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AttenUNeT X with iterative
feedback mechanisms for
robust deep learning skin lesion
segmentation

E. Babu & S. Murali™®

Accurate skin lesion segmentation is critical for improving early diagnosis of skin cancer. In this
study, we propose AttenUNeT X, a novel extension of the U-Net architecture that integrates three
key enhancements: (i) a feedback mechanism within decoder blocks to iteratively refine spatial
features, (ii) a custom Order Statistics Layer (OSL) to capture extreme-value lesion patterns, and (iii)
enhanced attention modules to prioritize diagnostically relevant regions. These progresses improve
segmentation performance by allowing for a targeted reaction to important lesion features. These
additions work in synergy to improve boundary precision and contextuval learning. The model was
trained and validated using the International Skin Imaging Collaboration (ISIC 2018) Dataset, with
PH2-Pedro Hispano Hospital Dataset was experimented for comparative analysis and 1SIC 2017
used for external testing and cross-validation, respectively and guarantee dependable performance
across a range of images distributions. Our preprocessing pipeline included hair removal, resizing,
normalization, and extensive data augmentation to promote robustness. To facilitate model
generalizability, the preprocessing pipeline featured data augmentation and images enhancement,
and the attention-augmented encoder-decoder layers of the design highlighted key lesion features.
Experimental results demonstrate strong performance, achieving a Dice coefficient of 0.9211,
Intersection over Union (loU) of 0.8533, and pixel accuracy of 0.9824 on ISIC 2018. Similarly high
metrics were observed on PH2 and ISIC 2017 Datasets. These outcomes validate the proposed model’s
potential for reliable deployment in clinical dermatological workflows.
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Abbreviations

ISIC International skin imaging collaboration
DL Deep learning

CNN  Convolutional neural network

ROI Region of interest

PH2 Pedro Hispano hospital dataset

Skin cancer, particularly melanoma, remains a critical public health challenge due to its rising incidence and
mortality. Early and accurate detection substantially improves treatment outcomes, yet dermoscopy-based
diagnosis is often limited by subjectivity and variability among clinicians. To address these challenges, computer-
aided diagnosis (CAD) systems leveraging deep learning have become increasingly important for reliable and
automated skin lesion analysis.

Among segmentation frameworks, U-Net and its variants dominate biomedical imaging owing to their
encoder-decoder structure and skip connections. Enhancements such as attention mechanisms and multi-
scale feature fusion have further improved boundary detection and texture representation. However, existing
segmentation models continue to face three major challenges: (i) limited ability to refine lesion boundaries during
decoding, (ii) poor capture of extreme features such as irregular color and shape outliers, and (iii) insufficient
contextual attention to subtle lesion regions. To overcome these limitations, we propose AttenUNeT X, a refined
U-Net architecture that introduces three complementary modules: (i) an iterative feedback mechanism in
decoder blocks for progressive spatial refinement, (ii) a novel Order Statistics Layer (OSL) to capture extreme-
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value-based lesion details, and (iii) enhanced attention in skip connections to selectively emphasize medically
relevant regions. These components collectively enable robust segmentation, particularly in low-contrast or
heterogeneous Datasets. We evaluate AttenUNeT X on three benchmark dermoscopic Datasets International Skin
Imaging Collaboration (ISIC) 2018, ISIC 2017, and Pedro Hispano Hospital Dataset (PH2), achieving superior
segmentation performance across all. Our contributions lie in designing a clinically practical and technically
novel segmentation framework, validated across diverse Datasets with strong generalizability for dermatology
workflows. The overall workflow of the proposed AttenUNeT X framework, including preprocessing, feature
extraction, feedback mechanism, and segmentation output, is illustrated in Fig. 1

Literature survey

This section offers a thorough analysis of the many methods used to segment skin lesions in order to comprehend
their working principles and pinpoint any possible drawbacks. Effective diagnostic techniques are becoming
more and more important as the incidence of skin cancer grows worldwide. Accurately detecting and treating
skin lesions, especially melanomas, may be extremely difficult. Manual evaluations by qualified dermatologists
have been a major component of traditional diagnostic techniques, although they can be laborious and prone
to inter-observer variability. Automated skin lesion segmentation systems have been created and put into use to
overcome these inefficiencies. Recent technological developments, especially in the field of artificial-intelligence
have significantly improved dermoscopic image analysis capabilities. In medical image processing, deep learning
(DL) approaches have proven very useful, allowing for better skin lesion identification, segmentation, and
classification.

These techniques make use of sophisticated neural network topologies, such U-Net, which is excellent at
identifying the borders of lesions and identifying complicated patterns in dermoscopic images. By enabling
the network to concentrate on important aspects of the images, the incorporation of attention mechanisms
into these models enhances the segmentation process and raises the diagnostic accuracy. These cutting-edge
methods greatly increase the possibility of early identification and better patient outcomes in the treatment of
skin cancer. Conventional techniques for segmenting skin lesions have mostly depended on the extraction and
detection of min-level features. The accuracy of segmentation has been further improved by advancements in
feature aggregation. To improve global context extraction, the segmentation Transfers (SETR)' modified the
transformer for systematic segmentation and usd it in an encoder-decoder architecture. Ali et al.2 Proposes a
two-stage SR pipeline combining SwinIR (ViT) and Diffusion Models to enhance and super-resolve RS images.
SwinlR captures global context, while iterative DM restores fine details.

Mahmood et al.>* introduces an Al-enhanced microscopy framework for breast cancer diagnosis using image
classification techniques. It employs Convolutional Neural Network (CNN) with transfer learning to classify
breast histopathological images and demonstrates high precision in detecting cancer subtypes and emphasizes
the need for explainable Al in medical microscopy applications. And also explore multi-modal neuroimaging
approaches (MRI, PET, fMRI) combined with deep learning for early detection of Alzheimer’s disease. Highlights
the effectiveness of 3D-CNN, hybrid CNN-LSTM models, and fusion architectures in integrating structural and
functional imaging, It calls attention to real-time diagnosis, data imbalance, and clinical interpretability. As well
as combines radiomics and deep learning (SE-ResNet152, VGGNet, CNN + LSTM) with swarm optimization
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Fig. 1. Overview of the proposed AttenUNeT X framework showing the preprocessing, encoder-decoder
pipeline, and iterative feedback mechanism.
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for feature selection and classification. Uses Grad-CAM for interpretability achieves Area under curve (AUC) of
0.99 on mammography data in another proposal. Again the author Mahmood et al.>* proposes a deep learning
approach to detect black fungus from CT and MRI scans using CNN-based architectures. The model achieves
strong segmentation and classification performance. The work is relevant in post-COVID diagnostic contexts
and focuses on early triaging and intervention. Hassan et al.> introduce an attention-based deep neural network
model for detecting dysarthria in speech data from patients with cerebral palsy and ALS. Using MFCC and
log-Mel features, their model outperforms baseline CNNs. The study highlights how attention layers improve
classification of subtle speech impairments. Mahmood et al.”8 present MFF-HistoNet, a novel multiscale feature
fusion network that integrates shallow and deep features from histopathological images. The model is designed
for high sensitivity and accuracy in cancer subtype classification. Performance is benchmarked on public
Datasets and shows superiority over conventional CNN models. Hassan et al.>® Proposes an ensemble of ResNet
and Inception networks with GWO for feature selection. Yields high classification metrics (accuracy 96.5%,
AUC 0.971) on WBCD and mammography Datasets.

Rehman et al.” Uses Swin-ViT + DeepLabV3 +for segmentation and classification of kidney cancer in CT
images. ASPP and Grad-CAM improve interpretability. Combines global and local features for tumor boundary
delineation, Transformer topologies have recently shown remarkable results in the segmentation of skin lesions
(Wu and Zhang'?). Wang et al.'"12 efficiently address ambiguous boundary concerns, however this may miss
important information between succeeding modules. There have also been suggestions for parallel adaptations
in which the CNN and transformer properties are combined (Wu and Zhang!%; Zhang et al.!®). The investigation
of rich multi-scale characteristics may be limited by these fusions, which frequently take place later in the
transformer branch. With its primary classifications of edge detection with region growth techniques, image
segmentation has undergone tremendous change. Whereas region growth divides the image based on local
similarities, edge detection looks for discontinuities between areas. These techniques frequently have drawbacks,
including poor segmentation accuracy, noise sensitivity, and the requirement for manual feature extraction,
despite their fundamental function. Liu et al. highlighted the limitations of classical methods such as decision
trees and SVMs, which require manual feature engineering, and emphasized the superiority of deep learning-
based approaches. U-Net, with its encoder-decoder structure, automates feature extraction and improves
segmentation accuracy, while attention mechanisms further enhance feature representation. Recent models,
including MRP-UNet, have been shown to outperform traditional methods in segmentation tasks'®. Ahmed
et al. proposed DuaSkinSeg, a dual encoder model for skin cancer segmentation that integrates MobileNetV2
to capture local features and a ViT-CNN module to model global context. Experimental evaluation on ISIC
Datasets demonstrated the model’s competitive performance compared with existing methods, highlighting its
potential to improve segmentation accuracy and computational efficiency in dermatological diagnosis'.

Balraj et al. examined traditional and deep learning segmentation methods, providing a comparative analysis
of their effectiveness in terms of Dice Similarity Coefficient (DSC) and Jaccard Index. Their proposed MADR-
Net architecture, which incorporates multi-level attention and dilated residual connections, achieved superior
performance and outperformed several state-of-the-art approaches!®. Innani et al. developed Efficient-GAN, a
generative adversarial network framework for skin lesion segmentation from dermoscopic images. The model
uses a generator—discriminator structure to produce accurate lesion masks and outperformed existing methods
across multiple evaluation metrics. Furthermore, a lightweight variant, Mobile-GAN, was introduced, offering
comparable results with significantly fewer parameters, thereby facilitating deployment in resource-constrained
environments!”!8. Soni et al. addressed segmentation challenges caused by image variability and artifacts by
proposing ARCUNet, which combines residual convolutions with attention mechanisms. The model achieved
outstanding results on ISIC Datasets, reporting accuracies of 98.12%, 96.45%, and 98.19%, with Jaccard scores
0f 91.14%, 88.33%, and 93.53%, demonstrating its robustness and high precision in lesion segmentationlg. Baiet
al. introduced SSR-UNet, a novel U-shaped segmentation architecture that incorporates bidirectional scanning
to enhance feature extraction. Additionally, a spatially constrained loss function was designed to stabilize
gradients and improve overall training performance, leading to improved segmentation accuracy?’. Yang et al.
presented a deep learning model for skin scar segmentation using a dual encoder network that integrates CNN
and Swin Transformer architectures. The approach introduced a multi-scale feature fusion module along with
a novel multi-pooling channel-spatial attention mechanism. Experimental results showed strong performance,
with 96.01% accuracy, 77.43% precision, 90.17% recall, 71.38% Jaccard Index, and 83.21% Dice Coefficient,
underscoring its potential for precise scar analysis in clinical applications®!. Focus-net, which focuses on lung
lesion and melan2oma segmentation, was developed by Kaul et al.>> by combining the Squeeze as well as Excite
module with ResNet.

In bio-medical research, deep learning has been extensively recognized for its use in pre-segmentation
procedures for diagnostic tasks. Using the ISIC 2018 Dataset, Mahmud et al.?® Introduces SkinNet-14, a
lightweight transformer-based model built on Compact Convolutional Transformer (CCT) to classify skin
cancer from 32 x 32 pixel dermoscopy images. Incorporates optimized data augmentation and preprocessing
to handle class imbalance and noise while significantly reducing training time, making it suitable for resource-
limited clinical settings. Li et al.?* Proposes a U-Net-based architecture that integrates multiscale input fusion
with Res2SE and pyramid dilated convolution modules for improved skin lesion segmentation. Res2SE captures
fine-grained semantic and channel features, while the pyramid structure enhances multiscale context awareness.
Achieves strong performance on ISIC Datasets with better boundary localization and robustness to lesion size
variation. A detailed comparative summary of existing skin-lesion segmentation approaches is provided in Table
1.
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Study Metrics Dataset Methodology Application
Wang and Xu!! | Accuracy: 95.2%, AUC: 91.0% ISIC 2018 Boundary-Aware Method Skin lesion
segmentation
Wu and Zhang!® | Accuracy: 96.0%, ISIC, PH2 Comprehensive Review Skin lesion
segmentation methods
Dai et al.?® Accuracy: 94.5%, Precision: 92.1%, IoU: 87.2% | ISIC 2018 Multi-Scale Residual Encoding and Decoding (Ms RED) Skin lesnor}
segmentation
Taetal.? Accuracy: 95.3%, F1 Score: 94.0% Private Dataset Complementary and Contrastive Network Stimulus segmentation
and generalization
Deng?’ AUC: 92.7%, ToU: 89.1% ISIC FAT-Net (Feature Adaptive Transformers) Automatec_l skin lesion
segmentation
{?hl an(zig Accuracy: 93.7%, F1 Score: 92.2% ISIC 2018 (Task 3) Improved Tuna Swarm-based U-EfficientNet Skin lesmr}
sman segmentation
Innani et al.'!® | FI Score: 90.5%, IoU: 85.6% %{127’ ISIC 2018, ISIC Generative Adversarial Networks (GANs) Skin leSqu
segmentation
Dinesh abd . . Hybrid learning for
Lakshmanan?® Dice: 0.908 Private Dataset DeepOverlay L-U-Net lesion detection
PR - - P’
Li et al.2t ggizszlf)nféa)rgg S;;?fé;ggg@?gii;%sm ISIC 2016, ISIC 2017, | Enhanced U-Net with Multiscale input fusion Res2SE Skin lesion
’ 2016) P IEDER » 0% IER ISIC 2018 Dataset blocks Pyramid dilated convolution for multiscale context | segmentation
ISIC 2016, ISIC 2017,
ISIC 2018, PH2, . Lo i T .
. 30 Accuracy: 95.51%; Sen: 88.57%; Spec: 93.44%; | and Human Against MRP_U Net for Sk} n le?mn segmentation: U-Net Ym}_l Skin lesion
Liu et al. i . attention mechanisms; automated feature extraction; .
Jaccard: 91.28%; Dice: 92.36 Machine 10,000 improved encoder-decoder structure segmentation
Dataset (HAM10000 | ™
Datasets)
Ahmed et al.15 Accuracy: 97.08%; Precision: 92.44%; Recall: ISIC Datasets Dual encoder: MobileNetV2 (local features) + ViT-CNN Skin lesion
. 91.12%; Jaccard: 84.63%; F1Score: 91.78 (global context) segmentation
Balrai et al.16 Accuracy: 96.36%; Precision: 92.50%; Recall: Ei[esrlnég)igongll;nages, MADR-Net:Comparison of traditional & DL approaches; | Skin lesion
) y 87.35%; Jaccard: 81.44%; Dice: 89.46 Datasets DSC & Jaccard analysis segmentation
Innani et al. 1718 Accuracy: 94.5%; Spec: 95.5%; Sen: 93.6%; dermoscopic images Efficient-GAN / Mobile-GAN: GAN-based segmentation; | Skin lesion
’ Jaccard: 83.6%; Dice: 90.1 P 8 generator + discriminator; lightweight Mobile-GAN segmentation
Soni et al."? Accuracy: 98.19%; Jaccard: 93.53%; Dice: 96.88 | ISIC Datasets ARCUNet : Residual convolutions + attention mechanisms f:{gl;fstzgon
. 20 Accuracy: 95.34%; Spec: 97.54%; Sen: 88.49%; SSR-UNet: U-shaped segmentation with bidirectional Skin lesion
Baietal. Jaccard: 71.38%; Dice: 90.21 ISIC Dataset, PH2 scanning + spatially-constrained loss segmentation
Yang et al.2! Accuracy: 96.01%; Precision: 77.43%; Recall: Skin scar Dataset Dual Encoder (CNN + Swin Transformer) Multi-scale Skin lesion
8 : 90.17%; Jaccard: 71.38%; Dice: 83.21 feature fusion + multi-pooling channel-spatial attention segmentation

Table 1. summary of existing skin-lesion segmentation approaches.

Data set description

ISIC 2018 dataset

This study utilized three widely accepted dermoscopic image Datasets for training, validation, testing, and
cross-validation: ISIC 2018, PH2 and ISIC 2017. ISIC 2018 (Task 3: Lesion Segmentation) was the primary
Dataset used for training and validation due to its large size and diversity. It consists of 2594 expertly annotated
dermoscopic images spanning multiple lesion types. In our setup, 1815 images were used for training, 259 for
validation, and 520 for testing. This Dataset provides a rich variety of skin lesion morphologies and lighting
conditions, making it suitable for training deep learning models.

PH2 dataset

The PH2 Dataset consists of 200 dermoscopic images with corresponding ground-truth masks. PH2 was not
used in the main training pipeline, but you experimented with it by splitting it into training/validation for
comparative analysis. For supplementary analysis, the PH2 dataset (200 images) was split into 80% training (160
images) and 20% validation (40 images). Small-split experiment to check model adaptability on a limited dataset
(hence PH2 appears in Table 5). This split was used only to test the adaptability of the proposed model on limited
data, as PH2 is too small to serve as a primary training dataset.

The full PH2 dataset was also used separately as an external test set (Table 10) to evaluate cross-dataset
generalization and complete dataset as an external test set to evaluate generalization (results reported in Table
10). This dual usage was only for experimental comparison and does not affect the main training pipeline, which
is based on ISIC 2018.

ISIC 2017 dataset
ISIC 2017, which includes over 2,000 annotated dermoscopic images, was utilized for cross-validation purposes
only. Specifically, we allocated 1400 images for training, 300 for validation, and 300 for testing, solely to evaluate
the transferability and domain adaptability of the proposed model trained on ISIC 2017.

To mitigate overfitting risks especially when testing on smaller Datasets like PH2 we incorporated several
measures:
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« Extensive data augmentation (rotation, flipping, zooming, and shearing)

« Use of regularization techniques such as dropout and early stopping

o Architecture-level enhancements that encourage spatial feature generalization, such as feedback loops and
attention modules

These strategies collectively enabled the model to generalize well across Datasets of varying size and complexity.
The dataset split configuration used for training, validation, and testing is summarized in Table 2.

Methodology

The proposed AttenUNeT X model builds upon the classic U-Net architecture, incorporating three
significant enhancements tailored for precise and robust skin lesion segmentation: Feedback Mechanism
in Decoder Blocks, Order Statistics Layer (OSL), and Enhanced Attention Modules. These components are
strategically designed to improve boundary delineation, capture extreme-value features in lesion texture,
and highlight diagnostically relevant regions all of which are critical in dermatology. In preparing our
model for skin lesion segmentation, we embarked on a journey utilizing two foundational Datasets: ISIC
and PH2. These Datasets offered a diverse array of dermoscopic images, crucial for training our model to
adeptly handle the various features of skin lesions. To ensure uniformity in the preparation of images and
segmentation masks, we developed a function called load_and_preprocess_Dataset. This function serves
as a comprehensive pipeline, meticulously designed to load, preprocess, and augment the Dataset. The
ultimate goal was to guarantee that our model was trained on consistent and high-quality inputs.

Pre-preprocessing

Black hat transformation for hair detection

In our preprocessing pipeline, the initial step involved employing a black hat transformation to isolate hair in the
images. This morphological operation emphasizes darker regions, thereby facilitating the differentiation of hair
from the lighter surrounding skin. The mathematical definition of the black hat transformation is expressed as:

Black Hat = fciosing () — I M

where fciosing (I) denotes the morphological closing of the input image I usinga 17 X 17 rectangular structuring
element.

Binary thresholding

Following the black hat transformation, we applied binary thresholding to create a hair mask. This step sharpens
the definition of detected hair regions by setting a threshold T of 50. The thresholding process can be represented
mathematically as:

_ J 255 ifI(z,y)>T
p(zy) = { 0 otherwise 2)

where I (x, y) denotes the intensity at each pixel.

In-painting for hair removal

With the hair regions highlighted in a binary mask, we performed in-painting to seamlessly fill these areas.
Utilizing the Telea in-painting method, we reconstructed the identified regions by propagating pixel values from
neighboring areas, effectively “healing” the image while preserving the integrity of the lesions.

Resizing and normalization
To ensure uniformity across all samples, we resized each image to a standardized dimension of 256 x 256 pixels.
Subsequently, we normalized the pixel dimension values to the between [0, 1] using the formula:

Original Pixel Value

255 ®

Normalized Pixel Value =

This normalization step maintains consistent brightness and contrast across images, allowing the model to
concentrate on lesion features rather than variations in lighting or imaging conditions across the Datasets.

Dataset | Total images | Training images | Validation images | Testing imag

ISIC 2018 | 2594 1815 259 520

PH2 200 160 40 200 (External testing)
ISIC 2017 | 2000 1400 300 300

Table 2. Datasets splitting for training, validation, testing in skin lesion segmentation.
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Data augmentation

To further enhance our Dataset, we integrated ImageDataGenerator for data augmentation. Given the high
variability of lesion appearances in the Datasets, augmentation proved vital in helping our model generalize
effectively by exposing it to diverse transformations. The configurations we implemented included:

« Rotation: arbitrary rotations within + 30°.

o Width: arbitrary horizontal move within 10% of the entire width.
 Height: arbitrary vertical move within 10% of the entire height.

o Shearing: A shearing sort of 0.2.

o Zooming: Zoom transformations up to 40%.

o Flipping: Both horizontal and vertical flips applied randomly.

These augmentations introduced spatial and orientation-based variations, enriching the learning experience and
mitigating over-fitting. By simulating a variety of real-world conditions, our model learned to recognize lesions
with greater robustness. These steps standardize lesion input and simulate real-world variability, improving
generalization across Datasets. While the visual appearance of the preprocessed image remains similar to
the original, significant pixel-level transformations occur during preprocessing. Techniques like Black Hat
transformation and in-painting do not drastically alter the RGB values but remove subtle obstructions such as
hairs, which are difficult for a model to ignore. Additionally, resizing, normalization, and augmentation ensure
that all images are uniform and model-friendly. These improvements are not always apparent to the human eye,
but they play a critical role in improving feature extraction and segmentation accuracy. Preprocessed examples
of ISIC 2018 dermoscopic images after hair removal and augmentation are shown in Fig. 2.

Architecture

As we embarked on our journey to refine the U-Net structural design, we recognized the importance
of crafting a robust framework tailored to intricacies of lesion segmentation. We included two essential
elements: a feedback mechanism embedded in the decoder blocks and an Ordered Statistics Layer for
improved feature extraction. Our architecture is based on a carefully crafted U-Net model that can
process 256 x 256 pixel input images. The structure is revealed through a number of thoughtfully built
blocks. AttenUNeT X follows the standard encoder-decoder structure of U-Net with key architectural
improvements.

Ground Truth Mask

——— —
0 200 900 400 500 600 700 0 100 200 300 400 500 GOO 700
Original Image Ground Truth Mask
600
800
1000
1200
1800
} r T T
1000 1500 2000 0 500 1000 1500 2000

Fig. 2. Preprocessing steps performed on the dataset. Original dermoscopic image, corresponding lesion mask
aligned for training and hair-removed and resized image.
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Encoder

Sequential convolutional blocks extract features at multiple scales, activated via ReLU, and downsampled
via max pooling. This helps the model capture hierarchical features of lesion texture and color. Two primary
components make up the encoder, which is intended to gradually extract information from the input image.
The ReLU function activates the convolutional layers used in each block. A max-pool layer that deliberately
lowers dimensionality complements the convolutional layers with 32, 3 x 3 filters in the first encoder block.
The model ability to take out pertinent skin tone is further improved in its second encoder block, when the
number of filters increases to 64.

Order statistics layer

Positioned at the bottleneck, the OSL computes normalized maximum and minimum values across feature
map channels and concatenates them to the feature representation. Lesions often show extreme intensities
at their borders or cores. Capturing this distribution enhances the model’s ability to discriminate between
lesion and background, particularly in low-contrast areas. We realized that a reliable way to extract and
represent important characteristics from the input images was essential in our efforts to improve the
design of U-Net for skin lesion segmentation. To fill this gap, we created the Order Statistic Layer, a brand-
new element made especially for getting extreme values from the feature maps produced by the layers
that use convolution. These extreme values might be either minimum or maximum. In order to properly
define skin lesions, our model must be able to concentrate on both obvious characteristics and minute
details, which is greatly aided by this layer. The inclusion of the Order Statistics Layer (OSL) is particularly
beneficial in handling low-contrast lesions, where boundaries often blend into surrounding skin. Unlike
global preprocessing techniques such as histogram equalization or contrast normalization, which apply
uniform corrections across the entire image, OSL functions as a learnable and adaptive layer. This allows
the network to dynamically capture local intensity distributions during training, thereby enhancing fine-
grained boundary delineation in challenging cases.

Input tensor definition
With dimensions Hx W x C, the input tensorX is where the process starts, where:

o H is the feature map’s height.
o W stands for the feature map” width.
o (' is the feature map generated from the preceding convolutional layers has a channel count.

This tensor is a crucial tool for the segmentation process as it contains extensive information on the
characteristics that were taken from the input image.

Calculation of Minimum and Maximum Values: In order to effectively collect the highest and lowest values
that are important for the representation of features, we calculate the Optimized max and min thresholds
throughout the contribution tensor’s channel dimension. These operations’ formulas are: H x W x C

K
smallorder, = % Z min; (X, axis = —1, keepdims = True) (4)
i=1
K
1 . .
large ordery = " Z max; (X, axis = —1, keepdims = True) (5)

i=1
In addition, we scale the variation and lessen the susceptibility to outliers by normalizing these values:

small order
Small_OI‘dernorm - —

large order+ € (©)

large order

1 d norm — T 3 . _
arge_ordet large order+ €

(7)

Here:

« small_order, andlarge_order, . arethe normalized minimum and maximum values.
o € is a small constant to avoid division by zero.

ok refers to the number of iterations used to compute the minimum and maximum values

The model may concentrate on both the lowest along with highest feature values, that might be important
markers for lesion features, according to these calculations.

Combining Statistics with the feature map: Following the extraction of extreme values, we concatenate
these statistics with the novel feature map X to augment the attribute representation. The concatenation
operation is represented mathematically as:
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Xenhanced = Concat(X, small order,large ordernorm) (8)

As a result, the new tensor Xenhanced possesses dimensions H x W x (C + 2), effectively incorporating
the minimum and maximum values as additional channels. This augmentation enriches the feature
space, providing the model with more comprehensive information for the segmentation task.

Impact on learning

The integration of the extreme values into the feature representation significantly enhances the model’s
learning capabilities. By emphasizing critical features, the layer facilitates a more nuanced understanding
of the data. The output from the feature extraction process can be described as:

Xfnal = FeatureExatractor(Xenhanced) 9)

In this equation, FeatureExatractor symbolizes the subsequent layers (typically convolutional layers)
that further process the enhanced feature map to extract relevant patterns for segmentation.

Facilitating robust feature learning
By capturing the extreme statistics, the Order Statistics Layer empowers the model to learn effectively
from both global and local feature characteristics. The final segmentation output can be represented as:

Youtpur = 0(Wr * Xfinal + bs) (10)
where:

o Yourpur is the final segmentation mask.

o Wi is the weight matrix associated with the final convolutional layer.

o br represents the bias term.

o 0 is the sigmoid activation function, which produces pixel values in the range [0,1].

This process ensures that the model is capable of generating precise segmentation masks, crucial for
accurate medical diagnoses. Lesions often show extreme intensities at their borders or cores. Capturing
this distribution enhances the model’s ability to discriminate between lesion and background, particularly
in low-contrast areas. In the architecture, the Bottleneck Block is a crucial intersection. Here, we use
128-filter convolutional layers, which enable the model to better explore the intricacies of the given
input. This block is essential for making the switch from encoder into decoder easier.

Decoder with feedback mechanism

We incorporate an upsampling layer and concatenate it with matching encoder features as we move up
through the Decoder Blocks. As we recreate the image, this important phase guarantees that important
information is maintained. To preserve the model’s nonlinear properties, the decoder uses convolutional
layers using 64 and 32 filters and applies the same ReLU activation.

The feedback mechanism contributes to iterative refinement by reintroducing decoder features into
earlier layers, allowing progressive error correction in lesion boundary prediction. Unlike attention-
guided mechanisms, which emphasize salient features within a single forward pass, our feedback
design enables multi-pass refinement without requiring multiple networks. Compared to multi-stage
architectures, which often rely on cascaded heavy models, our feedback module provides a lightweight
and computationally efficient solution for fine boundary delineation. Each decoder block performs:
Upsampling, Skip connection from corresponding encoder layer, Feedback connection from earlier
decoder outputs. As we ventured into the decoder blocks, we recognized the need for a feedback
mechanism to reinforce information flow through recurrent connections. This innovative approach
involves concatenating outputs from earlier layers, followed by convolutional operations and batch
normalization:

Y = Concat (X, S) (11)

where S represents the skip connection from the encoder.
Next, we apply convolutions:

Y; = ReLU(BatchNorm (W;*Y) (12)
Y2 = ReLU(BatchNorm(Ws * Y) (13)
Finally, we obtain the output:
Youtput = (Wf * YQ) (14)
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This feedback mechanism iteratively improves details at each level of decoding, successfully capturing
lesion aspects.

Attention modules

Enhanced spatial attention is integrated into the encoder-decoder skip connections. This allows the network
to focus on key lesion areas while suppressing background noise. We created a U-Net model with a
mechanism for attention through integrating the feedback enabled decoding blocks with the Order
Statistics Layer. This setup enables our model to effectively reject irrelevant input while concentrating its
learning on key traits. The function known as the sigmoid activation drives the output layer’s creation of
segmentation masks, which have pixel values between 0 and 1.

Essentially, this architectural development makes it possible for our model to produce precise and
trustworthy segmentation masks for intricate skin lesions, increasing its versatility across the PH2 and
ISIC Datasets. By making these improvements, we want to expand our deep learning model’s potential
and keep it at the very forefront of segmenting skin lesions in technology. Traditional U-Net decoders
reconstruct segmentation maps in a one-pass, top-down manner. Our feedback mechanism allows
iterative refinement of lesion boundaries by reusing earlier decoding outputs. This is especially helpful
in recovering fine details and irregular borders of lesions. Here, 0(x) and ¢(g) denote learnable linear
projections generating query and key embeddings used for attention weighting within the skip pathway.
Often share appearance with surrounding skin. Attention mechanisms enable the model to differentiate
contextually important features like asymmetry, pigment spread. The schematic representation of the
enhanced attention block used in AttenUNeT X is provided in Fig. 3.

Output layer

A final 1 x 1 convolution followed by a Sigmoid activation produces the segmentation mask, with
pixel-level probabilities indicating lesion presence. The output layer appears, which uses a convolu-
tion layer using a single 1 x 1 filter. Our segmentation masks are created by this layer using a Sigmoid
activation function, which turns the complex data into useful insights. Although the visual representa-
tion in Fig. 4 may appear dense, each module follows a consistent labeling convention. Encoder blocks
(green) consist of two convolutional layers (L1 and L2), followed by max pooling (M) to reduce spatial
dimensions. The central bottleneck layer (blue) increases feature depth and is followed by two decoder
blocks (yellow), which incorporate upsampling (U/P) and concatenation (C) with the corresponding
encoder outputs. Attention blocks are inserted before each decoder block to focus on important lesion
features. Importantly, feedback connections are introduced from decoder to encoder stages to enable
reactivation of relevant features. All Conv2D operations are annotated with their respective parameters
(filters, kernel size), and the architecture is designed to maintain symmetry while enhancing lesion de-
tail learning. The detailed architecture integrating encoder-decoder blocks with Order Statistics Layer,
iterative feedback, and attention modules is presented in Fig. 4.

Encoder
feature| x
map —>ConV2D heta|x
CxHx (1*1 filter//2) -
) 4
W Cony Atten-X
f —>»2D(1*1,1
— Attention
A
Decods Weighting
feature I RelLU Sigmoid
map — »{ConVv2D| hi g——
(1*1 filter//2) —
C x Hx
w
Fig. 3. Architecture of the attention module used in AttenUNeT X. The block performs spatial and channel
attention before merging features in the decoder.
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Fig. 4. Detailed architecture of the proposed AttenUNeT X model, integrating encoder—decoder blocks with
Order Statistics Layer (OSL), iterative feedback mechanisms, and attention modules for lesion boundary
refinement. Each layer’s filter size and skip connections are indicated. BN—Batch Normalization; ReLU—
Rectified Linear Unit.

Input: preprocessed training data denotes X-train, validation images is X-val, and matching ground truth masks is Y-train.
Output: Predicted masks for skin lesion affected area.

Steps 1: Load both images of training then ground truth masks.

Steps 2: Delineate the Enhanced U-Net model architecture

KK XKK X e

EJ

The Input layer to recognize images of nature (256, 256, 3)

Encoder blocks to detain multi level skin texture, applying ReLU activation following each convolutional block, followed by max
pooling.

Order Statistics Layer to compute normalized minimum and maximum values across channels, concatenating with the feature map.
Bottleneck block with 128 filters, using ReLU activation for deeper feature representation.

Decoder blocks to upsample and restore image dimensions. Decoder layers are concatenated with corresponding encoder outputs.
Feedback Mechanism in Decoder to refine segmentation by reusing decoder outputs and concatenating with earlier encoder features.
Output layer with sigmoid activation for generating the segmentation mask.

Steps 3: Compile the AttenUNeT X with the Adaptive Moment Estimation (Adam), binary instability in cross-entropy loss due to oscillations
during training, and metrics.

Steps 4: Train the AttenUNeT X model on the training data with a validation split to monitor performance.

Steps 5: Predict masks which on the validation set (X-val) by means of well-trained model.

Steps 6: Apply a threshold to renovate the model’s predictions to binary masks.

Steps 7: Calculate the affected lesion area through the binary mask.

Steps 8: Do again steps 5 - 7 the arbitrary validation example.

Steps 9: Display the images original, ground truth mask, predicted representation, and segmentation results.

Finish Algorithm

Algorithm. Skin lesion segmentation using AttenUNeT X

Training setup
The AttenUNeT X model was trained using the following hyperparameters:

« Optimizer: Adam optimizer with $1=0.9 and $2=0.999
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o Learning rate(LR): 1e-4 with a ReduceLROnPlateau scheduler (factor 0.1, patience =10)

« Batch size: 16

o Maximum epochs: 150

« Dropout rate: 0.3 applied in decoder blocks

« Loss function: A hybrid loss combining Dice loss and Binary Cross-Entropy (BCE) loss

o Early stopping criterion: Training was stopped if validation loss did not improve for 15 consecutive epochs

These hyperparameter choices were determined empirically to balance segmentation accuracy and training
stability.

Experimental results

Quantitative results

The performance of AttenUNeT X was evaluated on three Datasets: ISIC 2018, PH2, and ISIC 2017. Metrics
reported include Dice Coefficient, Intersection over Union (IoU), and pixel-level accuracy. As shown in Table
3, the model achieved a Dice of 0.9211, IoU of 0.8533, and accuracy of 0.9824 on the ISIC 2018 test set. Similar
performance was observed on PH2 (Dice: 0.9500, IoU: 0.9000) and ISIC 2017 (Dice: 0.8542, IoU: 0.7454),
demonstrating robust generalization.

Ablation study

To validate the individual contributions of each proposed component, we conducted an ablation study on
the ISIC 2018 validation set. The results are summarized in Table 3. Each configuration builds incrementally
toward the full AttenUNeT X model. The dataset split configuration used for training, validation, and testing is
summarized in Table 2.

Table 3 Ablation study on ISIC 2018 Dataset showing incremental contributions of attention, feedback, and
OSL modules to segmentation performance.

These results show that each module contributes progressively to performance. The feedback mechanism
provided the largest boost in boundary accuracy, while OSL helped with discriminating fine lesion textures.
Their combination leads to superior segmentation quality.

This part, we present the experimental results obtained from our study using the proposed AttenUNeT X
model for skin lesion segmentation. The model’s performance was evaluated on three distinct Datasets: the PH2
Dataset, and the ISIC 2018 Dataset, ISIC 2017 Dataset. Each Dataset provided unique challenges and valuable
imminent into the segmentation capabilities for skin lesions.

Performance metrics
To review the segmentation feat, we employed several key metrics:

(1) DiceCo-efficient (DC) This statistic calculates how much the ground truth and the anticipated segmentation
mask overlap. It’s described as below, where the sets of anticipated pixels are denoted by A and the ground
truth pixels by B.

__2|ANB|

DC=———=
Al + (B

(15)

(2) Intersection over Union (IoU) sometimes referred to as the Jaccard’s Index, determines the segmentation
accuracy by dividing the juncture of the ground-truth and predicted pixels by their combination are below,
Where the sets of anticipated pixels are denoted by A and the ground truth pixels by B.

_ |JAnB| _ DC
T JAJUB] T 2-DC

IoU (16)

(3) Pixel accuracy (PA) Out of all the pixels in the image, this measure shows the percentage of pixels that were
properly classified:

Configuration Dice coefficient | IoU Accuracy
Baseline U-Net 0.8793 0.7995 | 0.9632
+ Attention Only | 0.8946 0.8204 | 0.9705
+OSL Only 0.9017 0.8293 | 0.9738
+Feedback Only | 0.9084 0.8362 | 0.9776
Full AttenUNeT X | 0.9211 0.8533 | 0.9824

Table 3. Ablation study on ISIC 2018 Dataset showing incremental contributions of attention, feedback, and
OSL modules to segmentation performance.
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Epochs | Training ACC | Training loss | Val-ACC | Val-loss | Precisions | Recall’s
10 0.8199 0.3846 0.8109 0.3892 0.8466 0.2809
25 0.8378 0.3714 0.8458 0.3491 0.7779 0.6419
50 0.8470 0.3485 0.8451 0.3395 0.7160 0.7577
75 0.8696 0.2916 0.8572 0.3207 0.8006 0.7563
100 0.9269 0.1733 0.8893 0.3273 0.8767 0.8617
150 0.9824 0.0388 0.9123 0.1606 0.9765 0.9679

Table 4. Training and validation performance across epochs on ISIC 2018 Dataset.

Training and Validation Metrics (Including Precision and Recall) Over Epochs
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Fig. 5. Results of ISIC 2018 Dataset training and validation metrics over 150 epochs.
No. of Correct Predicts
PA = - (17)
Total No. of Predicts
(4) Precision which indicates the ratio of true + ¢ predictions among all + ¥ predictions:
True Positives
Precision = — .. 18
True Positive + False Positive (18)
(5) Recall This metric represents the proportion of true positive predictions among all actual positives:
True Positives
Recall = (19)

True Positive + False Negative

(6) Area under curve (AUC) AUC measures a binary classification model’s overall effectiveness. AUC values
were computed from Receiver Operating Characteristic (ROC) analysis using the scikit-learn library; ROC
curves are not shown due to space limitations, but values were derived directly from these plots.

ISIC 2018 dataset (Task 3)
The model shows significant gains in all important measures as training goes on through 10 to 150 epochs. With
a comparable drop in training loss between 0.3846 to 0.0388, training accuracy rises from 0.8199 to 0.9834.
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epochs | Training ACC | Training loss | Val—ACC | Val—loss | Precisions | Recall’s
10 0.8256 0.3846 0.8339 0.3700 0.6914 0.7547
25 0.8453 0.3338 0.8486 0.3366 0.7177 0.7744
50 0.8607 0.3129 0.8606 0.3119 0.7611 0.7538
75 0.8835 0.2694 0.8632 0.3187 0.8219 0.7226
100 0.8980 0.2426 0.8661 0.3350 0.8377 0.8042
150 0.9563 0.1086 0.9023 0.3482 0.9237 0.9290

Table 5. Training and validation performance across epochs on PH2 Dataset.

Training and Validation Metrics (Including Precision and Recall) Over Epochs
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Fig. 6. Results of PH2 Dataset training and validation metrics over 150 epochs.

Although validation loss varies significantly, suggesting possible over-fitting, validation accuracy also increases,
reaching 0.9123 after 150 epochs. Both recall and precision exhibit consistent rises, reaching their highest points
at 150 epochs with 0.9765 and 0.9679, respectively. On using ISIC 2018 Dataset, these patterns show good
learning and performance. Training and validation performance across epochs for ISIC 2018 are summarized in
Table 4. Training and validation accuracy-loss curves for the ISIC 2018 dataset are displayed in Fig. 5.

PH2 dataset

The model shows consistent improvement with further training for the PH2 Dataset. Training loss dramatically
decreases via 0.3846 to 0.1086, indicating successful learning, while training accuracy increases from 0.8256
over 10 epochs reaching 0.9563 at 150 epochs. Similar trends are shown in validation accuracy, which reaches
0.9023 by 150 epochs. However, validation loss varies, suggesting some over fitting in subsequent epochs. With
improvements of 0.9237 and 0.9290 after 150 epochs, respectively, precision and recall also show promising
segmentation performance. With further training, these findings validate the model’s ability to detect skin lesions
properly and its resilience on the PH2 Dataset. The epoch-wise training and validation results for PH2 dataset
are detailed in Table 5. Performance trends across training epochs for the PH2 dataset are plotted in Fig. 6.

ISIC 2017 dataset

As training progresses, the model consistently improves across measures to the ISIC-2017 Dataset. Training
loss dramatically drops from 0.3600 to 0.1134, while training accuracy rises between 0.8441 at 10 epochs over
0.9550 at 150 epochs. Although validation loss exhibits significant fluctuation, particularly for higher epochs,
suggesting possible overfitting, validation accuracy also increases, achieving 0.9021 by 150 epochs. Significant
improvements are also shown in precision and recall, which peak around 0.9457 and 0.8991 at 150 epochs,
respectively. This development demonstrates how well the model can segment skin lesions from the ISIC 2017
data set, producing consistent outcomes after more training. Performance trends across epochs for ISIC 2017
dataset are reported in Table 6. The training and validation progress for the ISIC 2017 dataset is shown in Fig. 7
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Epochs | Training ACC | Training loss | Val—ACC | Val—loss | Precision’s | Recall’s
10 0.8441 0.3600 0.8452 0.3504 0.7695 0.6572
25 0.8473 0.3388 0.8556 0.3310 0.8173 0.6335
50 0.8713 0.8713 0.8595 0.3199 0.8058 0.7122
75 0.8890 0.2545 0.8665 0.3209 0.8230 0.7745
100 0.9066 0.2150 0.8675 0.3655 0.8331 0.8329
150 0.9550 0.1134 0.9021 0.3922 0.9457 0.8991

Table 6. Training and validation performance across epochs on ISIC 2017 Dataset.

Training and Validation Metrics (Including Precision and Recall) Over Epochs
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Fig. 7. Results of ISIC 2017 Dataset training and validation metrics over 150 epochs.

Metric ISIC 2018 (Task 3) | ISIC 2017 dataset
Accuracy 0.9824 0.9125
Precision 0.9633 0.8216
Recall 0.9808 0.8894
AUC 0.9961 0.9325
IoU 0.8533 0.7454
DiceCo-efficient | 0.9720 0.8542
Loss 0.0429 0.2016

Table 7. Cross-dataset validation results: Model trained on ISIC 2018 and tested on ISIC 2017.

Cross-dataset validation outcomes for models trained on ISIC 2018 and tested on ISIC 2017 are summarized
in Table 7. The segmentation algorithms’ ability to accurately differentiate skin lesions is supported by the
quantitative findings obtained from the ISIC 2018, PH2, & ISIC 2017 Datasets. The models’ physically powerful
presentation is demonstrated by the metrics obtained, which include the DiceCo-efficient, the Intersection over
Union (an IoU), Pixel precision, recall, precision, accuracy, and AUC. The PH2 Dataset, which obtained the
finest DiceCo-efficient (0.9500) along with IoU (0.9000), suggests superior segmentation functionality and detail.
These findings show the segmentation methods” generalizability across a variety of Datasets in addition to their
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Metric ISIC 2018 (Task 3) | PH2 dataset | ISIC 2017 dataset
DiceCo-efficient 0.9211 0.9500 0.8542
Intersection over Union (IoU) | 0.8533 0.9000 0.7454
Pixel accuracy 0.9824 0.9808 0.9125
Precision 0.9633 0.9583 0.8216
Recall 0.9808 0.9478 0.8894
AUC 0.9961 0.9906 0.9325

Table 8. Quantitative segmentation performance across datasets.
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Fig. 8. Comparison of metric values across datasets (ISIC 2018, PH2, ISIC 2017).

resilience. With its potential for clinical use in dermatological diagnostics, wherein accurate and trustworthy
segmentation is essential, this flexibility represents a significant advancement in automated skin lesion analysis.
Comprehensive quantitative performance of AttenUNeT X across all three benchmark datasets is presented in
Table 8. A comparative visualization of segmentation metrics across ISIC 2018, PH2, and ISIC 2017 datasets is
given in Fig. 8

High DiceCo-efficient: In the ISIC-2018, Dataset, the model’s DiceCo-efficient was 0.9211; for the PH2
Dataset, it was 0.9500; and on the ISIC 2017, Dataset, it was 0.8542. The model well captures the intricate borders
of skin lesions, as evidenced by these results, which show significant overlap among the predicted with ground
truth lesion masks. Strong IoU Performance: Exact separation of lesion from non-lesion areas is demonstrated
by the model’s IoU values for 0.8533 (ISIC 2018), 0.9000, for instance (PH2), as well as 0.7454 (ISIC 2017).
Substantial IoU values throughout Datasets suggest that recall and accuracy are well-balanced. Robust Pixel
Accuracy: The model’s pixel accuracy ratings of 0.9824 for ISIC 2018 alone, 0.9808 on PH2, while 0.9125 for ISIC
2017 demonstrate its high ability to reliably categorize individual pixels. Given its high degree of accuracy, the
model appears to be dependable for real-world skin lesion segmentation purpose. Exceptional AUC: Further
confirming the model’s possibility of clinical use in dermatology are the AUC metrics of 0.9961 (ISIC 2018,
among others), 0.9906 (PH2), & 0.9325 (ISIC 2017), which highlight the model’s efficacy in differentiating among
lesion and background classes. Some predicted outputs are displayed as binary lesion masks, while others appear
as probability heatmaps or colored overlays. These variations arise from differences in Dataset-specific coding
pipelines used to extract results. We retained these representations to demonstrate model performance across
multiple visualization styles. Importantly, the underlying segmentation accuracy is evaluated quantitatively
(Dice, IoU, Precision, Recall), independent of the visualization style. Hence, heatmaps and binary masks equally
confirm the model’s ability to capture lesion boundaries. Qualitative segmentation outputs of AttenUNeT X on
representative samples from all datasets are illustrated in Fig. 9

Each row shows the original image, ground truth mask, and predicted mask. Predicted outputs are displayed
in different visualization styles (probability heatmaps, binary masks, colored overlays), depending on the Dataset
pipeline. These differences are only visualization choices and do not affect segmentation quality. All evaluations
are based on quantitative metrics and boundary accuracy. Figure 10 depicts the accuracy and loss variation of
the AttenUNeT X model during ISIC 2018 training..
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Fig. 9. Qualitative segmentation results of AttenUNeT X across ISIC 2017, PH2, and ISIC 2018 Datasets. Error
heatmaps highlighting regions of under- and over-segmentation produced by AttenUNeT X on sample test
images.

Comparison on ISIC-2018 dataset

Our model, AttenUNeT X, demonstrated strong performance on the ISIC 2018 Dataset, setting a high
benchmark in skin lesion segmentation. With DiceCo-eflicient of 0.9211, IoU of 0.8533, Pixel Acc of 0.9824,
Precision 0.9633, Recall 0.9808, and an AUC of 0.9961, AttenUNeT X outperforms or competes closely with
other advanced models: From the comparative analysis in Table 9, it is evident that our model, AttenUNeT
X, consistently delivers high performance across all evaluation metrics. With a Dice coefficient of 0.9211 and
IoU of 0.8533, it outperforms models such as Ms RED (0.8960, 0.8290), FAT-Net (0.9050, 0.8450), GAN-based
Segmentation (0.8950, 0.8510), and Boundary-Aware UNet (0.9000, 0.8500). In addition, AttenUNeT X achieves
the highest AUC (0.9961), surpassing all compared methods, including FAT-Net (0.9800), Complementary
Network (0.9750), and DPFCN (0.9700). Its Pixel Accuracy (0.9824) is also superior to many recent approaches
such as MGAN (0.9450) and SSR-UNet (0.9534). While a few models, such as ARCUNet (2025) and MRP-UNet
(2024), report competitive Dice values, their overall performance across multiple metrics is either incomplete
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Fig. 10. Result of AttenUNeT X model (a) Accuracy and (b) Loss of ISIC 2018 Dataset.

or slightly below our framework. A detailed quantitative comparison of AttenUNeT X with state-of-the-art
segmentation models on the ISIC 2018 dataset is provided in Table 9.

This highlights that AttenUNeT X not only maintains strong balance across all measures but also sets a high
benchmark in segmentation accuracy, boundary localization, and lesion detection reliability. These comparisons
highlight that AttenUNeT X not only excels in segmentation accuracy but also provides robust boundary
detection and lesion localization. The high scores across all metrics reinforce its potential for clinical applications
in dermatology. Visual overlap comparisons between predicted masks and ground truths highlighting lesion
boundary alignment are illustrated in Fig. 11.

Comparison on PH2 dataset

Our AttenUNeT X model showed remarkable performance on the PH2 Dataset, achieving a DiceCo-efficient of
0.9500, IoU of 0.9000, Pixel Accuracy 0.9808, Precision 0.9583, Recall 0.9478, and an AUC of 0.9906. Compared
to other advanced models, AttenUNeT X maintains a competitive edge: The results in Table 10 demonstrate that
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Model Dice coefficient | IoU Pixel accuracy | Precision | Recall | AUC
AttenUNeT X 0.9211 0.8533 | 0.9824 0.9633 0.9808 | 0.9900
ARCUNet" 0.9688 NA 0.9819 NA NA 0.9353
SSR-UNet? 0.9021 0.7138 | 0.9534 0.9754 0.8849 | NA
MRP-UNet* 0.9236 0.9128 | 0.9551 0.9344 0.8857 | NA
Ms RED* 0.8960 0.8290 | 0.9602 0.9000 0.9000 | N/A
FAT-Net? 0.9050 0.8450 | 0.9600 0.9150 0.9030 | 0.9800
Improved Tuna Swarm (2023) 0.8725 0.8350 | 0.9120 0.8940 0.8810 | N/A
MGAN'® 0.9010 0.8360 | 0.9450 0.9550 0.9360 | NA
GAN-based segmentation (2023) | 0.8950 0.8510 | 0.9230 0.9065 0.8920 | 0.9400
Complementary network?® 0.9120 0.8500 | N/A 0.9200 0.9100 | 0.9750
Dual-attention U-Net'? 0.8900 0.8200 | N/A 0.8800 0.8750 | 0.9600
DPECN* 0.9100 0.8300 | 0.9500 0.9010 0.8900 | 0.9700
Boundary-aware method'! 0.9000 0.8500 | 0.9450 0.8970 0.8850 | 0.9600
SK-Net?*® 0.8800 0.8100 | 0.9400 0.8800 0.8700 | 0.9500
UNeT + +% 0.8900 0.8300 | 0.9480 0.8900 0.8800 | 0.9500

Table 9. Comparison of AttenUNeT X with state-of-the-art segmentation methods on ISIC 2018 Dataset.
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Fig. 11. Visual overlap comparison of segmentation outputs. AttenUNeT X predictions align closely with
ground truth boundaries, outperforming competing models in preserving fine lesion details. Summary
visualization showing model performance across datasets and potential areas for improvement.

AttenUNeT X achieves superior performance across almost all evaluation metrics. With a Dice coefficient of
0.9500 and IoU of 0.9000, our model surpasses FAT-Net (0.9100, 0.8600), GAN-based Segmentation (0.8950,
0.8580), Boundary-Aware Method (0.9200, 0.8700), and UNeT + +(0.9100, 0.8600). Although MRP-UNet (2024)
reports a comparable Dice (0.9419) and IoU (0.9077), it falls slightly short of AttenUNeT X’s overall consistency.
In terms of Pixel Accuracy, AttenUNeT X records 0.9800, higher than Boundary-Aware UNet (0.9500), Dual-
Attention U-Net (0.9480), and UNeT + +(0.9520). The model also secures one of the strongest Precision scores
(0.9580), outperforming methods such as FAT-Net (0.9050) and Boundary- Aware UNet (0.9080), while its Recall
0f 0.9470 strikes an optimal balance compared to SSR-UNet (0.9754), which favors recall but compromises IoU
and overall stability. Based on the PH2 Dataset, these findings position AttenUNeT X as a top model in skin
lesion segmentation. The model’s resilience and dependability for dermatological diagnoses are demonstrated
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Model Dice coefficient | IoU Pixel accuracy | Precision | Recall | AUC
AttenUNeT X 0.9500 0.9000 | 0.9800 0.9580 0.9470 | 0.9900
SSR-UNet? 0.9021 0.7138 | 0.9530 0.9754 0.8849 | NA
UCM-Net?! 0.9015 0.8762 | 0.8883 0.9064 0.8791 | NA
FDUM-Net*? 0.8981 0.8845 | 0.9053 0.9173 0.8811 | NA
MRP-UNet* 0.9419 0.9077 | 0.9613 0.9265 0.9192 | NA
FAT-Net?’ 0.9100 0.8600 | 0.9550 0.9050 0.8870 | 0.9700
GAN-based Segmentation (2023) 0.8950 0.8580 | 0.9230 0.9060 0.8920 | 0.9400
Improved Tuna Swarm U-EfficientNet?® | 0.9300 0.8800 | N/A 0.9150 0.9000 | 0.9700
Boundary-aware method!! 0.9200 0.8700 | 0.9500 0.9080 0.8900 | 0.9700
Dual-attention U-Net!? 0.9000 0.8500 | 0.9480 0.8900 0.8800 | 0.9600
UNeT + +% 0.9100 0.8600 | 0.9520 0.8990 0.8900 | 0.9600

Table 10. Comparison of AttenUNeT X with state-of-the-art segmentation methods on PH2 Dataset.

by its outstanding AUC, high Dice with IoU scores, and exceptional boundary correctness. Table 10 presents a
comprehensive comparison of AttenUNeT X with other recent architectures evaluated on the PH2 dataset.

Discussion

The proposed AttenUNeT X model demonstrates strong performance in dermoscopic skin lesion segmentation
by integrating decoder feedback refinement, statistical feature enhancement, and attention-based localization.
Unlike conventional architectures such as U-Net or DeepLabV3 +, the inclusion of an Order Statistics Layer and
decoder-level feedback enables the recovery of fine lesion boundaries and subtle features often missed by baseline
approaches. Our evaluation across ISIC 2018, ISIC 2017, and PH2 confirms both high segmentation accuracy and
cross-dataset generalizability. Despite the limited sample size of PH2, the model maintains robust performance,
suggesting resilience to domain shift. Nevertheless, we acknowledge the risk of overfitting on small datasets
and plan to address this by incorporating additional sources such as Derm7pt Clinical and Dermoscopic Skin
Lesion Dataset (Derm7pt), Human Against Machine 10,000 Dataset (HAM10000), and Skin Disease 198 (SD-
198) in future work. Clinical relevance represents another strength of AttenUNeT X. Accurate lesion boundaries
are critical for dermatologists in assessing asymmetry, border irregularity, and pigment distribution, which are
key diagnostic indicators for melanoma. By producing precise and interpretable masks, the model could be
integrated into clinical decision-support systems or dermoscopic image viewers to assist with real-time triage
or second-opinion validation. Furthermore, the modular design of AttenUNeT X, built on a lightweight U-Net
backbone with selective enhancements, facilitates deployment in resource-constrained environments such as
mobile platforms or portable diagnostic devices. Although we did not directly re-implement DeepLabV3+or
DenseNet-UNet due to resource constraints, community benchmarks indicate that DeepLabV3+with a
ResNet-50 backbone requires ~26-42 M parameters, while DenseNet-UNet variants remain parameter-heavy
owing to dense connectivity. In contrast, AttenUNeT X achieves competitive segmentation accuracy with a
notably smaller memory footprint, making it more suitable for deployment in real-world clinical environments.

Conclusion

In this paper, we proposed AttenUNeT X, an enhanced deep learning architecture for accurate skin lesion
segmentation. By incorporating decoder feedback, a custom Order Statistics Layer, and attention modules
into the U-Net framework, the model addresses key challenges in lesion boundary extraction and contextual
misclassification. Experimental validation on ISIC 2018, ISIC 2017, and PH2 confirms the effectiveness of
AttenUNeT X, achieving superior Dice scores and visual accuracy compared to several methods. Ablation
studies further support the contribution of each proposed component. For future work, we aim to extend the
model toward multi-task learning, enabling simultaneous lesion segmentation and classification. Incorporating
transformer blocks will be explored to capture long-range dependencies, and cross-domain evaluations will
be conducted on datasets with rare lesion types and diverse skin tones. Optimization for real-time clinical
deployment via web-based platforms and mobile diagnostic tools will also be prioritized. In addition, while
standard augmentation methods such as rotation, flipping, scaling improve dataset diversity, they remain
limited in modeling rare pathological variations. Generative adversarial networks (GANs) and diffusion-
based approaches may be employed to synthesize realistic lesions, further enhancing robustness. Given recent
advances in hybrid CNN-Transformer architectures like TransUNet, Swin-UNet, extending AttenUNeT X with
such modules forms a promising direction for future research. Overall, AttenUNeT X represents a step toward
building robust, interpretable, and deployable deep learning models for dermatological diagnostics.

Limitations

The datasets used in this study primarily include common lesion types and may lack representation of rare
conditions and diverse skin tones, which could limit generalizability. Moreover, curated benchmark datasets
may not fully capture real-world variability, such as inconsistent lighting, imaging artifacts, and heterogeneous
acquisition devices. While AttenUNeT X demonstrates good cross-dataset performance across ISIC 2017, ISIC
2018, and PH2, domain shifts remain a challenge, particularly when applied to under-represented populations

Scientific Reports |

(2025) 15:40690 | https://doi.org/10.1038/s41598-025-23830-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

or rare conditions. We also note that some recent methods, such as ARCUNet (0.9688 Dice) and MRP-UNet
(0.9236 Dice), report slightly higher DSC values. However, AttenUNeT X achieves a stronger overall balance
across Dice, IoU, Precision, Recall, and AUC. Our design emphasizes lesion boundary refinement and
interpretability rather than maximizing a single metric. Finally, although the proposed architecture reduces
computational complexity relative to other advanced networks, additional strategies such as ensemble learning
and post-processing may further improve performance. Future research will explore these directions to enhance
both accuracy and robustness.

Data availability

The Datasets used in this research are openly accessible and include: ISIC Datasets (ISIC 2018 and ISIC 2017)
***% Available at the [ISIC Archive] (https://www.isic-archive.com/), PH2 Dataset **s** Provided as a public
Dataset in the dermatology
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