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Forecasting compressive strength
of concrete containing rice husk
ash using various machine learning
algorithms
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Incorporating rice husk ash (RHA) into concrete improves the structure’s compressive strength (CS) and
durability and aids sustainability by lowering carbon emissions. This paper evaluates the application

of twelve machine learning (ML) algorithms to predict the CS of concrete containing RHA. The dataset
used to train, test, and validate the model comprised 500 experimental samples and 30 data points
sourced externally. Through stepwise regression, seven input features were chosen: water-to-binder
ratio (W/B), cement (C), superplasticizer (SP), water (W), RHA, coarse aggregate (CA), and fine
aggregate (FA). Among the evaluated models, support vector regression (SVR), Gaussian process
regression (GPR), and null-space SVR (NUSVR) models emerged as the best performing, each attaining
R2values over 0.93. DTR performed weakest, with R2 values below 0.53, illustrating the importance of
algoRhythm selection. The study’s results reaffirm the importance of RHA content and the W/B ratio as
the two major determinants of the CS increase. To assist practitioners iapplyingng the trained models,
a simple graphical user interface (GUI) was created to allow engineers to quickly evaluate CS and refine
concrete mix designs. The combination of sophisticated ML methods with the data on RHA concrete
will therefore support the overarching strategy to achieve sustainability in construction and high
operational reliability of structures.
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Abbreviations

ML Machine learning

SHAP SHapley additive exPlanations
GPR Gaussian process regression
SVR Support vector regression
RFR Random forest regression
XGBR Extreme gradient boosting regression
ANN Artificial neural network
KNN K-nearest neighbors

SERC Steel fiber-reinforced concrete
MSE Mean squared error

MAE Mean absolute error

R? Coefficient of determination
RMSE Root mean squared error
PDP Partial dependence plot
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PFI Permutation feature importance
RHA Rice husk ash

CS Compressive strength

Ww/C Water-to-cement ratio

GUI Graphical user interface

CA Coarse aggregates

FA Fine aggregates

C Cement

w Water

SP Superplasticizer

W/B Water-to-binder ratio

AIC Akaike information criterion

BIC Bayesian information criterion
UHPC Ultra high performance concrete
Bi-LSTM  Bidirectional long short-term memory
SHAP SHapley ADDITIVE exPlanations

Concrete is the predominant building material in structural engineering, with Portland cement being the most
prevalent binder in its production, and it is employed globally for constructing various structures. Despite its
widespread use, the production of Portland cement is associated with substantial carbon dioxide emissions,
prompting the exploration of alternative binders to mitigate the environmental impact!. A multitude of
agricultural and industrial byproducts, including sugarcane bagasse ash, rice husk ash (RHA), and silica fume,
are being incorporated as supplementary cementitious materials in concrete manufacturing, offering a viable
means to curtail reliance on ordinary Portland cement?.

RHA, abundant in amorphous silica, becomes a valuable addition to the concrete production process. Its
inclusion not only enhances the pore structure of concrete but also contributes significantly to improving
the overall strength and durability of the material®. Moreover, using RHA as a concrete component serves a
dual purpose by addressing environmental concerns. RHA can lead to severe environmental pollution when
left untreated and directly discharged. Integrating RHA into the concrete mix benefits not only the concrete’s
performance but also reduces the environmental impact. Consequently, extensive research is underway to
explore the applications and advantages of RHA in concrete formulations®.

The compressive strength (CS) of concrete stands out as a pivotal parameter, bearing profound implications
for the durability of structures®8. Previous research indicates that concrete incorporating RHA tends to exhibit
elevated strengths in both early and later stages®!!. Ganesan et al.!? delved into the nuanced patterns of CS
variation in concrete with varying RHA content. Their findings underscored that concrete strength surpassed
the control group up to 30% RHA, reaching its zenith at 15%. However, a decline in strength commenced beyond
the 30% threshold. Similarly, Kishore et al.! noted the peak CS of concrete occurring at a 10% RHA substitution.
Bhanumathidas and Mehta'* concurred, reporting that concrete strength surpassed that of the control until a
40% RHA content.

Examining the impact of water-to-cement ratio (W/C) and RHA on concrete CS, Bui et al.!® observed
an inverse relationship between W/C and RHA content, with the addition of RHA contributing positively to
concrete CS. This aligns with the conclusions drawn by de Sensale!® in the case of Uruguayan and American
RHA. Additionally, established studies highlight the influence of various factors on the CS of RHA concrete,
including cement content, age, W/C, water content, coarse aggregate (CA) content, fine aggregate (FA) content,
and superplasticizer (SP) content®!>-%7,

While traditional laboratory tests remain the conventional means of determining concrete CS, they are
beset by costliness, labor intensity, and time consumption issues®. Therefore, the imperative lies in adopting a
pragmatic approach for predicting the CS of RHA concrete, enabling swift assessments of concrete quality.

Several prediction equations have been devised to forecast the CS of RHA concrete. Saridemir et al.'®
introduced an explicit formulation rooted in gene expression programming to anticipate the CS of RHA
concrete. The resulting correlation coefficient (R?) stood at 0.9535, attesting to its notably high prediction
accuracy. Employing statistical regression analysis, Islam et al.! crafted a predictive model for the CS of RHA
high-performance concrete, achieving a commendable fit with an R? of 0.8160. Liu et al.?* delved into the
study of hydration products in cement slurry using X-ray analysis. They developed an optimal model for RHA
replacement rate and formulated a CS prediction model for the concrete model. The mechanical properties of
concrete reached their zenith with a 20% RHA content. The prediction model exhibited outstanding efficacy,
with a maximum error of merely 14.4%.

Constructing a multi-factor equation for predicting the CS of RHA concrete encounters challenges arising
from the nonlinear relationship between the CS of RHA concrete and various factors. This complexity can be
effectively addressed through machine learning (ML). Today, ML methods have shown potential in solving
problems related to structural engineering?!~2*. Utilizing ML approaches within concrete technology offers
an intelligent perspective towards sustainability in the construction industry*-28. Recently, there has been a
growing emphasis on leveraging advanced ML methods for predicting concrete CS?8-%2 Topcu et al.** devised
an artificial neural network (ANN) and fuzzy logic model to predict CS, highlighting its significant potential for
predicting the CS of fly ash concrete. In their study on high-volume fly ash self-compacting concrete, Kumar
et al.** employed advanced hybrid gradient boosting models to predict the CS and developed an open-source
Graphical User Interface (GUI) to support mix design optimization and enhance model transparency. Kumar
et al.*> developed and evaluated advanced ML models to predict the CS of ultra high performance concrete
(UHPC) based on 15 input variables. Among these, the bidirectional long short-term memory (Bi-LSTM) model
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achieved the highest accuracy. Sathvik et al.* replaced conventional cement and river sand with recycled fly ash

and manufactured sand in concrete, testing CS over 3-90 days. They also employed ML models to accurately
predict concrete CS. Erdal etal.?’, in their work on predicting the CS of high-performance concrete using wavelet
ensemble models, found that the discrete wavelet transform substantially enhances the prediction accuracy of
ANN. Behnood et al.3® employed the M5P model tree algorithm to predict CS across different concrete types
based on 1912 datasets, demonstrating that the M5P model tree can serve as a viable method for CS prediction
in concrete.

Recent research has started to address the prediction of CS in RHA concrete using ML methods. For
instance, Li et al.*® developed a hybrid neural-network model grounded on a dataset of 192 records and six
input parameters, resulting in satisfactory forecasting accuracy. In a parallel effort, Igtidar et al.** reproduced
the analysis using the same dataset and an ANN approach. Hamidian et al.*! have gone a step farther by
integrating an ANN framework with advanced optimization methods, yielding a model where the correlation
coefficient exceeds 0.95. Amin et al.*? expanded the toolbox by applying bagging regressors, decision trees, and
AdaBoost regressors, all demonstrating commendable precision in estimating the CS of RHA concrete. Alyami
et al.** demonstrated the effectiveness of ensemble ML models (exceptionally light gradient boosting machine)
in predicting the CS of RHA concrete. They used 348 values of CS collected from the experimental studies,
including five characteristics of RHA concrete. The study concluded that the light gradient boosting machine is
the most effective ML model for accurately predicting the CS of RHA concrete. SAPley Additive ExPlanations
(SHAP) analysis further revealed that the W/C ratio is the most influential parameter in the prediction process.

Despite the progress, a knowledge gap remains in using ML to predict CS of RHA concrete when factoring in
a range of multiple input variable combinations. Past investigations relied on neither exhaustive nor sufficiently
large databases, resulting in a limited number of data entries for training and validation. The restricted selection
of ML algorithms used in past research inhibits a thorough assessment of which models perform best under
varied data scenarios. This underscores an urgent requirement to broaden the range of techniques examined,
integrating ensemble methods, deep learning, support vector adaptations, and hybrid designs to more
effectively capture the diverse microstructural responses of the material. Additionally, deploying sophisticated
statistical protocols such as nested cross-validation, mutual information screening, permutation-based feature
importance, SHAP explanatory models, and thorough uncertainty quantification remains necessary for an
exacting and systematic evaluation of predictive accuracy. Together, these coordinated approaches promise to
lead to predictive models of RHA concrete that are not only more precise but also more interpretable and robust
across differing field applications.

This article aims to explore the efficacy of twelve ML methods in accurately estimating the CS of RHA
concrete with a professional and detailed approach. The ML techniques under scrutiny encompass a diverse
array of algorithms, including ANN, support vector regression (SVR), Gaussian process regression (GPR),
extra tree regressor (ETR), decision tree regressor (DTR), gradient boosting regressor (GBR), histogram-based
gradient boosting regressor (HGBR), extreme gradient boosting (XGBoost), null-space SVR (NuSVR), voting
regressor (VR), random forest (RF), and multilayer perceptron regression (MLPR). These techniques are chosen
for their capability to handle intricate relationships and patterns in data, making them widely used in predictive
modeling. To guarantee reliability and the ability to generalize findings beyond the training set, the models are
built and evaluated on a unique, high-fidelity dataset consisting of 500 data points created through rigorously
controlled laboratory tests. This dataset covers a broad spectrum of compositions containing RHA concrete
and systematically varies key material properties and mixing ratios. Unseen benchmark datasets, sourced from
previous studies, supplement this core data to evaluate how well the models translate across different experimental
conditions and settings. Stratified k-fold cross-validation is implemented to systematically partition the data,
thereby balancing representation across the various groups and preventing both overfitting and underfitting.
The resulting performance metrics are therefore more representative of the models’ true capabilities. For deeper
understanding of the models’ inner workings, SHAP is calculated to attribute prediction variance to individual
input features. Uncertainty quantification is also performed, yielding prediction intervals that inform engineers
about the likelihood of varying material behavior. The Stepwise regression technique isolates the features that
exert the greatest influence on CS. Complementary to this, Pearson correlation, mutual information, and
distance correlation analyses together reveal both linear and nonlinear interactions among input variables and
the CS target.

We created a dedicated GUI built on the trained ML models to translate our findings into practical use.
The interface offers civil engineers and material scientists a straightforward tool for predicting the CS of RHA
concrete by simply entering the relevant parameters. In this way, we connect sophisticated ML techniques with
the routine demands of engineering practice.

Research significance
This research study represents an original contribution to concrete technology and ML by systematically
investigating the ML-based estimation of CS of RHA concrete. One of the contributions is the analysis and
comparison of the twelve distinct ML algorithms, which provides an extensive including global and local
perspectives into algorithmic performance. This helps in knowing the most suitable and consistent algorithms
for CS estimation, paying attention to the evaluation of the algorithms based on several metrics. This study can
serve as a reference in the ML algorithms selection framework for predicting concrete properties, which due to
the complexity of the features, provides high prediction error.

This study advances the understanding of ML applications by showcasing the focus of this research on RHA
concrete as a model demonstrates the ease with which ML techniques can handle highly complex, nonlinear,
and interdependent datasets that are characteristic of concrete materials. This further demonstrates the effective
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potential of ML. It can change the construction industry by making eco-friendly construction materials and
techniques more widely usable and available.

The study enhances the contribution on mix design optimization by applying Stepwise regression technique
to determine critical input parameters impacting concrete CS the most in a concrete structure. This enables
engineers and materials scientists to tailor mix design compositions on the offered strength parameters.

From a model building perspective, this research collected a unique dataset of 500 experimental data
points and put them through rigorous model training and testing. To achieve an enhanced measure of model
robustness, another 30 independent data points were collected from freely available literature sources and were
used for external validation. This combination of datasets not only makes concrete the model evaluation, but
also strength their confidence on the results obtained from the model for various concrete mixtures.

The most critical contribution of the research is providing actionable knowledge by identifying the optimal
content of RHA that yields the highest CS, thus enhancing the mix design optimization. The work strengthens
the understanding of RHA and justifies its strategic use in high-performance concrete.

In order to confirm the reliability and generalizability of the created ML models, a thorough validation
strategy incorporating k-fold cross-validation was employed to reduce bias and variance for the performance
metrics of the models across different data splits. In addition, the uncertainty quantification, is the focus of
the study because it offers predictive intervals, which is an important insight crucial for understanding the
confidence of model outputs. This is particularly important for engineering fields where decisions are often
made under uncertainty. In support of explainable AI and to increase interpretable results, SHAP analysis was
performed which allowed for estimating feature importance and explaining individual predictions in greater
detail. Integrating the quantification, validation, and explanation techniques increases the trust and confidence
in the results of the ML framework while providing the transparency that is often missing in such advanced
techniques.

A practitioner’s ability to estimate the CS of RHA concrete and create optimal mix designs has been simplified
with the development of a practical and GUI. This interface combines powerful ML tools with the practical
needs of the civil engineering and research communities, enabling professionals to utilize predictive approaches
with low computational proficiency.

This research is particularly remarkable for the thoroughness of its methodology, practical impact, and focus
on sustainability, providing significant advancements in both materials engineering and applied ML.

Research methodology

The ML techniques scrutinized in this investigation encompass an array of algorithms, including SVR, GPR,
NuSVR, ANN, XGBoost, MLPR, DTR, GBR, RF, HGBR, VR, and ETR. Here’s a concise overview of these
techniques and their comparative advantages within the realm of ML:

GPR s a flexible tool from Bayesian statistics, offering a full distribution over functions instead of committing
to single value estimates**. This feature becomes indispensable in civil engineering, where knowing the range of
possible material strengths is key to robust, risk-aware design. By treating the observed measurements as noisy
samples from a latent function, GPR automatically infers uncertainty, supplying credible intervals alongside
predicted values. Our dataset of 500 observations sits comfortably within the range where GPR shines, delivering
fluid, continuous estimates that respect the underlying nonlinearity and tolerate the moderate noise typical of
material testing.

SVR stands out for predicting CS because it adeptly captures non-linear relationships through kernel tricks
like the radial basis function. By focusing on minimizing structural risk rather than merely fitting the data,
SVR achieves solid generalization across even large, complex feature sets**. This quality is particularly valuable
for RHA concrete, where the interplay between variables such as RHA dosage and W/C ratio often introduces
intricate non-linear behaviors. SVR manages these interactions with consistency, leading to dependable strength
forecasts.

NuSVR incorporates the v (nu) parameter so it can be dynamically adjusted that how many support vectors
we want and how many margin errors we're willing to tolerate®®. This extra knob for tuning not only makes the
model more interpretable but also lends it extra stiffness against noise and outliers. These pesky perturbations
often creep into experimental data, whether from the intrinsic variability of the materials involved or from slight
inconsistencies in the testing procedures.

DTR breaks the feature space into clearly defined regions, applying simple decision rules at each split. Its
structure lends it a high level of interpretability, and it can naturally capture non-linear patterns without needing
normalized inputs*’. Although a single tree is at risk of overfitting, it is a solid cornerstone for building more
robust ensemble approaches.

Drawing motivation from biological neural networks, an ANN serves as a robust function approximator,
adept at modeling intricate, non-linear interactions among input features*s. Because of its flexible architecture,
it can effectively memorize and generalize the intricate dependencies present in concrete mixture formulation
and mechanical performance. Nonetheless, the technique mandates deliberate regularization strategies and a
disciplined training regimen to mitigate the risks of overfitting, which is particularly salient when working with
datasets of intermediate scale.

ETR extends the RF framework by substituting optimized split thresholds with randomly chosen cut-points.
This tweak ramps up the method’s overall stochasticity, yielding both lower variance in the learned predictions
and lighter computational loads®. Such a setup excels when the goal is to probe potential feature interactions
without committing to the heavier cost of optimization, making it particularly useful in the early, exploratory
sweeps of a competitive modeling effort.

GBR constructs its trees one after another, deliberately focusing each new model on the mistakes the prior
sylves were incapable of addressing. This layer-by-layer focus on refining the residuals allows the ensemblegrowing
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process to home in on faint, retirees patterns lurking in the idiosyncratic space of the data®**°. GBR is ideal for
high-precision tasks like CS estimation in RHA concrete, especially when nonlinear and interaction effects are
present.

HGBR streamlines GBR by organizing continuous inputs into histograms, which cuts training time and
memory use sharply’!. It keeps the predictive strength of the original method and improves how well the model
scales, so it shines in situations requiring either big data processing or fast iteration during model development.

XGBoost is an optimized framework built on the gradient boosting framework that prioritizes both speed
and flexibility*. By incorporating L1 and L2 penalties, it strengthens the model against overfitting. Innovations
such as histogram-based quantile sketching, distributed tree building, and dynamic tree pruning minimize
waste and improve execution time. This library shines with structured or tabular datasets, regularly finishing at
the top of Kaggle leaderboards in regression and ranking tasks alike.

RFs consist of many decision trees built from different bootstrapped samples, with features also divided
randomly during splits. This averaging process cuts the overall model variance while lowering the risk of
overfitting®®. As such, random forests serve as dependable starter models for predicting CS. Their robustness
to noisy measurements and competence with mixed variable types make them particularly suited for the varied
constituents in concrete mix designs.

MLPR is a specialized implementation of ANN focused on regression tasks. It consists of input, hidden, and
output layers and uses backpropagation for training®>. Its layered architecture enables it to learn hierarchical
feature representations, making it ideal for modeling intricate dependencies in concrete compositions and
strength outcomes.

VR leverages various complementary regressors by either averaging their predictions or by weighting
each one according to its reliability on the given hold-out sample®. Here, it operates as a high-level ensemble,
boosting generalization and guarding against the idiosyncratic errors of any single base learner. This gains
particular traction in situations where merit is spread unevenly among different measures, and no single model
consistently takes the lead.

The ML model development and analysis were implemented using the Jupyter Notebook interface with Python
3.7 within the Anaconda Navigator distribution. Python 3.7 was selected due to its robust compatibility with key
ML libraries (such as scikit-learn, XGBoost, SHAP, and dcor) at the time of model development. While newer
Python versions (e.g., 3.10 and beyond) offer improved syntax features, they occasionally introduce dependency
conflicts or deprecated functionalities with some of the specialized packages used in scientific computing and
interpretability (e.g., SHAP or dcor), especially in combination. Also, the version of 3.7 still retains its popularity
for broad support and stability which makes it a good environment for reproducible scientific calculations. At
the same time, it was verified that there is forward compatibility with the deployment and GUIT integration for
version 3.9 and later. With a current configuration that consists of an Intel Core i7-10750 H CPU (2.60 GHz) and
a workstation with 32GB of RAM, the performance is not an issue with multiple ML model trainings together
with SHAP and cross-validation tasks. The described configuration enables reliable performance for the given
tasks.

Every ML model received hyperparameter tuning utilizing a Grid Search approach on the training dataset.
This approach exhalt searches through a given collection of hyperparameter combinations to find the optimal
one for model performance, as evaluated by cross-validation on performance metrics. By definition, Grid Search
provides a way to formally document optimization steps taken, ensuring no steps are skipped, and is more
systematic than ad hoc optimization efforts.

The methodological framework adopted in this study, illustrated comprehensively in (Fig. 1), integrates
experimental data generation, statistical analysis, ML development, and model deployment through a GUI
interface. The aim is to establish a robust and interpretable pipeline for predicting the CS of RHA concrete based
on seven fundamental mix design parameters. The first step in the process is the generation of rich datasets, in
this case, through novel data generation, a rigorous laboratory process was used to yield an abundant dataset. The
data was obtained through mechanical testing, where a total of 530 data points in the form of concrete samples
straddling different RHA to aggregate ratios were split into three sets to allow robust model training (400),
external validation (30), and model tuning (100) on the provided dataset. The CS of the samples, tested through
standardized mechanical tests, was extracted as the dependent variable for model training. For the modeling
framework, the independent variables include key ingredients of the concrete mix: water-to-binder ratio (W/B),
coarse aggregate (CA), fine aggregate (FA), superplasticizer (SP), water content (W), cement content (C), and
RHA content. These variables bring several dimensions of a potential input space likely to have a non-linear and
dependent relationship with the CS, thus requiring intricate modeling and ML approaches.

Before model training, a thorough statistical analysis was performed to discover relationships among the
input features and the target variable. Apart from the classical Pearson correlation analysis, the study also used
mutual information and distance correlation to capture dependencies of both types. These approaches strengthen
the exploration of the data, particularly among relationships that are non-monotonic or driven by thresholds.
In addition, stepwise regression with Akaike Information Criterion (AIC), its corrected version AICc, and
Bayesian Information Criterion (BIC) were applied to highlight the significant input features aimed ato reduce
redundancy, and risks of overfitting. The input features were standardized using the StandardScaler method.
Centering a dataset to zero mean and scaling to unit variance ensures numerical stability which prevents features
with large values from dominating the model during training.

Twelve distinct ML models were created and analyzed: SVR, GPR, Nu-SVR, ANN, XGBoost, GBR, HGBR,
RE, MLPR, DTR, VR, and ETR. The predictive performance of these models was evaluated using well-known
metrics such as coefficient of determination (R*), RMSE, MAPE, VAF, and a20-index. To enhance statistical rigor
and mitigate biases from data pruning, two validation techniques including hold-out and k-fold were utilized.
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Fig. 1. Flowchart of the current study.

Beyond accuracy, model interpretability was approached via SHAP, which describes and quantifies the
contribution of a single feature to the prediction made. This improves the model’s transparency and concrete
interpretability, revealing how the mix design variables affect concrete performance. In addition, ML models
were examined to estimate the bounds of the predicted values, which is necessary for engineering applications,
so uncertainty quantification methods were utilized.

Data preparation
RHA characteristics
The leftover RHA was procured from rice fields situated in the northth of Iran. Rice husk pellets were burned in
a steam boiler RHA between the temperatures of 650-750 °C. The RHA obtained was analyzed for its structural
properties and was found to have predominantly amorphous silica with some crystalline silica. RHA is made up
of irregularly shaped particles with a porous cellular structure. The average particle size of RHA was measured
using Mastersizer 2000 and found to be 68 um in diameter. RHA was ground for one hour in a ball mill which
reduced the average particle size to 15 pum. The RHA was found to have high silica content and loss on ignition
which was consistent with other studies. More details about the RHA used in this study are provided in (Table 1).
The sources of the rice husk, combustion conditions, and subsequent processing can greatly alter the peculiar
physico-chemical characteristics of RHA, silica content, particle size distribution, and degree of amorphousness.
This variability introduces some degree of uncertainty in the generalization of the performance of the ML models
trained for different batches of RHA. Consequently, the models trained in this study would best predict the CS
of concrete containing RHA of the type characterized in this study. Wider generalization for the other sources of
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Item Unit | Cement | RHA
Physical properties Specific gravity | - 3.11 2.10
ALO, (%) | 545 0.32
MgO (%) | 2.48 0.77
Sio, (%) |21.78 87.30
SO, (%) 1.98 1.32
Chemical compositions | Fe,O, (%) 3.55 0.52
K,0 (%) 0.82 3.58
Na,O (%) 0.68 0.19
P,0, (%) | 014 133
Loss on ignition | (%) 0.72 9.31

Table 1. Physical and chemical properties of cement and RHA.

RHA would likely need retraining of the models or adaptation of the domain models. This limitation should be
imposed in practical applications and future work.

Materials used in concretes

We utilized type I Portland cement in this study. The physical and chemical attributes of the Portland cement
employed are outlined in (Table 1). Our crushed coarse aggregate (CA), sourced from local quarries, boasted a
maximum size of 17 mm, a density 2.62, and an absorption capacity of 1.42%. Additionally, natural sand from
the same quarries featured a modulus of fineness of 3.3, a density of 2.68, and an absorption capacity of 1.3%.
Local tap water was used to mix water. We incorporated a Type-G superplasticizer (SP) with a 40% solid content
and a specific gravity of 1.21 to attain the desired workability for all concrete mixtures.

The properties of fresh concrete were evaluated using the slump test as per ASTM C143/C143M-15a and
the unit weight, yield, and air content measurement (via the gravimetric method) according to ASTM C138/
C138M-17a. All materials and processes used were in compliance with the relevant ASTM standards, which
provided uniformity and reproducibility in the concrete manufacturing and testing processes.

Testing program and database

RHA was used as a pozzolanic material in concrete. The concrete was tested for evaluating the CS. In a rotating
concrete drum mixer, CA and FA, along with powder materials such as C and RHA, were meticulously
proportioned. The initial dry mixing lasted for two minutes, followed by an additional three minutes
after introducing W. Subsequently, the concrete blend underwent a final three-minute mixing phase upon
incorporating the SP to achieve the desired consistency. Immediately slump and unit weight assessments were
conducted on the freshly mixed concrete.

For the casting process, 100 mm-sized cubes were formed and compacted in dual layers atop a vibrating table,
with each layer subjected to a 10-second vibration. Post-casting, molds were promptly covered with polyethylene
sheets and moistened burlap, left undisturbed for 24 24-hour. Afterward, the specimens were demolded and
submerged in water at 20 °C for curing until the day of testing. This involved the meticulous preparation of 500
cubic specimens, ultimately determining their 28-day CS. Ultimately, 500 data points, including seven input
parameters such as W/B, C, RHA, W, SP, FA, and CA were documented, each corresponding to a specimen with
distinct characteristics. Table 2 outlines the overall specifications of these data points.

Feature engineering stands as a critical stride in ML, involving the meticulous selection, transformation, and
creation of features derived from raw data to optimize our model’s performance®. Within this article, we harness
the Stepwise method (a widely embraced technique in ML and statistical models) to automatically cherry-pick
the most pertinent features from the given dataset. This method engages in an iterative dance of adding or
discarding features contingent on their statistical significance or predictive prowess.

We used three statistical measures to improve the accuracy of the feature selection, including the AIC, its
corrected version AICc, and BIC. These criteria assess the adequacy of a model in relation to a certain dataset
while applying a penalty in terms of complexity to avoid overfitting>®. This means that the model will have more
accuracy in the prediction if it uses a lower number of variables. For instance, if an additional variable is added
and no considerable increase in the model accuracy is observed, AIC, AICc, and most importantly BIC, will
discourage its inclusion. Among them, AICc is preferred for smaller datasets, as was the case with this study,
and BIC is more aggressive with increased penalties for extra variables. As seen in this study, the chosen model
had the lowest AIC and AICc values and thus, showed considerable balance between predictive performance
and simplicity.

To pinpoint the key factors affecting concrete CS, we used the StepAIC() function from the MASS package
in R. This technique performs stepwise variable selection by repeatedly fitting models and comparing their AIC
values. The procedure balances goodness-of-fit and model size, and was configured to perform simultaneous
forward selection and backward elimination.

Table 3 shows that all seven variables retained in the final model have p-values well below the 0.05 threshold,
establishing their statistical significance. In particular, the W/B ratio, W, SP, and C present extremely small p-values
(p <2e-16) and indicate powerful links to compressive strength. The most significant p-value, corresponding to
the RHA content, is 0.0083 and is still firmly below the significance cutoff, justifying its retention. The analysis
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WI/B | C (kg/m®) | RHA (kg/m?) | W (kg/m?) | SP (kg/m3) | FA (kg/m3) | CA (kg/m?) | CS (MPa)
Count | 400 | 400 400 400 400 400 400 400
Mean |0.32 |496.96 81.80 179.55 35.49 650.09 1125.08 57.41
Std 0.06 | 165.14 53.08 38.53 25.56 171.81 156.19 15.97
Trining daa Min | 021 |188.00 0.00 115.00 0.00 316.00 881.00 4.97
25% | 0.27 |391.00 41.00 149.60 1133 542.75 995.75 47.48
50% | 0.33 |475.00 74.00 171.00 30.85 644.95 1094.00 58.11
75% | 0.37 |623.00 127.00 212.00 58.00 785.00 1272.25 67.23
Max | 0.50 |826.00 187.00 255.00 85.00 980.00 1420.00 98.10
Count | 100 | 100 100 100 100 100 100 100
mean | 0.31 | 492.67 82.14 181.58 38.57 62621 1126.87 55.91
std  |0.06 |187.83 51.55 38.74 23.94 186.13 143.12 15.27
Testing data Min | 021 |197.00 3.00 117.00 1.00 325.00 890.00 18.29
25% 0.25 | 304.75 34.00 150.00 16.75 450.50 992.75 47.60
50% | 0.30 |489.00 75.00 179.00 37.00 617.00 1132.50 56.42
75% | 0.36 | 647.25 130.75 206.25 57.25 777.25 1216.75 66.02
Max | 0.42 |819.00 185.00 255.00 85.00 947.00 1406.00 89.08

Table 2. General specification of the datasets.

Estimate | Std. error | t-value | p-value | Code

Intercept | 56.8168 | 0.8179 69.467 | <2e-16 | ***
W/B -24.2189 | 1.7443 -13.884 | <2e-16 | ***
C -15.1332 | 1.4961 -10.115 | <2e-16 | ***
RHA -2.1259 | 1.4928 -1.424 | 0.0083 | **

w -17.9758 | 1.3744 -13.079 | <2e-16 | ***
SP -27.7828 | 1.4518 -19.137 | <2e-16 | ***
FA 14.8466 | 1.4573 10.188 | <2e-16 | ***
CA 17.1440 | 1.1418 15.015 | <2e-16 | ***

Table 3. Leveraging feature engineering through the Stepwise method. Significant codes: 0-0.001 (***);
0.001-0.01 (**); 0.01-0.05 (*); 0.05-0.1 (..); 0.1-1 (.); >1 (.).

verifies that each included predictor is meaningful and supports the validity of the selection technique. The
retained factors also resonate with established concrete science, where the interplay between binder formulation,
water volume, and aggregate properties is recognized as decisive for mechanical strength.

Figure 2 shows the comprehensive portrayal of input and output parameter values through violin plots.
The utility of violin plots lies in their versatility, providing an insightful means to capture the nuances of data
distribution. This makes them indispensable tools in exploratory data analysis and facilitating nuanced statistical
comparisons. Moreover, violin plots effectively convey intricate data patterns to a diverse audience.

Considering the details of the violin plots, it is clear that most of the input parameters are typically
distributed, confirming the appropriateness of the dataset for ML. The exception is the W/B ratio, which has an
unusual distribution showing a marked density dip between 0.43 and 0.51. This pronounced non-uniformity is
undoubtedly more than a random statistical occurrence and has important theoretical implications. The W/B
ratio is arguably the most critical factor that governs the degree of cement hydration, the associated porosity,
and the concrete CS in a concrete element. A dip suggests a lack of experimental data in the neighborhood of
critical transition zones where, beyond certain limits, the W/B ratio can increase or decrease the rate of strength
gain. This is especially true for RHA concrete given its peculiar high surface area and pozzolanic activity which
alters its water demand. This distributional irregularity may enhance model sensitivity in that area while calling
for more targeted sampling thresholds. So, the unique viola plot shape of W/B reflects its clarity of statistical and
mechanistic significance in CS prediction, confirming the need for meticulous treatment in model design and
explanation.

Within Fig. 3, a matrix meticulously lays out the intricate connections linking the input and output
parameters. This visual representation distinctly reveals a tenuous correlation between the input parameters
and their interplay with the output parameter CS. The discernible implication is the absence of a discernible
linear relationship among these parameters. In simpler terms, conventional linear methods are ill-suited to
unravel the underlying patterns governing these interactions. This conspicuous non-linearity in the relationship
demands the prowess of advanced non-linear ML algorithms. It serves as a clarion call to embrace sophisticated
methodologies that can adeptly navigate and comprehend the intricate complexities inherent in this dynamic
interplay. The conventional constraints of linear approaches are transcended by the exigencies of a non-linear
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Fig. 2. Violin plots for each feature and the target. C: Cement content; CA: Coarse aggregate; CS: Compressive
strength; FA: Fine aggregate; RHA: Rice husk ash; SP: Superplasticizer; W: Water content; W/B: Water-to-
binder ratio.

landscape, necessitating a paradigm shift towards more nuanced and intricate analytical techniques to unravel
the subtleties embedded in these connections.

Figure 4 displays the distribution of all the continuous input features employed in predicting the CS of the
cementitious mixtures. Before proceeding to the visual representation, we undertook a systematic procedure to
detect and remove outliers, thereby enhancing the statistical integrity of the modeling process. The Interquartile
Range (IQR) technique, a standard tool in robust statistical analysis, served to isolate and discount data points
that deviated too far from the interquartile range This method defines outliers as data points lying outside the
range [Q1 —1.5x IQR, @3+ 1.5 x IQR]. Ql and Q3 denote the 25 and 75th percentiles, respectively,
and IQR=Q3 - Q1. Application of this protocol effectively eliminated all extreme deviations, yielding a cleaned
dataset of 500 reliable samples that were then available for training and analytical procedures. The box plots
shown in Fig. 4 are based on this post-IQR-cleaned cohort.

The majority of the features, including W, SP, C, and RHA, display distributions that are approximately
symmetric and exhibit little skewness. Such uniformity promotes stable convergence properties in model
training. Each box’s vertical length illustrates the interquartile range, offering a snapshot of how spread out the
central half of the data is. CA and FA, with noticeably taller boxes, indicate a greater dispersion of aggregate
proportions in their respective mix designs. After applying the interquartile-range rule, every variable reveals
no extreme data points. This silence suggests that the preprocessing steps succeeded in filtering out outlying
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Fig. 3. Correlation matrix between the predictors and the target. C: Cement content; CA: Coarse aggregate;
CS: Compressive strength; FA: Fine aggregate; RHA: Rice husk ash; SP: Superplasticizer; W: Water content;
W/B: Water-to-binder ratio.

noise. The cleaned data is now more stable for the subsequent ML tasks, mitigating the risks of fitting to aberrant
values.

We adopted mutual information and distance correlation methods to deepen our insight into feature-to-target
links beyond the linear scope captured by Pearson correlation. These nonlinear and model-agnostic metrics
expose the intricate, non-parametric ties between the predictive variables and the target®”%. Figure 5 presents
mutual information scores for each feature in relation to CS. Because mutual information encompasses both
linear and nonlinear ties, it highlights variables that shape the target through intricate, possibly threshold-like, or
saturation behaviors. The SP emerged as the most informative predictor, with mutual information score=0.188,
underscoring its nonlinear capacity to enhance workability without adding moisture. W and C ranked next, with
mutual information scores of 0.129 and 0.127, quantifying their marked yet partially overlapping influences.
The mutual information scores for RHA and W/B, though still non-trivial, were lower, indicating that their
contributions to CS might hinge on specific contexts or dosage ranges.

Figure 6 presents the distance correlation findings. Unlike Pearson or mutual information, distance
correlation captures any form of statistical dependency, whether linear or nonlinear, producing values that span
from 0 to 1. SP once more leads the rankings (distance correlation=0.514), affirming its decisive influence on
CS. W (distance correlation=0.374) and the W/B (distance correlation =0.328) reveal noteworthy distance-
based connections to strength, perhaps reflecting subtler hydration phenomena that Pearson fails to condense.
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Fig. 4. Box plots of input features. C: Cement content; CA: Coarse aggregate; FA: Fine aggregate; RHA: Rice

husk ash; SP: Superplasticizer; W: Water content; W/B: Water-to-binder ratio.

RHA, celebrated for its environmental merit and pozzolanic activity, registers the weakest distance correlation
(0.138), suggesting its advantages can only be unlocked through more tailored incorporation.

These advanced correlation tools augment Pearson by disclosing nonlinear structures and cross-validating
the primacy of SP, W, and C regardless of technique. The union of mutual information and distance correlation
enriches variable selection and bolsters model robustness and interpretability (essential ingredients for refining
ML pipelines aimed at predicting concrete properties).
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Data standardization

In the realm of ML algorithms, standardization of the data emerges as one of the most important preprocessing
steps, neutralizing all features to a common scale without bias®*®C. This step is essential for algorithms that use
distance metrics or rely on gradients to optimize, like SVR, ANN, and GPR. Learning is usually misled with
biases due to differences in the features used. In the absence of standardization, features that are numerically
larger in scale can overshadow smaller features. This leads to model performance and interpretation misaligned
with the intended goals.

This study used the Standard Scaler implementation from the scikit-learn library. This implementation
standardizes features by first rg the mean and scaling to unit variance, leading to feature values with a mean
of zero and a standard deviation of 1. This is favorable for the dataset employed in this study, which contains
W, RHA, and SP, all in different units and magnitudes. StandardScaler’s assumption of Gaussian-like feature
distribution is reasonable with this study’s data after we remove outliers and normalize.

Alternative scaling options such as MinMaxScaler would scale features to a fixed range of [0,1] and were
tried in earlier experiments. Those models proved to be unhelpful for certain models, particularly SRV and GPR.
MinMaxScaler issues where features with a narrow range of variability tend to be compressed and extreme values
overemphasized, with severe consequences to how well the models can generalize. In contrast, StandardScaler
kept the equilibrium of the distribution and model-defined features, bringing stability, interpretability, sensitivity
analysis, and SHAP values feature attribution.
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Performance evaluation of the ML models
The following evaluation criteria have been meticulously employed to assess the performance of the ML models
in estimating the CS of concrete specimens. These criteria bear paramount significance, offering unique insights
into the accuracy and efficacy encapsulated within the models.

This metric scrutinizes the extent to which the ML models account for the variance in target parameter
values. A higher R? value signifies a more robust alignment between the models and the observed data Eq. (1).

MAPE acts as a yardstick, quantifying the average percentage difference between predicted and measured
CS values. A lower MAPE value indicates a higher accuracy level in the models’ estimations Eq. (2). RMSE, the
square root of the average squared differences between predicted and measured values, gauges the overall error
in the models’ predictions. A lower RMSE underscores superior predictive performance Eq. (3). VAF measures
the proportion of variance in the predicted values attributed to the ML models. A higher VAF implies a more
substantial contribution from the models in elucidating the variability in target parameter values Eq. (4). The
a20-index emerges as a specific performance metric, meticulously evaluating the accuracy of the models within
a predefined tolerance range. It quantifies the percentage of predicted values falling within +20% of the target
parameter values. A higher a20-index underscores the models’ prowess in providing precise estimates within the
specified tolerance range Eq. (5).

These evaluation criteria collectively serve as a comprehensive toolkit, dissecting the nuanced facets of the
ML models’ performance and fortifying the reliability of their estimations for the CS of concrete specimens.

R? > (f(%)—f(:))(f* (x:) = J* (@) : "
\/ Y (@)~ F @) X @) - f (@)
_100% | @) = ST ()
MAPE= —2=3% "1, ) )

RMSE = \/CL) S (fa) — (@)’ 3)

var (f(z;) = f* ()
var (f(xz))

n — EquationNumber of points between x = 1.10y and z = 0.90y

VAF =1- [ ] x 100% 4)

(5)

a20 — inxex =
n

Where f(x,)and f* (x;) are the measured and estimated values of parameter x for the ith dataset, respectively.
n is the total number of test datasets.

To gauge the efficacy of the ML algorithms, each algorithm undergoes a rigorous evaluation process,
garnering scores based on predefined criteria. The culmination of these scores across all evaluation criteria is
then meticulously calculated for each algorithm. The algorithm with the highest total points is consequently
endorsed as the most fitting and accurate choice for estimating the CS of concrete. This methodology ensures
a thorough appraisal of the ML models’ performance, enabling pinpointing the most precise and suitable
algorithm for the task at hand—estimating the CS of concrete.

Results analysis and comparison

In Fig. 7, we meticulously scrutinize the estimated values produced by each algorithm against the individually
measured 28-day CS values. This scrutiny unfolds through graphs employing the a20-index metric, revealing
a noteworthy alignment of the majority of points within the = 1.20y and x = 0.80y lines. This alignment
signifies the commendable accuracy of predictions across all ML algorithms. The a20-index was selected
because it is widely recognized in civil engineering and materials science as a clear and trustworthy gauge of
predictive competence, especially when forecasting concrete behaviors. The a20-index determines the fraction
of modelled values that lie within +20% of the corresponding measured values, giving a concrete benchmark
for error that engineering practitioners regard as tolerable. In contrast to summary statistics like R* and RMSE,
which summarize the entire data set, the a20-index focuses exclusively on the portion of predictions that satisfy
a tolerance cut-off that is meaningful in practice, especially when the stakes include safety margins and the
inherent variability of construction materials. Additionally, when placed alongside the other aa indices (notably
al0 and a30), the a20 threshold settles into a widely accepted compromise. al0 is often considered too harsh,
penalizing models for disparities that would not compromise workability. a30, on the other hand, is frequently
dismissed as too forgiving, allowing models to appear trustworthy even when significant inaccuracies go
unnoticed. The a20-index thus occupies a sound, practical middle ground, revealing the model’s dependability
in contexts where engineering judgement is paramount.

According to Fig. 7, the a20-index values span a range of 0.64 to 0.97, with the DTR algorithm exhibiting
the lowest accuracy and the GPR and MLPR algorithms showcasing the highest accuracy. The other algorithms
present acceptable accuracy levels, excluding the DTR model. Consequently, based on the a20-index results, all
models, except for DTR, exhibit satisfactory performance in estimating concrete CS.
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Fig. 7. Evaluating the ML algorithms’ accuracy in predicting the concrete CS using the a20-index. ANN:

Artificial neural network, SVR: Support vector regression; GPR: Gaussian process regression; ETR: Extra tree
regressor; DTR: Decision tree regressor GBR: Gradient boosting regressor; HGBR: Histogram-based gradient
boosting regressor; XGBoost: Extreme gradient boosting; NuSVR: Null-space SVR; VR: Voting regressor; RF:
Random forest; MLPR: Multilayer perceptron regression.

The results from evaluating the performance of a ML model may differ from one to another based on the
metric which is selected as the focal point of the evaluation. Each of the metrics capture different elements of
performance which include the level of error, the explanation of variance, the error in prediction, and the degree
of robustness. In this case, a multi-criteria scoring model is preferred to provide a more balanced outcome
and therefore, in this case the metrics selected are R, MAPE, RMSE, VAF, and a20-index. Each ML model
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DTR 0.3401 |1 0.20 1 1233 |1 60.1 1 0.64 1 5

SVR 0.9647 | 12 0.04 8 2.85 12 98.2 12 0.96 7 51
NuSVR | 0.9418 | 11 0.05 7 3.66 10 97.1 10 0.96 7 45
GPR 0.9400 | 10 0.05 7 3.50 11 97.3 11 0.97 8 47
XGBoost | 0.7391 | 2 0.11 3 7.75 2 86.4 2 0.82 2 11
RF 0.7659 | 4 0.12 2 7.34 4 87.6 4 0.83 3 17
ETR 0.8009 |5 0.10 4 6.77 5 89.8 5 0.87 4 23
GBR 0.7595 | 3 0.11 3 7.44 3 87.2 3 0.83 3 15
HGBR 0.8060 |6 0.11 3 6.69 6 89.9 6 0.87 4 25
ANN 0.8947 |8 0.07 5 4.92 8 94.6 8 0.95 6 35
VR 0.8158 |7 0.10 4 6.51 7 90.3 7 0.88 5 30
MLPR 0.9126 |9 0.06 6 4.49 9 95.6 9 0.97 8 41

Table 4. Ranking of ML models based on statistical performance metrics using the hold-out validation
method.

g8

XGBoost

3

Fig. 8. Ranking of ML models based on using the hold-out validation method. ANN: Artificial neural
network, SVR: Support vector regression; GPR: Gaussian process regression; ETR: Extra tree regressor;

DTR: Decision tree regressor GBR: Gradient boosting regressor; HGBR: Histogram-based gradient boosting
regressor; XGBoost: Extreme gradient boosting; NuSVR: Null-space SVR; VR: Voting regressor; RF: Random
forest; MLPR: Multilayer perceptron regression.

was ranked per metric based on its raw performance. For example, the model with the highest R* received a
score of 12 (indicating 1st place out of 12 models), the next best received 11, and so forth down to the model
with the lowest R?, which received a score of 1. Each model was evaluated with the other models in a given
metric competition. No weighing bias was introduced, and therefore, the final score was the outcome of every
metric score. The ranking score in the final column of Table 4 is simply the sum of individual metric scores,
reflecting the aggregate performance of each model. This clear model evaluation avoids bias towards models due
to championing one performance metric. For instance, while SVR excelled in R* (0.9647), MAPE (0.04), and
RMSE (2.85), it also ranked highly across VAF (98.2%) and a20-index (0.96), giving it a cumulative score of 51,
the highest among all contenders. Similarly, GPR and NuSVR also demonstrated consistently high scores across
metrics, securing strong overall rankings.

In Fig. 8, a schematic depiction delineates the total scores for each algorithm based on the comprehensive
evaluation criteria. These overarching results distinctly position the SVR algorithm as the current frontrunner
among its counterparts. However, it’s imperative to note that these estimates rest on test datasets, and the
algorithms’ performance awaits confirmation through rigorous testing on new unseen datasets to ensure their
sustained accuracy.

K-fold cross-validation is a widely accepted method for validating the performance of ML models. The entire
dataset is partitioned into K equally sized subsets, known as folds. For every iteration, a single fold serves as the
holdout test set, while the concatenation of the remaining K-1 folds is utilized to train the model. This rotation
is carried out K distinct times, guaranteeing that every fold is designated as the test set once. The performance
metrics from every cycle are subsequently averaged, yielding a composite score that mitigates the influence of
any one particular split. By employing this procedure, the analysis confirms the model’s capacity to generalize,
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as every observation is subjected to testing while simultaneously being part of the training pool across the entire
K passes. K-fold cross-validation serves a crucial role in ML by discouraging overfitting. Instead of havinging
the model latch onto the idiosyncrasies of just one training set, K-fold forces it to encounter varied subsets,
compelling it to learn useful patterns that hold across the entire dataset. Averaging performance scores across
these multiple folds yields a reliability that a lone train-test split cannot match. This is especially beneficial
in situations where the dataset is small, as every observation gets its day in court both for training and for
validation. K-fold also streamlines the model-selection process, offering a fair playground to compare multiple
algorithms or fine-tuned hyperparameters. The end result is a clearer, more detailed picture of how well a model
might perform on unseen data.

We applied 5-fold cross-validation (K=5) to rigorously evaluate the ML models. The complete dataset was
divided into five equal parts; one part served as the test set for every fold while the remaining four were combined
to form the training set. By rotating the test set across all five parts, we guaranteed that every observation
contributed to the training and the validation process. This practice produces a robust and dependable estimate
of how well the models can predict the CS of concrete incorporating RHA. The choice of 5 folds strikes a good
balance, granting us reliable performance metrics without excessively prolonging training times, thereby
enhancing our understanding of each model’s capacity to generalize to unseen samples.

Table 5 summarizes the comparative performance of the ML approaches assessed using three primary
evaluation metrics (R%, RMSE, and VAF). For every fold, the metrics are computed and thereafter used to order
the models. Reviewing the table, the SVR model consistently records the highest R* scores across every fold,
suggesting its strong capability to predict concentrated solids. For instance, in the first fold, SVR attains an R?
benchmark of 0.9518, outperforming every competitor. In contrast, the DTR variant consistently appears at
the foot of the R* hierarchy, evidencing weaker predictive quality. In Fold 1, DTR earns an R” of merely 0.3312,
a value that falls well below that of any alternative model considered. For RMSE, the SVR model records the
smallest values, pointing to the least prediction error on record. In Fold 1, it settles at 2.98, staking a strong claim
to the model’s accuracy. On the other hand, the DTR model shows the highest RMSE values, especially in Fold 1,

Fold no. SVR | GPR |NuSVR | MLPR | ANN | VR HGBR | ETR | RF GBR | XGBoost | DTR
R? 0.9518 | 0.9312 | 0.9344 | 0.9087 | 0.8862 | 0.8123 | 0.7983 | 0.7931 | 0.7562 | 0.7503 | 0.7288 0.3312
Score 12 11 10 9 8 7 6 5 4 3 2 1
RMSE 2.98 3.82 3.99 5.13 5.87 7.21 7.66 8.03 8.57 8.94 9.25 13.81
Fold 1 Score 12 11 10 9 8 7 6 5 4 3 2 1
VAF (%) 97.2 96.14 | 95.83 94.12 |94.01 |88.86 |88.04 |87.43 |87.12 |86.39 |8574 58.31
Score 12 11 10 9 8 7 6 5 4 3 2 1
R? 0.9716 | 0.9594 | 0.9643 | 0.95 0.9349 | 0.8744 | 0.8649 | 0.8634 | 0.8319 | 0.8297 | 0.8113 0.4593
Score 12 10 11 9 8 7 6 5 4 3 2 1
RMSE 2.88 3.72 3.89 5.04 5.78 7.12 7.57 7.94 8.48 8.85 9.16 13.75
Fold 2 Score 12 11 10 9 8 7 6 5 4 3 2 1
VAF (%) 98.69 | 98.05 |97.83 96.69 |96.95 |92.47 |91.87 |91.45 |91.41 |90.86 |90.37 65.22
Score 12 11 10 8 9 7 6 5 4 3 2 1
R? 0.9905 | 0.9825 | 0.9883 | 0.9797 | 0.9683 | 0.9146 | 0.9073 | 0.9077 | 0.8789 | 0.8785 | 0.8617 0.5328
Score 12 10 11 9 8 7 5 6 4 3 2 1
RMSE 2.43 3.97 3.48 5.72 6.83 8.95 9.64 1021 | 11.03 |11.60 |12.07 19.49
Fold 3 Score 12 11 10 9 8 7 6 5 4 3 2 1
VAF (%) 98.52 | 97.84 |97.61 96.41 |96.63 |92.09 |91.47 |91.03 |90.96 |90.40 |89.89 64.51
Score 12 11 10 8 9 7 6 5 4 3 2 1
R? 0.9713 | 0.9671 | 0.9623 | 0.9461 | 0.9298 | 0.8671 | 0.8568 | 0.8547 | 0.8223 | 0.8195 | 0.8006 0.4411
Score 12 11 10 9 8 7 6 5 4 3 2 1
RMSE 2.76 3.21 3.79 5.29 6.16 7.76 8.29 8.73 9.36 9.80 10.16 15.68
Fold Score 12 11 10 9 8 7 6 5 4 3 2 1
VAF (%) 98.14 | 97.34 |97.09 95.74 |95.86 |91.14 |90.46 |89.97 |89.83 |89.22 |88.66 62.68
Score 12 11 10 8 9 7 6 5 4 3 2 1
R? 0.9590 | 0.9370 | 0.9439 | 0.9156 | 0.8931 | 0.8187 | 0.8046 | 0.7993 | 0.7624 | 0.7564 | 0.7349 0.3345
Score 12 10 11 9 8 7 6 5 4 3 2 1
RMSE 2.75 3.70 3.79 5.43 6.34 8.04 8.61 9.07 9.74 10.20 | 10.59 16.47
Fold 5 Score 12 11 10 9 8 7 6 5 4 3 2 1
VAF (%) 98.34 | 97.67 |97.38 96.21 96.43 | 91.88 |91.26 90.82 | 90.75 |90.18 |89.67 64.30
Score 12 11 10 8 9 7 6 5 4 3 2 1
All folds | Sum of scores | 180 162 153 131 124 105 89 76 60 45 30 15

Table 5. Ranking of ML models based on statistical performance metrics using the 5-fold cross-validation
method.
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where it reaches 13.81, indicating that the predictions are farther from the true values compared to other models.
Turning to VAF, SVR again leads with a score that shows it explains the greatest proportion of variance. In Fold 1,
it notches up 97.2%, the summit among all contenders. DTR, however, posts the lowest VAF, 58.31% in the same
Fold, a reading that reveals it captures only a fraction of the data’s underlying variation.

The model rankings provided in the accompanying table are derived from the overall score calculations made
over the complete set of five cross-validation folds; in this system, a greater cumulative score indicates superior
model performance. The SVR model exceeds every other candidate by this measure in each individual fold and
attains the highest total score of 180. This result underlines SVR’s consistent merit and stability from fold to fold
in the validation process. Analyzing performance on a fold-by-fold basis confirms SVR’s dominant position. In
Fold 1, the model records the best R?, the lowest RMSE, and the leading VAF, which together assure its first rank.
Fold 2 sees SVR again on top, producing similarly strong R* and VAF values, though the RMSE rises by a small
margin. The same pattern persists in Fold 3, where R* and VAF remain elevated and RMSE stays comparatively
low. Fold 4 registers identical results: top R* and VAF, a slight RMSE increase. Finally, Fold 5 again delivers peak
R? and VAE paired with the best RMSE, reaffirming SVR’s overall superiority.

The SVR, NuSVR, and GPR models outperformed the other methods in this work for three mutually
reinforcing reasons that matched the problem’s conditions. First, their architectures suit moderate datasets (like
the 500 samples here) where deep learners, including ANNS, risk overfitting without heavy and sometimes
unbalanced regularizations. Second, they employ kernel functions (specifically the radial basis function) that
enable the mapping of input features into high-dimensional spaces where nonlinear trends can be effectively
captured. Lastly, the three methods embed regularization: SVR and NuSVR impose it via the penalty parameters,
while GPR incorporates it through the Bayesian priors. Together, these design choices supported reliable
generalization and strong predictive accuracy through every evaluation phase.

In summary, the SVR modelleads in every validation fold, showing the highest predictive accuracy. Its strength
across all five partitions supports the model’s reliability for estimating the CS of RHA concrete. Conversely, the
DTR model places at the bottom in each measure, underscoring its relative unsuitability for this application. The
5-fold cross-validation adopted here enhances the credibility of the results by preventing reliance on a single
data split; instead, it confirms model behavior through a thorough evaluation over multiple data segments. This
multi-partition method delivers a robust and consistent basis for judging the model’s potential to generalize and
produce precise forecasts.

To ensure a robust evaluation of the trained algorithms in estimating concrete CS, we employ previously
unused datasets from prior publications as validation datasets. Initially, we scrutinize the models’ performance
on the 24 data points presented in Bui et al.'%, outlined in (Table 6). These data points share identical parameters
with our study, encompassing the same considerations in concrete sample preparation and testing methodology
to ascertain the 28-day CS. These external data points were used exclusively for generalization assessment;
no external samples were used for training or hyperparameter adjustment. This insertion aims to gauge how

W/B | C (kg/m®) | RHA (kg/m®) | W (kg/m?) | SP (kg/m®) | FA (kg/m®) | CA (kg/m?) | CS (MPa)
0.30 | 550.00 0.00 165.00 5.60 550.00 1283.00 63.50
0.30 | 495.00 55.00 165.00 5.80 546.00 1273.00 72.80
0.30 | 468.00 82.00 165.00 6.10 543.00 1267.00 75.10
0.30 | 440.00 110.00 165.00 6.30 540.00 1261.00 78.20
0.32 | 500.00 0.00 160.00 5.50 567.00 1324.00 59.60
0.32 | 450.00 50.00 160.00 5.72 562.00 1313.00 68.80
0.32 | 425.00 75.00 160.00 6.00 560.00 1307.00 72.20
0.32 | 400.00 100.00 160.00 6.22 558.00 1301.00 72.70
0.34 | 500.00 0.00 170.00 5.00 560.00 1305.00 57.90
0.34 | 450.00 50.00 170.00 5.00 555.00 1294.00 66.60
0.34 | 425.00 75.00 170.00 5.00 553.00 1290.00 67.20
0.34 | 400.00 100.00 170.00 5.00 551.00 1285.00 69.30
0.30 | 550.00 0.00 165.00 6.60 550.00 1283.00 88.50
0.30 | 495.00 55.00 165.00 6.80 546.00 1273.00 95.20
0.30 | 468.00 82.00 165.00 7.19 543.00 1267.00 96.00
0.30 | 440.00 110.00 165.00 7.43 540.00 1261.00 98.10
0.32 | 500.00 0.00 160.00 6.50 567.00 1324.00 85.70
0.32 | 450.00 50.00 160.00 6.76 562.00 1313.00 91.60
0.32 | 425.00 75.00 160.00 7.08 560.00 1307.00 93.40
0.32 | 400.00 100.00 160.00 7.36 558.00 1301.00 94.30
0.34 | 500.00 0.00 170.00 6.40 560.00 1305.00 82.80
0.34 | 450.00 50.00 170.00 6.40 555.00 1294.00 89.70
0.34 | 425.00 75.00 170.00 6.40 553.00 1290.00 90.30
0.34 | 400.00 100.00 170.00 6.40 551.00 1285.00 91.10

Table 6. Evaluation data points available in Bui et al.'”.
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the trained models perform on independent data produced under differing experimental arrangements. This
approach strengthens the credibility of the models. It addresses model robustness and transferability, which
is especially important in ML applications to concrete materials where variability in raw materials and test
conditions is common.

In Fig. 9, the outcomes predicted by each algorithm are showcased on these data points, juxtaposed with the
experimental results. While a majority of the models exhibit behavior akin to the experimental outcomes, it is
noteworthy that not all algorithms yield acceptable and accurate results, reflected in R? values spanning from
0.46 to 0.94. Notably, the SVR, GPR, and NuSVR models demonstrate superior accuracy on the test dataset in
our study, showcasing the best performance on these data points among other algorithms. This attests to the
sound training of these algorithms. The MLPR and ANN algorithms secure the fourth and fifth positions in
terms of accuracy, achieving R? values of 0.84 and 0.82, respectively. Conversely, other algorithms exhibit subpar
performance, registering R? values within the range of 0.46 to 0.71. Notably, the DTR algorithm delivers the least
accuracy, with an R? value of 0.46.

In this analytical phase, a meticulous investigation was conducted into the performance of each intricately
trained ML model using an additional set of six data points, which underwent CS testing as detailed by Chao-
Lung et al.®. These specific data points, elucidated in (Table 7), deviate solely in the geometric configuration of
samples, transitioning from cubic to cylindrical. The primary objective of this comparative analysis was to assess
the adaptability of the ML models developed in our study to the diverse structural forms of concrete samples.
We acknowledge that the differing shapes (cube vs. cylinder) can influence the CS results because each geometry
redistributes stress and triggers failure in distinct patterns. Nonetheless, the goal of this comparison was to assess
how well the ML models can generalize and remain robust when applied to datasets that contain only mildly
different specimen silhouettes, even in the absence of direct geometric normalization.

Figure 10 serves as a visual representation, illustrating the correlation between the CS values estimated by
each ML algorithm and the corresponding values obtained from laboratory tests conducted by Chao-Lung et
al.%!. The R? values derived from these ML algorithms present a spectrum ranging from 0.50 to 0.98. A standout
performer is the SVR model, showcasing exceptional accuracy with an impressive R? of 0.98. The NuSVR and
GPR models also exhibit noteworthy precision, achieving R? values of 0.95 and 0.93, respectively. Conversely,
models such as DTR, XGBoost, RE, GBR, HGBR, and VR, with R? values below 0.80, demonstrate comparatively
lower accuracy. Meanwhile, MLPR, ANN, and ETR models showcase acceptable accuracy, with R* more than
0.80. It is essential to highlight that SVR and DTR models record the highest and lowest accuracies, with R
values of 0.98 and 0.50, respectively, echoing trends observed in previous evaluations.

A comprehensive examination of these results reveals the proficiency of the SVR model in accurately
estimating the concrete CS, particularly within the context of the dataset utilized in this study. This finding
not only underscores the robustness of the SVR model but also prompts further exploration into the factors
contributing to its superior predictive performance in this specific application. Additionally, these insights into
the comparative accuracies of various ML models provide valuable guidance for selecting appropriate models in
similar contexts, contributing to the ongoing refinement of predictive methodologies in the domain of concrete
CS estimation.

The profound expertise demonstrated by the SVR model in estimating concrete CS, as evidenced through
the comprehensive evaluation of results in this study, underscores its efficacy as a robust predictive tool. The
successful application of the SVR model to the dataset employed herein attests to its nuanced understanding of
various parameters and their intricate relationships with the model output (CS). This mastery positions the SVR
model as a valuable asset for predictive modeling in concrete engineering.

Motivated by the proficiency of the SVR model, a meticulous exploration is initiated to unravel the influence
of the RHA parameter in the concrete mixing plan on CS. This investigation is methodically conducted using
three distinct datasets comprising 20 data points as novel test datasets. The systematic variation of the RHA
parameter’s value within its range (0 to 190 kg/m?) in 10 kg/m? increments while holding other parameters
constant, according to (Table 8), forms the basis of this inquiry. The predictions, shown in Fig. 11, clearly
demonstrate a parabolic pattern where CS increases with increasing RHA content to an optimal level (around
80-100 kg/m?). Beyond this, further increases in RHA content result in a gradual reduction in strength. This
phenomenon illustrates a saturation effect, typically due to the pozzolanic reactivity of RHA, which improves
strength to a certain level of replacement and then negatively affects it as the replacement level increases because
of excessive RHA leading to dilution of cementitious materials and increased workability problems. It should be
noted that the best observed RHA value is bound to a specific dataset and the chemical and physical properties
of RHA relevant to this study such as particle size and the degree to which it has been charred, along with the
complete mixture design which includes the W/B, SP, and aggregate size distribution. To provide example, finer
RHA particles with greater amorphous silica content is more reactive and hence optimal dosage is shifted to
higher value. In contrast, coarser and less reactive RHA shifted the optimum to lower value. Thus, the optimal
range as described above should only be considered as relevant in the context of the experimental materials and
proportions. Extrapolation to other contexts would necessitate recalibration or retraining of the relevant models
with localized material properties and mix designs to maintain accurate strength and optimal performance value
targets.

The examination firmly establishes that the addition of RHA to the concrete mixture holds the potential
to enhance its CS, contingent upon the intricate interdependence of various parameters. This nuanced insight
contributes to the ongoing discourse on optimizing concrete mix designs for superior performance.

GUI for practical deployment
To enable seamless integration of the ML models into everyday engineering workflows, a dedicated standalone
GUI was crafted using the PyQt5 toolkit in Python. This user-friendly desktop application, illustrated in (Fig.
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Fig. 9. Evaluating the ML algorithm predictions against the test results conducted by Bui et al.'>.

12), prompts input of seven critical mix design parameters, including W/B, C, RHA, total W, SP, FA, and CA.
Users can swiftly obtain the predicted 28-day CS of concrete mixtures incorporating RHA by entering these
values. Additionally, the interface permits selection from twelve pre-trained ML models with the underlying
models serialized via the joblib library to guarantee rapid initialization and optimal computational performance.

The GUI was crafted to function seamlessly across Windows, Linux, and macOS, making it easy to access
and use during critical on-site decision points. Built-in input checks confirm that the mix design parameters
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W/B | C (kg/m®) | RHA (kg/m®) | W (kg/m?) | SP (kg/m®) | FA (kg/m®) | CA (kg/m?) | CS (MPa)
0.23 | 783.00 22.76 212.00 3.60 344.00 933.00 66.00
0.35 | 571.00 0.00 219.00 1.00 633.00 933.00 56.00
0.35 | 514.00 22.74 218.00 1.40 608.00 933.00 61.00
0.35 | 457.00 43.81 216.00 2.60 582.00 933.00 60.00
0.35 | 400.00 63.26 215.00 3.70 557.00 933.00 54.00
0.47 | 383.00 22.74 221.00 0.30 737.00 933.00 47.00

Table 7. Evaluation data points available in Chao-Lung et al.L.

stay within proven, empirically grounded ranges from the authors’ dataset. For instance, if a user tries an
unrealistically high W/B or RHA value, the tool instantly highlights it for revision. The application serves two
main audiences: practitioners can quickly test different mix designs without incurring the expense and delay
of full lab testing, while researchers can tweak parameters systematically to produce synthetic datasets for
simulations or optimization studies.

Figure 12 presents the interface returning a predictive CS value derived from the chosen ML model. In the
current scenario, the SVR model estimates a CS of 75.40 MPa. Though this level may appear surprising for
concretes incorporating RHA, the forecast is supported by a carefully optimized set of parameters: W/B=0.3,
C=468 kg/m*, RHA =82 kg/m?, SP=6.1 kg/m>, FA =543 kg/m?, and CA = 1267 kg/m>. Together, these variables
encourage a compact microstructure and improved pozzolanic reactivity. The result underlines the interface’s
ability to quantify nonlinear and synergistic interactions that govern strength gain.

It should be emphasized that how suitable the predictions are and how well they can be applied in practice
is dependent on the materials and data used in the model building process. For instance, the RHA used in this
study had particular characteristics such as high amorphous silica content and low loss on ignition (LOI) and
fine particle size around 15 micrometers, which was obtained through grinding and burning at 650-750 °C.
Hydrothermally processed RHA with coarse particles, increased crystalline content, or high LOI can drastically
modify the pozzolanic activity and hydration speeds and CS in a manner that the existing models do not account
for. In order to solve this, users from different sources or grades of RHA are advised to re-train the models with
datasets most relevant to their materials. Other approaches, such as transfer learning or implementation of
corrective factors based on material property testing can make the model more flexible. The reliability of the
model for various applications can be enhanced by adding metadata on the RHA properties for later versions
of the GUL

Model interpretability using SHAP analysis

ML models frequently present themselves as black boxes, obscuring the reasoning behind their predictions.
SHAP values counter this opacity by providing a rigorously grounded way to dissect model decisions, quantifying
how much each feature sways a given prediction. IIn contrast to standard feature importance metrics, SHAP
discloses not just whether a feature is influential but also the precise amount and direction of its effect. It elegantly
accommodates interactions among variables, permits interpretation on both local and global scales, and thus
serves diagnostic efforts and specialized domains alike, including engineering design tasks. Consequently,
SHAP empowers practitioners to grasp the parameters the model weighs most heavily and the underlying logic,
revealing paths for targeted refinement or domain-oriented tuning.

This section delivers a thorough SHAP investigation for the three top-performing regression models (SVR,
NuSVR, and GPR). SHAP results for these models are shown in (Fig. 13). In every summary plot, the vertical
axis lists features, while the horizontal axis quantifies each feature’s SHAP contribution to predicting CS. Every
dot corresponds to a single instance, color-coded by the feature value (red for high, blue for low).

The SHAP summary plot for the SVR model pinpoints SP, CA, and W/B as the leading influential features. SP
exhibits a wide scatter of positive SHAP values at elevated levels, pointing to a vigorous positive impact on the
predicted output. In contrast, W/B and CA yield more concentrated SHAP value distributions, indicating their
contributions vary more sensitively around a mid-range effect. This confirms that SVR adeptly maps both linear
and non-linear interactions, especially among mix design variables.

The NuSVR model reaffirms the dominance of SP, W/B, and CA as top features, yet its SHAP values cluster
more widely around zero for W/B and CA, highlighting a subtler but pervasive influence across the sample
space. The gradient coloring (shifting from blue to red) corroborates that below-average SP values correlate with
negative SHAP, whereas elevated SP levels consistently raise predictions. This more consistent response pattern
likely underpins NuSVR’s superior generalization, particularly when extrapolating to samples with moderate or
borderline values in the key features.

The GPR model tells a different story altogether. Its SHAP summary plot reveals SHAP values that are tightly
grouped for every feature, all skewed negatively; C, FA, and W are the strongest offenders. The SHAP values are
tightly packed and consistently below zero, indicating that GPR uniformly forecasts lower outcomes, suggesting
abuilt-in bias toward conservative, smooth estimates. Unlike the SVR and NuSVR models, which exhibit sharper
reactions to small perturbations, GPR’s probabilistic framework mitigates the impact of individual features,
yielding gentler and less erratic surface predictions.

When viewed side by side, these SHAP findings highlight the distinct feature hierarchies that each algorithm
adopts. SVR and NuSVR grant higher leverage to the blend-centric parameters (specifically SP, W/B and CA),
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Fig. 10. Evaluating the ML algorithm predictions against the test results conducted by Chao-Lung et al.®%.

StepI ] 0.35 | 407 178 36 620 944
StepIT | 0.32 | 490 180 35 650 1120
Step IIT | 0.30 | 440 165 7.43 540 1261

Table 8. The values of constant parameters considered in each testing step.

Scientific Reports|  (2025) 15:39162

| https://doi.org/10.1038/s41598-025-23839-6

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0 30 60 S0 120 150 18O

RHA (kg/m?)

C5 [MPa)

RHA (kg/m?)

0 30 60 S0 120 150 18O

CS (MPa)

7
71
70
70
69
69
68
68
67

0

Step lll | @¥%eg
@ L]
-] L]

30 60 90 120 150 180
RHA (kg/m?)

Fig. 11. Progressive evaluation of concrete CS using the SVR model across three steps, modulating RHA
parameter from 0 to 190 kg/m? in 10 kg/m? increments.

¢ Cs Predictor

Software Information
Application: Machine Learning Models to Estimate the Compressive Strength
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Input Parameters

Water to Binder ratio (W/B) 0.3
Cement (C) 468
Rice Husk Ash (RHA) 82
Water (W) 165
Superplasticizer (SP) 6.1
Fine Aggregates (FA) 543
Coarse Aggregates (CA) 1267
Machine Learning Algorithm SVR
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Fig. 12. A ML-based GUI to estimate concrete CS.

while GPR focuses on the binder and fluid constituents, yet with far smaller swings in output. Such divergence
in explanatory power clarifies each model’s reasoning and enables practitioners to choose the most suitable
approach for optimizing concrete mix designs and anticipating durability within a single, unified interpretive

framework.

Uncertainty quantification

To evaluate the reliability of the predictions made by the most robust model (SVR), an uncertainty quantification
approach based on bootstrapping was implemented. Specifically, the SVR model was used to forecast the CS on
each of the 1000 bootstrap resamples created from the test set. This approach was adopted to estimate empirical
95% confidence intervals for each prediction, based on the perturbation of the model’s inputs and performance
variability. The SVR model also provides predictive distributions; hence, point estimates and uncertainty metrics
can be derived. Using the predictive distributions, the 95% confidence bounds for each CS were calculated,

representing the ranges expected to contain the actual CS values with 95% certainty.
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Fig. 13. SHAP summary plots for SVR, GPR, and NuSVR models.

In Fig. 14, the predicted CS values are surrounded by shaded areas that depict the corresponding confidence
intervals. The figure displays the model’s prediction uncertainty at different test points by the width of the shaded
areas, with narrower regions indicating higher confidence and broader regions representing higher uncertainty.
This disparity in confidence is most noticeable in regions where the model’s predictions diverge considerably
from the actual CS values. The uncertainty shifts in these different regions are a result of the posterior predictive
distribution of the uncertainty of the model’s confidence in the data and the noise present in the data.
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Key limitations and suggestions
This study outlines specific limitations that require consideration, accompanied by valuable suggestions for
future research to overcome these challenges:

The investigation looked into a limited set of input variables predicting the CS of RHA concrete. However, the
model’s predictive capability and range of applicability could still be improved by incorporating additional
relevant considerations such as curing temperature and duration, and ambient humidity, as well as the type
and dosage of cementitious materials used, the aggregate shape and gradation, the chemical characteristics
of RHA (like silica or alkali content), and certain chemical admixtures including retarders or accelerators.
Considering these variables could help better explain intricate material and environmental interactions and
improve the model’s applicability across different conditions and materials, thus enhancing the model’s over-
all robustness.

Perhaps the most significant drawback of this study is the singular emphasis on 28-day CS as the target for
prediction. While 28-day strength is regarded as a benchmark during the evaluation of concrete’s quality,
it inadequately assesses the performance of RHA-based concrete over time, especially considering the pro-
longed pozzolanic activity and hydration kinetics that can improve strength well beyond 28 days. The lack of
56 and 90-day strength data limits the model’s use for structural durability life cycle analysis. Researchers in
the future should strive to incorporate the extended curing age strengths into multi-output or time-evolving
predictive models to better capture the mechanics of sustainable concrete.

The assessment primarily centered around twelve ML models. To comprehensively evaluate various algo-
rithms for predicting CS, future research could broaden the comparison by including a more extensive range
of ML models.

Depending solely on laboratory data for training and testing ML models, this study lacks validation in re-
al-world scenarios. Future research should apply the models to engineering projects, comparing predicted CS
values with observed values for robust validation.

The study did not highlight the interpretability of ML models. Future research might explore techniques to
enhance model interpretability, offering engineers insights into the underlying factors influencing CS predic-
tions.

The GUI developed for estimating the CS of RHA concrete is user-friendly and effective, but its predictions
are limited to the ranges of input parameters seen during training. If predictions are made for mixtures that
fall outside the training domain (such as very high or very low binder-to-aggregate ratios, non-traditional
aggregate sources, or unusually reactive pozzolans), the accuracy of the results may decline. To avoid this,
users are encouraged to restrict their input to conditions that mirror the validated dataset or to supplement
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the GUI with new experimental data followed by additional training to strengthen its predictive capability in
unexplored material domains.

By addressing these limitations and incorporating the proposed directions for future work, this study has the
potential to significantly improve the accuracy, reliability, and practicality of ML models in predicting concrete
compressive strength.

Conclusions
This research compared the predictive accuracy of twelve ML algorithms for estimating the CS of concrete
containing RHA. A dataset comprising 500 laboratory specimens was supplemented with 30 additional
validation records drawn from published studies. Model performances were quantified through a range of
indicators. The Stepwise selection procedure distilled seven principal input parameters that most significantly
govern the material’s strength development.

The main findings and their practical significance are:

o SVR, GPR, and NuSVR stood out as the top techniques, achieving deep accuracy for both the hold-out and
k-fold cross-validation tests with R? values exceeding 0.93. On the other hand, the DTR showed the weakest
performance with R” values below 0.53. This was due to DTRs limitations, primarily its sensitivity to overfit-
ting small. Unlike ensemble or regularized models, single decision trees tend to overfit to the training data,
drastically reducing their performance on new and unseen data. This is a critical drawback for capturing the
complex and nonlinear interactions that define the CS of RHA concrete. The results strongly demonstrate the
impact of the model choice on small and heterogeneous datasets, where SVR and GPR provide more robust-
ness due to regularization and probabilistic frameworks.

o Since each metric captures a particular facet of predictive performance, basing model selection solely on one
could mislead. Incorporating several indicators in the evaluation process affords a clearer, more complete
picture of model behavior across the operational range.

« The widening performance disparity between the training dataset and the independent validation set high-
lights the critical need for external verification. Such validation helps gauge how well a model will perform in
practical applications, thereby curbing the dangers of overfitting to the original sample.

« Findings showed that adding RHA improves the CS of concrete, especially when carefully balanced with var-
iables such as the W/B, C, and the gradation of aggregate particles.

« To empower civil engineers, an intuitive GUI was created that puts ML prediction tools at their fingertips.
Through this software, users can quickly estimate CS and iteratively design the ideal mix, equipping prac-
titioners with a timely, data-driven resource that promotes greener building practices. The GUI and the
best-performing predictive models can slot seamlessly into existing design platforms or site-level workflows,
translating sophisticated data science into streamlined workflows and reducing the need for exhaustive exper-
imental programs. This functional interface connects cutting-edge analytics with everyday engineering tasks,
shortening the path from discovery to onsite performance.

Data availability

The employed dataset and the developed GUI not available due to restrictions imposed by research sponsors,
ongoing analysis for future studies, and the necessity to maintain data confidentiality until further validation
and publication. If someone wants to request the dataset or the GUI from this study, he/she should contact Dr.
Arsalan Mahmoodzadeh. In this way, they are shared with them on responsible request.
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