and contrast across images, allowing the model to 
concentrate on lesion features rather than variations in lighting or imaging conditions across the Datasets.

Dataset Total images Training images Validation images Testing images

ISIC 2018 2594 1815 259 520

PH2 200 160 40 200 (External testing)

ISIC 2017 2000 1400 300 300

Table 2.  Datasets splitting for training, validation, testing in skin lesion segmentation.
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Data augmentation
To further enhance our Dataset, we integrated ImageDataGenerator for data augmentation. Given the high 
variability of lesion appearances in the Datasets, augmentation proved vital in helping our model generalize 
effectively by exposing it to diverse transformations. The configurations we implemented included:

•	 Rotation: arbitrary rotations within ± 30°.
•	 Width: arbitrary horizontal move within 10% of the entire width.
•	 Height: arbitrary vertical move within 10% of the entire height.
•	 Shearing: A shearing sort of 0.2.
•	 Zooming: Zoom transformations up to 40%.
•	 Flipping: Both horizontal and vertical flips applied randomly.

These augmentations introduced spatial and orientation-based variations, enriching the learning experience and 
mitigating over-fitting. By simulating a variety of real-world conditions, our model learned to recognize lesions 
with greater robustness. These steps standardize lesion input and simulate real-world variability, improving 
generalization across Datasets. While the visual appearance of the preprocessed image remains similar to 
the original, significant pixel-level transformations occur during preprocessing. Techniques like Black Hat 
transformation and in-painting do not drastically alter the RGB values but remove subtle obstructions such as 
hairs, which are difficult for a model to ignore. Additionally, resizing, normalization, and augmentation ensure 
that all images are uniform and model-friendly. These improvements are not always apparent to the human eye, 
but they play a critical role in improving feature extraction and segmentation accuracy. Preprocessed examples 
of ISIC 2018 dermoscopic images after hair removal and augmentation are shown in Fig. 2.

Architecture
As we embarked on our journey to refine the U-Net structural design, we recognized the importance 
of crafting a robust framework tailored to intricacies of lesion segmentation. We included two essential 
elements: a feedback mechanism embedded in the decoder blocks and an Ordered Statistics Layer for 
improved feature extraction. Our architecture is based on a carefully crafted U-Net model that can 
process 256 × 256 pixel input images. The structure is revealed through a number of thoughtfully built 
blocks. AttenUNeT X follows the standard encoder–decoder structure of U-Net with key architectural 
improvements.

Fig. 2.  Preprocessing steps performed on the dataset. Original dermoscopic image, corresponding lesion mask 
aligned for training and hair-removed and resized image.
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Encoder
Sequential convolutional blocks extract features at multiple scales, activated via ReLU, and downsampled 
via max pooling. This helps the model capture hierarchical features of lesion texture and color. Two primary 
components make up the encoder, which is intended to gradually extract information from the input image. 
The ReLU function activates the convolutional layers used in each block. A max-pool layer that deliberately 
lowers dimensionality complements the convolutional layers with 32, 3 × 3 filters in the first encoder block. 
The model ability to take out pertinent skin tone is further improved in its second encoder block, when the 
number of filters increases to 64.

Order statistics layer
Positioned at the bottleneck, the OSL computes normalized maximum and minimum values across feature 
map channels and concatenates them to the feature representation. Lesions often show extreme intensities 
at their borders or cores. Capturing this distribution enhances the model’s ability to discriminate between 
lesion and background, particularly in low-contrast areas. We realized that a reliable way to extract and 
represent important characteristics from the input images was essential in our efforts to improve the 
design of U-Net for skin lesion segmentation. To fill this gap, we created the Order Statistic Layer, a brand-
new element made especially for getting extreme values from the feature maps produced by the layers 
that use convolution. These extreme values might be either minimum or maximum. In order to properly 
define skin lesions, our model must be able to concentrate on both obvious characteristics and minute 
details, which is greatly aided by this layer. The inclusion of the Order Statistics Layer (OSL) is particularly 
beneficial in handling low-contrast lesions, where boundaries often blend into surrounding skin. Unlike 
global preprocessing techniques such as histogram equalization or contrast normalization, which apply 
uniform corrections across the entire image, OSL functions as a learnable and adaptive layer. This allows 
the network to dynamically capture local intensity distributions during training, thereby enhancing fine-
grained boundary delineation in challenging cases.

Input tensor definition
With dimensions H × W × C, the input tensorX is where the process starts, where:

•	 H  is the feature map’s height.
•	 W  stands for the feature map’ width.
•	 C  is the feature map generated from the preceding convolutional layers has a channel count.

This tensor is a crucial tool for the segmentation process as it contains extensive information on the 
characteristics that were taken from the input image.

Calculation of Minimum and Maximum Values: In order to effectively collect the highest and lowest values 
that are important for the representation of features, we calculate the Optimized max and min thresholds 
throughout the contribution tensor’s channel dimension. These operations’ formulas are:H × W × C

	
smallorderk = 1

k

k∑
i=1

mini (X, axis = −1, keepdims = True)� (4)

	
large_orderk = 1

k

k∑
i=1

maxi (X, axis = −1, keepdims = True)� (5)

In addition, we scale the variation and lessen the susceptibility to outliers by normalizing these values:

	
small_ordernorm = small_order

large_order+ ∈ � (6)

	
large_ordernorm = large_order

large_order+ ∈ � (7)

Here:

•	 small_ordernorm  and large_ordernorm  are the normalized minimum and maximum values.
•	 ∈ is a small constant to avoid division by zero.
•	 k refers to the number of iterations used to compute the minimum and maximum values

The model may concentrate on both the lowest along with highest feature values, that might be important 
markers for lesion features, according to these calculations.

Combining Statistics with the feature map: Following the extraction of extreme values, we concatenate 
these statistics with the novel feature map X to augment the attribute representation. The concatenation 
operation is represented mathematically as:
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	 Xenhanced = Concat(X, small_order, large_ordernorm)� (8)

As a result, the new tensor Xenhanced  ​ possesses dimensions H × W × (C + 2), effectively incorporating 
the minimum and maximum values as additional channels. This augmentation enriches the feature 
space, providing the model with more comprehensive information for the segmentation task.

Impact on learning
The integration of the extreme values into the feature representation significantly enhances the model’s 
learning capabilities. By emphasizing critical features, the layer facilitates a more nuanced understanding 
of the data. The output from the feature extraction process can be described as:

	 Xfinal = FeatureExatractor(Xenhanced)� (9)

In this equation, FeatureExatractor symbolizes the subsequent layers (typically convolutional layers) 
that further process the enhanced feature map to extract relevant patterns for segmentation.

Facilitating robust feature learning
By capturing the extreme statistics, the Order Statistics Layer empowers the model to learn effectively 
from both global and local feature characteristics. The final segmentation output can be represented as:

	 YOUTPUT = σ(Wf ∗ Xfinal + bf)� (10)

where:

•	 YOUTPUT  is the final segmentation mask.
•	 Wf  is the weight matrix associated with the final convolutional layer.
•	 bf ​ represents the bias term.
•	 σ is the sigmoid activation function, which produces pixel values in the range [0,1].

This process ensures that the model is capable of generating precise segmentation masks, crucial for 
accurate medical diagnoses. Lesions often show extreme intensities at their borders or cores. Capturing 
this distribution enhances the model’s ability to discriminate between lesion and background, particularly 
in low-contrast areas. In the architecture, the Bottleneck Block is a crucial intersection. Here, we use 
128-filter convolutional layers, which enable the model to better explore the intricacies of the given 
input. This block is essential for making the switch from encoder into decoder easier.

Decoder with feedback mechanism
We incorporate an upsampling layer and concatenate it with matching encoder features as we move up 
through the Decoder Blocks. As we recreate the image, this important phase guarantees that important 
information is maintained. To preserve the model’s nonlinear properties, the decoder uses convolutional 
layers using 64 and 32 filters and applies the same ReLU activation.

The feedback mechanism contributes to iterative refinement by reintroducing decoder features into 
earlier layers, allowing progressive error correction in lesion boundary prediction. Unlike attention-
guided mechanisms, which emphasize salient features within a single forward pass, our feedback 
design enables multi-pass refinement without requiring multiple networks. Compared to multi-stage 
architectures, which often rely on cascaded heavy models, our feedback module provides a lightweight 
and computationally efficient solution for fine boundary delineation. Each decoder block performs: 
Upsampling, Skip connection from corresponding encoder layer, Feedback connection from earlier 
decoder outputs. As we ventured into the decoder blocks, we recognized the need for a feedback 
mechanism to reinforce information flow through recurrent connections. This innovative approach 
involves concatenating outputs from earlier layers, followed by convolutional operations and batch 
normalization:

	 Y = Concat (X, S)� (11)

where S represents the skip connection from the encoder.
Next, we apply convolutions:

	 Y1 = ReLU(BatchNorm (W1*Y)� (12)

	 Y2 = ReLU(BatchNorm(W2 ∗ Y)� (13)

Finally, we obtain the output:

	 Youtput = (Wf ∗ Y2)� (14)
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This feedback mechanism iteratively improves details at each level of decoding, successfully capturing 
lesion aspects.

Attention modules
Enhanced spatial attention is integrated into the encoder-decoder skip connections. This allows the network 
to focus on key lesion areas while suppressing background noise. We created a U-Net model with a 
mechanism for attention through integrating the feedback enabled decoding blocks with the Order 
Statistics Layer. This setup enables our model to effectively reject irrelevant input while concentrating its 
learning on key traits. The function known as the sigmoid activation drives the output layer’s creation of 
segmentation masks, which have pixel values between 0 and 1.

Essentially, this architectural development makes it possible for our model to produce precise and 
trustworthy segmentation masks for intricate skin lesions, increasing its versatility across the PH2 and 
ISIC Datasets. By making these improvements, we want to expand our deep learning model’s potential 
and keep it at the very forefront of segmenting skin lesions in technology. Traditional U-Net decoders 
reconstruct segmentation maps in a one-pass, top-down manner. Our feedback mechanism allows 
iterative refinement of lesion boundaries by reusing earlier decoding outputs. This is especially helpful 
in recovering fine details and irregular borders of lesions. Here, θ(x) and φ(g) denote learnable linear 
projections generating query and key embeddings used for attention weighting within the skip pathway. 
Often share appearance with surrounding skin. Attention mechanisms enable the model to differentiate 
contextually important features like asymmetry, pigment spread. The schematic representation of the 
enhanced attention block used in AttenUNeT X is provided in Fig. 3.

Output layer

A final 1 × 1 convolution followed by a Sigmoid activation produces the segmentation mask, with 
pixel-level probabilities indicating lesion presence. The output layer appears, which uses a convolu-
tion layer using a single 1 × 1 filter. Our segmentation masks are created by this layer using a Sigmoid 
activation function, which turns the complex data into useful insights. Although the visual representa-
tion in Fig. 4 may appear dense, each module follows a consistent labeling convention. Encoder blocks 
(green) consist of two convolutional layers (L1 and L2), followed by max pooling (M) to reduce spatial 
dimensions. The central bottleneck layer (blue) increases feature depth and is followed by two decoder 
blocks (yellow), which incorporate upsampling (U/P) and concatenation (C) with the corresponding 
encoder outputs. Attention blocks are inserted before each decoder block to focus on important lesion 
features. Importantly, feedback connections are introduced from decoder to encoder stages to enable 
reactivation of relevant features. All Conv2D operations are annotated with their respective parameters 
(filters, kernel size), and the architecture is designed to maintain symmetry while enhancing lesion de-
tail learning. The detailed architecture integrating encoder–decoder blocks with Order Statistics Layer, 
iterative feedback, and attention modules is presented in Fig. 4.

Fig. 3.  Architecture of the attention module used in AttenUNeT X. The block performs spatial and channel 
attention before merging features in the decoder.
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Input: preprocessed training data denotes X-train, validation images is X-val, and matching ground truth masks is Y-train.
Output: Predicted masks for skin lesion affected area.
Steps 1: Load both images of training then ground truth masks.
Steps 2: Delineate the Enhanced U-Net model architecture

. The Input layer to recognize images of nature (256, 256, 3)
� Encoder blocks to detain multi level skin texture, applying ReLU activation following each convolutional block, followed by max 

pooling.
� Order Statistics Layer to compute normalized minimum and maximum values across channels, concatenating with the feature map.
� Bottleneck block with 128 filters, using ReLU activation for deeper feature representation.
� Decoder blocks to upsample and restore image dimensions. Decoder layers are concatenated with corresponding encoder outputs.
� Feedback Mechanism in Decoder to refine segmentation by reusing decoder outputs and concatenating with earlier encoder features.
� Output layer with sigmoid activation for generating the segmentation mask.

Steps 3: Compile the AttenUNeT X with the Adaptive Moment Estimation (Adam), binary instability in cross-entropy loss due to oscillations 
during training, and metrics.
Steps 4: Train the AttenUNeT X model on the training data with a validation split to monitor performance.
Steps 5: Predict masks which on the validation set (X-val) by means of well-trained model.
Steps 6: Apply a threshold to renovate the model’s predictions to binary masks.
Steps 7: Calculate the affected lesion area through the binary mask.
Steps 8: Do again steps 5 - 7 the arbitrary validation example.
Steps 9: Display the images original, ground truth mask, predicted representation, and segmentation results.
Finish Algorithm

.

.

.

.

.

.

Algorithm.   Skin lesion segmentation using AttenUNeT X

Training setup
The AttenUNeT X model was trained using the following hyperparameters:

•	 Optimizer: Adam optimizer with β1 = 0.9 and β2 = 0.999

Fig. 4.  Detailed architecture of the proposed AttenUNeT X model, integrating encoder–decoder blocks with 
Order Statistics Layer (OSL), iterative feedback mechanisms, and attention modules for lesion boundary 
refinement. Each layer’s filter size and skip connections are indicated. BN—Batch Normalization; ReLU—
Rectified Linear Unit.
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•	 Learning rate(LR): 1e-4 with a ReduceLROnPlateau scheduler (factor 0.1, patience = 10)
•	 Batch size: 16
•	 Maximum epochs: 150
•	 Dropout rate: 0.3 applied in decoder blocks
•	 Loss function: A hybrid loss combining Dice loss and Binary Cross-Entropy (BCE) loss
•	 Early stopping criterion: Training was stopped if validation loss did not improve for 15 consecutive epochs

These hyperparameter choices were determined empirically to balance segmentation accuracy and training 
stability.

Experimental results
Quantitative results
The performance of AttenUNeT X was evaluated on three Datasets: ISIC 2018, PH2, and ISIC 2017. Metrics 
reported include Dice Coefficient, Intersection over Union (IoU), and pixel-level accuracy. As shown in Table 
3, the model achieved a Dice of 0.9211, IoU of 0.8533, and accuracy of 0.9824 on the ISIC 2018 test set. Similar 
performance was observed on PH2 (Dice: 0.9500, IoU: 0.9000) and ISIC 2017 (Dice: 0.8542, IoU: 0.7454), 
demonstrating robust generalization.

Ablation study
To validate the individual contributions of each proposed component, we conducted an ablation study on 
the ISIC 2018 validation set. The results are summarized in Table 3. Each configuration builds incrementally 
toward the full AttenUNeT X model. The dataset split configuration used for training, validation, and testing is 
summarized in Table 2.

Table 3 Ablation study on ISIC 2018 Dataset showing incremental contributions of attention, feedback, and 
OSL modules to segmentation performance.

These results show that each module contributes progressively to performance. The feedback mechanism 
provided the largest boost in boundary accuracy, while OSL helped with discriminating fine lesion textures. 
Their combination leads to superior segmentation quality.

This part, we present the experimental results obtained from our study using the proposed AttenUNeT X 
model for skin lesion segmentation. The model’s performance was evaluated on three distinct Datasets: the PH2 
Dataset, and the ISIC 2018 Dataset, ISIC 2017 Dataset. Each Dataset provided unique challenges and valuable 
imminent into the segmentation capabilities for skin lesions.

Performance metrics
To review the segmentation feat, we employed several key metrics:

	(1)	 DiceCo-efficient (DC) This statistic calculates how much the ground truth and the anticipated segmentation 
mask overlap. It’s described as below, where the sets of anticipated pixels are denoted by A and the ground 
truth pixels by B.

	
DC = 2 |A ∩ B|

|A| + |B| � (15)

	(2)	 Intersection over Union (IoU) sometimes referred to as the Jaccard’s Index, determines the segmentation 
accuracy by dividing the juncture of the ground-truth and predicted pixels by their combination are below, 
Where the sets of anticipated pixels are denoted by A and the ground truth pixels by B.

	
IoU = |A ∩ B|

|A| ∪ |B| = DC
2 − DC

� (16)

	(3)	 Pixel accuracy (PA) Out of all the pixels in the image, this measure shows the percentage of pixels that were 
properly classified:

Configuration Dice coefficient IoU Accuracy

Baseline U-Net 0.8793 0.7995 0.9632

 + Attention Only 0.8946 0.8204 0.9705

 + OSL Only 0.9017 0.8293 0.9738

 + Feedback Only 0.9084 0.8362 0.9776

Full AttenUNeT X 0.9211 0.8533 0.9824

Table 3.  Ablation study on ISIC 2018 Dataset showing incremental contributions of attention, feedback, and 
OSL modules to segmentation performance.
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PA = No. of Correct Predicts

Total No. of Predicts
� (17)

 

	(4)	 Precision which indicates the ratio of true + ve predictions among all + ve predictions:

	
Precision = True Positives

True Positive + False Positive
� (18)

	(5)	 Recall This metric represents the proportion of true positive predictions among all actual positives:

	
Recall = True Positives

True Positive + False Negative
� (19)

	(6)	 Area under curve (AUC) AUC measures a binary classification model’s overall effectiveness. AUC values 
were computed from Receiver Operating Characteristic (ROC) analysis using the scikit-learn library; ROC 
curves are not shown due to space limitations, but values were derived directly from these plots.

ISIC 2018 dataset (Task 3)
The model shows significant gains in all important measures as training goes on through 10 to 150 epochs. With 
a comparable drop in training loss between 0.3846 to 0.0388, training accuracy rises from 0.8199 to 0.9834. 

Fig. 5.  Results of ISIC 2018 Dataset training and validation metrics over 150 epochs.

 

Epochs Training ACC Training loss Val-ACC Val-loss Precision’s Recall’s

10 0.8199 0.3846 0.8109 0.3892 0.8466 0.2809

25 0.8378 0.3714 0.8458 0.3491 0.7779 0.6419

50 0.8470 0.3485 0.8451 0.3395 0.7160 0.7577

75 0.8696 0.2916 0.8572 0.3207 0.8006 0.7563

100 0.9269 0.1733 0.8893 0.3273 0.8767 0.8617

150 0.9824 0.0388 0.9123 0.1606 0.9765 0.9679

Table 4.  Training and validation performance across epochs on ISIC 2018 Dataset.
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Although validation loss varies significantly, suggesting possible over-fitting, validation accuracy also increases, 
reaching 0.9123 after 150 epochs. Both recall and precision exhibit consistent rises, reaching their highest points 
at 150 epochs with 0.9765 and 0.9679, respectively. On using ISIC 2018 Dataset, these patterns show good 
learning and performance. Training and validation performance across epochs for ISIC 2018 are summarized in 
Table 4. Training and validation accuracy–loss curves for the ISIC 2018 dataset are displayed in Fig. 5.

PH2 dataset
The model shows consistent improvement with further training for the PH2 Dataset. Training loss dramatically 
decreases via 0.3846 to 0.1086, indicating successful learning, while training accuracy increases from 0.8256 
over 10 epochs reaching 0.9563 at 150 epochs. Similar trends are shown in validation accuracy, which reaches 
0.9023 by 150 epochs. However, validation loss varies, suggesting some over fitting in subsequent epochs. With 
improvements of 0.9237 and 0.9290 after 150 epochs, respectively, precision and recall also show promising 
segmentation performance. With further training, these findings validate the model’s ability to detect skin lesions 
properly and its resilience on the PH2 Dataset. The epoch-wise training and validation results for PH2 dataset 
are detailed in Table 5. Performance trends across training epochs for the PH2 dataset are plotted in Fig. 6.

ISIC 2017 dataset
As training progresses, the model consistently improves across measures to the ISIC-2017 Dataset. Training 
loss dramatically drops from 0.3600 to 0.1134, while training accuracy rises between 0.8441 at 10 epochs over 
0.9550 at 150 epochs. Although validation loss exhibits significant fluctuation, particularly for higher epochs, 
suggesting possible overfitting, validation accuracy also increases, achieving 0.9021 by 150 epochs. Significant 
improvements are also shown in precision and recall, which peak around 0.9457 and 0.8991 at 150 epochs, 
respectively. This development demonstrates how well the model can segment skin lesions from the ISIC 2017 
data set, producing consistent outcomes after more training. Performance trends across epochs for ISIC 2017 
dataset are reported in Table 6. The training and validation progress for the ISIC 2017 dataset is shown in Fig. 7

Fig. 6.  Results of PH2 Dataset training and validation metrics over 150 epochs.

 

epochs Training ACC Training loss Val—ACC Val—loss Precision’s Recall’s

10 0.8256 0.3846 0.8339 0.3700 0.6914 0.7547

25 0.8453 0.3338 0.8486 0.3366 0.7177 0.7744

50 0.8607 0.3129 0.8606 0.3119 0.7611 0.7538

75 0.8835 0.2694 0.8632 0.3187 0.8219 0.7226

100 0.8980 0.2426 0.8661 0.3350 0.8377 0.8042

150 0.9563 0.1086 0.9023 0.3482 0.9237 0.9290

Table 5.  Training and validation performance across epochs on PH2 Dataset.
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Cross-dataset validation outcomes for models trained on ISIC 2018 and tested on ISIC 2017 are summarized 
in Table 7. The segmentation algorithms’ ability to accurately differentiate skin lesions is supported by the 
quantitative findings obtained from the ISIC 2018, PH2, & ISIC 2017 Datasets. The models’ physically powerful 
presentation is demonstrated by the metrics obtained, which include the DiceCo-efficient, the Intersection over 
Union (an IoU), Pixel precision, recall, precision, accuracy, and AUC. The PH2 Dataset, which obtained the 
finest DiceCo-efficient (0.9500) along with IoU (0.9000), suggests superior segmentation functionality and detail. 
These findings show the segmentation methods’ generalizability across a variety of Datasets in addition to their 

Metric ISIC 2018 (Task 3) ISIC 2017 dataset

Accuracy 0.9824 0.9125

Precision 0.9633 0.8216

Recall 0.9808 0.8894

AUC 0.9961 0.9325

IoU 0.8533 0.7454

DiceCo-efficient 0.9720 0.8542

Loss 0.0429 0.2016

Table 7.  Cross-dataset validation results: Model trained on ISIC 2018 and tested on ISIC 2017.

 

Fig. 7.  Results of ISIC 2017 Dataset training and validation metrics over 150 epochs.

 

Epochs Training ACC Training loss Val—ACC Val—loss Precision’s Recall’s

10 0.8441 0.3600 0.8452 0.3504 0.7695 0.6572

25 0.8473 0.3388 0.8556 0.3310 0.8173 0.6335

50 0.8713 0.8713 0.8595 0.3199 0.8058 0.7122

75 0.8890 0.2545 0.8665 0.3209 0.8230 0.7745

100 0.9066 0.2150 0.8675 0.3655 0.8331 0.8329

150 0.9550 0.1134 0.9021 0.3922 0.9457 0.8991

Table 6.  Training and validation performance across epochs on ISIC 2017 Dataset.
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resilience. With its potential for clinical use in dermatological diagnostics, wherein accurate and trustworthy 
segmentation is essential, this flexibility represents a significant advancement in automated skin lesion analysis. 
Comprehensive quantitative performance of AttenUNeT X across all three benchmark datasets is presented in 
Table 8. A comparative visualization of segmentation metrics across ISIC 2018, PH2, and ISIC 2017 datasets is 
given in Fig. 8

High DiceCo-efficient: In the ISIC-2018, Dataset, the model’s DiceCo-efficient was 0.9211; for the PH2 
Dataset, it was 0.9500; and on the ISIC 2017, Dataset, it was 0.8542. The model well captures the intricate borders 
of skin lesions, as evidenced by these results, which show significant overlap among the predicted with ground 
truth lesion masks. Strong IoU Performance: Exact separation of lesion from non-lesion areas is demonstrated 
by the model’s IoU values for 0.8533 (ISIC 2018), 0.9000, for instance (PH2), as well as 0.7454 (ISIC 2017). 
Substantial IoU values throughout Datasets suggest that recall and accuracy are well-balanced. Robust Pixel 
Accuracy: The model’s pixel accuracy ratings of 0.9824 for ISIC 2018 alone, 0.9808 on PH2, while 0.9125 for ISIC 
2017 demonstrate its high ability to reliably categorize individual pixels. Given its high degree of accuracy, the 
model appears to be dependable for real-world skin lesion segmentation purpose. Exceptional AUC: Further 
confirming the model’s possibility of clinical use in dermatology are the AUC metrics of 0.9961 (ISIC 2018, 
among others), 0.9906 (PH2), & 0.9325 (ISIC 2017), which highlight the model’s efficacy in differentiating among 
lesion and background classes. Some predicted outputs are displayed as binary lesion masks, while others appear 
as probability heatmaps or colored overlays. These variations arise from differences in Dataset-specific coding 
pipelines used to extract results. We retained these representations to demonstrate model performance across 
multiple visualization styles. Importantly, the underlying segmentation accuracy is evaluated quantitatively 
(Dice, IoU, Precision, Recall), independent of the visualization style. Hence, heatmaps and binary masks equally 
confirm the model’s ability to capture lesion boundaries. Qualitative segmentation outputs of AttenUNeT X on 
representative samples from all datasets are illustrated in Fig. 9

Each row shows the original image, ground truth mask, and predicted mask. Predicted outputs are displayed 
in different visualization styles (probability heatmaps, binary masks, colored overlays), depending on the Dataset 
pipeline. These differences are only visualization choices and do not affect segmentation quality. All evaluations 
are based on quantitative metrics and boundary accuracy. Figure 10 depicts the accuracy and loss variation of 
the AttenUNeT X model during ISIC 2018 training..
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Fig. 8.  Comparison of metric values across datasets (ISIC 2018, PH2, ISIC 2017).

 

Metric ISIC 2018 (Task 3) PH2 dataset ISIC 2017 dataset

DiceCo-efficient 0.9211 0.9500 0.8542

Intersection over Union (IoU) 0.8533 0.9000 0.7454

Pixel accuracy 0.9824 0.9808 0.9125

Precision 0.9633 0.9583 0.8216

Recall 0.9808 0.9478 0.8894

AUC 0.9961 0.9906 0.9325

Table 8.  Quantitative segmentation performance across datasets.
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Comparison on ISIC-2018 dataset
Our model, AttenUNeT X, demonstrated strong performance on the ISIC 2018 Dataset, setting a high 
benchmark in skin lesion segmentation. With DiceCo-efficient of 0.9211, IoU of 0.8533, Pixel Acc of 0.9824, 
Precision 0.9633, Recall 0.9808, and an AUC of 0.9961, AttenUNeT X outperforms or competes closely with 
other advanced models: From the comparative analysis in Table 9, it is evident that our model, AttenUNeT 
X, consistently delivers high performance across all evaluation metrics. With a Dice coefficient of 0.9211 and 
IoU of 0.8533, it outperforms models such as Ms RED (0.8960, 0.8290), FAT-Net (0.9050, 0.8450), GAN-based 
Segmentation (0.8950, 0.8510), and Boundary-Aware UNet (0.9000, 0.8500). In addition, AttenUNeT X achieves 
the highest AUC (0.9961), surpassing all compared methods, including FAT-Net (0.9800), Complementary 
Network (0.9750), and DPFCN (0.9700). Its Pixel Accuracy (0.9824) is also superior to many recent approaches 
such as MGAN (0.9450) and SSR-UNet (0.9534). While a few models, such as ARCUNet (2025) and MRP-UNet 
(2024), report competitive Dice values, their overall performance across multiple metrics is either incomplete 

Fig. 9.  Qualitative segmentation results of AttenUNeT X across ISIC 2017, PH2, and ISIC 2018 Datasets. Error 
heatmaps highlighting regions of under- and over-segmentation produced by AttenUNeT X on sample test 
images.
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or slightly below our framework. A detailed quantitative comparison of AttenUNeT X with state-of-the-art 
segmentation models on the ISIC 2018 dataset is provided in Table 9.

This highlights that AttenUNeT X not only maintains strong balance across all measures but also sets a high 
benchmark in segmentation accuracy, boundary localization, and lesion detection reliability. These comparisons 
highlight that AttenUNeT X not only excels in segmentation accuracy but also provides robust boundary 
detection and lesion localization. The high scores across all metrics reinforce its potential for clinical applications 
in dermatology. Visual overlap comparisons between predicted masks and ground truths highlighting lesion 
boundary alignment are illustrated in Fig. 11.

Comparison on PH2 dataset
Our AttenUNeT X model showed remarkable performance on the PH2 Dataset, achieving a DiceCo-efficient of 
0.9500, IoU of 0.9000, Pixel Accuracy 0.9808, Precision 0.9583, Recall 0.9478, and an AUC of 0.9906. Compared 
to other advanced models, AttenUNeT X maintains a competitive edge: The results in Table 10 demonstrate that 

Fig. 10.  Result of AttenUNeT X model (a) Accuracy and (b) Loss of ISIC 2018 Dataset.
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AttenUNeT X achieves superior performance across almost all evaluation metrics. With a Dice coefficient of 
0.9500 and IoU of 0.9000, our model surpasses FAT-Net (0.9100, 0.8600), GAN-based Segmentation (0.8950, 
0.8580), Boundary-Aware Method (0.9200, 0.8700), and UNeT + + (0.9100, 0.8600). Although MRP-UNet (2024) 
reports a comparable Dice (0.9419) and IoU (0.9077), it falls slightly short of AttenUNeT X’s overall consistency. 
In terms of Pixel Accuracy, AttenUNeT X records 0.9800, higher than Boundary-Aware UNet (0.9500), Dual-
Attention U-Net (0.9480), and UNeT + + (0.9520). The model also secures one of the strongest Precision scores 
(0.9580), outperforming methods such as FAT-Net (0.9050) and Boundary-Aware UNet (0.9080), while its Recall 
of 0.9470 strikes an optimal balance compared to SSR-UNet (0.9754), which favors recall but compromises IoU 
and overall stability. Based on the PH2 Dataset, these findings position AttenUNeT X as a top model in skin 
lesion segmentation. The model’s resilience and dependability for dermatological diagnoses are demonstrated 

Fig. 11.  Visual overlap comparison of segmentation outputs. AttenUNeT X predictions align closely with 
ground truth boundaries, outperforming competing models in preserving fine lesion details. Summary 
visualization showing model performance across datasets and potential areas for improvement.

 

Model Dice coefficient IoU Pixel accuracy Precision Recall AUC

AttenUNeT X 0.9211 0.8533 0.9824 0.9633 0.9808 0.9900

ARCUNet19 0.9688 NA 0.9819 NA NA 0.9353

SSR-UNet20 0.9021 0.7138 0.9534 0.9754 0.8849 NA

MRP-UNet30 0.9236 0.9128 0.9551 0.9344 0.8857 NA

Ms RED25 0.8960 0.8290 0.9602 0.9000 0.9000 N/A

FAT-Net27 0.9050 0.8450 0.9600 0.9150 0.9030 0.9800

Improved Tuna Swarm (2023) 0.8725 0.8350 0.9120 0.8940 0.8810 N/A

MGAN18 0.9010 0.8360 0.9450 0.9550 0.9360 NA

GAN-based segmentation (2023) 0.8950 0.8510 0.9230 0.9065 0.8920 0.9400

Complementary network26 0.9120 0.8500 N/A 0.9200 0.9100 0.9750

Dual-attention U-Net13 0.8900 0.8200 N/A 0.8800 0.8750 0.9600

DPFCN34 0.9100 0.8300 0.9500 0.9010 0.8900 0.9700

Boundary-aware method11 0.9000 0.8500 0.9450 0.8970 0.8850 0.9600

SK-Net35 0.8800 0.8100 0.9400 0.8800 0.8700 0.9500

UNeT + +33 0.8900 0.8300 0.9480 0.8900 0.8800 0.9500

Table 9.  Comparison of AttenUNeT X with state-of-the-art segmentation methods on ISIC 2018 Dataset.
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by its outstanding AUC, high Dice with IoU scores, and exceptional boundary correctness. Table 10 presents a 
comprehensive comparison of AttenUNeT X with other recent architectures evaluated on the PH2 dataset.

Discussion
The proposed AttenUNeT X model demonstrates strong performance in dermoscopic skin lesion segmentation 
by integrating decoder feedback refinement, statistical feature enhancement, and attention-based localization. 
Unlike conventional architectures such as U-Net or DeepLabV3 + , the inclusion of an Order Statistics Layer and 
decoder-level feedback enables the recovery of fine lesion boundaries and subtle features often missed by baseline 
approaches. Our evaluation across ISIC 2018, ISIC 2017, and PH2 confirms both high segmentation accuracy and 
cross-dataset generalizability. Despite the limited sample size of PH2, the model maintains robust performance, 
suggesting resilience to domain shift. Nevertheless, we acknowledge the risk of overfitting on small datasets 
and plan to address this by incorporating additional sources such as Derm7pt Clinical and Dermoscopic Skin 
Lesion Dataset (Derm7pt), Human Against Machine 10,000 Dataset (HAM10000), and Skin Disease 198 (SD-
198) in future work. Clinical relevance represents another strength of AttenUNeT X. Accurate lesion boundaries 
are critical for dermatologists in assessing asymmetry, border irregularity, and pigment distribution, which are 
key diagnostic indicators for melanoma. By producing precise and interpretable masks, the model could be 
integrated into clinical decision-support systems or dermoscopic image viewers to assist with real-time triage 
or second-opinion validation. Furthermore, the modular design of AttenUNeT X, built on a lightweight U-Net 
backbone with selective enhancements, facilitates deployment in resource-constrained environments such as 
mobile platforms or portable diagnostic devices. Although we did not directly re-implement DeepLabV3 + or 
DenseNet-UNet due to resource constraints, community benchmarks indicate that DeepLabV3 + with a 
ResNet-50 backbone requires ~ 26–42 M parameters, while DenseNet-UNet variants remain parameter-heavy 
owing to dense connectivity. In contrast, AttenUNeT X achieves competitive segmentation accuracy with a 
notably smaller memory footprint, making it more suitable for deployment in real-world clinical environments.

Conclusion 
In this paper, we proposed AttenUNeT X, an enhanced deep learning architecture for accurate skin lesion 
segmentation. By incorporating decoder feedback, a custom Order Statistics Layer, and attention modules 
into the U-Net framework, the model addresses key challenges in lesion boundary extraction and contextual 
misclassification. Experimental validation on ISIC 2018, ISIC 2017, and PH2 confirms the effectiveness of 
AttenUNeT X, achieving superior Dice scores and visual accuracy compared to several methods. Ablation 
studies further support the contribution of each proposed component. For future work, we aim to extend the 
model toward multi-task learning, enabling simultaneous lesion segmentation and classification. Incorporating 
transformer blocks will be explored to capture long-range dependencies, and cross-domain evaluations will 
be conducted on datasets with rare lesion types and diverse skin tones. Optimization for real-time clinical 
deployment via web-based platforms and mobile diagnostic tools will also be prioritized. In addition, while 
standard augmentation methods such as rotation, flipping, scaling improve dataset diversity, they remain 
limited in modeling rare pathological variations. Generative adversarial networks (GANs) and diffusion-
based approaches may be employed to synthesize realistic lesions, further enhancing robustness. Given recent 
advances in hybrid CNN–Transformer architectures like TransUNet, Swin-UNet, extending AttenUNeT X with 
such modules forms a promising direction for future research. Overall, AttenUNeT X represents a step toward 
building robust, interpretable, and deployable deep learning models for dermatological diagnostics.

Limitations
The datasets used in this study primarily include common lesion types and may lack representation of rare 
conditions and diverse skin tones, which could limit generalizability. Moreover, curated benchmark datasets 
may not fully capture real-world variability, such as inconsistent lighting, imaging artifacts, and heterogeneous 
acquisition devices. While AttenUNeT X demonstrates good cross-dataset performance across ISIC 2017, ISIC 
2018, and PH2, domain shifts remain a challenge, particularly when applied to under-represented populations 

Model Dice coefficient IoU Pixel accuracy Precision Recall AUC

AttenUNeT X 0.9500 0.9000 0.9800 0.9580 0.9470 0.9900

SSR-UNet20 0.9021 0.7138 0.9530 0.9754 0.8849 NA

UCM-Net31 0.9015 0.8762 0.8883 0.9064 0.8791 NA

FDUM-Net32 0.8981 0.8845 0.9053 0.9173 0.8811 NA

MRP-UNet30 0.9419 0.9077 0.9613 0.9265 0.9192 NA

FAT-Net27 0.9100 0.8600 0.9550 0.9050 0.8870 0.9700

GAN-based Segmentation (2023) 0.8950 0.8580 0.9230 0.9060 0.8920 0.9400

Improved Tuna Swarm U-EfficientNet28 0.9300 0.8800 N/A 0.9150 0.9000 0.9700

Boundary-aware method11 0.9200 0.8700 0.9500 0.9080 0.8900 0.9700

Dual-attention U-Net13 0.9000 0.8500 0.9480 0.8900 0.8800 0.9600

UNeT + +33 0.9100 0.8600 0.9520 0.8990 0.8900 0.9600

Table 10.  Comparison of AttenUNeT X with state-of-the-art segmentation methods on PH2 Dataset.
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or rare conditions. We also note that some recent methods, such as ARCUNet (0.9688 Dice) and MRP-UNet 
(0.9236 Dice), report slightly higher DSC values. However, AttenUNeT X achieves a stronger overall balance 
across Dice, IoU, Precision, Recall, and AUC. Our design emphasizes lesion boundary refinement and 
interpretability rather than maximizing a single metric. Finally, although the proposed architecture reduces 
computational complexity relative to other advanced networks, additional strategies such as ensemble learning 
and post-processing may further improve performance. Future research will explore these directions to enhance 
both accuracy and robustness.

Data availability
The Datasets used in this research are openly accessible and include: ISIC Datasets (ISIC 2018 and ISIC 2017) 
**:** Available at the [ISIC Archive] (https://www.isic-archive.com/), PH2 Dataset **s** Provided as a public 
Dataset in the dermatology
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