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Incorporating rice husk ash (RHA) into concrete improves the structure’s compressive strength (CS) and 
durability and aids sustainability by lowering carbon emissions. This paper evaluates the application 
of twelve machine learning (ML) algorithms to predict the CS of concrete containing RHA. The dataset 
used to train, test, and validate the model comprised 500 experimental samples and 30 data points 
sourced externally. Through stepwise regression, seven input features were chosen: water-to-binder 
ratio (W/B), cement (C), superplasticizer (SP), water (W), RHA, coarse aggregate (CA), and fine 
aggregate (FA). Among the evaluated models, support vector regression (SVR), Gaussian process 
regression (GPR), and null‒space SVR (NuSVR) models emerged as the best performing, each attaining 
R² values over 0.93. DTR performed weakest, with R² values below 0.53, illustrating the importance of 
algoRhythm selection. The study’s results reaffirm the importance of RHA content and the W/B ratio as 
the two major determinants of the CS increase. To assist practitioners iapplyingng the trained models, 
a simple graphical user interface (GUI) was created to allow engineers to quickly evaluate CS and refine 
concrete mix designs. The combination of sophisticated ML methods with the data on RHA concrete 
will therefore support the overarching strategy to achieve sustainability in construction and high 
operational reliability of structures.
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W/B	� Water-to-binder ratio
AIC	� Akaike information criterion
BIC	� Bayesian information criterion
UHPC	� Ultra high performance concrete
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SHAP	� SHapley ADDITIVE exPlanations

Concrete is the predominant building material in structural engineering, with Portland cement being the most 
prevalent binder in its production, and it is employed globally for constructing various structures. Despite its 
widespread use, the production of Portland cement is associated with substantial carbon dioxide emissions, 
prompting the exploration of alternative binders to mitigate the environmental impact1. A multitude of 
agricultural and industrial byproducts, including sugarcane bagasse ash, rice husk ash (RHA), and silica fume, 
are being incorporated as supplementary cementitious materials in concrete manufacturing, offering a viable 
means to curtail reliance on ordinary Portland cement2.

RHA, abundant in amorphous silica, becomes a valuable addition to the concrete production process. Its 
inclusion not only enhances the pore structure of concrete but also contributes significantly to improving 
the overall strength and durability of the material3. Moreover, using RHA as a concrete component serves a 
dual purpose by addressing environmental concerns. RHA can lead to severe environmental pollution when 
left untreated and directly discharged. Integrating RHA into the concrete mix benefits not only the concrete’s 
performance but also reduces the environmental impact. Consequently, extensive research is underway to 
explore the applications and advantages of RHA in concrete formulations4.

The compressive strength (CS) of concrete stands out as a pivotal parameter, bearing profound implications 
for the durability of structures5–8. Previous research indicates that concrete incorporating RHA tends to exhibit 
elevated strengths in both early and later stages9–11. Ganesan et al.12 delved into the nuanced patterns of CS 
variation in concrete with varying RHA content. Their findings underscored that concrete strength surpassed 
the control group up to 30% RHA, reaching its zenith at 15%. However, a decline in strength commenced beyond 
the 30% threshold. Similarly, Kishore et al.13 noted the peak CS of concrete occurring at a 10% RHA substitution. 
Bhanumathidas and Mehta14 concurred, reporting that concrete strength surpassed that of the control until a 
40% RHA content.

Examining the impact of water-to-cement ratio (W/C) and RHA on concrete CS, Bui et al.15 observed 
an inverse relationship between W/C and RHA content, with the addition of RHA contributing positively to 
concrete CS. This aligns with the conclusions drawn by de Sensale16 in the case of Uruguayan and American 
RHA. Additionally, established studies highlight the influence of various factors on the CS of RHA concrete, 
including cement content, age, W/C, water content, coarse aggregate (CA) content, fine aggregate (FA) content, 
and superplasticizer (SP) content9,15–17.

While traditional laboratory tests remain the conventional means of determining concrete CS, they are 
beset by costliness, labor intensity, and time consumption issues4. Therefore, the imperative lies in adopting a 
pragmatic approach for predicting the CS of RHA concrete, enabling swift assessments of concrete quality.

Several prediction equations have been devised to forecast the CS of RHA concrete. Sarıdemir et al.18 
introduced an explicit formulation rooted in gene expression programming to anticipate the CS of RHA 
concrete. The resulting correlation coefficient (R2) stood at 0.9535, attesting to its notably high prediction 
accuracy. Employing statistical regression analysis, Islam et al.19 crafted a predictive model for the CS of RHA 
high-performance concrete, achieving a commendable fit with an R2 of 0.8160. Liu et al.20 delved into the 
study of hydration products in cement slurry using X-ray analysis. They developed an optimal model for RHA 
replacement rate and formulated a CS prediction model for the concrete model. The mechanical properties of 
concrete reached their zenith with a 20% RHA content. The prediction model exhibited outstanding efficacy, 
with a maximum error of merely 14.4%.

Constructing a multi-factor equation for predicting the CS of RHA concrete encounters challenges arising 
from the nonlinear relationship between the CS of RHA concrete and various factors. This complexity can be 
effectively addressed through machine learning (ML). Today, ML methods have shown potential in solving 
problems related to structural engineering21–23. Utilizing ML approaches within concrete technology offers 
an intelligent perspective towards sustainability in the construction industry24–28. Recently, there has been a 
growing emphasis on leveraging advanced ML methods for predicting concrete CS28–32. Topçu et al.33 devised 
an artificial neural network (ANN) and fuzzy logic model to predict CS, highlighting its significant potential for 
predicting the CS of fly ash concrete. In their study on high-volume fly ash self-compacting concrete, Kumar 
et al.34 employed advanced hybrid gradient boosting models to predict the CS and developed an open-source 
Graphical User Interface (GUI) to support mix design optimization and enhance model transparency. Kumar 
et al.35 developed and evaluated advanced ML models to predict the CS of ultra high performance concrete 
(UHPC) based on 15 input variables. Among these, the bidirectional long short-term memory (Bi-LSTM) model 
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achieved the highest accuracy. Sathvik et al.36 replaced conventional cement and river sand with recycled fly ash 
and manufactured sand in concrete, testing CS over 3–90 days. They also employed ML models to accurately 
predict concrete CS. Erdal et al.37, in their work on predicting the CS of high-performance concrete using wavelet 
ensemble models, found that the discrete wavelet transform substantially enhances the prediction accuracy of 
ANN. Behnood et al.38 employed the M5P model tree algorithm to predict CS across different concrete types 
based on 1912 datasets, demonstrating that the M5P model tree can serve as a viable method for CS prediction 
in concrete.

Recent research has started to address the prediction of CS in RHA concrete using ML methods. For 
instance, Li et al.39 developed a hybrid neural-network model grounded on a dataset of 192 records and six 
input parameters, resulting in satisfactory forecasting accuracy. In a parallel effort, Iqtidar et al.40 reproduced 
the analysis using the same dataset and an ANN approach. Hamidian et al.41 have gone a step farther by 
integrating an ANN framework with advanced optimization methods, yielding a model where the correlation 
coefficient exceeds 0.95. Amin et al.42 expanded the toolbox by applying bagging regressors, decision trees, and 
AdaBoost regressors, all demonstrating commendable precision in estimating the CS of RHA concrete. Alyami 
et al.43 demonstrated the effectiveness of ensemble ML models (exceptionally light gradient boosting machine) 
in predicting the CS of RHA concrete. They used 348 values of CS collected from the experimental studies, 
including five characteristics of RHA concrete. The study concluded that the light gradient boosting machine is 
the most effective ML model for accurately predicting the CS of RHA concrete. SAPley Additive ExPlanations 
(SHAP) analysis further revealed that the W/C ratio is the most influential parameter in the prediction process.

Despite the progress, a knowledge gap remains in using ML to predict CS of RHA concrete when factoring in 
a range of multiple input variable combinations. Past investigations relied on neither exhaustive nor sufficiently 
large databases, resulting in a limited number of data entries for training and validation. The restricted selection 
of ML algorithms used in past research inhibits a thorough assessment of which models perform best under 
varied data scenarios. This underscores an urgent requirement to broaden the range of techniques examined, 
integrating ensemble methods, deep learning, support vector adaptations, and hybrid designs to more 
effectively capture the diverse microstructural responses of the material. Additionally, deploying sophisticated 
statistical protocols such as nested cross-validation, mutual information screening, permutation-based feature 
importance, SHAP explanatory models, and thorough uncertainty quantification remains necessary for an 
exacting and systematic evaluation of predictive accuracy. Together, these coordinated approaches promise to 
lead to predictive models of RHA concrete that are not only more precise but also more interpretable and robust 
across differing field applications.

This article aims to explore the efficacy of twelve ML methods in accurately estimating the CS of RHA 
concrete with a professional and detailed approach. The ML techniques under scrutiny encompass a diverse 
array of algorithms, including ANN, support vector regression (SVR), Gaussian process regression (GPR), 
extra tree regressor (ETR), decision tree regressor (DTR), gradient boosting regressor (GBR), histogram-based 
gradient boosting regressor (HGBR), extreme gradient boosting (XGBoost), null‒space SVR (NuSVR), voting 
regressor (VR), random forest (RF), and multilayer perceptron regression (MLPR). These techniques are chosen 
for their capability to handle intricate relationships and patterns in data, making them widely used in predictive 
modeling. To guarantee reliability and the ability to generalize findings beyond the training set, the models are 
built and evaluated on a unique, high-fidelity dataset consisting of 500 data points created through rigorously 
controlled laboratory tests. This dataset covers a broad spectrum of compositions containing RHA concrete 
and systematically varies key material properties and mixing ratios. Unseen benchmark datasets, sourced from 
previous studies, supplement this core data to evaluate how well the models translate across different experimental 
conditions and settings. Stratified k-fold cross-validation is implemented to systematically partition the data, 
thereby balancing representation across the various groups and preventing both overfitting and underfitting. 
The resulting performance metrics are therefore more representative of the models’ true capabilities. For deeper 
understanding of the models’ inner workings, SHAP is calculated to attribute prediction variance to individual 
input features. Uncertainty quantification is also performed, yielding prediction intervals that inform engineers 
about the likelihood of varying material behavior. The Stepwise regression technique isolates the features that 
exert the greatest influence on CS. Complementary to this, Pearson correlation, mutual information, and 
distance correlation analyses together reveal both linear and nonlinear interactions among input variables and 
the CS target.

We created a dedicated GUI built on the trained ML models to translate our findings into practical use. 
The interface offers civil engineers and material scientists a straightforward tool for predicting the CS of RHA 
concrete by simply entering the relevant parameters. In this way, we connect sophisticated ML techniques with 
the routine demands of engineering practice.

Research significance
This research study represents an original contribution to concrete technology and ML by systematically 
investigating the ML-based estimation of CS of RHA concrete. One of the contributions is the analysis and 
comparison of the twelve distinct ML algorithms, which provides an extensive including global and local 
perspectives into algorithmic performance. This helps in knowing the most suitable and consistent algorithms 
for CS estimation, paying attention to the evaluation of the algorithms based on several metrics. This study can 
serve as a reference in the ML algorithms selection framework for predicting concrete properties, which due to 
the complexity of the features, provides high prediction error.

This study advances the understanding of ML applications by showcasing the focus of this research on RHA 
concrete as a model demonstrates the ease with which ML techniques can handle highly complex, nonlinear, 
and interdependent datasets that are characteristic of concrete materials. This further demonstrates the effective 
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potential of ML. It can change the construction industry by making eco-friendly construction materials and 
techniques more widely usable and available.

The study enhances the contribution on mix design optimization by applying Stepwise regression technique 
to determine critical input parameters impacting concrete CS the most in a concrete structure. This enables 
engineers and materials scientists to tailor mix design compositions on the offered strength parameters.

From a model building perspective, this research collected a unique dataset of 500 experimental data 
points and put them through rigorous model training and testing. To achieve an enhanced measure of model 
robustness, another 30 independent data points were collected from freely available literature sources and were 
used for external validation. This combination of datasets not only makes concrete the model evaluation, but 
also strength their confidence on the results obtained from the model for various concrete mixtures.

The most critical contribution of the research is providing actionable knowledge by identifying the optimal 
content of RHA that yields the highest CS, thus enhancing the mix design optimization. The work strengthens 
the understanding of RHA and justifies its strategic use in high-performance concrete.

In order to confirm the reliability and generalizability of the created ML models, a thorough validation 
strategy incorporating k-fold cross-validation was employed to reduce bias and variance for the performance 
metrics of the models across different data splits. In addition, the uncertainty quantification, is the focus of 
the study because it offers predictive intervals, which is an important insight crucial for understanding the 
confidence of model outputs. This is particularly important for engineering fields where decisions are often 
made under uncertainty. In support of explainable AI and to increase interpretable results, SHAP analysis was 
performed which allowed for estimating feature importance and explaining individual predictions in greater 
detail. Integrating the quantification, validation, and explanation techniques increases the trust and confidence 
in the results of the ML framework while providing the transparency that is often missing in such advanced 
techniques.

A practitioner’s ability to estimate the CS of RHA concrete and create optimal mix designs has been simplified 
with the development of a practical and GUI. This interface combines powerful ML tools with the practical 
needs of the civil engineering and research communities, enabling professionals to utilize predictive approaches 
with low computational proficiency.

This research is particularly remarkable for the thoroughness of its methodology, practical impact, and focus 
on sustainability, providing significant advancements in both materials engineering and applied ML.

Research methodology
The ML techniques scrutinized in this investigation encompass an array of algorithms, including SVR, GPR, 
NuSVR, ANN, XGBoost, MLPR, DTR, GBR, RF, HGBR, VR, and ETR. Here’s a concise overview of these 
techniques and their comparative advantages within the realm of ML:

GPR is a flexible tool from Bayesian statistics, offering a full distribution over functions instead of committing 
to single value estimates44. This feature becomes indispensable in civil engineering, where knowing the range of 
possible material strengths is key to robust, risk-aware design. By treating the observed measurements as noisy 
samples from a latent function, GPR automatically infers uncertainty, supplying credible intervals alongside 
predicted values. Our dataset of 500 observations sits comfortably within the range where GPR shines, delivering 
fluid, continuous estimates that respect the underlying nonlinearity and tolerate the moderate noise typical of 
material testing.

SVR stands out for predicting CS because it adeptly captures non-linear relationships through kernel tricks 
like the radial basis function. By focusing on minimizing structural risk rather than merely fitting the data, 
SVR achieves solid generalization across even large, complex feature sets45. This quality is particularly valuable 
for RHA concrete, where the interplay between variables such as RHA dosage and W/C ratio often introduces 
intricate non-linear behaviors. SVR manages these interactions with consistency, leading to dependable strength 
forecasts.

NuSVR incorporates the ν  (nu) parameter so it can be dynamically adjusted that how many support vectors 
we want and how many margin errors we’re willing to tolerate46. This extra knob for tuning not only makes the 
model more interpretable but also lends it extra stiffness against noise and outliers. These pesky perturbations 
often creep into experimental data, whether from the intrinsic variability of the materials involved or from slight 
inconsistencies in the testing procedures.

DTR breaks the feature space into clearly defined regions, applying simple decision rules at each split. Its 
structure lends it a high level of interpretability, and it can naturally capture non-linear patterns without needing 
normalized inputs47. Although a single tree is at risk of overfitting, it is a solid cornerstone for building more 
robust ensemble approaches.

Drawing motivation from biological neural networks, an ANN serves as a robust function approximator, 
adept at modeling intricate, non-linear interactions among input features48. Because of its flexible architecture, 
it can effectively memorize and generalize the intricate dependencies present in concrete mixture formulation 
and mechanical performance. Nonetheless, the technique mandates deliberate regularization strategies and a 
disciplined training regimen to mitigate the risks of overfitting, which is particularly salient when working with 
datasets of intermediate scale.

ETR extends the RF framework by substituting optimized split thresholds with randomly chosen cut-points. 
This tweak ramps up the method’s overall stochasticity, yielding both lower variance in the learned predictions 
and lighter computational loads49. Such a setup excels when the goal is to probe potential feature interactions 
without committing to the heavier cost of optimization, making it particularly useful in the early, exploratory 
sweeps of a competitive modeling effort.

GBR constructs its trees one after another, deliberately focusing each new model on the mistakes the prior 
sylves were incapable of addressing. This layer-by-layer focus on refining the residuals allows the ensemblegrowing 
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process to home in on faint, retirees patterns lurking in the idiosyncratic space of the data49,50. GBR is ideal for 
high-precision tasks like CS estimation in RHA concrete, especially when nonlinear and interaction effects are 
present.

HGBR streamlines GBR by organizing continuous inputs into histograms, which cuts training time and 
memory use sharply51. It keeps the predictive strength of the original method and improves how well the model 
scales, so it shines in situations requiring either big data processing or fast iteration during model development.

XGBoost is an optimized framework built on the gradient boosting framework that prioritizes both speed 
and flexibility49. By incorporating L1 and L2 penalties, it strengthens the model against overfitting. Innovations 
such as histogram-based quantile sketching, distributed tree building, and dynamic tree pruning minimize 
waste and improve execution time. This library shines with structured or tabular datasets, regularly finishing at 
the top of Kaggle leaderboards in regression and ranking tasks alike.

RFs consist of many decision trees built from different bootstrapped samples, with features also divided 
randomly during splits. This averaging process cuts the overall model variance while lowering the risk of 
overfitting52. As such, random forests serve as dependable starter models for predicting CS. Their robustness 
to noisy measurements and competence with mixed variable types make them particularly suited for the varied 
constituents in concrete mix designs.

MLPR is a specialized implementation of ANN focused on regression tasks. It consists of input, hidden, and 
output layers and uses backpropagation for training53. Its layered architecture enables it to learn hierarchical 
feature representations, making it ideal for modeling intricate dependencies in concrete compositions and 
strength outcomes.

VR leverages various complementary regressors by either averaging their predictions or by weighting 
each one according to its reliability on the given hold-out sample54. Here, it operates as a high-level ensemble, 
boosting generalization and guarding against the idiosyncratic errors of any single base learner. This gains 
particular traction in situations where merit is spread unevenly among different measures, and no single model 
consistently takes the lead.

The ML model development and analysis were implemented using the Jupyter Notebook interface with Python 
3.7 within the Anaconda Navigator distribution. Python 3.7 was selected due to its robust compatibility with key 
ML libraries (such as scikit-learn, XGBoost, SHAP, and dcor) at the time of model development. While newer 
Python versions (e.g., 3.10 and beyond) offer improved syntax features, they occasionally introduce dependency 
conflicts or deprecated functionalities with some of the specialized packages used in scientific computing and 
interpretability (e.g., SHAP or dcor), especially in combination. Also, the version of 3.7 still retains its popularity 
for broad support and stability which makes it a good environment for reproducible scientific calculations. At 
the same time, it was verified that there is forward compatibility with the deployment and GUI integration for 
version 3.9 and later. With a current configuration that consists of an Intel Core i7-10750 H CPU (2.60 GHz) and 
a workstation with 32GB of RAM, the performance is not an issue with multiple ML model trainings together 
with SHAP and cross-validation tasks. The described configuration enables reliable performance for the given 
tasks.

Every ML model received hyperparameter tuning utilizing a Grid Search approach on the training dataset. 
This approach exhaIt searches through a given collection of hyperparameter combinations to find the optimal 
one for model performance, as evaluated by cross-validation on performance metrics. By definition, Grid Search 
provides a way to formally document optimization steps taken, ensuring no steps are skipped, and is more 
systematic than ad hoc optimization efforts.

The methodological framework adopted in this study, illustrated comprehensively in (Fig. 1), integrates 
experimental data generation, statistical analysis, ML development, and model deployment through a GUI 
interface. The aim is to establish a robust and interpretable pipeline for predicting the CS of RHA concrete based 
on seven fundamental mix design parameters. The first step in the process is the generation of rich datasets, in 
this case, through novel data generation, a rigorous laboratory process was used to yield an abundant dataset. The 
data was obtained through mechanical testing, where a total of 530 data points in the form of concrete samples 
straddling different RHA to aggregate ratios were split into three sets to allow robust model training (400), 
external validation (30), and model tuning (100) on the provided dataset. The CS of the samples, tested through 
standardized mechanical tests, was extracted as the dependent variable for model training. For the modeling 
framework, the independent variables include key ingredients of the concrete mix: water-to-binder ratio (W/B), 
coarse aggregate (CA), fine aggregate (FA), superplasticizer (SP), water content (W), cement content (C), and 
RHA content. These variables bring several dimensions of a potential input space likely to have a non-linear and 
dependent relationship with the CS, thus requiring intricate modeling and ML approaches.

Before model training, a thorough statistical analysis was performed to discover relationships among the 
input features and the target variable. Apart from the classical Pearson correlation analysis, the study also used 
mutual information and distance correlation to capture dependencies of both types. These approaches strengthen 
the exploration of the data, particularly among relationships that are non-monotonic or driven by thresholds. 
In addition, stepwise regression with Akaike Information Criterion (AIC), its corrected version AICc, and 
Bayesian Information Criterion (BIC) were applied to highlight the significant input features aimed ato reduce 
redundancy, and risks of overfitting. The input features were standardized using the StandardScaler method. 
Centering a dataset to zero mean and scaling to unit variance ensures numerical stability which prevents features 
with large values from dominating the model during training.

Twelve distinct ML models were created and analyzed: SVR, GPR, Nu-SVR, ANN, XGBoost, GBR, HGBR, 
RF, MLPR, DTR, VR, and ETR. The predictive performance of these models was evaluated using well-known 
metrics such as coefficient of determination (R²), RMSE, MAPE, VAF, and a20-index. To enhance statistical rigor 
and mitigate biases from data pruning, two validation techniques including hold-out and k-fold were utilized.
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Beyond accuracy, model interpretability was approached via SHAP, which describes and quantifies the 
contribution of a single feature to the prediction made. This improves the model’s transparency and concrete 
interpretability, revealing how the mix design variables affect concrete performance. In addition, ML models 
were examined to estimate the bounds of the predicted values, which is necessary for engineering applications, 
so uncertainty quantification methods were utilized.

Data preparation
RHA characteristics
The leftover RHA was procured from rice fields situated in the northth of Iran. Rice husk pellets were burned in 
a steam boiler RHA between the temperatures of 650–750 °C. The RHA obtained was analyzed for its structural 
properties and was found to have predominantly amorphous silica with some crystalline silica. RHA is made up 
of irregularly shaped particles with a porous cellular structure. The average particle size of RHA was measured 
using Mastersizer 2000 and found to be 68 μm in diameter. RHA was ground for one hour in a ball mill which 
reduced the average particle size to 15 μm. The RHA was found to have high silica content and loss on ignition 
which was consistent with other studies. More details about the RHA used in this study are provided in (Table 1).

The sources of the rice husk, combustion conditions, and subsequent processing can greatly alter the peculiar 
physico-chemical characteristics of RHA, silica content, particle size distribution, and degree of amorphousness. 
This variability introduces some degree of uncertainty in the generalization of the performance of the ML models 
trained for different batches of RHA. Consequently, the models trained in this study would best predict the CS 
of concrete containing RHA of the type characterized in this study. Wider generalization for the other sources of 

Fig. 1.  Flowchart of the current study.

 

Scientific Reports |        (2025) 15:39162 6| https://doi.org/10.1038/s41598-025-23839-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


RHA would likely need retraining of the models or adaptation of the domain models. This limitation should be 
imposed in practical applications and future work.

Materials used in concretes
We utilized type I Portland cement in this study. The physical and chemical attributes of the Portland cement 
employed are outlined in (Table 1). Our crushed coarse aggregate (CA), sourced from local quarries, boasted a 
maximum size of 17 mm, a density 2.62, and an absorption capacity of 1.42%. Additionally, natural sand from 
the same quarries featured a modulus of fineness of 3.3, a density of 2.68, and an absorption capacity of 1.3%. 
Local tap water was used to mix water. We incorporated a Type-G superplasticizer (SP) with a 40% solid content 
and a specific gravity of 1.21 to attain the desired workability for all concrete mixtures.

The properties of fresh concrete were evaluated using the slump test as per ASTM C143/C143M-15a and 
the unit weight, yield, and air content measurement (via the gravimetric method) according to ASTM C138/
C138M-17a. All materials and processes used were in compliance with the relevant ASTM standards, which 
provided uniformity and reproducibility in the concrete manufacturing and testing processes.

Testing program and database
RHA was used as a pozzolanic material in concrete. The concrete was tested for evaluating the CS. In a rotating 
concrete drum mixer, CA and FA, along with powder materials such as C and RHA, were meticulously 
proportioned. The initial dry mixing lasted for two minutes, followed by an additional three minutes 
after introducing W. Subsequently, the concrete blend underwent a final three-minute mixing phase upon 
incorporating the SP to achieve the desired consistency. Immediately slump and unit weight assessments were 
conducted on the freshly mixed concrete.

For the casting process, 100 mm-sized cubes were formed and compacted in dual layers atop a vibrating table, 
with each layer subjected to a 10-second vibration. Post-casting, molds were promptly covered with polyethylene 
sheets and moistened burlap, left undisturbed for 24 24-hour. Afterward, the specimens were demolded and 
submerged in water at 20 °C for curing until the day of testing. This involved the meticulous preparation of 500 
cubic specimens, ultimately determining their 28-day CS. Ultimately, 500 data points, including seven input 
parameters such as W/B, C, RHA, W, SP, FA, and CA were documented, each corresponding to a specimen with 
distinct characteristics. Table 2 outlines the overall specifications of these data points.

Feature engineering stands as a critical stride in ML, involving the meticulous selection, transformation, and 
creation of features derived from raw data to optimize our model’s performance55. Within this article, we harness 
the Stepwise method (a widely embraced technique in ML and statistical models) to automatically cherry-pick 
the most pertinent features from the given dataset. This method engages in an iterative dance of adding or 
discarding features contingent on their statistical significance or predictive prowess.

We used three statistical measures to improve the accuracy of the feature selection, including the AIC, its 
corrected version AICc, and BIC. These criteria assess the adequacy of a model in relation to a certain dataset 
while applying a penalty in terms of complexity to avoid overfitting56. This means that the model will have more 
accuracy in the prediction if it uses a lower number of variables. For instance, if an additional variable is added 
and no considerable increase in the model accuracy is observed, AIC, AICc, and most importantly BIC, will 
discourage its inclusion. Among them, AICc is preferred for smaller datasets, as was the case with this study, 
and BIC is more aggressive with increased penalties for extra variables. As seen in this study, the chosen model 
had the lowest AIC and AICc values and thus, showed considerable balance between predictive performance 
and simplicity.

To pinpoint the key factors affecting concrete CS, we used the StepAIC() function from the MASS package 
in R. This technique performs stepwise variable selection by repeatedly fitting models and comparing their AIC 
values. The procedure balances goodness-of-fit and model size, and was configured to perform simultaneous 
forward selection and backward elimination.

Table 3 shows that all seven variables retained in the final model have p-values well below the 0.05 threshold, 
establishing their statistical significance. In particular, the W/B ratio, W, SP, and C present extremely small p-values 
(p < 2e-16) and indicate powerful links to compressive strength. The most significant p-value, corresponding to 
the RHA content, is 0.0083 and is still firmly below the significance cutoff, justifying its retention. The analysis 

Item Unit Cement RHA

Physical properties Specific gravity – 3.11 2.10

Chemical compositions

Al2O3 (%) 5.45 0.32

MgO (%) 2.48 0.77

SiO2 (%) 21.78 87.30

SO3 (%) 1.98 1.32

Fe2O3 (%) 3.55 0.52

K2O (%) 0.82 3.58

Na2O (%) 0.68 0.19

P2O5 (%) 0.14 1.33

Loss on ignition (%) 0.72 9.31

Table 1.  Physical and chemical properties of cement and RHA.
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verifies that each included predictor is meaningful and supports the validity of the selection technique. The 
retained factors also resonate with established concrete science, where the interplay between binder formulation, 
water volume, and aggregate properties is recognized as decisive for mechanical strength.

Figure 2 shows the comprehensive portrayal of input and output parameter values through violin plots. 
The utility of violin plots lies in their versatility, providing an insightful means to capture the nuances of data 
distribution. This makes them indispensable tools in exploratory data analysis and facilitating nuanced statistical 
comparisons. Moreover, violin plots effectively convey intricate data patterns to a diverse audience.

Considering the details of the violin plots, it is clear that most of the input parameters are typically 
distributed, confirming the appropriateness of the dataset for ML. The exception is the W/B ratio, which has an 
unusual distribution showing a marked density dip between 0.43 and 0.51. This pronounced non-uniformity is 
undoubtedly more than a random statistical occurrence and has important theoretical implications. The W/B 
ratio is arguably the most critical factor that governs the degree of cement hydration, the associated porosity, 
and the concrete CS in a concrete element. A dip suggests a lack of experimental data in the neighborhood of 
critical transition zones where, beyond certain limits, the W/B ratio can increase or decrease the rate of strength 
gain. This is especially true for RHA concrete given its peculiar high surface area and pozzolanic activity which 
alters its water demand. This distributional irregularity may enhance model sensitivity in that area while calling 
for more targeted sampling thresholds. So, the unique viola plot shape of W/B reflects its clarity of statistical and 
mechanistic significance in CS prediction, confirming the need for meticulous treatment in model design and 
explanation.

Within Fig. 3, a matrix meticulously lays out the intricate connections linking the input and output 
parameters. This visual representation distinctly reveals a tenuous correlation between the input parameters 
and their interplay with the output parameter CS. The discernible implication is the absence of a discernible 
linear relationship among these parameters. In simpler terms, conventional linear methods are ill-suited to 
unravel the underlying patterns governing these interactions. This conspicuous non-linearity in the relationship 
demands the prowess of advanced non-linear ML algorithms. It serves as a clarion call to embrace sophisticated 
methodologies that can adeptly navigate and comprehend the intricate complexities inherent in this dynamic 
interplay. The conventional constraints of linear approaches are transcended by the exigencies of a non-linear 

Estimate Std. error t-value p-value Code

Intercept 56.8168 0.8179 69.467 < 2e-16 ***

W/B -24.2189 1.7443 -13.884 < 2e-16 ***

C -15.1332 1.4961 -10.115 < 2e-16 ***

RHA -2.1259 1.4928 -1.424 0.0083 **

W -17.9758 1.3744 -13.079 < 2e-16 ***

SP -27.7828 1.4518 -19.137 < 2e-16 ***

FA 14.8466 1.4573 10.188 < 2e-16 ***

CA 17.1440 1.1418 15.015 < 2e-16 ***

Table 3.  Leveraging feature engineering through the Stepwise method. Significant codes: 0‒0.001 (***); 
0.001‒0.01 (**); 0.01‒0.05 (*); 0.05‒0.1 (…); 0.1‒1 (.); >1 (.).

 

W/B C (kg/m3) RHA (kg/m3) W (kg/m3) SP (kg/m3) FA (kg/m3) CA (kg/m3) CS (MPa)

Training data

Count 400 400 400 400 400 400 400 400

Mean 0.32 496.96 81.80 179.55 35.49 650.09 1125.08 57.41

Std 0.06 165.14 53.08 38.53 25.56 171.81 156.19 15.97

Min 0.21 188.00 0.00 115.00 0.00 316.00 881.00 4.97

25% 0.27 391.00 41.00 149.60 11.33 542.75 995.75 47.48

50% 0.33 475.00 74.00 171.00 30.85 644.95 1094.00 58.11

75% 0.37 623.00 127.00 212.00 58.00 785.00 1272.25 67.23

Max 0.50 826.00 187.00 255.00 85.00 980.00 1420.00 98.10

Testing data

Count 100 100 100 100 100 100 100 100

mean 0.31 492.67 82.14 181.58 38.57 626.21 1126.87 55.91

Std 0.06 187.83 51.55 38.74 23.94 186.13 143.12 15.27

Min 0.21 197.00 3.00 117.00 1.00 325.00 890.00 18.29

25% 0.25 304.75 34.00 150.00 16.75 450.50 992.75 47.60

50% 0.30 489.00 75.00 179.00 37.00 617.00 1132.50 56.42

75% 0.36 647.25 130.75 206.25 57.25 777.25 1216.75 66.02

Max 0.42 819.00 185.00 255.00 85.00 947.00 1406.00 89.08

Table 2.  General specification of the datasets.
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landscape, necessitating a paradigm shift towards more nuanced and intricate analytical techniques to unravel 
the subtleties embedded in these connections.

Figure 4 displays the distribution of all the continuous input features employed in predicting the CS of the 
cementitious mixtures. Before proceeding to the visual representation, we undertook a systematic procedure to 
detect and remove outliers, thereby enhancing the statistical integrity of the modeling process. The Interquartile 
Range (IQR) technique, a standard tool in robust statistical analysis, served to isolate and discount data points 
that deviated too far from the interquartile range This method defines outliers as data points lying outside the 
range [Q1 − 1.5 × IQR, Q3 + 1.5 × IQR]. Q1 and Q3 denote the 25 and 75th percentiles, respectively, 
and IQR = Q3 - Q1. Application of this protocol effectively eliminated all extreme deviations, yielding a cleaned 
dataset of 500 reliable samples that were then available for training and analytical procedures. The box plots 
shown in Fig. 4 are based on this post-IQR-cleaned cohort.

The majority of the features, including W, SP, C, and RHA, display distributions that are approximately 
symmetric and exhibit little skewness. Such uniformity promotes stable convergence properties in model 
training. Each box’s vertical length illustrates the interquartile range, offering a snapshot of how spread out the 
central half of the data is. CA and FA, with noticeably taller boxes, indicate a greater dispersion of aggregate 
proportions in their respective mix designs. After applying the interquartile-range rule, every variable reveals 
no extreme data points. This silence suggests that the preprocessing steps succeeded in filtering out outlying 

Fig. 2.  Violin plots for each feature and the target. C: Cement content; CA: Coarse aggregate; CS: Compressive 
strength; FA: Fine aggregate; RHA: Rice husk ash; SP: Superplasticizer; W: Water content; W/B: Water-to-
binder ratio.
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noise. The cleaned data is now more stable for the subsequent ML tasks, mitigating the risks of fitting to aberrant 
values.

We adopted mutual information and distance correlation methods to deepen our insight into feature-to-target 
links beyond the linear scope captured by Pearson correlation. These nonlinear and model-agnostic metrics 
expose the intricate, non-parametric ties between the predictive variables and the target57,58. Figure 5 presents 
mutual information scores for each feature in relation to CS. Because mutual information encompasses both 
linear and nonlinear ties, it highlights variables that shape the target through intricate, possibly threshold-like, or 
saturation behaviors. The SP emerged as the most informative predictor, with mutual information score = 0.188, 
underscoring its nonlinear capacity to enhance workability without adding moisture. W and C ranked next, with 
mutual information scores of 0.129 and 0.127, quantifying their marked yet partially overlapping influences. 
The mutual information scores for RHA and W/B, though still non-trivial, were lower, indicating that their 
contributions to CS might hinge on specific contexts or dosage ranges.

Figure 6 presents the distance correlation findings. Unlike Pearson or mutual information, distance 
correlation captures any form of statistical dependency, whether linear or nonlinear, producing values that span 
from 0 to 1. SP once more leads the rankings (distance correlation = 0.514), affirming its decisive influence on 
CS. W (distance correlation = 0.374) and the W/B (distance correlation = 0.328) reveal noteworthy distance-
based connections to strength, perhaps reflecting subtler hydration phenomena that Pearson fails to condense. 

Fig. 3.  Correlation matrix between the predictors and the target. C: Cement content; CA: Coarse aggregate; 
CS: Compressive strength; FA: Fine aggregate; RHA: Rice husk ash; SP: Superplasticizer; W: Water content; 
W/B: Water-to-binder ratio.
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RHA, celebrated for its environmental merit and pozzolanic activity, registers the weakest distance correlation 
(0.138), suggesting its advantages can only be unlocked through more tailored incorporation.

These advanced correlation tools augment Pearson by disclosing nonlinear structures and cross-validating 
the primacy of SP, W, and C regardless of technique. The union of mutual information and distance correlation 
enriches variable selection and bolsters model robustness and interpretability (essential ingredients for refining 
ML pipelines aimed at predicting concrete properties).

Fig. 4.  Box plots of input features. C: Cement content; CA: Coarse aggregate; FA: Fine aggregate; RHA: Rice 
husk ash; SP: Superplasticizer; W: Water content; W/B: Water-to-binder ratio.
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Data standardization
In the realm of ML algorithms, standardization of the data emerges as one of the most important preprocessing 
steps, neutralizing all features to a common scale without bias59,60. This step is essential for algorithms that use 
distance metrics or rely on gradients to optimize, like SVR, ANN, and GPR. Learning is usually misled with 
biases due to differences in the features used. In the absence of standardization, features that are numerically 
larger in scale can overshadow smaller features. This leads to model performance and interpretation misaligned 
with the intended goals.

This study used the Standard Scaler implementation from the scikit-learn library. This implementation 
standardizes features by first rg the mean and scaling to unit variance, leading to feature values with a mean 
of zero and a standard deviation of 1. This is favorable for the dataset employed in this study, which contains 
W, RHA, and SP, all in different units and magnitudes. StandardScaler’s assumption of Gaussian-like feature 
distribution is reasonable with this study’s data after we remove outliers and normalize.

Alternative scaling options such as MinMaxScaler would scale features to a fixed range of [0,1] and were 
tried in earlier experiments. Those models proved to be unhelpful for certain models, particularly SRV and GPR. 
MinMaxScaler issues where features with a narrow range of variability tend to be compressed and extreme values 
overemphasized, with severe consequences to how well the models can generalize. In contrast, StandardScaler 
kept the equilibrium of the distribution and model-defined features, bringing stability, interpretability, sensitivity 
analysis, and SHAP values feature attribution.

Fig. 6.  Distance correlation scores with target variable. C: Cement content; CA: Coarse aggregate; FA: Fine 
aggregate; RHA: Rice hush ash; SP: Superplasticizer; W: Water content; W/B: Water-to-binder ration.

 

Fig. 5.  Feature-wise mutual information scores with the target variable. C: Cement content; CA: Coarse 
aggregate; FA: Fine aggregate; RHA: Rice hush ash; SP: Superplasticizer; W: Water content; W/B: Water-to-
binder ration.
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Performance evaluation of the ML models
The following evaluation criteria have been meticulously employed to assess the performance of the ML models 
in estimating the CS of concrete specimens. These criteria bear paramount significance, offering unique insights 
into the accuracy and efficacy encapsulated within the models.

This metric scrutinizes the extent to which the ML models account for the variance in target parameter 
values. A higher R2 value signifies a more robust alignment between the models and the observed data Eq. (1).

MAPE acts as a yardstick, quantifying the average percentage difference between predicted and measured 
CS values. A lower MAPE value indicates a higher accuracy level in the models’ estimations Eq. (2). RMSE, the 
square root of the average squared differences between predicted and measured values, gauges the overall error 
in the models’ predictions. A lower RMSE underscores superior predictive performance Eq. (3). VAF measures 
the proportion of variance in the predicted values attributed to the ML models. A higher VAF implies a more 
substantial contribution from the models in elucidating the variability in target parameter values Eq. (4). The 
a20‒index emerges as a specific performance metric, meticulously evaluating the accuracy of the models within 
a predefined tolerance range. It quantifies the percentage of predicted values falling within ± 20% of the target 
parameter values. A higher a20‒index underscores the models’ prowess in providing precise estimates within the 
specified tolerance range Eq. (5).

These evaluation criteria collectively serve as a comprehensive toolkit, dissecting the nuanced facets of the 
ML models’ performance and fortifying the reliability of their estimations for the CS of concrete specimens.
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Where f(xi) and f∗ (xi) are the measured and estimated values of parameter x for the ith dataset, respectively. 
n is the total number of test datasets.

To gauge the efficacy of the ML algorithms, each algorithm undergoes a rigorous evaluation process, 
garnering scores based on predefined criteria. The culmination of these scores across all evaluation criteria is 
then meticulously calculated for each algorithm. The algorithm with the highest total points is consequently 
endorsed as the most fitting and accurate choice for estimating the CS of concrete. This methodology ensures 
a thorough appraisal of the ML models’ performance, enabling pinpointing the most precise and suitable 
algorithm for the task at hand—estimating the CS of concrete.

Results analysis and comparison
In Fig. 7, we meticulously scrutinize the estimated values produced by each algorithm against the individually 
measured 28-day CS values. This scrutiny unfolds through graphs employing the a20‒index metric, revealing 
a noteworthy alignment of the majority of points within the x = 1.20y and x = 0.80y lines. This alignment 
signifies the commendable accuracy of predictions across all ML algorithms. The a20-index was selected 
because it is widely recognized in civil engineering and materials science as a clear and trustworthy gauge of 
predictive competence, especially when forecasting concrete behaviors. The a20-index determines the fraction 
of modelled values that lie within ± 20% of the corresponding measured values, giving a concrete benchmark 
for error that engineering practitioners regard as tolerable. In contrast to summary statistics like R² and RMSE, 
which summarize the entire data set, the a20-index focuses exclusively on the portion of predictions that satisfy 
a tolerance cut-off that is meaningful in practice, especially when the stakes include safety margins and the 
inherent variability of construction materials. Additionally, when placed alongside the other aα indices (notably 
a10 and a30), the a20 threshold settles into a widely accepted compromise. a10 is often considered too harsh, 
penalizing models for disparities that would not compromise workability. a30, on the other hand, is frequently 
dismissed as too forgiving, allowing models to appear trustworthy even when significant inaccuracies go 
unnoticed. The a20-index thus occupies a sound, practical middle ground, revealing the model’s dependability 
in contexts where engineering judgement is paramount.

According to Fig. 7, the a20‒index values span a range of 0.64 to 0.97, with the DTR algorithm exhibiting 
the lowest accuracy and the GPR and MLPR algorithms showcasing the highest accuracy. The other algorithms 
present acceptable accuracy levels, excluding the DTR model. Consequently, based on the a20‒index results, all 
models, except for DTR, exhibit satisfactory performance in estimating concrete CS.
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The results from evaluating the performance of a ML model may differ from one to another based on the 
metric which is selected as the focal point of the evaluation. Each of the metrics capture different elements of 
performance which include the level of error, the explanation of variance, the error in prediction, and the degree 
of robustness. In this case, a multi-criteria scoring model is preferred to provide a more balanced outcome 
and therefore, in this case the metrics selected are R², MAPE, RMSE, VAF, and a20-index. Each ML model 

Fig. 7.  Evaluating the ML algorithms’ accuracy in predicting the concrete CS using the a20‒index. ANN: 
Artificial neural network, SVR: Support vector regression; GPR: Gaussian process regression; ETR: Extra tree 
regressor; DTR: Decision tree regressor GBR: Gradient boosting regressor; HGBR: Histogram-based gradient 
boosting regressor; XGBoost: Extreme gradient boosting; NuSVR: Null‒space SVR; VR: Voting regressor; RF: 
Random forest; MLPR: Multilayer perceptron regression.
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was ranked per metric based on its raw performance. For example, the model with the highest R² received a 
score of 12 (indicating 1st place out of 12 models), the next best received 11, and so forth down to the model 
with the lowest R², which received a score of 1. Each model was evaluated with the other models in a given 
metric competition. No weighing bias was introduced, and therefore, the final score was the outcome of every 
metric score. The ranking score in the final column of Table 4 is simply the sum of individual metric scores, 
reflecting the aggregate performance of each model. This clear model evaluation avoids bias towards models due 
to championing one performance metric. For instance, while SVR excelled in R² (0.9647), MAPE (0.04), and 
RMSE (2.85), it also ranked highly across VAF (98.2%) and a20-index (0.96), giving it a cumulative score of 51, 
the highest among all contenders. Similarly, GPR and NuSVR also demonstrated consistently high scores across 
metrics, securing strong overall rankings.

In Fig. 8, a schematic depiction delineates the total scores for each algorithm based on the comprehensive 
evaluation criteria. These overarching results distinctly position the SVR algorithm as the current frontrunner 
among its counterparts. However, it’s imperative to note that these estimates rest on test datasets, and the 
algorithms’ performance awaits confirmation through rigorous testing on new unseen datasets to ensure their 
sustained accuracy.

K-fold cross-validation is a widely accepted method for validating the performance of ML models. The entire 
dataset is partitioned into K equally sized subsets, known as folds. For every iteration, a single fold serves as the 
holdout test set, while the concatenation of the remaining K-1 folds is utilized to train the model. This rotation 
is carried out K distinct times, guaranteeing that every fold is designated as the test set once. The performance 
metrics from every cycle are subsequently averaged, yielding a composite score that mitigates the influence of 
any one particular split. By employing this procedure, the analysis confirms the model’s capacity to generalize, 

Fig. 8.  Ranking of ML models based on using the hold-out validation method. ANN: Artificial neural 
network, SVR: Support vector regression; GPR: Gaussian process regression; ETR: Extra tree regressor; 
DTR: Decision tree regressor GBR: Gradient boosting regressor; HGBR: Histogram-based gradient boosting 
regressor; XGBoost: Extreme gradient boosting; NuSVR: Null‒space SVR; VR: Voting regressor; RF: Random 
forest; MLPR: Multilayer perceptron regression.

 

R2 Score MAPE Score RMSE Score VAF [%] Score a20-index Score Ranking score

DTR 0.3401 1 0.20 1 12.33 1 60.1 1 0.64 1 5

SVR 0.9647 12 0.04 8 2.85 12 98.2 12 0.96 7 51

NuSVR 0.9418 11 0.05 7 3.66 10 97.1 10 0.96 7 45

GPR 0.9400 10 0.05 7 3.50 11 97.3 11 0.97 8 47

XGBoost 0.7391 2 0.11 3 7.75 2 86.4 2 0.82 2 11

RF 0.7659 4 0.12 2 7.34 4 87.6 4 0.83 3 17

ETR 0.8009 5 0.10 4 6.77 5 89.8 5 0.87 4 23

GBR 0.7595 3 0.11 3 7.44 3 87.2 3 0.83 3 15

HGBR 0.8060 6 0.11 3 6.69 6 89.9 6 0.87 4 25

ANN 0.8947 8 0.07 5 4.92 8 94.6 8 0.95 6 35

VR 0.8158 7 0.10 4 6.51 7 90.3 7 0.88 5 30

MLPR 0.9126 9 0.06 6 4.49 9 95.6 9 0.97 8 41

Table 4.  Ranking of ML models based on statistical performance metrics using the hold-out validation 
method.

 

Scientific Reports |        (2025) 15:39162 15| https://doi.org/10.1038/s41598-025-23839-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


as every observation is subjected to testing while simultaneously being part of the training pool across the entire 
K passes. K-fold cross-validation serves a crucial role in ML by discouraging overfitting. Instead of havinging 
the model latch onto the idiosyncrasies of just one training set, K-fold forces it to encounter varied subsets, 
compelling it to learn useful patterns that hold across the entire dataset. Averaging performance scores across 
these multiple folds yields a reliability that a lone train-test split cannot match. This is especially beneficial 
in situations where the dataset is small, as every observation gets its day in court both for training and for 
validation. K-fold also streamlines the model-selection process, offering a fair playground to compare multiple 
algorithms or fine-tuned hyperparameters. The end result is a clearer, more detailed picture of how well a model 
might perform on unseen data.

We applied 5-fold cross-validation (K = 5) to rigorously evaluate the ML models. The complete dataset was 
divided into five equal parts; one part served as the test set for every fold while the remaining four were combined 
to form the training set. By rotating the test set across all five parts, we guaranteed that every observation 
contributed to the training and the validation process. This practice produces a robust and dependable estimate 
of how well the models can predict the CS of concrete incorporating RHA. The choice of 5 folds strikes a good 
balance, granting us reliable performance metrics without excessively prolonging training times, thereby 
enhancing our understanding of each model’s capacity to generalize to unseen samples.

Table  5 summarizes the comparative performance of the ML approaches assessed using three primary 
evaluation metrics (R², RMSE, and VAF). For every fold, the metrics are computed and thereafter used to order 
the models. Reviewing the table, the SVR model consistently records the highest R² scores across every fold, 
suggesting its strong capability to predict concentrated solids. For instance, in the first fold, SVR attains an R² 
benchmark of 0.9518, outperforming every competitor. In contrast, the DTR variant consistently appears at 
the foot of the R² hierarchy, evidencing weaker predictive quality. In Fold 1, DTR earns an R² of merely 0.3312, 
a value that falls well below that of any alternative model considered. For RMSE, the SVR model records the 
smallest values, pointing to the least prediction error on record. In Fold 1, it settles at 2.98, staking a strong claim 
to the model’s accuracy. On the other hand, the DTR model shows the highest RMSE values, especially in Fold 1, 

Fold no. SVR GPR NuSVR MLPR ANN VR HGBR ETR RF GBR XGBoost DTR

Fold 1

R2 0.9518 0.9312 0.9344 0.9087 0.8862 0.8123 0.7983 0.7931 0.7562 0.7503 0.7288 0.3312

Score 12 11 10 9 8 7 6 5 4 3 2 1

RMSE 2.98 3.82 3.99 5.13 5.87 7.21 7.66 8.03 8.57 8.94 9.25 13.81

Score 12 11 10 9 8 7 6 5 4 3 2 1

VAF (%) 97.2 96.14 95.83 94.12 94.01 88.86 88.04 87.43 87.12 86.39 85.74 58.31

Score 12 11 10 9 8 7 6 5 4 3 2 1

Fold 2

R2 0.9716 0.9594 0.9643 0.95 0.9349 0.8744 0.8649 0.8634 0.8319 0.8297 0.8113 0.4593

Score 12 10 11 9 8 7 6 5 4 3 2 1

RMSE 2.88 3.72 3.89 5.04 5.78 7.12 7.57 7.94 8.48 8.85 9.16 13.75

Score 12 11 10 9 8 7 6 5 4 3 2 1

VAF (%) 98.69 98.05 97.83 96.69 96.95 92.47 91.87 91.45 91.41 90.86 90.37 65.22

Score 12 11 10 8 9 7 6 5 4 3 2 1

Fold 3

R2 0.9905 0.9825 0.9883 0.9797 0.9683 0.9146 0.9073 0.9077 0.8789 0.8785 0.8617 0.5328

Score 12 10 11 9 8 7 5 6 4 3 2 1

RMSE 2.43 3.97 3.48 5.72 6.83 8.95 9.64 10.21 11.03 11.60 12.07 19.49

Score 12 11 10 9 8 7 6 5 4 3 2 1

VAF (%) 98.52 97.84 97.61 96.41 96.63 92.09 91.47 91.03 90.96 90.40 89.89 64.51

Score 12 11 10 8 9 7 6 5 4 3 2 1

Fold 4

R2 0.9713 0.9671 0.9623 0.9461 0.9298 0.8671 0.8568 0.8547 0.8223 0.8195 0.8006 0.4411

Score 12 11 10 9 8 7 6 5 4 3 2 1

RMSE 2.76 3.21 3.79 5.29 6.16 7.76 8.29 8.73 9.36 9.80 10.16 15.68

Score 12 11 10 9 8 7 6 5 4 3 2 1

VAF (%) 98.14 97.34 97.09 95.74 95.86 91.14 90.46 89.97 89.83 89.22 88.66 62.68

Score 12 11 10 8 9 7 6 5 4 3 2 1

Fold 5

R2 0.9590 0.9370 0.9439 0.9156 0.8931 0.8187 0.8046 0.7993 0.7624 0.7564 0.7349 0.3345

Score 12 10 11 9 8 7 6 5 4 3 2 1

RMSE 2.75 3.70 3.79 5.43 6.34 8.04 8.61 9.07 9.74 10.20 10.59 16.47

Score 12 11 10 9 8 7 6 5 4 3 2 1

VAF (%) 98.34 97.67 97.38 96.21 96.43 91.88 91.26 90.82 90.75 90.18 89.67 64.30

Score 12 11 10 8 9 7 6 5 4 3 2 1

All folds Sum of scores 180 162 153 131 124 105 89 76 60 45 30 15

Table 5.  Ranking of ML models based on statistical performance metrics using the 5-fold cross-validation 
method.
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where it reaches 13.81, indicating that the predictions are farther from the true values compared to other models. 
Turning to VAF, SVR again leads with a score that shows it explains the greatest proportion of variance. In Fold 1, 
it notches up 97.2%, the summit among all contenders. DTR, however, posts the lowest VAF, 58.31% in the same 
Fold, a reading that reveals it captures only a fraction of the data’s underlying variation.

The model rankings provided in the accompanying table are derived from the overall score calculations made 
over the complete set of five cross-validation folds; in this system, a greater cumulative score indicates superior 
model performance. The SVR model exceeds every other candidate by this measure in each individual fold and 
attains the highest total score of 180. This result underlines SVR’s consistent merit and stability from fold to fold 
in the validation process. Analyzing performance on a fold-by-fold basis confirms SVR’s dominant position. In 
Fold 1, the model records the best R², the lowest RMSE, and the leading VAF, which together assure its first rank. 
Fold 2 sees SVR again on top, producing similarly strong R² and VAF values, though the RMSE rises by a small 
margin. The same pattern persists in Fold 3, where R² and VAF remain elevated and RMSE stays comparatively 
low. Fold 4 registers identical results: top R² and VAF, a slight RMSE increase. Finally, Fold 5 again delivers peak 
R² and VAF, paired with the best RMSE, reaffirming SVR’s overall superiority.

The SVR, NuSVR, and GPR models outperformed the other methods in this work for three mutually 
reinforcing reasons that matched the problem’s conditions. First, their architectures suit moderate datasets (like 
the 500 samples here) where deep learners, including ANNs, risk overfitting without heavy and sometimes 
unbalanced regularizations. Second, they employ kernel functions (specifically the radial basis function) that 
enable the mapping of input features into high-dimensional spaces where nonlinear trends can be effectively 
captured. Lastly, the three methods embed regularization: SVR and NuSVR impose it via the penalty parameters, 
while GPR incorporates it through the Bayesian priors. Together, these design choices supported reliable 
generalization and strong predictive accuracy through every evaluation phase.

In summary, the SVR model leads in every validation fold, showing the highest predictive accuracy. Its strength 
across all five partitions supports the model’s reliability for estimating the CS of RHA concrete. Conversely, the 
DTR model places at the bottom in each measure, underscoring its relative unsuitability for this application. The 
5-fold cross-validation adopted here enhances the credibility of the results by preventing reliance on a single 
data split; instead, it confirms model behavior through a thorough evaluation over multiple data segments. This 
multi-partition method delivers a robust and consistent basis for judging the model’s potential to generalize and 
produce precise forecasts.

To ensure a robust evaluation of the trained algorithms in estimating concrete CS, we employ previously 
unused datasets from prior publications as validation datasets. Initially, we scrutinize the models’ performance 
on the 24 data points presented in Bui et al.15, outlined in (Table 6). These data points share identical parameters 
with our study, encompassing the same considerations in concrete sample preparation and testing methodology 
to ascertain the 28-day CS. These external data points were used exclusively for generalization assessment; 
no external samples were used for training or hyperparameter adjustment. This insertion aims to gauge how 

W/B C (kg/m3) RHA (kg/m3) W (kg/m3) SP (kg/m3) FA (kg/m3) CA (kg/m3) CS (MPa)

0.30 550.00 0.00 165.00 5.60 550.00 1283.00 63.50

0.30 495.00 55.00 165.00 5.80 546.00 1273.00 72.80

0.30 468.00 82.00 165.00 6.10 543.00 1267.00 75.10

0.30 440.00 110.00 165.00 6.30 540.00 1261.00 78.20

0.32 500.00 0.00 160.00 5.50 567.00 1324.00 59.60

0.32 450.00 50.00 160.00 5.72 562.00 1313.00 68.80

0.32 425.00 75.00 160.00 6.00 560.00 1307.00 72.20

0.32 400.00 100.00 160.00 6.22 558.00 1301.00 72.70

0.34 500.00 0.00 170.00 5.00 560.00 1305.00 57.90

0.34 450.00 50.00 170.00 5.00 555.00 1294.00 66.60

0.34 425.00 75.00 170.00 5.00 553.00 1290.00 67.20

0.34 400.00 100.00 170.00 5.00 551.00 1285.00 69.30

0.30 550.00 0.00 165.00 6.60 550.00 1283.00 88.50

0.30 495.00 55.00 165.00 6.80 546.00 1273.00 95.20

0.30 468.00 82.00 165.00 7.19 543.00 1267.00 96.00

0.30 440.00 110.00 165.00 7.43 540.00 1261.00 98.10

0.32 500.00 0.00 160.00 6.50 567.00 1324.00 85.70

0.32 450.00 50.00 160.00 6.76 562.00 1313.00 91.60

0.32 425.00 75.00 160.00 7.08 560.00 1307.00 93.40

0.32 400.00 100.00 160.00 7.36 558.00 1301.00 94.30

0.34 500.00 0.00 170.00 6.40 560.00 1305.00 82.80

0.34 450.00 50.00 170.00 6.40 555.00 1294.00 89.70

0.34 425.00 75.00 170.00 6.40 553.00 1290.00 90.30

0.34 400.00 100.00 170.00 6.40 551.00 1285.00 91.10

Table 6.  Evaluation data points available in Bui et al.15.
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the trained models perform on independent data produced under differing experimental arrangements. This 
approach strengthens the credibility of the models. It addresses model robustness and transferability, which 
is especially important in ML applications to concrete materials where variability in raw materials and test 
conditions is common.

In Fig. 9, the outcomes predicted by each algorithm are showcased on these data points, juxtaposed with the 
experimental results. While a majority of the models exhibit behavior akin to the experimental outcomes, it is 
noteworthy that not all algorithms yield acceptable and accurate results, reflected in R2 values spanning from 
0.46 to 0.94. Notably, the SVR, GPR, and NuSVR models demonstrate superior accuracy on the test dataset in 
our study, showcasing the best performance on these data points among other algorithms. This attests to the 
sound training of these algorithms. The MLPR and ANN algorithms secure the fourth and fifth positions in 
terms of accuracy, achieving R2 values of 0.84 and 0.82, respectively. Conversely, other algorithms exhibit subpar 
performance, registering R2 values within the range of 0.46 to 0.71. Notably, the DTR algorithm delivers the least 
accuracy, with an R2 value of 0.46.

In this analytical phase, a meticulous investigation was conducted into the performance of each intricately 
trained ML model using an additional set of six data points, which underwent CS testing as detailed by Chao-
Lung et al.61. These specific data points, elucidated in (Table 7), deviate solely in the geometric configuration of 
samples, transitioning from cubic to cylindrical. The primary objective of this comparative analysis was to assess 
the adaptability of the ML models developed in our study to the diverse structural forms of concrete samples. 
We acknowledge that the differing shapes (cube vs. cylinder) can influence the CS results because each geometry 
redistributes stress and triggers failure in distinct patterns. Nonetheless, the goal of this comparison was to assess 
how well the ML models can generalize and remain robust when applied to datasets that contain only mildly 
different specimen silhouettes, even in the absence of direct geometric normalization.

Figure 10 serves as a visual representation, illustrating the correlation between the CS values estimated by 
each ML algorithm and the corresponding values obtained from laboratory tests conducted by Chao-Lung et 
al.61. The R2 values derived from these ML algorithms present a spectrum ranging from 0.50 to 0.98. A standout 
performer is the SVR model, showcasing exceptional accuracy with an impressive R2 of 0.98. The NuSVR and 
GPR models also exhibit noteworthy precision, achieving R2 values of 0.95 and 0.93, respectively. Conversely, 
models such as DTR, XGBoost, RF, GBR, HGBR, and VR, with R2 values below 0.80, demonstrate comparatively 
lower accuracy. Meanwhile, MLPR, ANN, and ETR models showcase acceptable accuracy, with R2 more than 
0.80. It is essential to highlight that SVR and DTR models record the highest and lowest accuracies, with R2 
values of 0.98 and 0.50, respectively, echoing trends observed in previous evaluations.

A comprehensive examination of these results reveals the proficiency of the SVR model in accurately 
estimating the concrete CS, particularly within the context of the dataset utilized in this study. This finding 
not only underscores the robustness of the SVR model but also prompts further exploration into the factors 
contributing to its superior predictive performance in this specific application. Additionally, these insights into 
the comparative accuracies of various ML models provide valuable guidance for selecting appropriate models in 
similar contexts, contributing to the ongoing refinement of predictive methodologies in the domain of concrete 
CS estimation.

The profound expertise demonstrated by the SVR model in estimating concrete CS, as evidenced through 
the comprehensive evaluation of results in this study, underscores its efficacy as a robust predictive tool. The 
successful application of the SVR model to the dataset employed herein attests to its nuanced understanding of 
various parameters and their intricate relationships with the model output (CS). This mastery positions the SVR 
model as a valuable asset for predictive modeling in concrete engineering.

Motivated by the proficiency of the SVR model, a meticulous exploration is initiated to unravel the influence 
of the RHA parameter in the concrete mixing plan on CS. This investigation is methodically conducted using 
three distinct datasets comprising 20 data points as novel test datasets. The systematic variation of the RHA 
parameter’s value within its range (0 to 190 kg/m3) in 10 kg/m3 increments while holding other parameters 
constant, according to (Table  8), forms the basis of this inquiry. The predictions, shown in Fig. 11, clearly 
demonstrate a parabolic pattern where CS increases with increasing RHA content to an optimal level (around 
80–100 kg/m³). Beyond this, further increases in RHA content result in a gradual reduction in strength. This 
phenomenon illustrates a saturation effect, typically due to the pozzolanic reactivity of RHA, which improves 
strength to a certain level of replacement and then negatively affects it as the replacement level increases because 
of excessive RHA leading to dilution of cementitious materials and increased workability problems. It should be 
noted that the best observed RHA value is bound to a specific dataset and the chemical and physical properties 
of RHA relevant to this study such as particle size and the degree to which it has been charred, along with the 
complete mixture design which includes the W/B, SP, and aggregate size distribution. To provide example, finer 
RHA particles with greater amorphous silica content is more reactive and hence optimal dosage is shifted to 
higher value. In contrast, coarser and less reactive RHA shifted the optimum to lower value. Thus, the optimal 
range as described above should only be considered as relevant in the context of the experimental materials and 
proportions. Extrapolation to other contexts would necessitate recalibration or retraining of the relevant models 
with localized material properties and mix designs to maintain accurate strength and optimal performance value 
targets.

The examination firmly establishes that the addition of RHA to the concrete mixture holds the potential 
to enhance its CS, contingent upon the intricate interdependence of various parameters. This nuanced insight 
contributes to the ongoing discourse on optimizing concrete mix designs for superior performance.

GUI for practical deployment
To enable seamless integration of the ML models into everyday engineering workflows, a dedicated standalone 
GUI was crafted using the PyQt5 toolkit in Python. This user-friendly desktop application, illustrated in (Fig. 
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12), prompts input of seven critical mix design parameters, including W/B, C, RHA, total W, SP, FA, and CA. 
Users can swiftly obtain the predicted 28-day CS of concrete mixtures incorporating RHA by entering these 
values. Additionally, the interface permits selection from twelve pre-trained ML models with the underlying 
models serialized via the joblib library to guarantee rapid initialization and optimal computational performance.

The GUI was crafted to function seamlessly across Windows, Linux, and macOS, making it easy to access 
and use during critical on-site decision points. Built-in input checks confirm that the mix design parameters 

Fig. 9.  Evaluating the ML algorithm predictions against the test results conducted by Bui et al.15.
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stay within proven, empirically grounded ranges from the authors’ dataset. For instance, if a user tries an 
unrealistically high W/B or RHA value, the tool instantly highlights it for revision. The application serves two 
main audiences: practitioners can quickly test different mix designs without incurring the expense and delay 
of full lab testing, while researchers can tweak parameters systematically to produce synthetic datasets for 
simulations or optimization studies.

Figure 12 presents the interface returning a predictive CS value derived from the chosen ML model. In the 
current scenario, the SVR model estimates a CS of 75.40  MPa. Though this level may appear surprising for 
concretes incorporating RHA, the forecast is supported by a carefully optimized set of parameters: W/B = 0.3, 
C = 468 kg/m³, RHA = 82 kg/m³, SP = 6.1 kg/m³, FA = 543 kg/m3, and CA = 1267 kg/m3. Together, these variables 
encourage a compact microstructure and improved pozzolanic reactivity. The result underlines the interface’s 
ability to quantify nonlinear and synergistic interactions that govern strength gain.

It should be emphasized that how suitable the predictions are and how well they can be applied in practice 
is dependent on the materials and data used in the model building process. For instance, the RHA used in this 
study had particular characteristics such as high amorphous silica content and low loss on ignition (LOI) and 
fine particle size around 15 micrometers, which was obtained through grinding and burning at 650–750 °C. 
Hydrothermally processed RHA with coarse particles, increased crystalline content, or high LOI can drastically 
modify the pozzolanic activity and hydration speeds and CS in a manner that the existing models do not account 
for. In order to solve this, users from different sources or grades of RHA are advised to re-train the models with 
datasets most relevant to their materials. Other approaches, such as transfer learning or implementation of 
corrective factors based on material property testing can make the model more flexible. The reliability of the 
model for various applications can be enhanced by adding metadata on the RHA properties for later versions 
of the GUI.

Model interpretability using SHAP analysis
ML models frequently present themselves as black boxes, obscuring the reasoning behind their predictions. 
SHAP values counter this opacity by providing a rigorously grounded way to dissect model decisions, quantifying 
how much each feature sways a given prediction. IIn contrast to standard feature importance metrics, SHAP 
discloses not just whether a feature is influential but also the precise amount and direction of its effect. It elegantly 
accommodates interactions among variables, permits interpretation on both local and global scales, and thus 
serves diagnostic efforts and specialized domains alike, including engineering design tasks. Consequently, 
SHAP empowers practitioners to grasp the parameters the model weighs most heavily and the underlying logic, 
revealing paths for targeted refinement or domain-oriented tuning.

This section delivers a thorough SHAP investigation for the three top-performing regression models (SVR, 
NuSVR, and GPR). SHAP results for these models are shown in (Fig. 13). In every summary plot, the vertical 
axis lists features, while the horizontal axis quantifies each feature’s SHAP contribution to predicting CS. Every 
dot corresponds to a single instance, color-coded by the feature value (red for high, blue for low).

The SHAP summary plot for the SVR model pinpoints SP, CA, and W/B as the leading influential features. SP 
exhibits a wide scatter of positive SHAP values at elevated levels, pointing to a vigorous positive impact on the 
predicted output. In contrast, W/B and CA yield more concentrated SHAP value distributions, indicating their 
contributions vary more sensitively around a mid-range effect. This confirms that SVR adeptly maps both linear 
and non-linear interactions, especially among mix design variables.

The NuSVR model reaffirms the dominance of SP, W/B, and CA as top features, yet its SHAP values cluster 
more widely around zero for W/B and CA, highlighting a subtler but pervasive influence across the sample 
space. The gradient coloring (shifting from blue to red) corroborates that below-average SP values correlate with 
negative SHAP, whereas elevated SP levels consistently raise predictions. This more consistent response pattern 
likely underpins NuSVR’s superior generalization, particularly when extrapolating to samples with moderate or 
borderline values in the key features.

The GPR model tells a different story altogether. Its SHAP summary plot reveals SHAP values that are tightly 
grouped for every feature, all skewed negatively; C, FA, and W are the strongest offenders. The SHAP values are 
tightly packed and consistently below zero, indicating that GPR uniformly forecasts lower outcomes, suggesting 
a built-in bias toward conservative, smooth estimates. Unlike the SVR and NuSVR models, which exhibit sharper 
reactions to small perturbations, GPR’s probabilistic framework mitigates the impact of individual features, 
yielding gentler and less erratic surface predictions.

When viewed side by side, these SHAP findings highlight the distinct feature hierarchies that each algorithm 
adopts. SVR and NuSVR grant higher leverage to the blend-centric parameters (specifically SP, W/B and CA), 

W/B C (kg/m3) RHA (kg/m3) W (kg/m3) SP (kg/m3) FA (kg/m3) CA (kg/m3) CS (MPa)

0.23 783.00 22.76 212.00 3.60 344.00 933.00 66.00

0.35 571.00 0.00 219.00 1.00 633.00 933.00 56.00

0.35 514.00 22.74 218.00 1.40 608.00 933.00 61.00

0.35 457.00 43.81 216.00 2.60 582.00 933.00 60.00

0.35 400.00 63.26 215.00 3.70 557.00 933.00 54.00

0.47 383.00 22.74 221.00 0.30 737.00 933.00 47.00

Table 7.  Evaluation data points available in Chao-Lung et al.61.
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Step W/B Cement (kg/m3) W (kg/m3) SP (kg/m3) FA (kg/m3) CA (kg/m3)

Step I 0.35 407 178 36 620 944

Step II 0.32 490 180 35 650 1120

Step III 0.30 440 165 7.43 540 1261

Table 8.  The values of constant parameters considered in each testing step.

 

Fig. 10.  Evaluating the ML algorithm predictions against the test results conducted by Chao-Lung et al.61.
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while GPR focuses on the binder and fluid constituents, yet with far smaller swings in output. Such divergence 
in explanatory power clarifies each model’s reasoning and enables practitioners to choose the most suitable 
approach for optimizing concrete mix designs and anticipating durability within a single, unified interpretive 
framework.

Uncertainty quantification
To evaluate the reliability of the predictions made by the most robust model (SVR), an uncertainty quantification 
approach based on bootstrapping was implemented. Specifically, the SVR model was used to forecast the CS on 
each of the 1000 bootstrap resamples created from the test set. This approach was adopted to estimate empirical 
95% confidence intervals for each prediction, based on the perturbation of the model’s inputs and performance 
variability. The SVR model also provides predictive distributions; hence, point estimates and uncertainty metrics 
can be derived. Using the predictive distributions, the 95% confidence bounds for each CS were calculated, 
representing the ranges expected to contain the actual CS values with 95% certainty.

Fig. 12.  A ML‒based GUI to estimate concrete CS.

 

Fig. 11.  Progressive evaluation of concrete CS using the SVR model across three steps, modulating RHA 
parameter from 0 to 190 kg/m3 in 10 kg/m3 increments.
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In Fig. 14, the predicted CS values are surrounded by shaded areas that depict the corresponding confidence 
intervals. The figure displays the model’s prediction uncertainty at different test points by the width of the shaded 
areas, with narrower regions indicating higher confidence and broader regions representing higher uncertainty. 
This disparity in confidence is most noticeable in regions where the model’s predictions diverge considerably 
from the actual CS values. The uncertainty shifts in these different regions are a result of the posterior predictive 
distribution of the uncertainty of the model’s confidence in the data and the noise present in the data.

Fig. 13.  SHAP summary plots for SVR, GPR, and NuSVR models.
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Key limitations and suggestions
This study outlines specific limitations that require consideration, accompanied by valuable suggestions for 
future research to overcome these challenges:

•	 The investigation looked into a limited set of input variables predicting the CS of RHA concrete. However, the 
model’s predictive capability and range of applicability could still be improved by incorporating additional 
relevant considerations such as curing temperature and duration, and ambient humidity, as well as the type 
and dosage of cementitious materials used, the aggregate shape and gradation, the chemical characteristics 
of RHA (like silica or alkali content), and certain chemical admixtures including retarders or accelerators. 
Considering these variables could help better explain intricate material and environmental interactions and 
improve the model’s applicability across different conditions and materials, thus enhancing the model’s over-
all robustness.

•	 Perhaps the most significant drawback of this study is the singular emphasis on 28-day CS as the target for 
prediction. While 28-day strength is regarded as a benchmark during the evaluation of concrete’s quality, 
it inadequately assesses the performance of RHA-based concrete over time, especially considering the pro-
longed pozzolanic activity and hydration kinetics that can improve strength well beyond 28 days. The lack of 
56 and 90-day strength data limits the model’s use for structural durability life cycle analysis. Researchers in 
the future should strive to incorporate the extended curing age strengths into multi-output or time-evolving 
predictive models to better capture the mechanics of sustainable concrete.

•	 The assessment primarily centered around twelve ML models. To comprehensively evaluate various algo-
rithms for predicting CS, future research could broaden the comparison by including a more extensive range 
of ML models.

•	 Depending solely on laboratory data for training and testing ML models, this study lacks validation in re-
al-world scenarios. Future research should apply the models to engineering projects, comparing predicted CS 
values with observed values for robust validation.

•	 The study did not highlight the interpretability of ML models. Future research might explore techniques to 
enhance model interpretability, offering engineers insights into the underlying factors influencing CS predic-
tions.

•	 The GUI developed for estimating the CS of RHA concrete is user-friendly and effective, but its predictions 
are limited to the ranges of input parameters seen during training. If predictions are made for mixtures that 
fall outside the training domain (such as very high or very low binder-to-aggregate ratios, non-traditional 
aggregate sources, or unusually reactive pozzolans), the accuracy of the results may decline. To avoid this, 
users are encouraged to restrict their input to conditions that mirror the validated dataset or to supplement 

Fig. 14.  SVR predictions with boostrapped 95% confidence intervals.
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the GUI with new experimental data followed by additional training to strengthen its predictive capability in 
unexplored material domains.

By addressing these limitations and incorporating the proposed directions for future work, this study has the 
potential to significantly improve the accuracy, reliability, and practicality of ML models in predicting concrete 
compressive strength.

Conclusions
This research compared the predictive accuracy of twelve ML algorithms for estimating the CS of concrete 
containing RHA. A dataset comprising 500 laboratory specimens was supplemented with 30 additional 
validation records drawn from published studies. Model performances were quantified through a range of 
indicators. The Stepwise selection procedure distilled seven principal input parameters that most significantly 
govern the material’s strength development.

The main findings and their practical significance are:

•	 SVR, GPR, and NuSVR stood out as the top techniques, achieving deep accuracy for both the hold-out and 
k-fold cross-validation tests with R² values exceeding 0.93. On the other hand, the DTR showed the weakest 
performance with R² values below 0.53. This was due to DTR’s limitations, primarily its sensitivity to overfit-
ting small. Unlike ensemble or regularized models, single decision trees tend to overfit to the training data, 
drastically reducing their performance on new and unseen data. This is a critical drawback for capturing the 
complex and nonlinear interactions that define the CS of RHA concrete. The results strongly demonstrate the 
impact of the model choice on small and heterogeneous datasets, where SVR and GPR provide more robust-
ness due to regularization and probabilistic frameworks.

•	 Since each metric captures a particular facet of predictive performance, basing model selection solely on one 
could mislead. Incorporating several indicators in the evaluation process affords a clearer, more complete 
picture of model behavior across the operational range.

•	 The widening performance disparity between the training dataset and the independent validation set high-
lights the critical need for external verification. Such validation helps gauge how well a model will perform in 
practical applications, thereby curbing the dangers of overfitting to the original sample.

•	 Findings showed that adding RHA improves the CS of concrete, especially when carefully balanced with var-
iables such as the W/B, C, and the gradation of aggregate particles.

•	 To empower civil engineers, an intuitive GUI was created that puts ML prediction tools at their fingertips. 
Through this software, users can quickly estimate CS and iteratively design the ideal mix, equipping prac-
titioners with a timely, data-driven resource that promotes greener building practices. The GUI and the 
best-performing predictive models can slot seamlessly into existing design platforms or site-level workflows, 
translating sophisticated data science into streamlined workflows and reducing the need for exhaustive exper-
imental programs. This functional interface connects cutting-edge analytics with everyday engineering tasks, 
shortening the path from discovery to onsite performance.

Data availability
The employed dataset and the developed GUI not available due to restrictions imposed by research sponsors, 
ongoing analysis for future studies, and the necessity to maintain data confidentiality until further validation 
and publication. If someone wants to request the dataset or the GUI from this study, he/she should contact Dr. 
Arsalan Mahmoodzadeh. In this way, they are shared with them on responsible request.

Code availability
The codes used in this paper are available in the following link. ​h​t​t​p​s​:​​​/​​/​m​e​g​​a​.​n​​z​/​f​i​​l​e​/​K​​G​g​D​F​b​​​4​J​#​U​U​​i​​D​5​-​S​I​a​​J​O​7​
6​V​​3​f​R​o​y​T​F​r​6​l​M​D​l​x​o​t​3​c​M​J​D​g​Q​w​m​4​B​k​4.
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