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The integration of social networking concepts with the Internet of Things (IoT) has led to the Social 
Internet of Things (SIoT)—a paradigm enabling autonomous, context-aware interactions among 
devices based on social relationships. While this connectivity improves interoperability, it also raises 
critical challenges in trust management, secure communication, and data protection. This survey 
reviews 225 papers published between 2014 and 18 September 2025, analyzing advancements in SIoT 
security. Sources include IEEE Xplore, ACM Digital Library, Springer, ScienceDirect (Elsevier), MDPI, 
Wiley, Taylor & Francis, and Google Scholar. Blockchain and AI/ML approaches feature prominently, 
with blockchain referenced in more than 50 papers, AI/ML in over 80, and many adopting both in 
combination. The literature is examined across architectural foundations, security requirements, and 
layered defenses, with evaluation most often based on latency, accuracy, scalability, and false-positive 
rate. The review further highlights existing security and communication protocols, attack mitigation 
strategies, and the adoption of blockchain, cloud, and edge computing for scalable and decentralized 
processing. The survey traces the evolution of SIoT research, identifies future directions to strengthen 
security and transparency, and serves as a reference for researchers and practitioners designing secure 
and decentralized SIoT environments.

Keywords  Social internet of things (SIoT), SIoT security, Threat mitigation, Blockchain and edge computing, 
Artificial intelligence (AI) and Machine learning (ML) integration, Communication protocols

The integration of social networking with the Internet of Things (IoT) has led to the emergence of the Social 
Internet of Things (SIoT). This integration has brought about various security and privacy challenges that need 
to be addressed to ensure the safety of users and their data. The core aspects of SIoT include integrating social 
principles into IoT devices, ensuring seamless interoperability, enabling systems to operate independently, 
establishing trust and security, and enhancing context awareness. These elements foster interactions between 
devices, people, and services, creating a more connected and intelligent world. The increasing use of connected 
devices in critical applications has made security in SIoT an urgent and evolving area of research. While many 
studies have proposed security solutions for traditional IoT, the social dimension of SIoT introduces unique 
challenges related to trust management, privacy preservation, and secure communication. Addressing these 
challenges requires a comprehensive perspective that connects system architectures, communication protocols, 
attack mitigation techniques, and the emerging integration of enabling technologies such as blockchain for 
decentralization, cloud and edge computing for scalable performance, and artificial intelligence and machine 
learning for intelligent detection and decision-making. Although a few researchers have previously reviewed 
SIoT security, this survey is distinct in its integration-oriented perspective. It systematically covers SIoT literature 
from 2014 to 2025, with special emphasis on the most recent advances (2023–2025). Building on earlier reviews, 
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our contribution lies in synthesizing diverse results into a layered, taxonomy-driven framework (Fig. 1) that 
connects architectures, threats, defenses, technologies, and evaluation methods.

Key Contributions (tied to RQs and Taxonomy in Fig. 1):
1. Mapping SIoT threats and defenses (RQ3, RQ4, Section “Security in SIoT”): We consolidate IoT-based and 

SIoT-specific attacks into a layer-wise classification across communication protocols, and map countermeasures 
into a structured defense taxonomy.

2. Trust-exploitation and relationship-aware perspective (RQ3, RQ5, Subsection 3.4.2): We analyze how 
SIoT social relationships (OOR, CLOR, CWOR, POR, SOR) influence attack surfaces and trust exploitation, and 
provide a comparative table (Table 4) linking relationships with their security implications.

3. Technology-integration taxonomy (RQ6, Section  “Technology”): We categorize recent advances in 
blockchain, edge/fog/cloud computing, and AI/ML for SIoT, highlighting their feasibility, integration workflows, 
and recent studies (2023–2025) that combine these technologies for decentralized and intelligent security.

4. Application trends and emerging domains (RQ5, RQ9, Section “Emerging trends and applications of 
SIoT”): We survey application-driven SIoT research in domains such as smart healthcare, logistics, industrial 
IoT, and transportation, emphasizing how emerging trends translate into real-world deployments.
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Figure 1.  Tree-based taxonomy of surveyed research.
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5. Security techniques (RQ7, Section “Security in SIoT”): We organize data security, blockchain-based 
mechanisms, access control, trust management, privacy preservation, and secure communication protocols into 
a layered set of techniques adapted to SIoT environments.

6. Evaluation metrics and tooling synthesis (RQ8, Section “Tools and evaluation metrics in IoT/SIoT 
environments”): We collate tools (e.g., NS-3, iFogSim, Ganache) and performance metrics (latency, scalability, 
trust accuracy, energy overhead), and review how they have been applied in SIoT evaluations. This provides a 
foundation for benchmarking and reproducibility.

7. Gap analysis and future directions (RQ9, Section “Conclusion and discussion”): We identify unresolved 
challenges in scalability, privacy preservation, explainability, and cross-layer security, and propose directions for 
research beyond 2025.

Related survey
Several surveys have been conducted to review the security of Social Internet of Things (SIoT), and their findings 
are summarized in Table 1. The works by1 and2 provide the most comprehensive coverage, strongly addressing 
core areas such as requirements, attacks, applications, protocols, and security techniques. Reference2 further 
explore technology integration and performance evaluation, particularly within trust management systems. 
Papers like3 and4 address a wide range of topics with a focus on resource discovery and false service advertisement, 
respectively, offering partial insights into integration and tool support. Studies such as5 focus more narrowly on 
SIoT architecture but provide moderate consideration across multiple dimensions. Other contributions such as6 
and7 highlight specific attack scenarios (e.g., malicious code injection and decentralization), but only partially 
cover broader evaluation metrics. The paper by8 emphasizes social relationships, offering strong insights into 
applications and parameters but lacking in protocol and integration discussions. Overall, while some papers 
offer comprehensive evaluations, others focus on specialized issues within the SIoT ecosystem, highlighting the 
fragmented but evolving nature of security research in this domain.

Scoring was performed manually by the first author and cross-checked by the research supervisor to ensure 
consistency. Each column indicates the extent to which the surveyed paper addressed the attribute: ✓ (explicitly 
covered), ★ (partially covered or indirectly addressed), and ✗ (not covered). Coding was based on full-text 
assessment of all included surveys using a standardized template. While the rubric was consistently applied, 
some interpretive subjectivity may remain, which we acknowledge as a limitation. Reference numbers (Ref. 
No) in the first column map directly to the corresponding citations in the bibliography. “Evaluation tools” 
refers to explicit use of simulation or testbed frameworks (e.g., NS-3, OMNeT++, iFogSim, TensorFlow), and 
“Performance evaluation parameters” refers to measurable system metrics (e.g., latency, throughput, scalability, 
trust accuracy, false positive rate, energy consumption, availability). The detailed scoring sheet is provided as 
Supplement S2 (table1_related_surveys.csv) for transparency and reproducibility.

Purpose of survey
The purpose of this survey is to systematically review existing research on security mechanisms within the 
Social Internet of Things (SIoT) ecosystem. It aims to identify and categorize prior work based on key aspects 
such as security requirements, attack models, protocol support, trust and privacy techniques, technological 
integrations (e.g., AI/ML, blockchain, edge/cloud computing), tool usage, and performance evaluation practices. 
By benchmarking these studies, this survey highlights the limitations and research gaps in current solutions 
particularly the lack of unified, scalable, and context-aware security frameworks. This assessment not only 
clarifies the state of the art but also forms the foundation for positioning our proposed work as a novel and 
necessary contribution to secure SIoT design.

Motivation of survey
The increasing deployment of smart devices and their autonomous interactions in the Social Internet of Things 
(SIoT) has raised critical concerns around trust, privacy, security, and interoperability. Despite a growing 

Ref. no Year
Security 
requirements Attacks Applications

Security 
protocols

Existing 
security 
technique

Integration of 
technologies

Evaluation 
tools

Performance 
evaluation 
parameters Aspects considered

1 2018 ✓ ✓ ✓ ✓ ✓ ★ ✗ ✗ Existing IoT architectures
8 2019 ✓ ✓ ✓ ✓ ✓ ★ ✓ ✓ Social relationships
3 2020 ✓ ✗ ✓ ✓ ★ ★ ✗ ✓ Resource Discovery
4 2023 ✓ ✓ ✓ ✓ ✗ ★ ✓ ✓ False service advertisement
6 2023 ✓ ✓ ✓ ✓ ★ ★ ✓ ✗ Malicious code injection attack
7 2023 ✓ ✓ ✓ ✓ ✓ ✓ ★ ★ Review of decentralization
9 2023 ✓ ✓ ✓ ✓ ✓ ✓ ★ ★ Challenges and attacks in SIoT
5 2024 ✓ ✓ ✓ ★ ✓ ★ ✗ ★ SIoT architecture
10 2024 ✓ ✓ ✓ ✓ ✓ ★ ✓ ✓ Types of IoT attacks
2 2025 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Trust Management

Our survey 2025 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Provides a survey on all 
aspects listed in the table.

Table 1.  Related surveys. Legend: ✓ = Fully covered; ★ = Covered; ✗ = Not covered
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number of research efforts addressing specific security challenges, existing surveys often focus narrowly on 
individual techniques or layers, lacking a comprehensive, multi-dimensional view that considers both technical 
and social dynamics in SIoT environments. Moreover, with the rapid evolution of enabling technologies—such 
as blockchain, edge/fog computing, and AI/ML—there is a pressing need to re-evaluate how these integrations 
affect security architectures. This motivates a structured survey to bridge fragmented knowledge, uncover gaps 
in current solutions, and guide the development of more robust, scalable, and decentralized security mechanisms 
tailored for next-generation SIoT systems.

Organisation of paper
Figure 1 illustrates the taxonomy of this survey. Section Summaries:

Section “Introduction”: Introduces the study and its motivation.
Section  “Survey methodology”: Details the systematic review methodology, including sources, search 

criteria, and inclusion/exclusion strategies ensuring transparency and coverage.
Section “From WSN to SIoT: evolution, architecture, and key concepts”: Reviews the evolution from WSNs 

to IoT and SIoT. Highlights SIoT architecture, social object interactions, and distinctions from IoT, along with 
key research directions and challenges.

Section “Security in SIoT”: Examines SIoT security requirements and challenges (e.g., Sybil attacks, trust 
manipulation), mapped to protocol layers and associated defense mechanisms.

Section  “Emerging trends and applications of SIoT”: Discusses emerging trends like decentralized trust 
and context-aware analytics. Explores SIoT applications across domains such as healthcare, transportation, and 
smart homes.

Section “Technology”: Covers enabling technologies—blockchain, federated learning, fog/cloud computing, 
and AI/ML—for secure, scalable, and intelligent SIoT systems, with recent research insights.

Section  “Security techniques”: Surveys layered security techniques including encryption, access control, 
trust evaluation, privacy preservation, and secure communication protocols.

Section “Tools and evaluation metrics in IoT/SIoT environments”: Describes evaluation tools (e.g., NS-3, 
iFogSim, Ganache) and key metrics (latency, trust accuracy, scalability) for benchmarking SIoT systems using 
standardized testing frameworks.

Section  “Conclusion and discussion”: This survey traced SIoT’s evolution from WSNs to socially aware, 
secure IoT ecosystems. It highlighted SIoT’s architecture, trust-centric interactions, and enabling technologies 
like blockchain, edge/fog/cloud computing, and AI/ML. While advancements support decentralization and 
intelligence, challenges remain—lightweight trust models, privacy, interoperability, and scalability trade-offs. 
Future research must address ethical, social, and regulatory concerns as SIoT expands into critical sectors.

Survey methodology
Systematic reviews and mapping
We adopted the systematic survey mapping methodology outlined by11 and10 to construct this comprehensive 
review, enabling a structured and reproducible analysis across diverse research domains. The following ten 
research questions, numbered 1–10 in this section and later referenced as RQ1–RQ10 in the relevant sections, 
guide the remainder of this paper and form the basis of the systematic review and mapping process. 

	 1.	 How has the Social Internet of Things (SIoT) evolved from traditional Wireless Sensor Networks (WSNs) 
and IoT, and what are the key differences in architecture and social interaction models?

	 2.	 What systematic approach has been adopted to collect, filter, and analyze relevant SIoT literature from 2014 
to 2025, and how does it ensure transparency and reproducibility?

	 3.	 What are the key security requirements of SIoT systems, and what unique challenges arise due to their 
decentralized, dynamic, and socially driven nature?

	 4.	 What types of attacks are most prevalent in SIoT environments, and how are they mapped across commu-
nication protocol layers?

	 5.	 What are the emerging trends in SIoT research, and how are these trends reflected in real-world applica-
tions such as smart healthcare, transportation, logistics, and industrial IoT?

	 6.	 How are emerging technologies such as blockchain, edge/fog/cloud computing, and machine learning (ML) 
being integrated into SIoT systems, and what are their roles, benefits, and limitations in enabling secure, 
intelligent, and decentralized operations?

	 7.	 What core security techniques are used in SIoT systems—including encryption, access control, trust man-
agement, privacy preservation, and secure communication and how do they address the system’s unique 
vulnerabilities?

	 8.	 What tools and simulation environments are commonly used to model, simulate, and evaluate Social In-
ternet of Things (SIoT) systems, and what performance metrics and validation parameters are adopted in 
recent research studies?

	 9.	 What are the persistent research gaps and future challenges in developing scalable, interoperable, and pri-
vacy-preserving SIoT systems?

	10.	 What are the core security challenges in SIoT systems?

Literature sources and search strategies
This section addresses RQ2. We queried IEEE Xplore, ACM Digital Library, Elsevier (ScienceDirect), 
SpringerLink, MDPI, Wiley, Taylor & Francis, and Google Scholar. The last search was 18 Sep 2025; the window 
was Jan 2014–18 Sep 2025. A keyword strategy targeted SIoT security (e.g., “SIoT”, “security”, “authentication”, 
“access control”, “attacks”, “MQTT”), with database-specific strings given below.
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Selection summary (PRISMA). We identified 325 records in total. After screening, 225 studies were 
included (205 full-text and 20 abstract-only due to paywalls), and 100 were excluded at title/abstract. The full 
pipeline is shown in Fig. 4; publisher/quartile distribution and overall publisher share are shown in Figs. 2 and 
3, respectively.

Canonical query (semantics).   (“Social Internet of Things” OR SIoT OR “social IoT”) AND (security OR 
privacy OR trust OR authentication OR authorization OR “access control” OR “intrusion detection” OR attack* 
OR threat* OR vulnerability OR “key management”) AND (IoT OR “Internet of Things”).

Database-ready strings (examples). 

•	 IEEE Xplore (All Metadata): ( “social internet of things” OR “SIoT” OR “social IoT” ) AND ( security OR pri-
vacy OR trust OR authentication OR “access control” OR “intrusion detection” OR attack* ) AND ( “Internet 
of Things” OR IoT ) Refinements: Year=2014–2025; Document Types=Journals, Early Access, Conferences.

•	 ACM DL:
	 acmdlTitle:(“social internet of things” OR “social IoT” OR SIoT)
	 AND (security OR privacy OR trust OR authentication OR “access control” OR “intrusion detection” OR 

attack*)
	 Years: 2014–2025; Publication Type: Article, Proceedings.
•	 SpringerLink / ScienceDirect / Wiley / T&F: Title/Abstract/Keyword=(“social internet of things” OR “social 

IoT” OR SIoT) AND (security OR privacy OR trust OR authentication OR “access control” OR “intrusion 
detection” OR attack*). Years: 2014–2025; Content type: Journal Article, Conference Paper, Book Chapter.

•	 Google Scholar:
	 “social internet of things” OR SIoT OR “social IoT”
	 security OR privacy OR trust OR “access control” OR “intrusion detection” OR attack*
	 Custom range: 2014–2025.Inclusion Criteria Articles were included if they: 

	1.	 Addressed security in IoT with relevance to SIoT environments.
	2.	 Proposed or analyzed effective security measures or protocols.
	3.	 Discussed attacks, threats, or vulnerabilities in IoT/SIoT systems.
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Figure 3.  Publication share by publisher (n = 225).
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	4.	 Covered security issues in IoT applications or communication protocols.
	5.	 Focused on realistic or socially driven IoT use cases involving security.Exclusion Criteria Articles were 

excluded if they: 

	1.	 Focused only on generic IoT security without SIoT relevance.
	2.	 Purely theoretical work without security relevance.
	3.	 Duplicates or secondary surveys.

Screening workflow
We used a two-pass pipeline aligned with PRISMA (Fig. 4): 

	1.	 Pass-1 (Title/Abstract). The first author screened the 325 records after deduplication. Borderline cases were 
flagged and independently checked by the supervising author; final decisions were made by consensus. This 
stage excluded 100 papers.

	2.	 Pass-2 (Full-text eligibility). Of the remaining 225 studies, 205 were retrieved and assessed in full; 20 were 
included based on abstracts only due to paywalls but clear relevance. Disagreements were resolved by discus-
sion; we did not compute a formal inter-rater statistic.

Data-extraction form
Fields captured (systematically across all 225 studies): Year; Title; Venue (publisher/journal or conference); 
Type (journal/conference/chapter); Access (OA/paywalled). We did not systematically code additional technical 
attributes (e.g., SIoT focus, security topics, protocols, metrics). A machine-readable CSV/JSON containing these 
five fields is provided in Supplement S1 (corpus_225.csv).

Time-window justification and publisher skew
The 2014–2025 window captures the emergence and maturation of SIoT security: pre-2014 usage is sparse 
and terminologically inconsistent, while the chosen end date (18 Sep 2025) ensures currency. The publisher 
distribution (Figs. 2, 3) shows higher counts for IEEE and MDPI; this reflects (i) their larger throughput in IoT/
SIoT and (ii) indexing coverage of our databases. To mitigate skew, we queried multiple publishers and platforms 
with uniform strings, deduplicated across sources, and retained venue-diverse evidence.

From WSN to SIoT: evolution, architecture, and key concepts
This section comprehensively addresses RQ1 by tracing the progression from WSNs to IoT and then to SIoT, 
focusing on architectural developments and the emergence of social interaction models. It includes discussions 
on IoT architecture and core functions, the transition to SIoT, SIoT functional architectures, and various social 
relationship. A comparative analysis of IoT vs. SIoT architectures is also provided, along with key research 
directions, benefits, and challenges of SIoT. To support this discussion, Table 3 presents a synthesized review of 
existing SIoT architectures and their core functional components.

WSN to IoT: early developments
In our diverse society, social relationships are built on factors such as mutual interest, common goals, and 
shared resources, which help solve problems collaboratively. This idea of interconnectivity has also influenced 
the evolution of digital systems, transitioning from wireless sensor network (WSN) to Internet of Things and 

Records identified via manual keyword-based searches

(Google Scholar & publisher sites)

(n=325)

Records after duplicates removed

(n=325)

Records screened (title/abstract)

(n=325)

Records excluded

(n=100)

Records retained for eligibility / inclusion

(n=225)

Full-text reports retrieved and analyzed

(n=205)

Abstract-only (paywalled) but included

(n=20)Studies included in the final synthesis

(n=225)

Figure 4.  PRISMA flow diagram for study selection (search window: 2014–18 Sep 2025). All records were 
identified via manual keyword-based searches on Google Scholar and corresponding publisher sites.

 

Scientific Reports |        (2025) 15:40190 6| https://doi.org/10.1038/s41598-025-23865-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


eventually to Social Internet of Things. As illustrated in Fig. 5, this evolution reflects a shift from simple sensing 
and data collection to more complex, socially aware systems. WSN consists of distributed nodes that monitor 
and collect data on environmental conditions such as temperature, humidity, and motion. These networks 
are typically limited to specific applications with limited communication capabilities and lack direct user 
interactions. However, they provide the functional data gathering layer necessary for more advanced systems. 
Based on the data collection capabilities of WSNs, IOT connects these physical devices to the Internet, enabling 
them to communicate, share data and perform actions based on the gathered information12. In IoT systems, 
devices are interconnected to provide improved automation, control, and monitoring in various sections from 
smart agriculture to industrial automation. However, interactions in IoT are mostly functional and lack the 
dynamic human-like social interactions seen in everyday human relationships.

IoT architecture and core functions
The Internet of Things (IoT) is an interconnected network of various types of devices that communicate and 
interact seamlessly with each other over the Internet. At the core of IoT devices are sensors and actuators, 
which enable them to engage with the physical world and collect valuable data. Sensors detect and measure 
environmental changes, converting physical data into digital signals that can be analyzed and interpreted by IoT 
devices. Actuators, in contrast, convert digital signals into physical actions, receive commands from IoT devices, 
and execute tasks accordingly. As illustrated in Fig. 6, the IoT infrastructure consists of multiple interconnected 
components enabling seamless data flow and control. The Internet of Things (IoT) encompasses a wide range of 
devices, from common household appliances such as smart thermostats and wearables to industrial machinery and 
medical equipment. Although IoT devices offer numerous benefits, including enhanced convenience, improved 
efficiency, and data-driven insights, they also pose significant challenges related to security vulnerabilities, 
privacy concerns, and technical intricacies. Striking a balance between these advantages and disadvantages is 
essential for the effective and responsible implementation of IoT technologies. The applications of IoT are vast 
and wide-ranging, spanning multiple domains such as healthcare, finance, education, government, and beyond.

Overview of IoT Functionality  A typical IoT infrastructure includes sensors, actuators, devices, a gateway, 
and a cloud server. Sensors collect data that are transmitted to the cloud via a gateway for storage and analysis 
or to enhance through edge and fog computing. End users can access the data through endpoint devices and 
send commands, which are routed back to actuators to manage sensors or perform tasks. Although IoT devices 
are compact and compatible, they face challenges such as limited resources and security concerns. Various 

Figure 6.  IoT infrastructure and communication.

 

Figure 5.  WSN to IoT and SIoT.
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communication methods are used to ensure effective data exchange13. Various communication channels and 
methods are utilized to effectively facilitate data exchange between IoT devices.

Existing IoT architectures   IoT systems are generally built using a layered approach, and the number 
of layers can vary depending on the complexity and requirements of the system. The most common IoT 
architectures are the three-layer, four-layer, five-layer, and six-layer architecture as shown in Fig. 7. To ensure 
the security of IoT systems, it is crucial to understand the layered architectures, the potential security threats 
at each layer, and the existing security measures designed to mitigate these threats. The IoT layered model has 
been discussed extensively in the literature, evolving from the three-layer baseline to four, five, and six-layer 
enhancements, each addressing security and scalability limitations1. In this study14 they provide a broad IoT 
survey, detailing standard architectures such as the 3-layer, 5-layer, and fog gateway models, emphasizing their 
roles in perception, processing, and service delivery. The paper also introduces the Social IoT (SIoT) concept, 
outlining its basic components (identification, metadata, security controls, discovery, relationship management, 
and service composition) and presenting a representative layering (server-side with three layers; device-side 
with object and social layers). However, this remains conceptual/illustrative, not a novel SIoT architecture. The 
work further highlights middleware requirements (privacy, trust, security) and QoS dimensions (availability, 
scalability, interoperability, dependability, performance, mobility), framing open challenges around DoS 
resilience, scalability, and trust management. Each evolution in the architecture introduces layers to address 
specific IoT challenges such as security, data handling, and scalability, culminating in the six-layer model for 
comprehensive protection and efficiency.

Three-Layer Architecture: The simplest model with three layers: Perception Layer: Gathers data from 
sensors. Network Layer: Transmits data to processing systems. Application Layer: Provides IoT services 
to users. Although foundational, it lacks advanced security features, making it vulnerable to attacks. Four-
Layer Architecture: Builds on the three-layer model by adding a Support Layer between the Perception and 
Network layers. The Support Layer authenticates and verifies the data before passing it to the Network Layer, 
addressing security flaws in the three-layer model. Five-Layer Architecture: Expands the four-layer model with 
two new layers: Processing Layer: Handles data filtering, storage, and analysis to manage big data challenges. 
Business Layer: Oversees system management, user privacy, and business logic, addressing application-specific 
vulnerabilities and business-level threats. Six-Layer Architecture: Improves functionality and security further 
with these layers: Observer layer: Verifies data integrity and authentication from the Perception Layer. Security 
Layer: Encrypts data for secure transmission, mitigating risks at the Network Layer. Other layers (Perception, 
Processing, Network, and Application) remain, but are more robust, supporting better security, scalability, and 
service delivery.

Transition to SIoT
The SIoT is the next evolutionary step after the IoT by introducing social, intelligent, and collaborative 
interactions between devices and users. In SIoT, devices can autonomously discover, select, and interact with 
other devices based on the social relationships they form, enhancing collaborations and functionality. Integrating 
the principles of social networking into the Internet of Things (IoT) introduces a new paradigm known as the 
Social Internet of Things (SIoT). While IoT connects physical devices over the Internet to collect and exchange 
data, SIOT goes beyond allowing these devices to interact with each other and with people in a social, human-
like manner, like interactions on a social media platform. For example, SIoT can transform smart homes by 
learning occupants’ preferences and automatically adjusting the settings to improve comfort and efficiency. It 
enables smartwatches to share fitness data with friends or participate in group fitness challenges. A smartwatch 
might collaborate with a smart refrigerator to suggest healthy food options based on fitness goals. Smart cars 
can share real-time traffic updates with each other, optimising routes and reducing congestion. In smart cities, 
streetlights can share energy usage data to balance power consumption. Devices can verify the creditability of 
each other before sharing sensitive data, reducing the risk of malicious attack. It also enhances entertainment 
by facilitating applications that share movie reviews and suggest content based on a user’s past preferences 

Figure 7.  IoT layered architectures.
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and enable the sharing of music playlists with friends and family. Incorporating SIoT into our daily life offers 
significant advantages, such as enhancing user experience, intelligent decision-making, social and collaborative 
interactions, scalability and resource optimization, security and trust management, and unlocking new business 
opportunities in a wide range of applications.

Smart Objects: Smart objects are physical devices embedded with microcontrollers, sensors, and actuators 
that enable them to collect, process, and share data autonomously over the Internet. Figure 8 shows the overview 
of smart objects.

SIoT functional architecture and social relationships
This subsection presents a brief discussion of our proposed conceptual functional framework for SIoT. In 
addition, we also review recent research contributions from other researchers on advances in SIoT architecture.

This conceptual wheel framework is literature-based (no implementation claim) and integrates recurring 
elements highlighted across surveyed SIoT architectures. For instance, service and data discovery features 
identified in prior works5,15,16 are implicitly captured in the Device Registration and Data Collection components. 
Similarly, trust-centric modules17,18 are reflected in Social Relationships and Privacy & Security. Together, Figs. 9 
and 10 provide a synthesized conceptual model abstracted from comparative analysis: Fig. 10 captures the high-
level functional elements, while Fig. 11 illustrates the corresponding sequence interactions. Figure 9 Conceptual 
functional architecture of the Social Internet of Things (SIoT). The diagram synthesizes eight core functions—
Device Registration, Social Relationships, Data Collection, Intelligent Decision-Making, Social Interaction, 
Personalized Recommendations, Privacy & Security, and Action & Response—highlighting how SIoT couples 
social ties with device capabilities. Conceptual illustration; literature-based (no implementation claim).This 
architecture provides an overview of the functional components of the SIoT architecture which consists of 
various components such as Device Registration, Social Relationships, data collection, Intelligent Decision 
making, Social Interaction, Personalized Recommendation, Privacy and security, and Action and response. Each 
of these has their own functionalities, while they work together to provide autonomous intelligent decision-
making entities that can connect, collect data, share, and seamlessly communicate between users and other 
devices over the Internet within the framework. In the SIoT network, devices such as sensors, wearables, and 
smart home appliances would be able to create unique digital identities. These devices form a connection based 
on shared goals, built on trust, collaboration, or competition. These IoT devices collect real-time data, processing 
it locally (edge computing) or storing it in the cloud to improve the interactions between users, devices, and 
other devices within the SIoT network. Emerging technologies such as advanced AI and machine learning 
algorithms that support intelligence decision making, allowing devices to adopt to user preferences. They also 
facilitate social interactions by sharing data across networks, providing personalized recommendations, and 
instant feedback. To ensure security and privacy, robust authentication protocols be implemented, restricting 
access to sensitive information collected from devices and users, to further ensure that they can also consider 
leveraging blockchain technology. Devices perform automated actions based on gathered data, such as adjusting 
home settings or sending alerts, and provide users with post-event summaries to monitor performance and 
share insights. This figure is conceptual and distill patterns reported across prior SIoT literature.

Figure  10 refines this view into a functional workflow, represented through labelled interfaces (F0–F7), 
separating device-level interactions from control-plane functions. The glossary embedded in the caption specifies 
each interface. This conceptual framework emphasizes the role of identity, trust, and policy enforcement as 
recurring patterns across surveyed works. A user/app sends data to a device (F0). The device is provisioned and 
validated by the Identity Manager (IdM), which also updates the Service/Device Registry (F1–F2). The registry 

Figure 8.  Overview of smart objects.
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answers discovery lookups back to the device (F3). Before execution, the device requests an authorization 
decision from the Policy Decision Point (PDP) (F4). The PDP incorporates trust evidence from the Trust/Score 
Engine (F5a) and sends its verdict to the Policy Enforcement Point (PEP) (F5). Authorized data traffic is then 
enforced on the PEP–device path (F6). All control decisions are audited (F7) to support accountability and 
forensics. The container indicates that these functions may be deployed in cloud, fog, or edge infrastructure 
while retaining the same conceptual flow. This conceptual framework emphasizes the role of identity, trust, 
and policy enforcement as recurring patterns across surveyed works. Table 2 complements this workflow by 
mapping each interface (F0–F7) to specific cryptographic operations and their overheads. Device provisioning 
(F1) relies on asymmetric key lifetimes, session initiation (F0) employs TLS/DTLS traffic keys or PUF-based 
derivations, and registry lookups (F2–F3) are anchored with signed keys. Authorization (F4) introduces PDP 
evaluation costs, while enforcement at the PEP (F5–F6) depends on signed tokens and symmetric encryption 
with negligible latency. Trust evidence (F5a) and audit logging (F7) leverage event signatures and blockchain 
anchoring, introducing modest but acceptable delays. Together, Fig. 10 and Table 2 capture how cryptographic 
defaults underpin the SIoT control workflow.

Interface glossary. F0 = User/App → Device/Thing (data initiation); F1 = Identity provisioning; F2 = Device 
registration; F3 = Service discovery; F4 = Access request (to PDP); F5 = Decision (PDP→PEP); F5a = Trust 
query (to Trust Engine); F6 = Enforcement/data path (PEP↔Device); F7 = Append-only logging/audit.

Figure 11 illustrates the SIoT process through sequence diagrams. Part (a) outlines service discovery and 
authorization: a device is provisioned, registered, and queries the registry; requests are evaluated by the PDP 
with evidence from the trust engine; final decisions are enforced through the PEP and recorded in the log. 
Part (b) shows the continuous trust update cycle: devices send telemetry to the trust engine, which appends 
audit logs, updates the PDP for potential re-evaluation, and publishes reputation summaries to the registry. 

User / App Device / Thing

Identity Manager

(IdM)

Service / Device

Registry

Policy Decision

Point (PDP)

Trust / Score

Engine

Policy Enforcement

Point (PEP)

Logging / Audit

(tamper-evident)

Cloud/Edge/Fog Control Plane

F0

F1 F2

F3

F4

F5a

F5

F6
F7

Legend:
Data flow

Control / policy flow

Audit / logging flow

Figure 10.  Functional SIoT framework with labelled interfaces (F0–F7).

 

Figure 9.  Conceptual functional framework of the social internet of things (SIoT).
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These interactions highlight both the operational and feedback loops necessary for sustaining trust-aware SIoT 
environments.

Comparative analysis of SIoT architectures
Although there is no standard form of an architecture, researchers have proposed their own architecture based 
on the underlying concepts of IoT with the SIoT principles. Each evolution in the architecture introduces 
new layers to address specific SIoT challenges such as device and data service discovery, security, data storage 
and analysis, interoperability, and scalability. Several researches have proposed new SIoT architectures that 
integrate social elements into IoT in a cohesive and efficient manner. These architectures aim to enhance device 

Component/operation Material/mechanism Lifetime/overhead

Device identity Ed25519 / ECDSA-P256 keypair; finite-field schemes 19 6–12 months (or on reprovision)

Channel session TLS/DTLS traffic keys (HKDF); PUF-based derivation 20 Per connection / transaction

PEP auth token Signed policy token 5–15 minutes rolling refresh

Trust evidence Event signature (Ed25519) Per event (immutable)

Storage at rest AES-GCM symmetric data keys 24h rotation (envelope rewrap)

Audit/anchoring Blockchain anchoring keys 21 1–3 s commit delay; hourly batching

Registry signing Service registry key 22 3–6 months with audit log

PDP policy check Fog-node policy evaluation 20–50 ms (delegation selection overhead) 23

PEP enforcement Policy decision enforcement <5 ms (message interception + enforcement negligible vs PDP) 23

AES-GCM encryption Symmetric crypto cost (AES-GCM; lightweight ciphers such as SIMECK-T 24) <5% CPU

Trust verification Trust/score update 2.2 s, 280 Tx/s 25

Blockchain logging Append-only tamper-evident logs 1–3 s per commit 26

Table 2.  Cryptographic key lifetimes and performance overheads (conceptual defaults, grounded in surveyed 
SIoT literature).

 

User/App Device IdM Registry PDP Trust
Engine

PEP Log

F0: Data / Request

F1: Provision / Attest

F2:Register Device

F3: Lookup Service/Peer

F4: Access Request

F5a:Trust Query

Endpoint/Capabilities

F5: Policy Decision

F6: Enforce/Data Path

F7: Decision + Evidence

Trust Score/ Evidence

Device Trust
Engine

Log PDP PEP Registry

Telemetry / Evidence

Append-only Audit (F7)

Trust Update 

Policy Re-evaluation

Reputation Summary 

(a) Service Discovery & Authentication (b) Trust Update

Figure 11.  Conceptual SIoT sequence diagrams. (a) Service Discovery and Authorization, showing 
provisioning, registry lookup, trust evaluation, and policy enforcement. (b) Trust Update, showing evidence 
logging, trust updates, policy re-evaluation, and reputation sharing.
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interactions by incorporating social networking principles into the IoT, enabling devices to form and manage 
social relationships autonomously.

The16 general architecture of SIoT consists of three layers, such as 1. Perception layer: The perception or 
sensing layer which is responsible for sensing from the physical environment and collecting data through various 
sensing devices such as RFID, Sensors (Temperature, Humidity, Pressure, Motion, etc.) IoT enabled cameras, 
GPS, NFC. 2. Network Layer: To establish communication and ensure reliable transmission of data between 
various devices and cloud system, various network elements can be employed, including: Cellular networks, 
WLAN, LoRaWAN, wireless personal area network can be used. 3. Application layer: This layer serves as a 
user interface between end users and IoT, offering a variety of services that facilitate enhanced connectivity, 
automation, and decision making. Services such as SIoT application services (Industrial monitoring, Smart 
home), Service Discovery, Service management, Data storage, and Database Services.

They5 proposed an architecture pattern for SIoT that aligns with a broad spectrum of requirements, 
incorporating fundamental elements, such as SIoT Service Discovery: Devices that autonomously discover 
services that meet its specific needs, acting as gateway for inter-object relationship, Social Virtual Entity 
(SVE): Storage for a social virtual entity that represents digital information of real-world physical objects, 
SVE resolution: It provides essential information such as SIoT IDs, service types, and location details that 
need to connect to Social Virtual Entity with SIoT services, which enable them to access relevant services and 
information, Relationship management: To track and evaluate how devices interact, exchange information and 
to ensure that they follow predefined behavior. This helps decide who to trust and work with based on past 
experience, relationship behavior, and monitoring. If a device behaves in a certain way, then the system ensures 
that it aligns with expected behavior and adjusts when needed. It also checks the system, consciously observes 
device interaction, and flags if any problems occur.

The15 proposed Semantic Web of Things (SIoT) architecture consists of multiple layers. The bottom layer 
comprises embedded devices and IoT technologies for smart cities, where sensors collect data and transmit 
it through UDP / IP or CoAP. The U-KB layer annotates and represents knowledge, structuring received data 
using Linked Data principles. The annotation of metadata is stored using OWL-2 ontologies, enabling structured 
representation. The Tiny-ME Rationality and Matchmaking Engine employs semantic Rationality for Service 
Discovery, processing requests accordingly. The top layer facilitates service discovery and resource discovery 
within the SIoT ecosystem, incorporating intelligent decision-making based on available resources. This 
architecture integrates annotation based on ontology, enabling efficient data representation and communication 
between IoT devices. Using semantic reasoning, you can easily discover services and resources. By combining 
COAP, Linked Data, and UDP/IP, the SIoT architecture ensures reliable, interoperable, and efficient IoT 
communication.

The S2NeTM architecture, as described in18, is a distributed middleware solution that leverages semantic 
technologies to seamlessly interconnect IoT devices, optimizing data processing and facilitating informed 
decision-making through ontology-based semantic reasoning. The architecture consists of three layers: the 
Data Collection Platform, which comprises physical devices that detect and perceive data from IoT devices, 
sensors, and open data sources, and handles communication protocols such as MQTT, COAP, and HTTP; the 
S2NeTM middleware, responsible for data processing, semantic reasoning, and trustworthiness management 
through components such as CM, OC, UP, and TM; and the Application Layer, which provides services and 
interfaces to users. The effectiveness of this middleware architecture has been demonstrated through a successful 
implementation of the Green Route Use Case, where users receive eco-friendly route recommendations based 
on real-time environmental data.

As described in17, a socially aware service recommendation framework is proposed for the Social Internet 
of Things (SIoT). This framework considers devices, their owners, and the services offered by these devices. 
The framework operates in four stages. Initially, social relationships among devices are identified based on five 
types of SIoT relationships (CLOR, CWOR, POR, OOR, SOR) derived from their owners’ social connections. 
The devices are then clustered into communities based on their social relationships using a boundary-based 
community detection algorithm. Within these communities, users are grouped by common preferences and 
behaviors using the Jaccard similarity coefficient, enabling interest-based service suggestions. Finally, a hybrid 
filtering approach (collaborative and content-based filtering) is adopted for service recommendation, prioritizing 
trustworthy and relevant services based on user-device relationships, interest similarities, and social connectivity 
strength. The performance of the framework is evaluated using real-world datasets (Santander Smart City and 
Twitter), with metrics including precision, recall, F measure, and computational cost.

They27 presented a five-layered SIoT architecture by introducing two new layers: the component abstraction 
layer, which provides object profiling, and the social interaction layer, which provides an interface for social 
communication between objects and users. The functionality of the remaining layers is similar to that of the IoT 
reference architecture.

In this paper29 they proposed comprises of a three-layered architecture, the SIoT server focuses on the 
network and application layer to ensure efficient data management, relationship, and service discovery. The 
network layer is responsible for transferring data across different networks to enable communication among 
various devices within the IoT, interoperability, and protocol adherence. Each of these sub-layers of Application 
layer, that is Base, Component, and Interface provide different functionalities such as managing database for 
social profiles, object activities, and human data. Ontologies such as OWL-S can be used to represent semantic 
relationship, while component sublayer implements core functions such as ID management, Profiling, Owner 
control, Relationship Management, Service Discovery, Service composition, and Trustworthiness Management. 
The top Interface sublayer provides functionalities to connect to the third-party entities to objects, it can be 
either human/ services, which can enable flexible implementation (local, distributed, or cloud-based). The 
Gateway and object they vary in their combination of layers based on device capabilities. This SIoT architecture 

Scientific Reports |        (2025) 15:40190 12| https://doi.org/10.1038/s41598-025-23865-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


fosters interoperability, semantic understanding, and autonomous service discovery among IoT devices. The 
Social Internet of Vehicles (SIoV)28 architecture is a complex framework that facilitates communication and 
data exchange between vehicles, infrastructure, and the cloud, allowing a variety of services and applications. 
At its foundation, the Physical World Layer collects data from various sensors and devices, while the Gateway 
Layer acts as an immediate point of communication, comprising the Smart Vehicle module and the Roadside 
Unit. The Fog layer processes larger data sets, analyzing data locally at the edge of the network, and the Cloud 
Layer is a centralized, remote facility optimized for robust computations and long-term data management. The 
Application Layer provides a variety of services and interfaces to users through applications running on vehicles 
or in the cloud, handling real-time and historical data while balancing performance and capacity, and raising 
privacy concerns due to data sharing with third-party entities According to12, this architecture consists of four 
components such as actors, users, and smart devices that interact via social network, providing services such as 
status updates and recommendations, The intelligent system which controls interactions, and managing services. 
The interface layer enables user- device interaction which offers services like discovery and data analytics. The 
Internet ensures global connectivity, open access, and real-time communication between SIoT devices. Table 3 
shows the comparative analysis of SIoT architectures.

Social relationships
Social relationships are formed through shared interests that lead to communities that collaborate and share 
information. For example, a book club brings together individuals who enjoy reading and discussing literature, 
fostering friendships and knowledge exchange among members. The Internet connects these communities 
locally and globally, fostering belonging and cooperation. This interconnectedness forms the Social Internet 
of Things (SIOT), where people, devices, and services interact to create a collaborative ecosystem. Various 
studies8,30 have examined different types of social relationships between objects and their users, which are 
consolidated in Table 4.

IoT vs. SIoT: a comparative perspective
The Internet of Things (IoT) is a network of physical devices connected to the Internet that collect and exchange 
data. IoT features include device communication with servers or cloud platforms, focusing on machine-to-
machine interaction, centralized control, and security trust models based on authentication and encryption. The 
Social Internet of Things (SIoT) expands the IoT by enabling devices to interact in a social-like manner, similar 
to human social networks, emphasizing peer-to-peer relationships, trust-based collaboration, and decentralized 
smart device cooperation.

Key research directions in the SIoT
This section addresses RQ9. The aforementioned challenges have sparked diverse research efforts. This section 
highlights key directions addressing those issues, as explored in recent literature.

Service Discovery  Service discovery is the process by which a device or user in a network finds and connects 
to services offered by other devices or systems automatically and dynamically. For example, consider a vending 
machine application installed on your smartphone. This automatic finding and matching process is service 
discovery—your app is discovering services (snack vending) being offered by a device (vending machine); 
it detects nearby vending machines (using Bluetooth, Wi-Fi, GPS), once connected to that specific machine, 
it shows available items (chips, juice, chocolate, etc.). To ensure trustworthy and efficient service discovery 
in SIoT31, proposed a three layered model that combines social trust and QoS prediction. In this study, the 
authors32 proposed and implemented a decentralized service registry built on the DSF-IoT framework and a 
S/Kademlia-based Distributed Hash Table (DHT). The approach ensures integrity and trust through the use 
of signature chains and cryptographically derived identifiers. Service registration and discovery are facilitated 
through tertiary pages, which support context-based queries and enable efficient, verifiable indexing. Despite 
these advances, most current approaches still risk exposing sensitive identity or location attributes during 
discovery. Future protocols must therefore emphasize privacy-preserving service discovery, enabling secure 
interaction without requiring disclosure of user or device identities.

Trust management  Trust management has become a critical component of SIoT systems, aiming to ensure 
secure and reliable interactions among heterogeneous and socially connected devices. Reference2 emphasize 
that trust management mechanisms involve four core phases: trust composition, trust aggregation, trust 
propagation, and trust update. These phases help assess node behavior, detect malicious activity, and maintain 
dynamic trust scores within SIoT networks. The authors also propose a blockchain-powered methodology that 
integrates decentralized architectures with graph-based trust models (e.g., using Neo4j) to enhance scalability, 
transparency, and resilience against trust-related attacks. Their survey identifies key open challenges such as 
real-time trust updates, trust-related attack mitigation, and the integration of smart contracts and consensus 
protocols for trust evaluation. However, many existing schemes remain static or computationally heavy, which 
makes them unsuitable for resource-constrained SIoT devices. This highlights the need for lightweight, adaptive 
trust strategies that can dynamically evolve with device behavior while maintaining low computational overhead.

Network Navigability   Network navigability refers to the ability of devices to efficiently discover and 
connect with relevant peers or services within a dynamic social graph. Challenges such as device mobility, 
evolving contextual dependencies, and spatiotemporal heterogeneity often degrade navigability in large-scale 
SIoT networks. To tackle this, TAGLLM33 introduces a trajectory framework that models devices dynamics 
and contextual relations using a hybrid graph encoder and LLM guided token alignment strategy, significantly 
improving relation classification and routing performance.

Relationship management   In SIoT, relationship management refers to how smart devices establish, 
maintain, and update social-like relationships with each other similar to human social networks. The 
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relationships often managed in SIoT are OOR, CLOR , CWOR, SOR, and POR. RM ensures reliable, secure 
and meaningful interactions between devices by continuously assessing trustworthiness and context. To address 
trust exploitation and privacy leakage, they34 proposed an F-TRM model that classifies relationships and updates 
them dynamically using trust values and feedback and secures interactions using cryptographic methods. They 
also demonstrate effective relationship evolution and management in dynamic environments.

Explainable and accountable AI/ML integration  Machine learning (ML) has been widely applied to SIoT 
for anomaly detection, trust prediction, and adaptive service management. However, a major limitation is 
the lack of transparency in ML-driven decisions, which hinders accountability and user trust. Most existing 
solutions function as black boxes, providing little insight into why a node or service is flagged as malicious 
or untrustworthy. To bridge this gap, explainable AI (XAI) techniques such as SHAP and LIME should be 
integrated into SIoT security workflows. These methods can provide human-understandable justifications for 
anomaly detection or trust evaluations, improving confidence and enabling fair decision-making in multi-
stakeholder environments. Incorporating explainability into SIoT ML pipelines is crucial for accountable security 
and ensuring that automated trust management aligns with user expectations and regulatory requirements.
FedXAIIDS is an intrusion detection system that combines federated learning with SHAP-based explainability 
to preserve privacy and improve transparency. Tested on the CICIoT2023 dataset, it achieved  88% accuracy 
while identifying UDP traffic as a key attack feature, offering a scalable and interpretable IDS for IoT networks35. 
XAI-IoT, proposed by36, is a framework combining anomaly detection models with seven XAI methods (e.g., 
SHAP, LIME) to enhance transparency in IoT security. Evaluated on MEMS manufacturing and N-BaIoT botnet 
datasets, it achieves high accuracy (up to  0.99) and reveals key features for failures and attacks, supporting 
accountable and interpretable IoT anomaly detection.

Cross-domain interoperability and unified policies   One of the key open challenges in SIoT is ensuring 
seamless interoperability across heterogeneous domains (e.g., smart healthcare, transportation, and industrial 
IoT), where devices often follow distinct trust policies, access-control rules, and security protocols. The absence 
of standardized frameworks limits secure collaboration when nodes from different administrative or application 
domains interact. Current studies largely focus on intra-domain trust or discovery, leaving cross-domain 
integration underexplored. To address this, future efforts should aim at designing unified policy frameworks and 
interoperable trust models that allow heterogeneous SIoT systems to share resources and services securely while 
maintaining autonomy. Such frameworks should also incorporate decentralized enforcement mechanisms (e.g., 
blockchain-based access-control or distributed identity management) to guarantee auditability and resilience 
against policy conflicts.

Merits and challenges of social internet of things
Main merits

	1.	 Enhanced Resource Discovery: Enhanced resource discovery within the social Internet of Things (SIoT) 
identifies a sophisticated, context-aware, and socially influenced approach to locate pertinent resources, in-
cluding services, data and other devices, in a dynamic IoT environment. By integrating social relationships, 
trust, semantic considerations, and contextual factors, it facilitates efficient, precise, and secure discovery. 
Resource discovery functions by identifying devices or objects, as well as the social relationships among 
these objects and their users-such as parental, co-location, and co-work relationships. Discovery method-
ologies can be classified into centralized, decentralized, or hybrid approaches. Various types of discovery 
include context-aware discovery, which is based on situational reading of data; trust-based discovery, which 
relies on past history, recommendations, and reputation scores; social-aware filtering, which considers rela-
tionship types; and semantic discovery and ontologies, which use semantic models (RDF and OWL) based 
on meaning, not just keywords. Furthermore, machine learning may be employed optionally for predic-

Relationship type Semantic definition Example Security implications (attack surface & trust signals)

Ownership Object Relationship (OOR) Objects continue to interact despite 
ownership changes

Smart car retaining traffic data 
after resale

Data leakage risk across owners; requires secure data 
wiping, provenance, and access control

Social Object Relationship (SOR) Objects interact via owners’ social 
connections

Friends’ fitness wearables syncing 
stats

Vulnerable to impersonation or Sybil attacks; trust 
inferred from social graph strength

Sibling Object Relationship (SIBOR) Objects owned by the same user 
communicate frequently

Smart home devices (thermostat, 
lights, sensors)

Lateral compromise risk; trust derives from shared 
owner identity and credentials

Parental Object Relationship (POR) Sibling devices connected via a parent 
entity Fleet of connected vehicles Centralized control introduces single point of failure; 

parent trust determines child reliability

Co-location Object Relationship (CLOR) Objects interact due to spatial proximity Factory robots working together Susceptible to spoofed/relay attacks; trust based on 
verified physical presence

Co-Work Object Relationship (CWOR) Objects collaborate to complete a task Robotic arms and conveyors in 
packaging

Attack surface in coordination sabotage/DoS; trust 
validated through task success consistency

Guest Object Relationship (GOR) External objects interact with restricted 
access BYOD devices in enterprise Higher risk of rogue devices; needs strict 

authentication, sandboxing, and access policies

Stranger Object Relationship (STGOR) Limited interactions with unknown devices Unknown IoT object in range High uncertainty and unpredictability; requires 
anomaly detection and adaptive trust mechanisms

Service-Oriented Object Relationship 
(SVOR)

Objects interact with external service 
providers

Smart meters subscribed to 
weather/utility services

Exposure to API/service misuse; trust depends on 
authentication, SLA compliance, blockchain logging

Table 4.  SIoT relationship types: definitions, examples, and security implications.
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tive purposes, along with scalable and decentralized discovery methods, such as distributed hash tables or 
blockchains for scalable decentralized and resource discovery. This paper3 discusses various categories of 
discovery techniques, including data-based and object-based approaches. It also examines different types of 
discovery architecture and various protocols for discovery, such as CoAP, MQTT, and UPnP. Additionally, 
the paper addresses several challenges encountered in resource discovery.

	2.	 Enhanced Interoperability and Collaboration:

	Interoperability refers to the capability of different types of objects, devices, or applications to work together to 
exchange information within the SIoT network seamlessly. This ensures that they can communicate and col-
laborate effectively by speaking the same “language.” For example, different healthcare hospitals using various 
software should be able to share information securely, and an Android mobile device and a Windows laptop 
should be able to transfer information via Bluetooth. Enhanced interoperability means improved communi-
cation with fewer compatibility issues, faster data sharing, and secure and reliable support for a greater variety 
of devices or systems. This paper37 reviews existing research on semantic interoperability and reusability in 
IoT, focusing on RDF, OWL, SPARQL, ontologies, and the semantic sensor network ontology. They38 pro-
posed a new architecture referred to as Ontology as a Service. They developed a lightweight ontology for 
context-aware systems, based on existing models but customized to their needs. Their results show that their 
system successfully mapped and translated between two different systems: smart home and healthcare. They39 
proposed a transparent translator that addresses interoperability at two levels. The messaging protocol layer 
handles communication protocols such as COAP, MQTT, and HTTP, while the syntactic layer converts JSON, 
XML, and CSV using SSN ontology.

	3.	 Improved Scalability: Billions of interconnected devices form autonomous, dynamic social relations, col-
laborating in real time for services like traffic control, public safety, and home automation. These devices 
generate data simultaneously, leading to numerous dynamic stream queries and frequent topology changes 
as they join, leave, or move. Scalability is crucial for managing increasing devices, users, and interactions 
without compromising performance, security, or reliability. AgileDART40 introduces a decentralized edge 
stream processing engine that significantly improves scalability in dynamic, heterogeneous environments. Its 
architecture eliminates the single-point bottleneck through distributed operator placement and bandit-based 
routing, making it suitable for high-throughput, low-latency applications in SIoT ecosystems.

	4.	 Dynamic Trust Management: A system that continuously evaluates, updates, and adapts the trustworthi-
ness of entities in real time. It considers their environment, context, and behavior to identify and assess new 
threats and operational conditions.Secure interactions between different IoT devices that belong to different 
people are essential in the SIoT world (smart homes, healthcare, smart cities). For instance, devices like a 
smart fridge or smart lock may need to communicate with devices owned by friends, family, or even un-
known users. Trust needs to be continuously evaluated and updated based on behavior, rather than assumed. 
Devices can join or leave the network, behave suspiciously, update their firmware, or experience security 
breaches. This necessitates dynamic rather than static trust management, where the system automatical-
ly recalculates trust levels and quarantines untrustworthy devices. Interoperability between different trust 
models is also important, as not all devices calculate trust in the same way—some use reputation, risk scores, 
or certificates. To address this, they41 have built RTrustSim, a simulation of the SIoT environment where the 
trustworthiness of devices can change, be measured, and inform decisions such as joining, staying, leav-
ing, or being quarantined automatically. They demonstrated this framework through three use cases: Smart 
home, Preventive Health Monitoring, and Dynamic Device Integration.

	5.	 Security and Trust: Security in SIoT defends against technical threats such as unauthorized access, data tam-
pering, spying, and attacks, involving authentication, authorization, confidentiality, integrity, and availability. 
Trust, on the other hand, pertains to evaluating the reliability and honesty of another device to determine 
whether to interact and share information. It helps devices establish safe and intelligent social connections. 
Research42 has introduced a novel model known as self-adaptive trust management for SIoT. By integrating 
MAPE-K and machine learning to manage trust, the trust evaluation task was assigned to fog nodes. Their 
simulation within an SIoT network effectively detects malicious devices.

	6.	 Self-Organisation: Smart objects can autonomously locate, connect, and interact with other devices without 
human intervention, akin to how individuals establish friendships in real life. These devices form social re-
lationships based on criteria such as shared ownership, common location, and similar interests (e.g., devices 
that support similar services). Interaction history also plays a role in the formation of these connections.

	7.	 Context-Aware Service: Devices are designed to be aware of their surroundings and respond intelligently to 
various situations, much like humans adjust their behavior based on their perception of their environment. 
These devices employ sensors that detect, comprehend, and adapt to contextual information such as location, 
time, environmental conditions (e.g., hot, cold, or noisy), user activity (e.g., sleeping, walking, or driving), 
and device status (e.g., low battery, active sensor).

Critical research challenges in SIoT systems
The Social Internet of Things (SIoT) faces a range of persistent challenges rooted in its scale, heterogeneity, and 
decentralized nature. These include secure trust management, dynamic mobility, interoperability, data privacy, 
resource constraints, and complexity in service discovery, all of which impact the resilience, reliability, and 
usability of SIoT environments9. 
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	 1.	 Trust, Security, and Privacy: SIoT networks are vulnerable to trust manipulation, identity spoofing, infer-
ence attacks, and unauthorized data access. The absence of standardized trust metrics and robust authenti-
cation frameworks exacerbates these issues, especially under dynamic mobility.

	 2.	 Scalability and Network Management: As SIoT networks grow, challenges arise in efficient routing, ser-
vice discovery, and congestion management. Real-time navigation through dynamic social graphs, particu-
larly under dense device populations, remains complex and costly.

	 3.	 Interoperability and Standardization: Fragmented communication protocols, vendor-specific social 
models, and the lack of universal standards hinder seamless integration across heterogeneous platforms 
and devices.

	 4.	 Relationship Modeling and Management: Devices must dynamically form, update, and revoke social 
links. Preventing relationship flooding and distinguishing relationship types (e.g., ownership vs. co-loca-
tion) remains an open challenge.

	 5.	 Autonomy and Intelligence: Equipping SIoT devices with intelligent decision-making capabilities is con-
strained by limited computing power, vulnerability of AI models to adversarial inputs, and the complexity 
of real-time context awareness.

	 6.	 Data Ownership and Governance: Managing sensitive, distributed data in multi-owner scenarios poses 
concerns about ownership rights, synchronization consistency, and access control in decentralized environ-
ments.

	 7.	 Legal, Ethical, and Social Issues: Ensuring user-centric SIoT systems demands mechanisms for informed 
consent, accountability for device actions, and mitigation of embedded social biases.

	 8.	 Service Discovery and Composition: Discovering reliable services in dynamic, decentralized graphs is 
challenged by fake service advertisements, limited trust indicators, and context-aware recommendation 
bottlenecks.

	 9.	 Integration with Emerging Technologies: Incorporating blockchain, edge/fog computing, and federated 
learning into SIoT introduces new challenges ranging from blockchain scalability to energy-efficient trust 
models at the edge.

	10.	 Mobility and Dynamicity: Frequent changes in device locations and interactions complicate service conti-
nuity, object tracking, and context adaptation across constantly evolving environments.

Security in SIoT
Key security requirements and challenges in SIoT
This subsection addresses RQ3, which focuses on the security requirements and challenges associated with SIoT 
systems. Table 5 provide a detailed mapping of these requirements, the corresponding challenges, and potential 
solution approaches.

Security requirements in SIoT
In the Social Internet of Things (SIoT), primary key security requirements are the essential principles that a 
secure SIoT system must uphold to safeguard users, data, and device interactions. These requirements serve as 
foundational elements that form the core security framework for SIoT architecture. Additional requirements, 
such as trust management and non-repudiation, build upon or enhance these primary pillars. 

	 1.	 Privacy : To protect personal and sensitive data from being exposed or misused, systems focus on giving us-
ers control over their information and ensuring it isn’t collected or shared without permission. Techniques 
like data minimization and anonymization reduce the amount of identifiable data stored or processed, 
limiting exposure risks. Differential privacy adds noise to datasets, allowing useful insights while preserving 
individual privacy. Consent-based data access ensures that users actively allow how and when their data is 
used, supporting ethical and transparent data practices.

	 2.	 Trustworthiness: To ensure that devices, users, and services behave reliably and securely, systems use trust 
mechanisms that evaluate and predict how entities operate, especially in dynamic or social settings. Trust 
evaluation models based on reputation scores or behavior analysis—help assess reliability over time, while 
blockchain-based trust logs provide tamper-resistant records of past actions to support transparency and 
accountability. Federated learning further enables decentralized behavior prediction by training models 
across multiple devices without exposing sensitive data, reinforcing trust without sacrificing privacy. The43 
paper proposes a trust management framework in SIoT that enhances trustworthiness evaluation through 
the integration of social similarity, feedback, and honesty. It introduces a novel trust propagation technique 
leveraging social relations and contextual data to disseminate trust effectively and identify untrustworthy 
nodes. Evaluation using real datasets (Sigcomm and Epinion) demonstrates accurate trust estimation and 
secure interaction facilitation.

	 3.	 Integrity: To prevent unauthorized modification of data, systems use techniques that ensure the infor-
mation remains accurate and intact during transmission and storage. Hash functions like SHA-256 pro-
vide a unique fingerprint of the data, helping detect any changes. Digital signatures verify both the origin 
and integrity of the content, confirming that it hasn’t been altered. Message authentication codes (MACs) 
add another layer of protection by allowing verification between trusted parties, ensuring that only data 
untouched by tampering reaches its destination. The authors44 propose and implement a framework for 
analyzing and exploiting smart home IoT firmware. Using reverse engineering, static analysis, entropy as-
sessment, and emulation tools (e.g., QEMU, Radare2), they identify ten critical network-based vulnerabil-
ities—five scoring CVSS 10.0 and five scoring 9.8. The analysis reveals widespread use of unsafe functions 
(sprintf, strcpy) and absence of security hardening features (NX, PIE, RELRO, Stack Protection). The study 
offers best practices to secure firmware, emphasizing authenticated updates, strong passwords, and secure 
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boot mechanisms. In this45 study proposes a lightweight and secure FOTA mechanism for IoT devices to 
counter man-in-the-middle (MITM) attacks using a dual-XOR encryption technique, DEFLATE lossless 
compression, and multi-channel key transmission. Compared to AES-based methods, the proposed model 
significantly reduces latency, power consumption, and memory usage while maintaining accuracy and re-
sistance to brute-force attacks in constrained environments.

	 4.	 Authentication: To confirm the identity of a user or device, systems rely on various authentication methods 
that verify an entity is genuinely who it claims to be. Common techniques include passwords or PINs for ba-
sic access, digital certificates for cryptographic validation, and biometrics like fingerprints or iris scans that 
link identity to unique physical traits. Multi-factor authentication (MFA) adds extra layers by combining 
two or more of these methods, making unauthorized access significantly harder and strengthening overall 
system security. Reference46 proposed a solid identity and access control framework that blends decentral-
ized identifiers (DIDs), soulbound tokens (SBTs), and zero-knowledge proofs (ZKPs). The system protects 
user privacy by allowing selective sharing of credentials, uses ERC721-based SBTs to bind identity in a way 
that can’t be transferred, and ensures verification through Ethereum smart contracts. These features are a 
strong match for SIoT environments, helping prevent identity spoofing, safeguard privacy during social ex-
changes between IoT devices, and support decentralized, trust-driven service access. The inclusion of audit 
trails and credential tracking also makes it suitable for regulated and sensitive areas like healthcare, logistics, 
and smart cities.

	 5.	 Authorization: To enforce rules about who can access what and what actions are allowed, systems use ac-
cess control mechanisms that ensure authenticated users or devices only perform permitted operations 
on specified resources. This is typically achieved through models like Role-Based Access Control (RBAC), 
Attribute-Based Access Control (ABAC), or Context-Aware Access Control (CAAC), which define permis-
sions based on roles, attributes, or environmental context. Policy enforcement tools apply these rules across 
systems, while smart contract-based permissions can automate and secure access decisions in decentralized 
environments using blockchain technologies. A fog-based adaptive context-aware access control framework 
(FB-ACAAC) enhances traditional XACML by incorporating dynamic, context-driven policy adjustments 
at the fog layer. It mitigates threats such as man-in-the-middle, privilege escalation, and masquerade attacks 
through TLS-encrypted communication, least privilege enforcement, and context-aware access decisions. 
Performance evaluations demonstrate lower latency and adaptive responsiveness compared to standard 
XACML approaches47.

	 6.	 Confidentiality : To prevent unauthorized access to data, systems implement mechanisms that ensure only 
authorized users or devices can view or read sensitive information. This is achieved through encryption 
methods like AES and ECC, which secure the data itself; access control strategies that regulate who can in-
teract with the data; and secure communication protocols such as SSL/TLS and DTLS, which protect data in 
transit across networks. Together, these techniques form a robust defense against data breaches and privacy 
violations.48 proposed a lightweight authentication protocol that ensures confidentiality through session 
key establishment using hashed credentials and XOR operations, without relying on heavy cryptographic 
primitives like ECC or AES.

Ref. Requirement Challenges Metrics/equations Solutions Feasible?

46 Authentication Identity spoofing; Sybil; 
decentralized ID

FAR, FRR; Accuracy = (Valid ÷ Total) 
× 100%

DID; blockchain-based ID; lightweight 
crypto tokens

DID = △; Blockchain = 
✗; Tokens = ✓

47 Authorization Context-aware access; collusion; 
malicious propagation

Access Effectiveness = (Unauthorized ÷ 
Total) × 100%; Policy latency (ms)

ABAC, CAAC, RAAC; smart contracts; 
edge/fog enforcement

ABAC/RAAC = ✓; 
Smart contracts = ✗

48 Confidentiality Privacy in sharing; weak 
encryption

Leakage I = MI(User; Leaked); Overhead 
= Cipher ÷ Plaintext

E2EE; ECC; AES-CCM; DTLS/CoAP; 
blockchain access control

ECC/AES/DTLS = ✓; 
HE = ✗

45 Integrity Tampering; misuse; malicious 
behavior

Integrity Rate = (Unmodified ÷ Total) 
× 100%; Detection latency (ms)

MACs; signatures; BC-logging; SHA-256; 
secure boot/updates

MACs/Hashing = 
✓; Signatures = △; 
Blockchain = ✗

31 Availability DoS/flooding; collusion in dense 
SIoT

Availability = (Uptime ÷ Total) × 100%; 
MTTF; MTTR; PDR = rx ÷ tx

Rate limiting; edge filtering; redundancy; AI/
ML DoS detection; resilient CoAP

Filtering/Redund = ✓; 
AI/ML = △; Blockchain 
= ✗

43 Trustworthiness Dynamic trust; false trust; 
unreliable reputation

Trust Accuracy = (Correct ÷ Total) × 
100%; False Trust Rate; Convergence 
rounds

Reputation models; ML-based anomaly 
detection; decay functions; consensus 
validation

Reputation/Decay = ✓; 
ML = △; BC logs = ✗

51 Privacy Graph inference; contextual 
leakage; excessive sharing

Privacy loss (ε) in DP; Inference 
probability; Minimization ratio

Data minimization; DP; edge/fog processing; 
HE; blockchain selective disclosure

Min/DP = ✓; Edge = 
✓; HE = ✗

49 Scalability Heterogeneous devices; growth; 
resource limits

Latency growth L(N + ∆)/L(N); 
Throughput (TPS)

Edge/fog computing; federated learning; 
blockchain sharding; MQTT/CoAP

MQTT/CoAP/Edge = 
✓; FL/Sharding = △

50 Accountability No audit trails; decentralized 
control; absent monitoring

Auditability = (Logged ÷ Total) × 
100%; Verification success

Blockchain logging; secure audit trails; TEEs; 
anomaly logs; policy engines

Trails = ✓; Blockchain 
= △/✗; TEEs = △

18 Interoperability
Protocol mismatch; 
heterogeneous devices; cross-
domain access

Success Rate = (Successful ÷ Attempts) 
× 100%; Translation latency (ms)

Middleware; IoT-Lite; translators; blockchain 
federation; W3C APIs

Middleware/Trans = ✓; 
Blockchain = △

Table 5.  Security requirements (Authentication–Interoperability) with challenges, metrics, solutions, and 
feasibility. ✓ = lightweight; △ = partial; ✗ = heavy.
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	 7.	 Availability: To ensure continuous access to services and data when needed, systems adopt strategies that 
keep operations running smoothly even in the face of faults or attacks. Redundancy and failover mech-
anisms provide backup components and automatic switching to maintain uptime during failures. DDoS 
protection helps defend against traffic overloads caused by malicious attacks, while load balancing distrib-
utes incoming requests across multiple servers to prevent bottlenecks and improve system responsiveness. 
Together, these techniques support high availability and reliable service delivery. A trust and QoS-based 
service recommendation model for SIoT is proposed, incorporating availability, reliability, and efficiency in 
service prediction using an RSS-based algorithm and trust-aware community clustering31.

	 8.	 Scalability: To support growth in users, devices, or data without degrading performance, systems employ 
scalable solutions that maintain efficiency as demand increases. Distributed architectures like fog, cloud, 
and edge computing spread processing across different layers to avoid bottlenecks. Lightweight protocols 
and microservices reduce communication and computation overhead, making it easier to handle more con-
nections and transactions. Modular expansion strategies allow systems to add new components or services 
incrementally without disrupting existing functionality, ensuring smooth scaling across diverse environ-
ments. The authors in49 propose FLCoin, a scalable blockchain-enabled federated learning architecture for 
IoT edge networks. They use a committee-based BFT consensus, elected via the FL process, and a sliding 
window mechanism to limit consensus scope. Combined with linear communication and block pruning, 
their design achieves a 90% reduction in communication overhead and 35% lower training time compared 
to PBFT, ensuring high scalability in large networks.

	 9.	 Accountability : To trace actions back to responsible users or devices, systems use techniques that ensure 
every operation is recorded and accountability is maintained. Logging and auditing tools capture detailed 
records of activities for review and analysis, while blockchain-based immutable ledgers provide tam-
per-proof evidence of actions. Digital signatures and identity binding link each action to a verified entity, 
making it possible to detect misbehavior, investigate incidents, and apply penalties when needed—all sup-
porting transparency and trust in the system. In this work, Ref.50 propose a hybrid IoT security framework 
that integrates deep learning for anomaly detection with blockchain for tamper-proof logging. The system 
simulates sensor data and diverse attack scenarios using SimPy, and leverages blockchain to ensure that 
all events—including sensor malfunctions and detected threats—are immutably recorded for auditability. 
The framework achieves 98% detection accuracy across various network sizes and attack types such as 
DDoS, MITM, and unauthorized access, thereby supporting accountability through traceable, verifiable, 
and non-repudiable event logging.

	10.	 Interoperability: To enable different systems, devices, and platforms to work together seamlessly, systems 
use interoperability techniques that allow data to be exchanged and understood across diverse networks 
and vendors. Standardized communication protocols like CoAP, MQTT, and HTTP ensure consistent mes-
sage formats and connectivity. Middleware platforms such as FIWARE and Node-RED act as bridges, inte-
grating heterogeneous devices and services. Additionally, ontology and semantic web approaches provide 
common vocabularies and reasoning frameworks, helping systems interpret and use shared data meaning-
fully in distributed environments.

Security challenges in SIoT
This subsection addresses the research question: RQ10. SIoT introduces unique challenges due to its social, 
dynamic, and decentralized nature. These challenges highlight the complexity of securing SIoT systems, requiring 
innovative solutions that balance security, performance, and usability. While the previous section highlighted 
general research challenges in SIoT, this section narrows the focus to security-specific concerns, outlining the 
essential requirements and unique threats inherent to securing dynamic and decentralized SIoT environments. 
As shown in Table 5, we map each requirement to challenges, metrics, and solutions, and indicate lightweight 
feasibility (✓), partial feasibility (△), or heavy/unsuitable (✗) for constrained SIoT nodes. 

	 1.	  Dynamic Trust Relationship: In SIoT, devices and entities interact dynamically, making trust relationships 
challenging to manage. Trust levels can change rapidly due to various factors, such as device behavior, user 
interactions, or context. This complexity requires adaptive trust management systems.

	 2.	 Identity Spoofing and Sybil Attack: Malicious entities impersonate legitimate devices or users, or create 
fake identities to manipulate the system. This can lead to unauthorized access, data theft, or disruption of 
services.

	 3.	  Scalability of Security Mechanism As the SIoT network grows, security solutions must scale according-
ly. However, heavyweight security mechanisms may not be feasible due to resource constraints, requiring 
lightweight, efficient solutions.

	 4.	 Heterogeneous Devices Devices in SIoT have varying capabilities, security levels, and protocols. This het-
erogeneity creates challenges in implementing uniform security measures, making it essential to develop 
adaptable security solutions.

	 5.	 Data Privacy Increased sharing can lead to unintended data exposure, compromising user privacy. This 
requires robust data protection mechanisms and fine-grained access control.

	 6.	 Collusion Attacks: Multiple devices collaborate to launch coordinated attacks or deceptions, exploiting 
trust relationships and potentially causing significant harm.

	 7.	 Decentralized Management Complexity without a central controller, managing security policies and en-
forcing them consistently becomes increasingly complex, requiring distributed security management solu-
tions.

	 8.	 Context-Aware Access Control Access control decisions depend on dynamic attributes like location, time, 
and trust levels. This requires adaptive access control systems that can respond to changing contexts.
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	 9.	 Limited Resources Resource-constrained devices may not support strong encryption or analytics, making 
it challenging to implement robust security measures without compromising performance.

	10.	 Malicious Relationship propagation Attackers exploit trust-based relationships to spread influence, po-
tentially leading to widespread security breaches. This requires proactive measures to detect and mitigate 
such threats.

IoT-based attacks relevant to SIoT
This subsection addresses RQ4, focusing on conventional IoT attacks that equally affect SIoT due to shared 
networking protocols, resource constraints, and communication models. Table 6 presents a structured mapping 
of key threats, corresponding attacks, and their mitigation strategies. Furthermore, Table 7 extends this analysis 
by categorizing prevalent SIoT attacks across the communication protocol stack, thereby providing a layer-wise 
perspective on vulnerabilities and potential countermeasures.

This paper10 reviews key IoT application-layer attacks, including spyware, malware, flooding, spoofing, code 
injection, message forging, brute-force, access control, sniffing, and intersection attacks. These attacks target 
device software, user credentials, and data transmissions, leading to threats against confidentiality, integrity, 
availability, authentication, authorization, and privacy. The authors categorize attacks by type (active/passive), 
affected layer, and security impact, offering a clear taxonomy for understanding IoT vulnerabilities. Reference9 
provide a detailed survey of attack vectors specific to Social-Internet-of-Things (S-IoT), highlighting threats such 
as Sybil attacks, self-promotion, ballot stuffing, on-off targeted transmission, bad-mouthing, and opportunistic 
service attacks. The paper reviews mitigation strategies through trust management frameworks, lightweight 
cryptographic protocols, and blockchain-enhanced authentication. Security vulnerabilities are also evaluated 
using fuzz testing, game-theory-based attack trees, and GAN-based intrusion detection in edge-enabled S-IoT 
contexts.

	 1.	 Node Capture Attacks:  It involves an attacker gaining physical access to an SIoT device, extracting sen-
sitive information like keys or credentials. The device may continue to function normally unless repro-
grammed. This type of attack is common in remote or unattended SIoT deployments, such as in agriculture 
or logistics, where devices are more vulnerable to physical tampering. Physical tampering with or stealing of 
devices. Reference61 proposed a lightweight authentication scheme tailored for smart home environments, 
specifically designed to withstand node capture attacks. Their protocol ensures user anonymity, resists key 
compromise, and uses randomized temporary identities to prevent adversarial exploitation of captured 
nodes.

	 2.	 Fake Node Insertion : Adding unauthorized devices to the network. Imitating legitimate devices to blend 
in, these malicious nodes appear as trusted participants, exploiting weak identity verification in SIoT sys-
tems. This enables trust deception and network infiltration. The paper by62 introduces a lightweight authen-
tication mechanism combining hash-chains and Bloom filters to mitigate Sybil attacks, wherein attackers 
inject fake node identities into RPL-based IoT networks. The scheme ensures only legitimate, pre-registered 
nodes are authenticated, effectively countering fake node insertion and DIS flooding attacks.

	 3.	 Eavesdropping: Intercepting raw signals (e.g., RF, IR). Eavesdropping is a threat that can arise at both the 
physical and network layers. For example63 demonstrate a practical attack at the physical layer using IR 
remotes, and propose a lightweight encryption countermeasure to secure device communications. This 
paper57 proposes an effective and accurate method for detecting active eavesdropping in wireless IoT net-
works by leveraging a deep learning classifier. Features are extracted directly from wireless pilot signals, 
allowing the system to enhance physical layer security by enabling real-time detection of eavesdroppers 
before communication is compromised.

Protocol layer Common attacks in SIoT environments Example reference

Physical layer Jamming, Eavesdropping, Radio interference, Signal manipulation 57

Data link/MAC layer Replay attacks, Collision attacks, Identity spoofing at MAC, Selective forwarding 58

Network layer Sybil attack, Sinkhole attack, Wormhole, Blackhole, Routing table poisoning, Selective packet dropping 59

Transport layer Flooding (SYN/UDP), Session hijacking, DoS/DDoS, TCP reset attacks 60

Application layer False data injection, Malicious code injection, Privacy leakage, Malware/botnet attacks, Unauthorized service access 6

Table 7.  Layer-wise mapping of prevalent attacks in SIoT communication protocol stack.

 

Studies Threats Attack Solutions
52 Identity spoofing DNS/ARP spoofing for redirection or MitM ML-based IDS using Random Forest, XGBoost, and SMOTE
53 Data integrity and Confidentiality MitM, ARP spoofing/flooding CNN-based IDPS with SDN Ryu; blocks ports, clears ARP entries
54 Trust exploitation Malicious trusted relationships Zero Trust via SDN; cert-based auth, peer policy control
55 Privacy inference, trust exploitation Privilege escalation Anonymization, traffic obfuscation, MAC randomization
56 DDoS attacks Service degradation via IIoT DDoS MTDTM with ODENet+LSTM; dynamic traffic control, SDN routing

Table 6.  Recent research on SIoT security: mapping threats, attacks, and existing solutions.
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	 4.	 Side-channel attacks: These attacks exploit physical leakage (e.g., power, timing, electromagnetic, or cache 
patterns) or fault injection to extract sensitive information from IoT devices. For instance, Correlation Pow-
er Analysis (CPA) leverages repeated AES key usage by correlating observed power traces with hypothetical 
key values to recover secret keys. Kuo et al. 64 proposed a dynamic AES key replacement mechanism that 
combines Moving Target Defense (MTD) with lightweight Diffie–Hellman exchange, demonstrating strong 
resistance even after 20,000 CPA attempts. In the SIoT context, physical and side-channel attacks at the de-
vice and control layers can compromise cryptographic keys, enabling long-term infiltration, identity theft, 
and replayed trust manipulation. These threats are particularly severe in mobile or resource-constrained 
devices that cannot rely on heavy cryptographic protections. Mitigation approaches include PUF-enabled 
blockchain frameworks20 that apply physical unclonable functions and role-based verification to resist dif-
ferential fault analysis (DFA) and cache-based exploits, validated through Py-EVM simulations of mobili-
ty-driven IoT scenarios.

	 5.	 DDoS Attacks: A Distributed Denial-of-Service (DDoS) attack involves multiple compromised devices 
(like a botnet) coordinating to flood a target with traffic, overwhelming it. Since the traffic comes from 
many IP addresses, it’s hard to block without affecting legitimate users. This type of attack disrupts com-
munication and makes services inaccessible by flooding devices with requests. For example, thousands of 
IoT devices might be used to flood a DNS provider, taking down major websites. To address the increasing 
threat of Distributed DoS attacks in smart home IoT systems, Karmous et al.65 proposed the SDN-ML-IoT 
framework that integrates machine learning with software-defined networking to detect and mitigate var-
ious types of DDoS attacks, including SYN floods, CoAP floods, and MQTT broker overloads, achieving 
99.99 percentile accuracy.

	 6.	 Denial of Service (DoS) Attack: A single-source attack involves flooding a server or network with excessive 
requests from one machine or internet connection, overwhelming it and preventing legitimate access. Since 
the traffic comes from one source, it’s easier to detect and block. This type of attack can disable services, 
cause timeouts or inaccessibility, and lead to resource exhaustion, commonly affecting cloud-connected 
IoT systems and public service endpoints. For instance, a single computer might send thousands of fake 
login attempts to crash a website. Reference60 present a lightweight IDS/IPS mechanism integrated into 
the firmware of Teltonika GPS IoT devices to detect and mitigate denial of service (DoS) attacks, including 
TCP session hijacking. By employing packet validation and rate-limiting techniques, the proposed solution 
ensures real-time protection and preserves telemetry functionality through backup routing, enhancing re-
silience in intelligent transportation systems.

	 7.	 On-Off Attack: This attack involves a node behaving well initially to gain trust, then suddenly misbehaving, 
repeating this cycle to evade detection. The inconsistent behavior makes it hard to identify as malicious, 
exploiting trust in long-term SIoT interactions. It’s a sneaky way to avoid being flagged as a threat. Authors66 
IV-based model mitigates on-off attacks by detecting trust value fragmentation—a pattern where nodes 
frequently switch between trustworthy and untrustworthy behavior. Once detected, the system can act to 
block, penalize, or distrust these devices.

	 8.	 Wormhole attack: Wormhole Attack involves two colluding nodes creating a tunnel to rapidly transfer 
packets, falsely advertising shorter routes and distorting the network topology. This routing manipulation 
allows attackers to bypass normal paths, evade trust mechanisms, and disrupt network operations, com-
monly affecting wireless SIoT networks that rely on distance-based routing. In this67 paper authors have 
addresses two types of network-layer security threats: wormhole attacks, where malicious devices create 
a secret shortcut to manipulate data routing, and blackhole attacks, where a malicious node pretends to 
be trustworthy and then drops all packets instead of forwarding them. Inorder to mitigate these type of 
attacks they have proposed a cross-layer defense mechanism using an ehnanced support vector machine 
based framework that leverages physical, MAC, and network layer interactions to detect and isolate malious 
nodes forming virtual tunnels, though designed for wireless ad-hoc networks, the models protocol inde-
pendence and lieghtweight behavior analysis make it well suited of SIoT environemnts vulnerable to similar 
routing attacks.

	 9.	 Sybill attack: It is a identity based attack where multiple malicious devices create multiple fake identites 
called as sybill node to manipulate, disrupt, or control a network. Consider that you are using a ride-sharing 
app that relies on nearby smart cars to find the best route. A Sybil attacker injects many fake “smart cars” 
into the network, all controlled by them. The system thinks a road is busy or safe when it’s not causing 
wrong routing or traffic manipulation. This study68 proposes SybilPSIoT, a hybrid decentralized method 
for prevention and detection, leveraging technologies like smart contracts for secure access control, web of 
trust for relationship verification, Bayesian inference and structural balance for Sybil detection, and game 
theory for modeling owner behavior and dynamically adjusting thresholds.

	10.	  Man-in-the-Middle (MitM): Intercepting/modifying communication, In a Man-in-the-Middle (MitM) 
attack, a hacker intercepts and possibly alters the communication between two parties, making it seem like 
they’re communicating directly with each other when, in fact, the attacker is secretly in control. In order to 
mitigate attacks on ZigBee/CoAP-based IoT systems via MQTT, the authors in69 proposed two intrusion 
detection systems (IDS). They successfully demonstrated the effectiveness of these systems by intercepting 
both Denial of Service (DoS) and Man-in-the-Middle (MitM)/masquerade attacks in a real-world experi-
mental setup. Reference53developed a CNN-based Intrusion Detection and Prevention System integrated 
with Software-Defined Networking to mitigate ARP spoofing and ARP flooding MitM attacks in smart 
homes, achieving 99.96% detection accuracy and 0.02% FAR across scalable SIoT topologies.

	11.	 Profile Inference Attack:  It involves analyzing SIoT interactions and behavior patterns to infer sensitive 
details about users or devices without directly stealing data. This can lead to privacy leakage and behavioral 
profiling, commonly affecting smart homes, connected vehicles, and SIoT-based services. Attackers piece 
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together seemingly harmless data to uncover privat attributes. Reference70 proposed TrafficDiary, a traffic 
analysis attack that infers user demographic attributes (e.g., age and career stage) in smart homes by analyz-
ing encrypted traffic metadata. Using a dual-channel neural network, it achieves 98.68 percent event detec-
tion and 100 percent profile inference accuracy, revealing significant privacy risks even without decrypting 
content.

	12.	 Location tracking: Location Inference Attack involves analyzing communication patterns, timestamps, 
or signal strength (RSSI) to determine the physical location of users or devices. This passive attack is hard 
to detect and can lead to privacy breaches and user profiling, often targeting mobile SIoT devices and ve-
hicular networks. Recent advancements in passive Wi-Fi signal analysis have led to sophisticated location 
tracking attacks. For instance, RFTrack71 enables attackers to infer indoor movement patterns of Wi-Fi de-
vices by analyzing unlabeled RSSI values. It utilizes a reinforcement learning-based approach to reconstruct 
device trajectories and build fingerprint maps without physical access to the target environment.

	13.	 Replay Attacks : Reusing captured data to spoof interactions. Replay attack occurs when an intruder cap-
tures a valid transmission and maliciously retransmits it later to trick a system into gathering unauthorized 
access or performing unintended actions. Consider for an example when someone recording your voice 
saying a seceret password and then playing it back later to fool a system into thinking its still you, even 
though you are not there anymore. To prevent replay attacks, researchers58 they’ve proposed a lightweight 
authentication protocol called LCAP for SIoT environments. The protocol assigns each device a unique, 
time-sensitive token—like a digital ID card that changes over time. This dynamic token is generated using 
the device’s Physical Unclonable Function (PUF) and a timer, ensuring that even if someone captures the 
token, it’ll be invalid next time. A Merkle tree serves as a ledger of valid tokens, allowing the system to verify 
and reject any tokens that don’t match.

	14.	 Service degradation attack: Service Degradation Attack involves reducing the quality of service without 
completely disrupting it. Attackers delay responses, introduce jitter, or manipulate partial data flows, caus-
ing the system to slow down or become erratic. This stealthy attack affects industrial SIoT systems and 
smart infrastructure, compromising performance without being overtly noticeable. In industrial IoT (IIoT) 
and SIoT environments, service degradation attacks can target the communication and control layers of 
smart devices. The study by56 proposed an adaptive Moving Target Defense (MTD) architecture that miti-
gates service degradation attacks in IIoT by dynamically filtering traffic, performing service migration, and 
preserving resource availability under DDoS conditions.

	15.	 Fake service advertisement: This an active attack targets the registry/discovery layer, where a malicious 
node registers a non-existent or malicious service (e.g., a fabricated “air-quality sensor feed”). Legitimate 
users and devices may unknowingly query such entries, leading to wasted resources, privacy breaches, or 
cascading trust failures. This undermines both service availability and user confidence in SIoT platforms. 
Recent studies have also explored the use of machine learning for detecting deceptive behaviors such as fake 
news, bot profiles, and misleading content in online social systems, which can be adapted to address similar 
challenges in SIoT, including fake profile creation, bullying, and misinformation spread4. Blockchain-en-
hanced Sensor-as-a-Service (SEaaS) frameworks22 provide concrete defenses by enforcing provenance, 
non-repudiation, and ledger-backed validation of service registrations, with effectiveness demonstrated in 
smart city case studies involving 200 simulated nodes.

	16.	 Privilege Escalation: Gaining higher access levels than authorized personnel. In support of the growing 
concerns around privacy leakage in smart home environments, Ref.55 proposed IoTBeholder, a low-cost 
snooping attack that can infer users’ habitual behaviors and automation rules by analyzing encrypted Wi-Fi 
traffic. Their findings reveal that attackers do not need network access or prior knowledge to compromise 
user privacy, thus exposing a significant threat in smart home IoT ecosystems.

	17.	 Authentication and Authorization attack: 72 proposed an EducationalSIoT platform that provides robust 
authentication and authorization mechanisms for educational IoT environments. Devices are authenticated 
using digital certificates, ensuring secure identity verification. For authorization, the platform extends the 
XACML model by incorporating social attributes such as trustworthiness, contact frequency, and social 
relationships enabling context-aware access decisions. The access and delegation mechanisms are imple-
mented on a Cosmos SDK-based blockchain, and validated through realistic classroom simulations. The 
authors in73 proposed a decentralized solution in which a user needs to register only once and can use a 
single identity or credential to access multiple service levels offered by various providers. This is achieved 
by leveraging blockchain technology, smart contracts, the Hyperledger Fabric SDK, and non-interactive 
zero-knowledge proofs74.

	18.	 Malicious use of trusted relationship attack: In SIoT or IIoT, devices establish trusted connections, such 
as a smart lock trusting a smartphone or a medical sensor trusting a hospital server. However, attackers can 
exploit these trusted relationships to gain unauthorized access or perform malicious activities. Reference54 
mitigate the malicious use of trusted relationships by eliminating implicit trust between IIoT nodes through 
micro-segmentation and Zero Trust principles. Peer-to-peer SDN and mutual certificate-based authentica-
tion ensure that only explicitly authorized interactions occur, preventing unauthorized trust exploitation.

	19.	  Malicious Code Injection Attack : Code Injection Attack involves exploiting vulnerabilities in firmware or 
apps to insert malicious scripts or binaries, allowing attackers to execute harmful instructions on target de-
vices. This can lead to remote code execution, malware infection, and device malfunction, often occurring 
through over-the-air updates or smart apps in SIoT. The malware can remain dormant or cause immediate 
damage.6 reviewed code injection attacks in wireless IoT systems, highlighting vulnerabilities in protocols 
like Wi-Fi and Zigbee. They demonstrated real-world attacks using Raspberry Pi and reverse-engineered 
IoT firmware to detect malicious code. The study applied IMECA to assess attack severity, offering both 
theoretical insights and practical implementations.
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	20.	 Data Leakage attack: Exposing private or sensitive user data. This paper presents a practical implementa-
tion to detect False Data Injection Attacks (FDIAs) in smart grid networks using various machine learning 
algorithms. The authors simulate FDIA on power data from a 10kV solar PV system in a lab environment 
and evaluate six ML models (e.g., decision tree, logistic regression, autoencoder). A hybrid ensemble of 
decision tree and logistic regression achieves the highest detection performance, with an F1-score of 1 and 
model accuracy of 0.99, demonstrating the effectiveness of machine learning for securing smart grid infra-
structures against data manipulation threats75.

	21.	 Data poisoning attack: Data Poisoning Attack involves injecting manipulated data into machine learning 
or trust models, corrupting their decision-making. This causes models to make inaccurate or biased deci-
sions. Common in SIoT systems with AI/ML-based recommendations or decisions, these attacks distort 
trust and compromise model integrity by inserting malicious data into training datasets. The authors76 
propose VMGuard, a novel four-layer security framework designed to counter data poisoning attacks in the 
vehicular Metaverse. The attack scenario involves malicious SIoT devices injecting false or misleading data 
into the system to degrade service quality and user experience. VMGuard uses a reputation-based incentive 
mechanism powered by subjective logic to assess and manage the trustworthiness of participating SIoT 
devices, thereby ensuring secure and reliable data collection and service delivery.

	22.	 Black hole Attack: In this attack, a malicious node pretends to be the best route for data, but then secretly 
drops all incoming packets, disrupting communication. This can cause a Denial of Service (DoS) attack, 
where data is lost without any feedback. This type of attack is common in IoT/SIoT environments that 
rely on routing. Reference77 proposed a novel algorithm to detect and mitigate Black Hole attacks in IoT 
networks. The approach relies on node authentication, active monitoring by the sink node, and dynamic 
routing table updates to isolate malicious nodes. Simulations using NS2 and Simulink showed that the 
algorithm significantly restores throughput and packet delivery ratio (PDR) close to normal network con-
ditions, achieving a PDR of 98.21%, thus demonstrating its effectiveness against Black Hole attacks.

	23.	 Ballot Stuffing : Artificially boost a node’s trust or reputation. Colluding nodes give each other positive 
feedback regardless of their actual behavior. Gives high trust scores despite misbehavior. It could lead to 
Reputation inflation, trust system manipulation. Reference78 proposed a Multi-Dimensional Trust model 
(MDT) that effectively mitigates trust-based attacks such as ballot stuffing and bad-mouthing in VANETs. 
The model dynamically adjusts trust weights using an entropy weight method and filters out anomalous 
recommendations through the Median Absolute Deviation (MAD) algorithm. This helps prevent malicious 
nodes from falsely inflating the trust of colluding partners, a typical strategy in ballot stuffing attacks, there-
by enhancing the robustness and accuracy of trust assessments across the network.

	24.	 Zero day attack : It is a cyberattack that takes advantage of a previously unknown vulnerability in software, 
hardware, or firmware. Since the vulnerability is unknown to the vendor or developer, they have zero days 
to patch or fix it before the attack occurs. To tackle the difficulty of detecting zero-day attacks in edge-based 
SIoT systems, a heuristic intrusion detection system named DQN-HIDS was proposed. It employs a Deep 
Q-Network (DQN) integrated with an LSTM-based learning module to adaptively improve malicious traf-
fic identification under insufficient training data, demonstrating superior detection performance compared 
to conventional methods79.

	25.	 Bad-mouthing: In order to lower trust score of honest nodes, malicious nodes submit unjust negative 
feedback regardless of actual behavior, trustworthy nodes appear as untrustworthy. Reference78 mitigate 
bad-mouthing by using a median absolute deviation filter to discard anomalous indirect trust values, 
while80 apply evidence theory fusion to reduce the weight of untrustworthy feedback.

	26.	 Identity Spoofing attack: Spoofing attacks involve masquerading as a legitimate device or user to deceive 
systems, gaining unauthorized access or trust. By faking identities like IP or MAC addresses, attackers trick 
systems into accepting them as trusted. This active attack poses threats like data integrity loss, access control 
breaches, and trust exploitation, especially in IoT where malicious devices can send false data to manipulate 
systems. This52 research article developed an end-to-end ML-based framework to detect spoofing attacks in 
IoT environments, providing a unified detection model for both DNS and ARP spoofing.

	27.	 Snooping attack (Eavesdropping) : Eavesdropping involves intercepting and gathering sensitive infor-
mation from someone else’s data or communication without authorization. Attackers often passively listen 
in, capturing data like passwords or messages without altering it. For instance, an attacker might capture 
unencrypted Wi-Fi traffic to steal login credentials. This passive attack poses threats like privacy leakage 
and data theft. The IoTBeholder system, proposed by55, is a privacy snooping attack tool designed to infer 
user behaviors in smart homes by passively sniffing encrypted Wi-Fi traffic (802.11 packets), without any 
physical access or network credentials.

	28.	 Selective Forwarding Attack: Selective Packet Drop Attack involves a compromised node in an SIoT net-
work forwarding some packets while silently dropping others. This partial cooperation makes detection 
challenging. The attack degrades trust and causes packet loss, commonly affecting sensor-based SIoT com-
munication. Reference81 proposed FL-DSFA, a federated learning-based model that detects selective for-
warding attacks (SFA) in RPL-based IoT networks. It trains local ML classifiers on RPL traffic features (e.g., 
DIO, DAO, transmission rates) and aggregates them using Federated Averaging, preserving data privacy. 
The system achieves 95% accuracy and 97% recall, effectively identifying SFA while minimizing communi-
cation overhead.

	29.	 Sinkhole Attack: It involves a node falsely advertising itself as the most efficient path, attracting and rerout-
ing traffic through the attacker’s node. This enables traffic interception, manipulation, or denial of service 
(DoS). Such attacks are common in trust-based SIoT routing protocols, where nodes rely on trustwor-
thiness to make routing decisions. Researchers have proposed a hybrid edge-assisted intrusion detection 
system (EaHIDS) to detect and mitigate Sinkhole Attacks in 6LoWPAN-based IoT networks. This system, 
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introduced by59, utilizes a Gaussian Mixture Hidden Markov Model (HMM) to classify node behavior as 
Normal, Attacker, or Attacked, based on both host and network-level parameters. By integrating SHAP-
based feature selection and a lightweight blacklisting mechanism at the edge, the solution enhances detec-
tion accuracy and minimizes false positives, energy consumption, and packet loss. According to the study, 
the proposed method significantly outperforms existing approaches in terms of precision, recall, F1-score, 
and network efficiency, as validated through Contiki Cooja simulations and FIT IoT-LAB testbed experi-
ments.

	30.	 Coordinated / Collusive (Sybil-like Misbehavior)

	In coordinated or collusive Sybil-like attacks, multiple compromised SIoT nodes cooperate at the social or ser-
vice discovery layer to artificially boost each other’s reputation. When a new service request is issued, these 
colluding nodes upvote one another, biasing the trust engine so that malicious actors dominate and legitimate 
nodes are sidelined. The impact is a distorted trust landscape where attackers gain control over service provi-
sioning. Detection and mitigation approaches include game-theoretic intrusion detection models such as the 
Strategic Game Model (SGM)82 and multi-agent IDS frameworks83, which simulate collusive behavior and 
apply counter-strategies. Typical validation datasets involve simulation traces under random deployments 
with thousands of iterations.

Layered categorization in SIoT communication protocols:
In this subsection, we discuss the communication architecture in the Social Internet of Things (SIoT). In SIoT, 
the communication infrastructure is tailored for resource-constrained devices, dynamic social interactions, and 
scalability across heterogeneous networks. To meet these requirements, a simplified and layered communication 
model is often adopted, one that diverges slightly from the traditional 7-layer OSI model. The most practical and 
widely adopted layers for communication in the SIoT environment are summarized in Table 8. SIoT applications 
span multiple domains and are built upon these foundational layers.

Application Layer: The application layer in SIoT manages device-level services, user interactions, and 
social relationship management. Protocols like MQTT, CoAP, and HTTP operate here, defining how messages 
are formatted and exchanged using models like publish/subscribe or request/response, while also supporting 
authentication and trust. Once a message is generated using one of these protocols, it is transmitted over the 
network using either TCP (for reliable, ordered delivery) or UDP (for lightweight, fast communication). Finally, 
the message reaches its intended destination via the network layer, where IP addressing and routing (IPv4/IPv6) 
ensure proper delivery across the internet or local networks.

•	 MQTT (Message Queuing Telemetry Transport): A lightweight publish/subscribe protocol operating over 
TCP, suitable for smart homes and wearables where reliable delivery is crucial.

•	 CoAP (Constrained Application Protocol): A RESTful protocol operating over UDP, optimized for con-
strained, low-power devices that require minimal overhead.

•	 HTTP (Hyper Text Transfer Protocol): A request/response standard web protocol operating over TCP, com-
monly used for IoT dashboards and cloud services, though less efficient for constrained devices.Transport 
Layer: The transport layer ensures the delivery of messages either reliably or with low latency, using protocols 
such as TCP, UDP, TLS, and DTLS. Two main transport protocols are used here:

•	 TCP (Transmission Control Protocol): Provides reliable, connection-oriented, end-to-end communication, 
supporting features like acknowledgment, retransmission, and message ordering. It is used by protocols such 
as MQTT and HTTP, which require assured delivery.

•	 UDP (User Datagram Protocol): Fast and connectionless, offering low overhead but no delivery guarantees. 
It is used by CoAP, where quick delivery is prioritized over reliability, making it suitable for constrained en-
vironments.

•	 To secure communication at this layer:

	– TLS (Transport Layer Security): Operates on top of TCP, encrypting protocols like HTTP and MQTT, 
and providing confidentiality, integrity, and authentication.

	– DTLS (Datagram TLS): Operates on top of UDP, encrypting CoAP traffic and offering the same level of 
security as TLS, but tailored for the unreliable nature of UDP.Network Layer: Manages routing and ad-
dressing in large, dynamic Social IoT (SIoT) networks. It utilizes key protocols such as:

•	 IPv6: Provides a vast address space.
•	 6LoWPAN: Compresses IPv6 for low-power links.

Layer Roles in SIoT Handled By

Application Layer Manages device services,user interaction, social logic,message formatting MQTT, CoAP, HTTP, JSON, authentication models

Transport Layer Ensures message delivery(reliability, order, or speed); provides security TCP, UDP, TLS, DTLS

Network Layer Routes data using IP addressing IPv4, IPv6

Data Link Layer Device-to-device data transfer, MAC addressing WiFi, Zigbee, BLE

Table 8.  SIoT protocol stack layers and their functions.
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•	 RPL: Enables routing in lossy and constrained networks.

These protocols ensure efficient and secure routing across mobile and intermittently connected SIoT nodes.
Link Layer: Handles direct device-to-device communication, media access control, and error detection. 

Technologies at this layer include:

•	 BLE: Optimized for energy savings.
•	 Zigbee: Suitable for mesh-based automation.
•	 LoRa: Ideal for long-range, low-power applications.
•	 Wi-Fi: Supports high-bandwidth cloud access.

Layer-based existing security protocol in SIoT
This subsection addresses RQ4, highlighting how security is implemented across various layers of the SIoT 
architecture. Each layer incorporates specific security protocols aligned with its roles and inherent vulnerabilities. 
Table 9 provides a comprehensive mapping of SIoT layers, associated security protocols, their primary security 
objectives, and example attacks—illustrating how prevalent threats are distributed across the protocol stack. 

	1.	 Perception layer: When we collect data from devices like RFID tags, sensors, and actuators, we face some 
serious security threats. These devices can be compromised through node capture, fake node injection, or 
even physical tampering. To tackle these issues, we are turning to lightweight cryptography protocols such as 
PRESENT, HIGHT, or TEA which are designed specifically for devices with limited resources. To prevent ma-
nipulated or maliciously crafted service announcements in resource-constrained environments, lightweight 
cryptography solutions like SIMECK24 ensure strong ciphertext randomness and structural unpredictability, 
thereby resisting false service advertisement attacks. Although the Tiny Encryption Algorithm (TEA) is fast 
and simple, making it suitable for software implementation, it exhibits weaknesses in randomness. On the 
other hand, SIMECK is a lightweight cipher, but its security can be compromised with few rounds. Existing 
reduced-round ciphers, such as SPECK-R, require security enhancements to match the strength of their full-
round counterparts. To address these limitations, the SIMECK-T construction has been proposed, which 
combines the strengths of both SIMECK and TEA. SIMECK-T employs an outer layer of SIMECK rounds 
and an inner layer of embedded TEA rounds. This “nesting” of TEA within SIMECK enhances random-
ness, resistance to cryptanalysis, and security without relying on substitution boxes (S-boxes). SIMECK-T 
achieves these security benefits while remaining lightweight, making it suitable for resource-constrained 
environments.

•	 In SIoT environmet where devices are resource constrained, light weight cryptographic protocols like 
PRESENT are particularly suitable. The work by84 demonstrates a high-throughput hardware implemen-
tation of the PRESENT cipher optimized for medical IoT applications, highlighting its potential for secure 
and efficient communication in latency-sensitive and resource-limited SIoT systems.

•	 Advanced Encryption Standard(AES): Ref.85proposed a Relativity Strength Security Framework for SIoT 
that uses AES-256 encryption with relationship-derived keys to secure device communication. The frame-
work integrates Q-learning for adaptive routing and decision trees for service availability prediction, 
achieving 88.75% security effectiveness and 97.5% service availability. The novel use of social relationship 
strength as a basis for encryption makes it context-aware and more resilient to attacks.

•	 Eliptic Curve Cryptography (ECC) is a type of public key cryptography known for offering strong security 
with smaller key sizes, making it particularly suitable for lightweight environments such as IoT and SIoT. 
The work by Yang et al.86 demonstrates a hardware implementation of a lightweight two-phase authentica-

Exemplar 
Study SIoT Layer Key Security Mechanisms / Protocols Primary Security Goal Example Threats

24 Perception 
Layer

AES-CCM, ECC/ECDH, PUF-based keying, PKI, HMAC-SHA-256, 
secure boot / TrustZone-M

Authentication, data confidentiality, device 
integrity/identity

Device spoofing, physical 
tampering, key extraction

92 Network 
Layer

IEEE 802.15.4 security (AES-CCM*), 6LoWPAN, RPL (secure modes), 
IPsec/ESP (IPv6), Thread, LoRaWAN 1.1 security

Secure data transmission, routing integrity, 
link-layer confidentiality

Eavesdropping, wormhole, 
Sybil, link replay

91 Transport 
Layer TLS 1.3, DTLS 1.3, QUIC/HTTP/3 (where applicable) Encrypted transport, session security, 

forward secrecy
Replay, man-in-the-
middle, downgrade

94
Middleware 
/ Service 
Layer

OAuth 2.0, OpenID Connect, ACE-OAuth profiles, UMA 2.0, XACML 
(ABAC), Macaroons, Zero-knowledge proofs

Access control, delegated authorization, 
privacy-preserving authorization

Privilege escalation, token 
theft/misuse, profile 
inference

101 Application 
Layer

OSCORE+COSE/CWT, CoAP+DTLS, MQTT/MQTT-SN over TLS, 
LwM2M Security (DTLS/OSCORE), OPC UA Security, DDS Security, 
XMPP+TLS, JWT

End-to-end/object security for application 
data, secure messaging, session integrity

Spoofed messages, data 
leakage, injection/replay

103 Social Layer
Blockchain smart contracts, Verifiable Credentials / DIDs, reputation 
systems (Beta, EigenTrust, Subjective Logic), Sybil-resistant graph 
methods (e.g., SybilRank/Guard), game-theoretic trust models

Trust management, reputation validation, 
social relationship integrity, Sybil resistance

Bad-mouthing, ballot-
stuffing, fake relationship 
creation, collusion

Table 9.  Security mechanisms/protocols and threat mapping with referenced studies. OSCORE = Object 
Security for Constrained REST; COSE = CBOR Object Signing and Encryption; CWT = CBOR Web Token. 
Stack items like 6LoWPAN, IEEE 802.15.4, Thread, and LoRaWAN are listed as mechanisms where their 
security modes are employed.
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tion mechanism for Industrial IoT (IIoT) using ECC and trusted tokens to ensure secure communication 
and data integrity in resource-constrained environments. The proposed scheme offers robust security, ef-
fectively withstanding various types of attacks, including replay attacks, eavesdropping, man-in-the-mid-
dle attacks, and simulation attacks, while also providing strong mutual authentication and ensuring for-
ward secrecy.

•	 RFID security protocols protect the communication between RFID tags, readers, and backend servers, 
ensuring confidentiality, authenticity, integrity, and privacy. Given the limited computational power and 
storage of low-cost RFID tags, these protocols are designed to be efficient and effective.In scenarios where 
lightweight batch detection of counterfeit tags is required without revealing or managing individual hash 
functions, the Group-based Slot Constraint (GSC) scheme87 offers a scalable solution by exploiting slot 
correlation among tags within trusted groups. The authors88 proposed an ultra-lightweight RFID authen-
tication protocol (ULRARP+) suitable for low-cost RFID tags, addressing limitations of earlier schemes 
like HB+, which require multiple rounds, are vulnerable to man-in-the-middle attacks, and do not sup-
port mutual authentication or key updates. The proposed protocol uses only minimal operations such as 
XOR, rotation, and permutation. The authors justify the protocol’s security through both informal analysis 
(covering 12 types of attacks) and formal verification using GNY logic, and explicitly compare ULRARP+ 
with existing lightweight RFID protocols such as LRSAS+, LRARP, and LRARP+, demonstrating superior 
security and lower computational cost.

•	 Physical Unclonable Functions (PUFs) are like a unique DNA for electronic devices. They leverage tiny im-
perfections that occur during manufacturing to create an unclonable “digital fingerprint” that’s exclusive to 
each device. This provides a robust way to identify and authenticate hardware. The authors in89 propose a 
three-factor blockchain-based mutual authentication system that leverages Physical Unclonable Functions 
(PUFs) for hardware-based identity generation, providing resistance against cloning and impersonation 
attacks. The system includes both formal and informal security analyses, employs PBFT for consensus, 
and utilizes smart contracts for transaction validation and member verification. It also compares security 
features such as anonymity, revocation, confidentiality, and resistance to replay attacks with existing ap-
proaches.

	2.	 Network Layer : This layer is responsible for transmission of data between devices and servers. Various 
threats include Eveasdropping, Sybill attack, wormhole and DDOS.To handle these types of attacks various 
security protocols are discussed.

•	 IPSec (Internet Protocol Security): Secure communication at IP layer, to keep communication secure in 
SDN-controlled networks, the cryptographic keys used in IPsec must be updated periodically a process 
known as rekeying. While traditional IPsec deployments rely on IKEv2 to manage this process, IKE-less 
SDN environments delegate rekeying responsibilities to the SDN controller. Reference90 addressed this 
by designing, implementing, and evaluating four distinct rekeying algorithms. All four approaches aim to 
securely replace expired IPsec Security Associations (SAs) without disrupting ongoing communication. 
These algorithms differ primarily in two aspects such as the timing of inbound and outbound SA installa-
tion, and the mechanism used to remove old SAs—either explicitly or implicitly.

•	 DTLS (Datagram Transport Layer Security): They proposed a modified91 DTLS handshake protocol that 
replaces traditional X.509 certificates with LightCert4IoT, a compact, self-signed certificate framework 
verified through the Ethereum blockchain. This approach reduces cryptographic overhead, energy con-
sumption, and handshake delay, making it suitable for resource-constrained IoT devices. By leveraging 
blockchain-verified lightweight certificates and decentralized device registration, LightCert4IoT mitigates 
common IoT authentication threats, including rogue certificates, DoS vulnerabilities, and central PKI 
compromise.

•	 6LoWPAN Security Extensions: Low-power IoT devices have some challenges such as they run on tiny 
batteries, have limited memory, and send small packets of data (like 127 bytes). But when they need to talk 
to the internet, things get tricky. IPv6, the standard internet protocol, has big headers (40 bytes) that don’t 
fit well with these tiny packets. That’s where 6LoWPAN comes in, it’s a special protocol that helps IPv6 
work efficiently over low-power wireless networks, like those used in Zigbee and Thread devices. It makes 
it possible for these small devices to communicate with the internet without wasting energy or resources. 
Reference92 propose SLGAS, a lightweight group authentication protocol for 6LoWPAN networks with 
PMIPv6 support. SLGAS uses temporary IDs, alias identities, and aggregated MACs to provide secure 
mutual authentication for resource-constrained sensor nodes, while protecting against threats like key 
leakage, replay attacks, and impersonation. RPL Secure Mode: Secure routing in low-power networks, the 
secure mode of RPL has some security limitations, like relying on static symmetric keys that can be vulner-
able to attacks. To address this, ref.93 came up with a new solution that uses ECDH (a type of cryptographic 
technique) to dynamically generate session keys and add extra layers of authentication. This approach 
makes it harder for attackers to intercept or impersonate devices, while also being efficient in terms of 
computation and communication resources.

•	 OAuth 2.0 / OpenID Connect: OAuth 2.0 allows third-party apps to access a user’s resources without 
sharing their login credentials, granting limited access instead. OpenID Connect builds on OAuth 2.0 by 
adding a layer of authentication, enabling apps to verify a user’s identity and retrieve basic profile infor-
mation. Reference94 OIDC 2 enhances OpenID Connect by introducing short-lived, JSON-based Identity 
Certification Tokens (ICTs) for secure, end-to-end user authentication. They implemented the protocol by 
extending existing OIDC servers and evaluated its use in real-world applications such as video conferenc-
ing, instant messaging, and email. Their approach effectively addresses security threats like token replay, 
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impersonation, and key compromise through mechanisms like proof-of-possession and ephemeral keys, 
offering a user-friendly alternative to PGP and S/MIME.

	3.	 The Transport Layer: It is responsible for ensuring reliable data transmission, flow control, error checking, 
and congestion avoidance between socially connected IoT devices over a network. Unlike traditional internet 
applications, SIoT nodes are often resource-constrained, mobile, and interact in dynamic social relation-
ships, which places unique demands on this layer.

•	 TLS/SSL:95 propose a TLS 1.3 handshake extension that replaces traditional X.509 certificates with Ver-
ifiable Credentials (VCs), enabling Self-Sovereign Identity (SSI) authentication directly at the transport 
layer. Their approach, fully compliant with RFC-8446 and RFC-7250, minimizes changes to the TLS state 
machine by leveraging existing extensions and introduces a new (didmethods) field for decentralized 
identifier resolution. Implemented in OpenSSL and tested on IoT hardware using the IOTA Tangle as the 
DLT, the solution demonstrates competitive handshake latency, hybrid authentication support, and scala-
ble identity management for large-scale IoT deployments.

•	 DTLS : Recent efforts like LightCert4IoT91 propose replacing traditional X.509 certificates with light-
weight, blockchain-stored credentials, significantly reducing DTLS handshake time and energy overhead, 
while supporting decentralized trust—an important advancement for constrained SIoT environments.

	4.	 Middleware/Service Layer: The Middleware/Service Layer handles data processing, service discovery, and 
trust management to mitigate threats like malicious service ads, privilege escalation, and profile inference. 
The security protocols employed at this layer are reviewed below.

•	 XACML (eXtensible Access Control Markup Language): XACML is a standard access control policy lan-
guage developed by OASIS. It’s primarily XML-based (with adaptations for JSON possible) and supports 
attribute-based access control (ABAC). This makes it highly flexible and capable of fine-grained control, 
allowing for precise and detailed access control decisions. Reference72 came up with a new access control 
framework for educational IoT settings, building on the XACML model. Their approach adds a social twist 
by considering device relationships and trust levels when making authorization decisions. They also in-
troduced a way for delegation and prioritized rules, all secured through blockchain technology. This setup 
ensures decentralized and tamper-proof access control, effectively protecting against threats like Man-in-
the-middle and Replay attacks.

•	 RBAC/ABAC(Role/Attribute-Based Access Control): Policy enforcement mechanisms, Ref.96 proposed a 
multi-factor authentication and key negotiation scheme for smart factories, combining Role-Based Access 
Control (RBAC), Elliptic Curve Cryptography (ECC), secret sharing mechanisms, and access control lists 
(ACLs). The scheme supports mutual authentication, session key agreement, forward secrecy, and user 
anonymity, and is resistant to replay attacks, masquerading, and smart card/device theft. Formal security 
analysis using BAN logic confirms the correctness of the authentication and key establishment processes.

•	 Blockchain-Based Access Control: Immutable logs and smart contract enforcement, although the system97 
does not implement traditional access control models like RBAC or ABAC, it achieves blockchain-based 
enforcement through cryptographic authentication (ECDSA), smart contract logic restriction, and im-
mutable logging. Only entities with valid private keys can invoke contract functions, and all actions are 
traceable on the Ethereum ledger, enabling tamper-proof, auditable enforcement suitable for secure IoT 
data management.

•	 Reputation-based Protocols: Trust scores are based on device behavior history. Reference76 proposed 
VMGuard, a four-layer reputation-based security framework that mitigates data poisoning attacks in the 
vehicular Metaverse. The system uses blockchain to maintain immutable reputation profiles for SIoT de-
vices and enforces trust-based access to semantic data sharing. A subjective logic model evaluates SIoT 
behavior across interactions, and only trusted devices are allowed to contribute data, achieving effective 
access enforcement through decentralized trust evaluation.

	5.	 Application Layer: The application layer provides the user interface, data presentation, and application logic, 
making it vulnerable to threats like spoofing, data leakage, and user impersonation. To mitigate these risks, 
implementing robust security protocols is essential.

•	 SSL/TLS: Secure communication channels, Ref.98 introduced Threat-TLS, a network tool that detects sus-
picious TLS connections by analyzing traffic for threat patterns like outdated protocols, weak ciphers, and 
flawed certificates. Integrated with popular tools, Threat-TLS validates threats using CVE data and actively 
checks for vulnerabilities, enabling near-real-time detection of compromised TLS configurations.

•	 JSON Web Token (JWT): Authentication and secure session management. Reference99 introduced a secure 
cloud data storage system utilizing JSON Web Tokens (JWT) for stateless, token-based authentication. This 
approach, when applied to IoT and Social IoT environments, supports scalable, lightweight, and secure 
access control mechanisms—offering interoperability with multi-cloud storage, time-based OTP, and TLS 
channels to ensure confidentiality and authenticity across distributed nodes.

•	 Two-Factor Authentication (2FA): Enhanced user verification. Reference100 introduced a two-factor au-
thentication scheme utilizing smart cards for IoT-enabled Telecare Medical Information Systems (TMIS). 
Designed with resource-constrained biomedical devices in mind, the scheme leverages Hyperelliptic Curve 
Cryptography (HECC) to reduce computational and communication costs. It achieves mutual authentica-
tion, secure session key establishment, user anonymity, and strong resilience against various attacks such 
as replay, impersonation, and denial-of-service. The scheme’s security is validated through both informal 
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analysis and the formal Real-Or-Random (ROR) model, while performance comparisons demonstrate its 
enhanced efficiency and cost-effectiveness over traditional ECC-based approaches.

•	 Digital Certificates / PKI: End-to-end encryption and device identity validation. Reference101 present Ti-
nyOCSP, a lightweight certificate revocation protocol designed for constrained IoT devices. By optimizing 
PKI validation workflows using CBOR/CoAP and Bloom-filter-based CRLs, they enable scalable, ener-
gy-efficient digital certificate management in resource-limited environments, facilitating end-to-end PKI 
deployment in IoT.

	6.	 Social Layer (SIoT-Specific):This layer oversees the social dynamics among IoT devices—such as ownership 
ties, friendships, and neighbor associations. It faces specific threats like trust manipulation attacks (e.g., 
ballot stuffing and bad-mouthing) and the creation of fraudulent social links. To ensure reliable interactions, 
appropriate security protocols or models must be integrated to detect and mitigate these risks.

•	 Trust Management Models (e.g., TIRec, F-TRM): Infer and update trust scores. Trust Management Mod-
els for SIoT include solutions like TIRec and F-TRM. The F-TRM model34 dynamically evaluates trust 
based on device friendliness and transactional feedback. It incorporates privacy-preserving mechanisms 
using GA-based pseudorandom encryption and Attribute-Based Encryption (ABE), offering robust de-
fense against false recommendations, impersonation, and social trust attacks. Its adaptability and layered 
cryptographic protections make it a suitable trust model for SIoT security protocols.

•	 Social Relationship Validation Protocols: Authenticate and validate declared relationships, Trust–SIoT102 
integrates social relationship validation into its trust framework by modeling object-to-object ties (OOR, 
POR, CLOR, etc.) as a knowledge graph. Using RotL-based knowledge graph embeddings, the framework 
quantifies relationship strength (C-DoR), which is then incorporated into a neural network-based trust 
classifier. This approach serves as an implicit social relationship validation protocol in the trust evaluation 
process.

•	 Blockchain with Smart Contracts: Record social interactions immutably SCoTMan, proposed by103, is a 
blockchain-based trust model for Social Internet of Things (SIoT) that leverages smart contracts on Hy-
perledger Fabric. By combining Bayesian trust evaluation with social similarity-based recommendations, 
SCoTMan tackles scalability and security issues in resource-constrained IoT environments, ensuring ro-
bust trust management and low overhead.

•	 Game-Theoretic Approaches: Detect and mitigate collusion in trust feedback, building on game theory, 
Ref.104 developed GAZETA, a zero-trust authentication framework for 5G IoT networks that effectively 
counters lateral movement attacks. By integrating Markov games and Bayesian updates with multi-source 
evidence, GAZETA enhances cyber resilience and optimizes access control based on dynamic trust scores.

•	 Interoperability and discovery protocols: Key discovery and interoperability protocols in SIoT include 
mDNS, DNS-SD, UPnP, and DDS, which enable devices to identify and interact with socially relevant 
peers. mDNS( multicast DNS) allows devices to resolve names without a central DNS server by using 
multicast within local networks (e.g., finding smartlight.local), while DNS-SD( DNS based service dis-
covery) works alongside mDNS to advertise device services such as a smart fridge offering temperature 
monitoring. UPnP (Universal plug and play) facilitates automatic discovery and interaction among devic-
es, commonly used in home automation despite some security concerns. DDS (Data distribution service 
) is a real-time, high-performance publish/subscribe middleware with built-in Quality of Service (QoS), 
widely used in robotics, autonomous systems, and industrial IoT for reliable and scalable data sharing.
In SIoT communication, certain OSI layers are typically excluded or abstracted due to the nature of con-
strained devices and simplified architectures. The session layer is often merged into the application layer, 
as explicit session control is minimal. The presentation layer is also bypassed, with functions like data 
formatting and encryption handled directly by application (e.g., JSON) or transport protocols (e.g., TLS). 
Similarly, the physical layer is implicitly managed by link-layer technologies such as BLE and Zigbee, and 
is rarely exposed or configured directly in SIoT protocol stacks.105 implemented and evaluated a low-cost 
smart refrigerator system that enables users to interact with the device through a mobile application and 
voice commands. The system captures fridge contents using a Night Vision camera and performs object 
detection using a lightweight YOLOv5n model, which was deployed on both Raspberry Pi and Android 
platforms using TensorFlow Lite. Their work focuses on application-layer functionalities such as remote 
access, natural language interaction, and cloud-based image retrieval over HTTPS.

Emerging trends and applications of SIoT
This section addresses RQ5, focusing on emerging trends in SIoT research and their reflection in practical, real-
world applications. As shown in Table 10 and Fig. 12, various SIoT applications are categorized and illustrated, 
including domains such as smart healthcare, transportation, logistics, and industrial IoT.

Emerging trends in SIoT
1. AI-Driven SIoT

The work in106 implemented an AI-driven digital city platform leveraging various technologies such as IoT, 
AI, cloud computing, big data, and cybersecurity to create an intelligent and data-driven urban management 
system. Specifically, focusing on Indonesian cities to enable them to regulate the data-based governance system 
with real-world implementation in Semarang city.

2. Blockchain for SIoT
The research proposed in107 develops a simulation-based blockchain SCM to improve trackability, security, 

and efficiency in shipment tracking; they have implemented a digital ledger where each item has been assigned a 
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Figure 12.  Applications of social internet of things (SIoT).

 

Ref. 
No. Domain Use Case Technique Proposed Method Key Features Outcome / Benefit Limitation

120
Smart 
Healthcare 
IoT

Smart hospital 
provisioning (ECG, 
kiosks)

LSTM (Traffic), GBDT 
(Delay), DQN (Rate), 
ML-RASPF

Mobility-aware 
provisioning

Latency and SDR co-
optimization, predictive AI

↓20% latency, ↑18% 
SDR, ↓19% energy

Simulation-only; 
no adversarial 
evaluation

115 Smart City Urban water pressure 
anomaly prediction IoT, LSTM, MQTT

Optimized LSTM 
with seasonal time 
features

Real-time forecasting, 
median filtering, rolling 
window

4.79% MAPE; faster 
emergency response

Limited dataset; no 
external simulation 
tools

129 Smart 
Agriculture

Precision farming 
with supply chain 
transparency

AI, IoT, Edge/Cloud, 
Blockchain, Drones

AI-based SoS 
framework 
(Agricultural 
Intelligence Model)

Sensor monitoring, 
predictive analytics, 
traceability, precision 
irrigation

30% water savings, 
20% yield quality 
improvement, 40% 
pesticide reduction

Connectivity issues; 
high adoption cost; 
limited expertise

131

Smart 
Logistics 
/ Smart 
Factory

Dynamic path planning 
for AGVs under 
real-time warehouse 
conditions

Reinforcement Learning 
(Categorical DQN), CPS

DSSIF framework 
integrating CPS + 
RL for AGV routing, 
coordination

Real-time data integration, 
multi-AGV coordination, 
battery-aware dispatching

↑Order completion 
( 20%), ↓travel distance, 
better adaptability

Uneven workload 
among AGVs; local 
optima; simulation-
only

133 Smart Grid Emergency-aware 
energy optimization

ANN, MILP, 
PowerFactory

EMS optimizer + 
ANN-based RES 
forecast

Autonomy maximization, 
CO2 impact analysis

Up to 46% autonomy 
loss recovery; 25% RES 
curtailment

Single-grid focus; 
lacks real-world 
deployment

122 Humanoid 
Robotics

Real-time object 
detection and 
interaction for a small 
humanoid robot

Tiny-YOLO, ESP32-
CAM, Python, HC-SR04

Lightweight 
vision system with 
decentralized control

Real-time streaming, 
object detection, distance 
estimation, modular setup

High accuracy (up 
to 0.99), low latency 
(0.028s), low-cost design

Limited range (≤
200 cm); relies on 
external PC for 
decisions

113 Smart 
Home

Intrusion detection 
in fog-assisted IoT 
networks

Federated Learning, 
LSTM, Fog Computing

2FIDS: Fog-Federated 
Intrusion Detection 
System

Decentralized, privacy-
preserving, secure 
gRPC+TLS, scalable to 
15 nodes

>96% accuracy (BoT-
IoT, TON-IoT);  86% 
(MQTTset); reduced 
latency

Lower accuracy 
on rare attacks; 
non-IID impact not 
analyzed

123 Smart 
Energy

On-demand EV 
charging and energy 
delivery via SMPBs

Bi-level Optimization, 
MILP

Coordinated routing 
and scheduling of 
SMPBs for EV and 
V2G

Integrates EV demand, 
traffic, and grid signals

↑Charging efficiency, ↑
grid reliability, ↓unmet 
demand

Relies on accurate 
demand forecasts; 
real-time scalability 
concerns

130
Smart 
Mobility / 
Traffic

Outlier detection in 
traffic flow streams

SDE, GPR, Whale 
Optimization

Bayesian SDE-GPR 
with sliding window + 
likelihood test

Captures drift/diffusion; 
bootstrapped thresholding; 
adaptive

↑AUC to 0.938; ↓FPR 
to 1.95%; 13.3% more 
accurate than baseline

Diffusion instability; 
high-frequency data 
complexity

Table 10.  Review of application-based studies in SIoT.
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unique ID, ensuring immutability through the hash pointer connecting transaction blocks. In addition, they have 
implemented IoT base real-time tracking using navigation and communication sensors to monitor shipment 
and detect lost items. They integrate machine learning technique for backorder prediction using customer data 
from Kaggle to train models like SVM, KNN, Random Forest and AdaBoost, the performance evaluation shows 
that random forest shows surpass over other models. Reference108 proposed a decentralized Ethereum-based 
payment framework tailored for low-connectivity environments. The model integrates auxiliary nodes, smart 
contracts, and incentive-driven auditors to enhance trust. Empirical results showed a 79% reduction in block 
time, 28% increase in throughput, 30% lower energy consumption, 68% shorter confirmation time, 63% reduced 
execution time, 46% higher block production rate, and 82% reduced network variability, offering a resilient and 
secure architecture applicable to SIoT contexts.

3. Edge and Fog Computing 
This paper109 proposes a double auction-based incentive mechanism called Truthful Auction for Fog Systems 

(TAFS) to enhance IoT applications in offloading computing networks. TAFS incentivizes fog nodes to share 
idle resources, maximizing resource utilization while maintaining fairness and truthfulness. It ensures economic 
properties such as truthfulness, individual rationality, and budget balance. The paper also presents a heuristic 
algorithm to efficiently allocate resources, minimizing latency. Simulations demonstrate that TAFS improves 
system efficiency, user experience, and fairness compared to previous methods.

4. Integration of 5G and SIoT
The analysis presented in110 demonstrates the integration of blockchain and the Social Internet of Things 

(SIoT) by proposing a hybrid trust management system. This system ensures secure, decentralized and reliable 
communication between autonomous devices within 5G networks, which is optimized for environments 
with constrained devices and can function effectively even in partial or no coverage scenarios using local 
trust mechanisms. In addition, it provides security against Sybil attacks and malicious tampering through the 
application of blockchain technology.

6. Digital twins in SIoT:
They111 have introduced a new innovative approach, a software-based security layer called ’CommandFence’, 

a framework based on the concept of digit twin for smart home systems compared to the existing access control 
mechanism, which significantly improves security without requiring hardware changes; that prevents risky states 
from being encountered when an application command interacts with human activities and environmental 
variations. In112, they have designed and developed a Digital Twin Authoring Tool (DTAT) that creates real-
time digital replicas of physical objects to facilitate smart cities in optimizing transportation and urban planning 
using 3D modeling, VR and simulation techniques.

SIoT applications
The applications of SIoT span across various industries, enabling connected devices to communicate, coordinate, 
and make autonomous decisions while integrating social interactions. SIoT is expanding across various industries 
such as industrial manufacturing, retail and e-commerce, automotive and transportation, smart homes, etc. As 
shown in Fig. 12, various SIoT domains exist. 

	 1.	 Smart Homes and Personal Assistants  According to this analysis111, they have examined the access con-
trol mechanism in voice-controlled systems within multiuser environments, specifically focusing on Ama-
zon Alexa. They have identified two critical vulnerabilities, such as the use of simple commands and target-
ed commands. They have revealed security flaws in the existing voice control mechanism by highlighting 
its risk and providing recommendations to enhance security while also encouraging service providers to 
improve access control. They113 proposed 2FIDS, a fog-based federated learning intrusion detection sys-
tem for smart homes. It allows IoT devices to collaboratively train a deep learning model (LSTM) without 
sharing raw data, preserving privacy. The system operates at the fog layer using secure communication 
(TLS over gRPC), ensures trusted client registration, and applies model compression to reduce latency and 
overhead. It is tested on three real IoT datasets (BoT-IoT, TON-IoT, MQTTset), achieving high detection 
accuracy (>96

	 2.	 Smart Cities

	This study demonstrates114 by the integration of RPA, LCDP, ISSP to optimize smart city automation. Robotic 
Process Automation (RPA), which is a software technology that automates repetitive, rule-based digital tasks 
(more like a bot that mimics human actions on a computer), acts as a sensing tool alongside technologies 
like IoT devices, sensors, and APIs, it works within the ISSP. It is used for automating rule-based digital tasks 
(e.g., web scraping, data entry). RPA mimics human interaction with web portals and databases to collect 
and integrate data (e.g., extracting flood report from government websites). Low-Code Development Plat-
forms (LCDP) and the Integrated Smart System Platform (ISSP) to optimize smart city automation. LCDP 
enables non-programmers to design automation workflow using a drag and drop interface. ISSP is the core 
framework for automation by integrating different data sources, IoT devices, AI while RPA can help extract 
and process unstructured data that traditional IoT cannot handle.They115 proposed an IoT-enabled LSTM-
based model for predicting pressure anomalies in urban water supply systems. Using real-time sensor data 
and seasonal time features (month, hour, day type), their optimized LSTM model achieved a MAPE of 4.79%, 
enabling early accident detection and faster emergency response. The study used a real-world prototype in 
Gomel, Belarus, and highlighted the benefits of using deep learning for smart city infrastructure monitoring, 
though it was limited by dataset duration and lack of standard simulation tools. In this paper they116 proposed 
a graph-based scalability enhancement scheme for Ethereum blockchains, introducing a Proof-of-Validation 
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(PoV) consensus with auditor nodes, hash-binding, and efficient replication/retrieval to reduce storage over-
head. The scheme was implemented in Python and simulated with 2000 nodes, 10–50 transactions per block, 
and up to 50,000 blocks. Results show that nodes require only 15 MB storage overhead (vs. ∼8 GB in conven-
tional Ethereum), new node configuration takes ∼370 ms (≈ 320× faster than 4–5 h in baseline Ethereum), 
and retrieval/validation achieves significantly higher throughput, >30% lower latency, and reduced process-
ing time compared to EBC, ESSE, and ESM models. These improvements make the design well-suited for IoT 
and smart city SIoT deployments where scalability and trust are critical.

	 3.	 Healthcare and Wearable Technology 

	In their study117 they provide a valuable insight into comparative performance analysis of popular wearable 
devices such as Fitbit Sense, Empatica E4, and GSR3 plus to monitor electrodermal and cardiac activities.118 
provides detailed information on current technologies in AI and available wearable devices dedicated to sex-
ual health. This study119, indicates that by incorporating technologies such as machine learning, the social 
Internet of Things, and cloud architecture, one could improve the provision of healthcare service in cities by 
ensuring accurate and time-sensitive data distribution, leading to efficient healthcare management. It pro-
vides a detailed review while emphasizing Internet of medical Things, its emerging technologies, also provides 
analysis of for disease prediction and remote monitoring innovative approaches for integration of ML and AI 
in IoMT. Privacy and security measures by providing advanced cryptographic solutions and incorporating 
blockchain technology for data protection. In this work120 authors proposes ML-RASPF, a machine learn-
ing-based framework for real-time and rate-adaptive IoT service provisioning in smart healthcare environ-
ments. It utilizes a mist-edge-cloud architecture and integrates LSTM for traffic prediction, GBDT for delay 
estimation, and Deep Q-Network (DQN) reinforcement learning for adaptive control. The framework jointly 
optimizes latency and service delivery rate, outperforming four baselines in simulation. It achieves up to 20% 
lower latency, 18% higher throughput, and 19% reduced energy consumption, making it suitable for dynamic, 
QoS-critical healthcare applications.

	 4.	 Industrial IoT (IIoT) and smart Manufacturing:Their paper121 introduced “federated learning” for priva-
cy-aware decentralized training. This method optimizes communication and power resources while ensur-
ing high data transmission for device-to-device communication and cellular users in 6G IIoT digital twin 
edge networks. Improve network throughput and reduce inference.

	 5.	 Smart Environment  The authors122 developed a low-cost, real-time computer vision system for a small 
humanoid robot using an ESP32-CAM and a lightweight tiny-YOLO model, enabling accurate object de-
tection and decision-making in crowded environments with minimal hardware requirements.

	 6.	 Smart Energy 

	The paper123devises an integrated MILP-based solution to optimize the deployment of Smart Mobile Power 
Banks (SMPBs) for on-demand electric vehicle charging and vehicle-to-grid (V2G) support, leveraging a 
bi-level optimization framework and real-world data for simulation-based evaluation. A blockchain-en-
hanced AI framework has been proposed to improve power consumption prediction in smart grids. The 
system incorporates Z-Score normalization and spatial-temporal correlation (STC) for data preprocessing 
and feature extraction, while forecasting is handled by an LSTM-RNN optimized using the Improved Sparrow 
Search Algorithm (ISSA). To ensure secure and decentralized data exchange, it integrates a blockchain-based 
authentication and authorization (DAA) mechanism. The BSET-AVVO protocol enables low-latency com-
munication and adaptive Volt-VAR optimization for real-time demand response. According to124, this mod-
el demonstrates superior performance over existing methods in terms of MSE, energy efficiency, latency, 
throughput, and response time. Reference125 developed a decentralized application using Ethereum smart 
contracts to manage power balancing in renewable energy grids with prosumers. Their prototype, tested on 
the Volta testnet, ensures non-repudiable command dissemination, trustless modulation execution, and pro-
sumer accountability. The system supports up to   290 distributed energy resources (DERs) before hitting 
performance limits due to transaction delays, gas costs, and network congestion. The study emphasizes the 
suitability of blockchain for secure, scalable energy coordination, but also highlights the constraints of public 
Ethereum networks under time-sensitive loads.

	 7.	 Autonomous Vehicles and Smart Transportation: 

	This study126 provides an in-depth analysis of the Tesla Model 3 standard range with lithium iron phosphate 
cells. Provides open-source experimental data on powertrain efficiency, range, and operation strategies. This 
could be valuable information for improving electric vehicle technology, mitigating environmental impact, 
and supporting the transition to clean energy.

	 8.	  Agriculture and Precision Farming: The research presented in127 provides us with comprehensive biblio-
metric analysis to explore global trends, and emerging research gaps in IoT-driven soil less farming, it high-
lights various aspects of opportunities and challenges in using IoT-enabled smart precision farming in soil 

Scientific Reports |        (2025) 15:40190 31| https://doi.org/10.1038/s41598-025-23865-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


less agriculture, analyzed technological advances for real-time monitoring automation and AI-driven de-
cision making for improved crop production, and identified obstacles (such as energy consumption, tech-
nological dependency, and the need for specialized expertise), also they have examined the leading nations 
and institutions at the cutting edge of research in this field. They emphasize that interdisciplinary research, 
policy support, and technological advancement will be essential for developing global smart farming solu-
tions. They128 have provided a better solution for a smart farming using machine learning techniques by 
developing a Smart farming System. The workflow of this system is done in five stages which includes data 
acquisition (Rice Seedling and WeedNet datasets), feature extraction (MobileNet architecture), classifica-
tion (SVM to distinguish between rice and land and crops and weed), segmentation (K-means clustering) 
and performance evaluation (accuracy, precision, recall, and F1 score). They successfully demonstrated 
from their result the higher efficiency in classification, weed detection, and precision agriculture. Refer-
ence129 proposed an AI-driven agricultural intelligence model combining IoT sensors, cloud analytics, edge 
computing, and blockchain to enable precision farming, pest control, and supply chain transparency, show-
ing improvements like 30% water savings and 20% increase in crop quality.

	 9.	 Smart mobility 

	To address the challenge that traffic outlier detection struggles with real-time performance and fails to properly 
handle the randomness and uncertainty in traffic flow data, the authors130 proposed a solution by combining 
Stochastic Differential Equations (SDEs) with Gaussian Process Regression (GPR) to create a framework ca-
pable of modeling both deterministic trends and random fluctuations in traffic data. They leveraged Bayesian 
inference, employed the Whale Optimization Algorithm (WOA) for hyperparameter tuning, and used a boot-
strapped thresholding method to control the false positive rate. The model was evaluated using real-world 
traffic data from California’s PeMS dataset and compared with baseline methods such as polynomial regres-
sion and standalone GPR. The proposed method achieved high performance with an AUC of 0.938, FPR of 
1.95%, and MSE of 0.0013, outperforming the baseline approaches.

	10.	 Smart logistics

	The authors131developed a reinforcement learning-based framework to dynamically plan and control the paths 
of multiple automated guided vehicles (AGVs) in smart warehouses. Their model integrates real-time data 
from IoT and CPS systems to optimize AGV routing, task assignment, and battery management. They validat-
ed their approach through simulation, showing improved order completion rates and reduced travel distances 
compared to traditional optimization methods.

	11.	 Smart retail and supply chains: In132, they have conducted a game theory based analysis to compare dif-
ferent financing strategies with and without blockchain. They have analyzed the approach of mathematical 
modeling of financing by considering two scenarios such as non-cooperative vs. cooperative, with and 
without blockchain. They have proposed a risk sharing mechanism to improve finance coordination in the 
supply chain, with the numerical analysis they were able to realize that the impact of blockchain adoption 
would have potential benefits and provide decision making insight for financial managers and supply chain 
participants.

	12.	  Smart Grid : The authors133 developed a novel optimization algorithm to assess and manage smart grid 
operations under emergency conditions. Their method integrates a Mixed-Integer Linear Programming 
(MILP) optimizer with Artificial Neural Networks (ANNs) to forecast renewable energy (PV and wind) 
production. The goal is to maximize grid autonomy while minimizing CO2 emissions and energy cur-
tailments. The system dynamically adapts to the disconnection of key components (e.g., PV, BESS, diesel 
generator) and evaluates the impact of 15 emergency scenarios on autonomy, sustainability, and post-emer-
gency recovery. The solution is tested on a real smart grid model in Spain using PowerFactory, forming part 
of the EU Horizon 2020 TIGON project.

Technology
This section addresses RQ6, focusing on the integration of three key technologies—Blockchain, Edge/Fog/Cloud 
Computing, and AI/ML—within IoT and SIoT environments. For Blockchain, we discuss core features such as 
smart contracts, immutable ledgers, consensus mechanisms, blockchain types, and typical blockchain workflows. 
We then introduce the role of edge, cloud, and fog layers in enhancing SIoT functionality. Additionally, we 
explore the capabilities of AI/ML, including common ML techniques used in SIoT. For each technology, recent 
studies (2023–2025) are reviewed to demonstrate their benefits, limitations, and applications in enabling secure, 
intelligent, and decentralized SIoT operations.

Blockchain technology
Blockchain in SIoT serves as a decentralized ledger that records interactions, enables secure transaction logging, 
and supports trust frameworks through smart contracts and consensus mechanisms. It enforces a tamper proof 
permanent record, enables decentralized trust and identity management, and allows secure service access with 
detailed interaction logging. This eliminates reliance on central authorities, enhances transparency and data 
integrity, and helps prevent trust manipulation and data forgery. However, challenges include scalability issues 
such as latency and energy use on public chains, increased storage and resource demands on IoT devices, and the 
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complexity of integrating smart contracts with flexible trust models. Reference134 classify blockchain systems into 
public and private types, where public blockchains like Bitcoin and Ethereum enable unrestricted participation, 
while private blockchains such as MultiChain limit access to verified entities. They also examine key consensus 
mechanisms—including Proof of Work (PoW), Proof of Stake (PoS), Practical Byzantine Fault Tolerance 
(PBFT), and Delegated Proof of Stake (DPoS)—each offering distinct trade-offs in energy efficiency, scalability, 
and trustworthiness. The study introduces smart contracts as autonomous, self-executing code blocks embedded 
within blockchain networks, allowing agreements to unfold without third-party intervention. Additionally, it 
emphasizes the immutable, tamper-proof, and auditable nature of blockchain and IOTA technologies, both of 
which reinforce data integrity and trust in decentralized environments.

A. Smart Contract: A smart contract is like a digital agreement that automatically executes when certain 
conditions are met, with rules and actions written into code. It’s similar to a vending machine where you put in 
money, select a snack, and the machine dispenses it, automating processes and ensuring all parties follow the 
rules without intermediaries.

B. Immutable ledger: An immutable ledger is a record book that can’t be altered or deleted once something 
is written in it. It’s like a permanent, transparent diary that keeps a history of all transactions or events, ensuring 
their accuracy and trustworthiness. Think of it like a notarized document, but digital, where every entry is time-
stamped and linked to previous entries, making it tamper-proof and reliable.

C. Consensus mechanism:
The consensus in blockchain is a protocol that ensures that all nodes agree on the ledger’s state, preventing 

issues like double-spending and maintaining integrity. It’s crucial for trust and security, especially in dynamic 
environments with resource-constrained devices, where selecting the right consensus algorithm impacts 
scalability, security, and energy efficiency. Types of Consensus Mechanisms as follows : 

	1.	 Proof of Work (PoW): Used in Bitcoin, but high computational cost makes it unsuitable for SIoT due to en-
ergy and time constraints.

	2.	 Proof of Stake (PoS): Validators are chosen based on their stake in the network, more energy-efficient than 
PoW, but may require reputation-aware modifications for SIoT contexts.

	3.	 Practical Byzantine Fault Tolerance (PBFT): Tolerates malicious or faulty nodes (up to 1/3), often used in 
permissioned blockchains, suitable for closed SIoT networks like smart cities or vehicular networks with 
known node identities.

	4.	 Delegated Proof of Stake (DPoS): Users vote for a small group of validators, offering high throughput and 
faster consensus, useful for lightweight or semi-centralized SIoT.

	5.	 Proof of Authority (PoA): Consensus is reached by a few trusted nodes, suitable for private SIoT deploy-
ments like industrial IoT with known stakeholders.

	6.	 Federated Consensus: Used in systems like Ripple or Stellar, devices agree via trusted subsets or quorum 
slices, ideal for trust-based SIoT environments.D: Types of Blockchain Different types of blockchain such 
as public, private, consortium, and hybrid are used based on the specific requirements and trust model of 
the application, such as data privacy, access control, decentralization level, and scalability. As summarized in 
Table 11, different blockchain architectures offer varying levels of transparency, scalability, and suitability for 
SIoT environments. Each type is briefly described below. 

	1.	 Public Blockchain:A public blockchain is open to everyone, fully decentralized, and allows anyone to join, 
view, and participate in the network. Examples include Bitcoin and Ethereum. This type of blockchain is suit-
able for applications like Open SIoT systems, global data sharing, and cryptocurrencies, where transparency 
and accessibility are crucial.

	2.	 Private Blockchain: A private blockchain is restricted to a single organization or group, with controlled access 
and permissions. Examples include Hyperledger Fabric. This type of blockchain is ideal for internal SIoT 
deployments and secure enterprise applications, where data privacy and access control are essential.

	3.	 Consortium (Federated) Blockchain: A consortium blockchain is controlled by a group of pre-selected or-
ganizations or nodes, offering a semi-decentralized structure. Examples include R3 Corda and Quorum. 
This type of blockchain is well-suited for collaborative SIoT platforms, such as smart cities or joint industry 
projects, where multiple stakeholders need to work together while maintaining some level of control.

	4.	 Hybrid Blockchain: A hybrid blockchain blends public and private blockchain features, allowing for both 
transparent and restricted data access. Examples include Dragonchain and IBM Food Trust. This model is 
ideal for SIoT applications requiring a balance of transparency and privacy, such as supply chain manage-
ment with IoT devices.

E: Typical Blockchain Workflow The typical blockchain workflow in SIoT begins with a transaction initiation 
phase, where a user or IoT device, such as a smart sensor, actuator, or camera, generates a transaction. This 

Blockchain type Examples When to choose

Public Ethereum, Polygon Open networks where high transparency and decentralization are needed

Consortium Hyperledger Fabric Enterprise or research environments with multiple known stakeholders

Permissioned Hyperledger Indy, Corda Applications requiring strong identity management and privacy

Lightweight (IoT) IOTA, Algorand, Nano Ideal for low-power SIoT devices; supports DAG or fast consensus mechanisms

Table 11.  Blockchain types and their relevance to SIoT applications.
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transaction could involve sending sensor readings, requesting access to a service, or initiating device-to-device 
communication. Each transaction includes essential information such as the initiator’s identity, the intended 
action, and a digital signature that authenticates the request. Once created, the transaction is broadcast to all 
nodes in the peer-to-peer (P2P) blockchain network. This ensures that every participating device or node 
becomes aware of the request, promoting transparency and decentralized handling. In this phase, all nodes in 
the network receive the transaction and prepare to validate it without relying on a centralized authority. The 
next step is validation, which is handled by the blockchain’s consensus mechanism. This is a critical phase where 
the network agrees on the legitimacy of the transaction. Different types of blockchains use different consensus 
algorithms. For instance, Proof of Work (PoW) relies on solving complex mathematical puzzles, while Proof 
of Stake (PoS) selects validators based on their economic stake in the network. In permissioned or consortium 
blockchains often used in SIoT, protocols like Practical Byzantine Fault Tolerance (PBFT) are preferred for their 
efficiency and fault tolerance. Through consensus, the transaction is either approved or rejected by the network.

If the transaction involves predefined logic or conditions, it may trigger a smart contract. Smart contracts 
are self-executing code segments embedded in the blockchain that automatically perform actions when certain 
criteria are met. For example, if a temperature sensor detects that the reading exceeds a threshold (e.g., 50◦C), the 
smart contract could automatically trigger an alert and activate a cooling mechanism. This enables automation 
and trustless execution within SIoT ecosystems. After successful validation, the transaction is grouped with other 
verified transactions to form a new block. This block includes a timestamp, the hash of the previous block, and 
all the validated transactions thereby maintaining a tamper-proof chain of events. Once the block is created, it 
is appended to the blockchain in a sequential, chronological manner, ensuring the immutability of past records. 
This immutability is vital for SIoT systems, as it guarantees that historical data such as trust ratings, service 
logs, or identity records cannot be altered without detection. Following this, the updated blockchain ledger 
is propagated across the entire network, ensuring that all nodes remain synchronized. Each node thus retains 
an identical, verified copy of the ledger, enabling decentralized auditability and verification. This distributed 
nature makes blockchain inherently resilient to failures and attacks, as there is no single point of control or 
compromise. Finally, the transaction is marked as complete. It becomes a permanent part of the ledger and can 
be used for future queries, audits, or cross validation in trust management protocols. Throughout this workflow, 
blockchain enforces several key security principles: cryptography ensures confidentiality and authentication; 
decentralization eliminates single points of failure; and transparency coupled with immutability upholds data 
integrity and traceability. This entire workflow collectively enhances the trustworthiness, autonomy, and security 
of interactions in SIoT networks. Shows the typical Blockchain workflow cycle refer to Fig.  13. Reference135 
illustrate the blockchain transaction process using a block structure that includes cryptographic hashes, 
timestamps, Merkle trees, and consensus validation. Each transaction is recorded immutably, forming a tamper-
proof, distributed ledger that supports secure data acquisition and storage in decentralized environments.

Modular integration strategy for application-specific SIoT systems
Not all SIoT applications require all three technologies simultaneously. Depending on system constraints and 
priorities such as latency sensitivity, resource availability, or privacy developers may combine any two technologies 
for a customized solution. This modular approach allows scalable and cost-effective SIoT deployment tailored 
to specific needs. As summarized in Table 12, recent SIoT systems integrate Blockchain, AI/ML, and Edge/
Fog/Cloud technologies to achieve trustworthy, real-time, and privacy-preserving analytics across domains 
such as healthcare, smart manufacturing, and urban waste management, while facing trade-offs in latency, 
synchronization, and energy efficiency. Overall, these hybrid integrations illustrate the evolving trend of multi-

Figure 13.  Blockchain workflow cycle.
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technology convergence in SIoT, seeking to balance trust, explainability, and efficiency within heterogeneous 
environments. 

	1.	 Blockchain + AI/ML + Cloud or Edge/Fog Integration This integration combines blockchain’s decentral-
ized trust and data integrity features with AI/ML’s predictive intelligence, and anchors them within edge/fog 
nodes to enable real-time, secure, and autonomous decision-making close to the data source.

	Blockchain enhances SIoT with decentralization, immutability, and automated trust mechanisms, providing 
benefits like tamper-proof device identities through Decentralized Identity, automated access control via 
Smart Contracts(enforce access rules and automate trust updates), and secure interaction logs on an Immuta-
ble Ledger. However, it faces limitations such as high latency and energy consumption, particularly on public 
chains, and not adaptability and intelligence on its own, making it less suitable for real-time, resource-con-
strained IoT environments. Reference25 proposed SecureSIoTChain, a blockchain-based security framework 
for SIoT that integrates Graph Neural Networks (GNN) and R-ECDSA for relationship-aware trust inference, 
secure communication, and decentralized device authentication. The model achieves 95% accuracy and out-
performs existing methods in throughput, latency, and trust metrics. In this study they136 proposed a block-
chain-based authentication framework for secure IoT networks, using a permissioned ledger to manage de-
centralized device identities and ensure lightweight authentication. The system improves identity verification 
and reduces reliance on centralized authorities, but still faces challenges in scalability and storage overhead.

	In this work137 they proposed CyberGuard, a hybrid framework that integrates blockchain-based trust man-
agement with machine learning (SVM, KNN, RF) for secure and efficient resource allocation in edge and fog 
computing. The system leverages Trust2Vec embeddings and ensemble learning to achieve high prediction 
accuracy (F1-score: 98.18%) while ensuring data integrity through blockchain. Though effective, the frame-
work introduces computational and storage overhead, and its scalability in real-time environments remains a 
challenge. Ideal for systems needing trust analytics and audit trails (e.g., autonomous fleets).

	This paper138 introduces a blockchain and AI-driven secure communication framework for smart home net-
works, integrating Firebase-based blockchain authentication to maintain tamper-proof transaction records 
and leveraging neural networks with the Dragonfly Algorithm to classify transactions as Smart T (trusted), 
Mod T (moderate), or Avoid T (risky). Cloud-based data processing supports real-time evaluation and rank-
ing, achieving 96.54% accuracy in detecting false authentications while reducing computational complexity 
by 10.14% compared to existing methods. The proposed solution, validated through 20,000 simulations on 
Matlab and Google Colab without a physical testbed, outperforms RTS-DELM and data fusion techniques in 
both security and efficiency, significantly strengthening smart home security and optimizing IoT communi-
cation.

	They139 present BlockFaaS, a blockchain-enabled, serverless computing framework designed for AI-driven 
IoT healthcare applications, specifically targeting heart disease risk prediction. The framework integrates a 
high-performance XGBoost ML model, a SHA-3 (Keccak)-based blockchain module for ensuring data im-
mutability, and TLS protocols for secure communication. Deployed on Google Cloud Functions, BlockFaaS 
addresses the limitations of resource-constrained IoT devices by offloading computation to the serverless 
cloud while preserving data integrity, privacy, and scalability. The authors compare BlockFaaS against existing 
frameworks (HealthFaaS and AIBLOCK), demonstrating improvements in AUC prediction performance, 
energy efficiency, and cold start latency analysis under real-world workloads.

	In this study140 they proposed a blockchain-based federated learning framework for ECG anomaly detection 
in IoT, leveraging edge-fog-cloud computing. Their system combines autoencoder-based AI/ML with smart 
contracts on a Ganache blockchain for secure, decentralized training. Simulation results using iFogSim2 
showed edge-layer deployment outperformed fog and cloud in energy efficiency, latency, cost, and execution 
time while maintaining privacy.

Work Integration type Purpose Use cases Strength Limitations

140
Blockchain + AI/
ML + Cloud or 
Edge/Fog

Enhance trust and decision-making 
through verifiable data and intelligent 
analytics

Trust score prediction, 
intrusion detection, 
anomaly detection

Ensures immutable trust history + 
intelligent behavior learning

High complexity and model 
drift; blockchain latency; 
requires frequent model updates

146 Cloud + Edge/Fog 
+ AI/ML

Enable real-time anomaly detection with 
local edge processing (on Raspberry Pi) 
and cloud-based visualization

Smart home elderly 
monitoring system

Real-time ML on Raspberry Pi- Non-
wearable passive sensing, Privacy-
aware design with dashboard

Used simulated sensor data (not 
live), Caregiver mobile app not 
yet developed

146
Digital Twin + 
Edge/Fog/Cloud + 
Blockchain

Enable cyber-physical mirroring, 
predictive analytics, and secure control

Smart manufacturing, 
predictive maintenance, 
secure twin control

Real-time digital mirroring, 
decentralized analytics and traceability

High synchronization overhead; 
model mismatch; digital twin 
setup cost

142

Blockchain + 
Federated Learning 
+ Edge-Fog-Cloud 
Computing

Privacy-preserving ECG anomaly 
detection and real-time decision making

Healthcare IoT; Remote 
cardiac monitoring with 
mobile/wearable ECG 
sensors

Low latency, enhanced privacy, 
decentralized model training, tamper-
proof storage via smart contracts

Increased cost, execution time, 
energy use due to blockchain 
overhead; partial energy 
modeling only

148 AI/ML + IoT
Improve waste classification accuracy 
using deep learning and optimized 
ensemble learning in IoT-enabled 
environments

Smart waste management 
in smart cities with 
automated waste sorting 
from images

Low-complexity model with 85% 
accuracy; CSO optimization improves 
performance; outperforms traditional 
models (SVM, XGBoost)

No explicit use of edge/cloud; 
real-time deployment and 
scalability not discussed; limited 
to image-only input

Table 12.  SIoT integration types with purpose, strengths, and limitations.
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	2.	 Cloud + Edge/Fog + AI/ML Integration The integration of Cloud, Edge/Fog computing, and AI/ML tech-
nologies forms a synergistic framework that enhances the capabilities of Social Internet of Things (SIoT) 
applications, particularly in latency-sensitive and intelligence-driven domains like smart healthcare and au-
tonomous systems. Edge and Fog nodes alleviate the computational burden on resource-constrained SIoT 
devices by performing local processing. This enables real-time decision-making, context-awareness, and 
bandwidth savings, making them ideal for time-critical applications. However, these nodes often lack built-
in mechanisms for transparency, auditability, and secure data anchoring, which raises concerns about data 
tampering and opaque trust decisions in the absence of blockchain-like support. In contrast, the Cloud Layer 
offers centralized infrastructure to handle computationally intensive tasks, such as training AI/ML models, 
performing cross-node data aggregation, and distributing optimized models to edge nodes. While the cloud 
enables scalability and model refinement, it introduces latency, privacy risks, and centralization vulnerabil-
ities, particularly when sensitive user or device data are transmitted and stored offsite. AI/ML technologies 
empower the SIoT environment by enabling autonomous behavior analysis, adaptive trust scoring, anomaly 
detection, and personalized responses. These capabilities allow the system to dynamically learn from inter-
action patterns, assess trustworthiness, and respond to anomalies in device behavior. However, the deploy-
ment of AI/ML in SIoT also introduces challenges. These include a lack of explainability and verifiability of 
model decisions, susceptibility to adversarial attacks (e.g., data poisoning), and the absence of tamper-proof 
mechanisms for storing or validating outcomes, which can reduce trust in automated processes. Reference141 
propose a cloud-fog-edge pipeline for smart agriculture that performs real-time image classification (e.g., to-
mato disease detection) using a ResNet-based CNN model. The model is trained on the cloud, optimized via 
TensorFlow Lite and the Tensil framework, and executed on edge FPGA devices (PYNQ Z2). They demon-
strate minimal accuracy loss (  0.83%) and significant latency reduction when executed at the Fog layer. 
Reference142 present an edge-based IoT system using non-wearable sensors and machine learning (Isolation 
Forest and LSTM) for real-time elderly health monitoring. The system ensures privacy, low latency, and effec-
tive anomaly detection, achieving 92.29% accuracy on the CASAS TM029 dataset and featuring a dashboard 
for caregivers and doctors.143 proposed a fault-tolerant fog-based SIoT architecture (FSIoT) that uses Markov 
chains to model and recover from transient and permanent node failures. By integrating K-means clustering 
and trust-based node evaluation, the system improves availability, reliability, and fault detection accuracy. 
The model assumes fog/cloud nodes are fault-free and was validated via simulation on 70 nodes.

	3.	  Blockchain + Edge/Fog: Suitable for secure identity and fast decision-making (e.g., smart factories). For 
modular integration of blockchain and edge computing in application-specific SIoT systems, Ref.144 pro-
posed a blockchain-assisted edge computing architecture tailored for IIoT environments, introducing a nov-
el Proof-of-Authentication (PoAh) consensus mechanism. The architecture leverages smart contracts and 
lightweight blockchain nodes deployed at the edge, ensuring scalable and trustworthy data sharing, device 
authentication, and traceability. Their PoAh model, implemented via Hyperledger Fabric and Docker con-
tainers, significantly reduces authentication time and energy usage while maintaining a high transaction rate 
(up to 1273 TPS), making it suitable for resource-constrained industrial systems.

	4.	 Cloud + edge + AI/ML Integration

	The authors present a comprehensive framework that integrates IoT, edge computing, cloud computing, and AI/
ML to enable real-time, intelligent decision-making. They design and implement hybrid architectures where 
AI models are trained in the cloud and deployed at the edge for low-latency inference. Practical implemen-
tations like DILoCC (for distributed incremental learning) and SHIRS (for smart indoor air monitoring) 
demonstrate how this integration can be applied in real-world smart city and industrial contexts. The paper 
also addresses key challenges such as energy efficiency, model compression, federated learning, and ethical AI 
use145.

	5.	 Digital Twin + Edge/Fog/Cloud + Blockchain:

	A blockchain-enabled digital twin vehicular edge network (DTVEN) is proposed to enable secure and efficient 
task offloading in vehicular edge environments. The architecture combines digital twins for real-time mon-
itoring of 3C (computation, communication, caching) resources with a blockchain layer utilizing Delegated 
Proof of Stake (DPoS) consensus and smart contracts for decentralized coordination. As presented by146, an 
improved cuckoo algorithm is used to optimize task offloading decisions, and a greedy resource allocation 
strategy is applied to minimize consensus overhead, resulting in lower network cost and enhanced edge co-
operation.

	6.	 Federated Learning + Edge/Fog + AI/ML/ Explainable AI (XAI):

	This work35 introduces a privacy-preserving Federated Learning-based IDS with Explainable AI (XAI), using 
SHAP values for interpretability across decentralized edge devices. Four clients train ANNs on the CICI-
oT2023 attack dataset, with FedAvg aggregating models at the server. The global model achieves 88.2% test-
ing accuracy, with UDP identified as the most impactful feature via SHAP. Key metrics include Precision 
(0.8908), Recall (0.684), and F1-Score (0.705), highlighting strong detection performance and interpretability 
.
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	7.	 Federated Learning + Edge/Fog : They147 designed a federated blockchain-based authentication scheme 
specifically for cross-domain IIoT device interactions in smart factories. Their scheme eliminates centralized 
authorities by using a Hyperledger Fabric consortium chain, with smart contracts handling device registra-
tion, mutual authentication, and revocation. Performance evaluation showed the architecture improves trust, 
security, and scalability, although latency increases with the number of peer nodes. Both works demonstrate 
the viability of decentralized blockchain-based identity and trust frameworks for IIoT, but differ in consen-
sus design, system scope, and optimization focus.

	8.	 AI/ML+IoT+ Swarm:

	This148 study presents a low-complexity waste classification model for smart cities, combining VGG16 feature 
extraction with a Random Forest classifier optimized by Cat Swarm Optimization (CSO). The model achieves 
85% accuracy and 0.85 AUC on a six-class garbage dataset, surpassing SVM, XGBoost, and logistic regression 
in key metrics. Its efficiency and balanced performance make it suitable for real-time IoT-enabled smart city 
applications.

Proposed unified conceptual framework for SIoT systems using blockchain–cloud, edge/Fog–AI/ML integration
To overcome the above limitations, we propose a conceptual organization of phases, a unified SIoT framework 
that leverages the combined strengths of blockchain, cloud computing, edge/fog environments, and AI/ML to 
deliver an intelligent, secure, and scalable solution for decentralized trust and interaction management. Cloud 
enables global AI model training and data aggregation, fog and edge layers handle real-time computation 
and context inference, while blockchain ensures secure identity, immutable logging, decentralized trust, and 
verifiable service interactions.

•	 Blockchain: Handles identity registration, trust anchoring, and access control through smart contracts.
•	 Cloud Infrastructure: Manages large-scale data storage, global coordination, and long-term trust analytics.
•	 Edge/Fog Nodes: Enable fast, localized decision-making and host AI inference engines.
•	 AI/ML Models: Predict trust, detect anomalies, and assist in smart service recommendations.

As shown in Fig. 14, the unified conceptual framework for SIoT is a consolidation of heterogeneous approaches 
reported in the literature. It is presented as a survey based reference model rather than an implemented design. 
Prior works propose diverse architectures for blockchain, AI/ML, and edge/fog integration in IoT. For example, 
They   21 present a three-layer smart city security architecture combining AI-driven anomaly detection with 
Ethereum based confidentiality and consensus, achieving >98% detection accuracy and  4500 TPS throughput. 
In this paper  19 they propose an Ethereum based framework for mobile IoT sensors with dual communication 
modes, trust computation, and cost modeling, demonstrating 38% reduced overhead and 28% lower latency 
in simulations. Similarly, in this paper they  22 introduced a blockchain enhanced Sensor-as-a-Service (SEaaS) 
model with modular smart contracts, enabling secure data trading and showing improved efficiency in energy, 
latency, and throughput metrics. Figure 14 abstracts these functional roles such as identity management, trust 
evaluation, provenance auditing, and policy enforcement into a single conceptual framework. This consolidation 
provides a high-level reference view of how these technologies may interoperate in SIoT, without making 
implementation claims. The diagram illustrates eight key phases. 

	1.	  Decentralized identity and device onboarding

	Devices generate decentralized identities (DIDs) and register them on a blockchain, ensuring tamper-proof 
identification and secure on boarding. This is achieved through local ECDSA (Elliptic Curve Digital Signa-
ture algorithm to verify authenticity of data) key pair generation at the edge and registering the DID on a 
blockchain like Polygon or Fabric, with metadata stored locally or in the cloud if needed, effectively securing 
against identity spoofing.

	2.	 Social Relationship Establishment

	Devices form relationships via edge/fog proximity discovery, registering links on a blockchain as friend, co-lo-
cation, or service relationships. These relationships are represented as traceable and immutable social links, 
defined as on-chain mappings that can be optionally tokenized as NFTs for enhanced visibility. Digital sig-
natures facilitate updates and verification, ensuring a secure and transparent network of interactions, while 
blockchain’s immutable ledger prevents fake or manipulated links, building a reliable social graph.

	3.	 Trust Evaluation and Reputation Building

	A dynamic, context-aware trust scoring system is implemented through a smart contract like ReputationManag-
er.sol, storing and updating trust scores based on weighted history, recent, and behavior consistency. Histor-
ical interactions calculate on-chain reputation, and malicious behavior is automatically penalized, ensuring a 
secure and trustworthy network.
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	4.	 Smart Contract Deployment for Access and Service Control

	Smart contracts like AccessManager.sol, TokenAuthorization.sol, and DelegationManager.sol automate access 
and service rules, enabling role-based, attribute-based, and token-based access control, as well as social dele-
gation rules. These contracts define service-level access conditions on-chain, eliminating central access con-
trol lists and supporting dynamic, rule-based security in a decentralized manner.

	5.	 Service Discovery and Publishing  Devices autonomously find and advertise services through the Ser-
viceRegistry.sol smart contract, where they publish services by calling registerService(), emitting events like 
ServiceRegistered that other devices can listen to. Queryable functions like getServiceByType() and getNear-
byServices() enable decentralized lookups, while metadata such as tags, location, and device type enhances 
matchmaking, ensuring real-time, decentralized, and tamper-proof service discovery.

	6.	 Secure service interactions They are enabled through DID-based Verifiable Credentials for device authen-
tication and access control contracts for authorization. Data exchange occurs off-chain, with on-chain an-
choring of data hashes ensuring tamper-evidence, and optional encryption provides confidentiality for data 
in transit and at rest, resulting in scalable, secure, and private service transactions.

	7.	  Feedback Logging and Reputation Update Interactions are logged on-chain for traceability and trust com-
putation, allowing devices to submit feedback that updates trust scores and flags misbehavior, thereby ensur-
ing auditability, accountability, and dispute resolution through immutable records.

	8.	 Incentivization and Token Economy (Optional) A token economy is established through an ERC-20 or 
ERC-721 token contract, rewarding devices for verified services, uptime, and good behavior, while tokens 
can be used for resource requests, service fees, or trust upgrades, fostering cooperation and sustainability in 
decentralized environments.

Cost and feasibility considerations of blockchain in SIoT
Blockchain adoption in SIoT applications is hindered by regulatory uncertainty, organizational readiness, and 
cost concerns. Challenges include varying regional regulations, standardization, and lack of internal expertise, 
while viable workarounds include private blockchains, Layer-2 solutions(eg., Ploygon, IOTA for lightweight 
deployments), and off-chain data storage . Ultimately, blockchain should be adopted strategically, focusing 
on applications that require tamper-evidence, decentralized identity, and global trust anchors, rather than 
universally applying it to all SIoT applications.

Other key technologies for decentralized SIoT without blockchain
In scenarios where blockchain integration is impractical due to cost, resource constraints, or energy limitations, 
several other technologies can support decentralized SIoT architectures. These alternatives help maintain 
distributed intelligence, trust coordination, and peer-to-peer communication, even in the absence of a global 
ledger. These technologies offer modular, scalable, and cost-effective pathways to decentralization. While they 
may not guarantee the same tamper-evidence or global consensus as blockchain, they provide flexible design 
options for SIoT applications where decentralization is desired but blockchain is infeasible. 

Figure 14.  Unified conceptual framework for SIoT.
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	1.	 Federated Learning: Enables multiple devices to collaboratively train machine learning models without shar-
ing raw data, preserving privacy and distributing computational load. Federated learning has been increas-
ingly adopted for privacy-preserving intrusion detection in IoT systems. Reference149 proposed an FL-based 
IDS integrating deep learning and chimp optimization, achieving superior detection accuracy across distrib-
uted IoT devices. Reference150 proposed a novel FL-IoT framework combining federated learning with Ti-
nyML for resource-constrained microcontrollers, enabling efficient, privacy-preserving model training and 
inference at the edge.

	2.	 Swarm Learning: A fully decentralized variation of federated learning that eliminates the need for a cen-
tral coordinator by using peer-to-peer consensus. Reference151 present MatSwarm, a swarm learning-based 
framework that integrates federated learning, blockchain, and trusted execution environments (TEEs) to 
enable secure, decentralized model training across multiple institutions. Unlike traditional FL, MatSwarm 
removes the need for a central aggregator by using blockchain-based consensus. It employs a swarm transfer 
learning method to improve generalization on non-i.i.d. datasets and uses Intel SGX to safeguard data integ-
rity and confidentiality. Validated on real-world materials data, MatSwarm demonstrates strong resilience to 
poisoning attacks and superior performance in accuracy, scalability, and security, highlighting its effective-
ness in multi-party computation for sensitive scientific domains.

	3.	 Gossip Protocols: Employ probabilistic message spreading where each device shares updates with a few ran-
domly selected peers, useful for distributing trust scores or alerts. Gossip protocols offer a lightweight, ful-
ly decentralized alternative for knowledge dissemination in SIoT environments. Reference152 introduced a 
generic coordination model leveraging a gossip mechanism for decentralized learning in microgrids. Their 
approach supports two variants such as Gossip Federated Learning (GFDL) and Gossip Ensemble Learning 
(GEL), allowing nodes to exchange model weights or prediction outputs, respectively. These methods ensure 
privacy (data never leaves the node), scalability, and flexibility in dynamic edge environments making them 
promising for SIoT trust-building, anomaly detection, and behavior prediction without relying on block-
chain.

	.

	4.	 Multi-Agent Reinforcement Learning (MARL): Distributed agents learn behaviors through local interac-
tions and coordination, suitable for dynamic trust and decision-making.153 demonstrated that Multi-Agent 
Deep Reinforcement Learning (MADRL), when combined with edge computing, significantly improves 
SIoT network navigability and service recommendation performance by adaptively optimizing friendship 
paths and enabling real-time, personalized decision-making in decentralized environments.

	5.	 Peer-to-Peer (P2P) Overlay Networks: Enable devices to form mesh-like topologies for direct communica-
tion, resource sharing, and decentralized service discovery. Recent advancements in peer-to-peer overlay 
structures such as TSPeer leverage sensor fingerprinting to enhance trust and reputation in mobile SIoT 
environments without relying on blockchain mechanisms154.

	6.	 Publish–Subscribe Systems (e.g., MQTT): Support asynchronous messaging and event-driven communica-
tion among distributed nodes, minimizing centralized dependencies. A secure and decentralized publish/
subscribe system was proposed by155, integrating topic-based pub/sub messaging with a distributed P2P 
overlay using hash chains for end-to-end security, suitable for trustable SIoT applications even without 
blockchain.

Recent studies leveraging blockchain technology in IoT and SIoT environments(2023–2025)
BMIS (Blockchain-based Mobile IoT System)  logs real-time sensor data on Ethereum for data traceability.97 
introduced a Blockchain-Based Mobile IoT System (BMIS) that combines a modular multi-sensor device with 
cloud and blockchain integration. The system enables real-time monitoring through ThingSpeak and tamper-
resistant storage via Ethereum smart contracts. This dual-path architecture enhances the trustworthiness, 
traceability, and mobility of IoT data collection systems. They156 proposed DrunkChain, a blockchain-enabled 
IoT system for preventing drunk driving by continuously monitoring blood alcohol levels and driving behavior. 
The system ensures secure, immutable data transfer to a central police account using the Algorand blockchain, 
showcasing the effective integration of blockchain in vehicular IoT and trust-critical SIoT applications.

Physical Unclonable Functions (PUFs)   Blockchain-based mutual authentication schemes using PUFs 
have been proposed to resist cloning and impersonation attacks. A lightweight, blockchain-based mutual 
authentication and key agreement protocol designed for cross-domain IIoT systems with digital twin integration 
is presented in157. The solution combines Physically Unclonable Functions (PUFs), smart contracts, and a 
blockchain ledger to ensure decentralized and tamper-resistant authentication. Formal and informal security 
analyses confirm the protocol’s resistance to various IIoT-specific threats. Recent access control models leveraging 
blockchain have ensured secure service invocation and user-device interactions in vehicular and smart home 
SIoT networks. For instance, in158 proposed a zero-trust framework combining blockchain, smart contracts, and 
inner-product encryption to enforce fine-grained access control and decentralized identity management across 
domains such as smart homes and vehicular systems, ensuring efficient and tamper-resistant service interactions 
in a 6G-enabled SIoT environment.

Edge, cloud/ fog computing
In this subsection, we discuss the different types of cloud services and the typical three-layer architecture 
comprising edge, fog, and cloud computing, as briefly outlined below. Edge, fog/cloud computing collaboratively 
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enhance the scalability, responsiveness, and intelligence of SIoT systems. Cloud platforms provide centralized 
resources for large scale storage, big data analytics, trust modeling, historical behavior analysis, and global service 
management. In contrast, edge and fog layers are deployed closer to devices to enable real-time decision-making, 
local trust evaluation, and context-aware service delivery. This layered architecture reduces latency, bandwidth 
usage, and response time for sensitive tasks, while offloading computation from resource-constrained devices and 
supporting hierarchical processing. It also improves fault tolerance and system scalability. However, challenges 
persist, including maintaining data consistency across layers, enforcing security at multiple distributed points, 
and managing the cost and complexity of deploying and orchestrating fog and edge infrastructure.

Figure 15 shows a typical three-layer architecture comprising edge, fog, and cloud computing. Each layer is 
responsible for specific tasks to ensure efficient data processing, communication, and service delivery within IoT 
and SIoT environments. 

	1.	 Edge devices: This layer captures and generates real-time data, with limited processing power, storage, and 
computing capabilities. Examples include CCTV cameras, autonomous vehicles, and smartphones.

	2.	 Fog Nodes: Key responsibilities of fog nodes include preprocessing and filtering data, performing laten-
cy-sensitive analytics, and acting as an intermediary between edge devices and the cloud. Examples include 
local servers, gateways, and routers.

	3.	 Cloud: The cloud is responsible for centralized data storage, processing, and long-term analytics, including 
machine learning model training. Examples include remote data centers and cloud infrastructure. The cloud 
offers high scalability, massive computational resources, and a global data view, enabling efficient processing 
and analysis of large-scale data.Types of Cloud Services Different types of cloud services are briefly men-
tioned in the below. 

	1.	 IaaS (Infrastructure as a Service): Provides virtualized hardware and storage (e.g., AWS EC2).
	2.	 PaaS (Platform as a Service): Offers tools for application development and deployment.
	3.	 SaaS (Software as a Service): Delivers end-user services like dashboards and social interfaces.

Recent studies leveraging edge and computing in IoT and SIoT environments (2023–2025)
This study159 demonstrates how edge–cloud combined can address the computational and latency demands of 
dynamic IoT applications, particularly in mission-critical domains like smart energy grids. Reference160 propose 
a novel Edge/Cloud architecture tailored for the Social Internet of Things (SIoT), enabling the integration of 
Virtual Users (VUs) and Social Virtual Objects (SVOs) through a containerized microservices infrastructure. 
Their solution automates deployment, supports user clustering, and enables low-latency service migration 
via edge computing. The architecture addresses scalability, security, and automation needs, validated through 
experimental evaluation using AWS-based environments. The study demonstrates performance improvements 
over traditional platforms like Google App Engine, making it a key recent advancement in SIoT infrastructure 
design. Reference161 implemented a Cloud-Edge-IoT continuum model for Industry 4.0 using EdgeCloudSim 
and SUMO simulators. Their work demonstrates how edge-cloud architectures can support low-latency task 
offloading and intelligent transportation use cases, making it a significant contribution to recent advances in IoT 
and SIoT edge-cloud integrations.

Figure 15.  Edge, fog and cloud computing layers.
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AI and ML
AI and ML boost the intelligence and self-sufficiency of Social Internet of Things (SIoT) devices, allowing them 
to learn from interactions and context. Key AI/ML capabilities in SIoT include: 

	1.	  Trust prediction models: Assessing device reliability through machine learning-based analysis of social 
behavior. Machine learning techniques have increasingly been applied to predict trust in vehicular networks 
by analyzing behavioral attributes such as packet delivery ratio and interaction frequency. In one such study, 
a trust management heuristic was developed using supervised classifiers like SVM and KNN to identify ma-
licious vehicles in an Internet of Vehicles environment162. The model achieved high classification accuracy 
by first clustering unlabeled data and then applying classification on mean parametric scores to distinguish 
between trustworthy and untrustworthy nodes.

	2.	 Anomaly detection: Identifying unusual patterns or suspicious communication. Recent advances in ex-
plainable AI (XAI) techniques have improved the interpretability of trust prediction models for IoT anom-
aly detection. For instance, Ref.36 proposed an XAI-IoT framework that integrates single and ensemble AI 
models with XAI tools such as SHAP, LIME, and CEM to accurately detect anomalies and explain model 
predictions in both sensor-based and network-based IoT systems.

	3.	 Context-aware recommendations: Providing personalized service suggestions based on learned preferenc-
es and device usage history. Reference163 proposed a Triple Attentive Neural Network (TANN) combining 
context-aware session similarity and frequent graph pattern mining for recommendation in Smart EMS. 
While not IoT-specific, the AI/ML-driven framework is adaptable for session-based recommendations in 
SIoT settings involving user-device interactions and contextual session data. They164 proposed a new frame-
work called MAFDRL- a recommender system for friendship path selection in SIoT which utilizes optimal 
policy learning (via DRL and SAC) and preserves privacy (via FL), thereby improving recommendation 
accuracy and efficiency in large-scale, dynamic SIoT environments.

ML techniques
Machine learning (ML) models in the Social Internet of Things (SIoT) are deployed across edge, fog, and 
cloud layers to enable dynamic trust evaluation, anomaly detection, relationship classification, and intelligent 
service/resource discovery. By analyzing historical interactions, social ties, and quality-of-service parameters, 
ML enhances context-aware service recommendations and improves system responsiveness in dynamic 
environments. These models classify user-device relationships, detect intrusions through behavioral pattern 
learning, and support adaptive trust management, reducing reliance on static rules or manual configurations. 
Despite these advances, ML integration in SIoT faces challenges such as frequent model updates, computational 
overhead on resource-constrained devices, and vulnerabilities to adversarial inputs and data poisoning. Given 
SIoT’s heterogeneity and evolving nature, choosing appropriate ML techniques is vital for scalability, privacy 
preservation, and robust decision-making. Figure  16 categorizes various ML approaches based on their 
operational goals such as regression, classification, clustering, deep learning, and emerging paradigms. These 
techniques are widely adopted in SIoT applications to analyze user behavior, predict trustworthiness, group 
devices, and adapt to temporal patterns in service delivery. A brief description of each technique, along with its 
typical use in SIoT contexts, is provided below. 

	1.	 Regression (less common in SIoT)

•	 Linear Regression: Linear Regression is a basic model that assumes a straight-line relationship between 
input and output variables, meaning the output increases or decreases proportionally with the input. In 
SIoT systems, it can be used to predict trust scores between devices based on the frequency of successful 
data exchanges, where each additional reliable interaction adds a fixed increment to the trust score, rang-
ing from 0 to 1. This approach is simple, fast, and works effectively as a baseline analysis tool when device 
interactions follow consistent patterns and the data isn’t too noisy. The researchers165 applied linear regres-
sion to examine the relationship between several independent variables—perceived usefulness, perceived 
ease of use, attitude toward SIoT, perceived privacy risk, and trust—and the dependent variable of SIoT 
adoption. Results showed that perceived ease of use and attitude had a statistically significant influence on 
SIoT adoption, while perceived usefulness, privacy risk, and trust did not. These findings underscore how 
regression analysis can isolate the most impactful predictors in user behavior modeling.

•	 Support Vector Regression : Support Vector Regression creates a prediction model that fits data within 
a margin of tolerance, forming a “trust tube” around expected values that helps focus on significant in-
consistencies while ignoring minor deviations. In SIoT systems, it is especially useful for predicting trust 
scores between devices that may experience occasional delays or minor glitches, as it flexibly handles small 
hiccups like one-time misfires and flags major issues such as repeated misinformation. SVR excels in man-
aging uncertainty since IoT networks often produce noisy data, it learns from social interaction patterns 
by modeling relationship strength over time, and it avoids overreacting to isolated bad behavior, making it 
highly suitable for dynamic and unpredictable environments.

•	 Random Forest Regression: Random Forest Regression is an ensemble model that uses multiple decision 
trees, each trained on different features and logic paths, and then averages their predictions to produce a 
final output. In SIoT systems, it can forecast trust scores by analyzing factors such as interaction frequen-
cy, data accuracy, battery level, and network latency, with each tree emphasizing different attributes—for 
instance, one focusing on latency and another on reliability. This collaborative approach results in a robust 
trust estimate that effectively captures complex, nonlinear relationships, resists outliers, and adapts well to 
messy or incomplete device data.
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	2.	 Classification

•	 Logistic Regression: Logistic Regression is a linear classification model that estimates probabilities by fit-
ting input features—such as authentication success rate, interaction duration, energy consumption, and 
firmware update history—to a logistic curve. In SIoT systems, it’s commonly used to classify devices as 
“trusted” or “untrusted,” offering quick and interpretable decisions ideal for lightweight, resource-con-
strained environments. While it’s fast and well-suited for binary classification in linearly separable data, it 
tends to underperform with complex or nonlinear trust patterns due to its inherent simplicity and limited 
decision boundaries. A dual-layer strategy to enhance survivability in Industrial IoT systems is proposed 
through the combination of machine learning-driven device identification and a blockchain-enabled smart 
contract framework. Reference166 evaluated 12 ML models—including LR, SVM, KNN, RF, GB, CNN, 
and LSTM—and identified LSTM as the most accurate, achieving 98.96% accuracy. Their smart contract 
architecture further supports secure data exchange and access control in smart home data marketplaces. 
This hybrid approach reinforces IIoT resilience, trust, and security.

•	 Naive Bayes: Naive Bayes is a probabilistic classifier built on Bayes’ Theorem, making rapid predictions 
by assuming that each input feature—such as device manufacturer reputation, data transmission integ-
rity, sensor context (e.g. location and temperature), and unauthorized access frequency—contributes in-
dependently to the final trust estimate. In SIoT systems, this model excels in early-stage trust screening 
using sparse or categorical metadata, offering scalable and efficient performance. While it’s well-suited for 
tasks like spam detection and document classification, its core independence assumption can oversimplify 
complex interactions between trust indicators, potentially limiting accuracy in nuanced environments. To 
address the increasing prevalence of diabetes,167 developed a supervised machine learning model to pre-
dict diabetes using the Pima Indians Diabetes dataset. The study compares the performance of k-Nearest 
Neighbors (KNN) and Naive Bayes classifiers across multiple data splits and concludes that Naive Bayes 
consistently outperforms KNN in terms of accuracy, precision, and recall.

•	 Decision Tree(DT):Decision Tree (DT) is a highly interpretable, tree-structured classification model that 
splits data based on feature conditions—perfect for rule-based trust systems in SIoT. It can assess trustwor-
thiness using inputs like peer interaction frequency, security patch history, latency thresholds, and anom-
aly scores, leading to decisions such as “If latency > 400ms and anomaly score > 0.6 → Untrusted.” DTs 
are versatile, handling both numerical and categorical data, and are valuable for exploratory analysis and 
rapid prototyping. However, they are prone to overfitting and may generalize poorly in complex or noisy 
SIoT environments unless combined with techniques like pruning or ensembles.

•	 K-Nearest Neighbours(KNN): It is a lazy learning algorithm that classifies devices by comparing them to 
the closest instances in feature space—leveraging patterns like firmware version, network reliability, trust 
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Figure 16.  Machine learning techniques commonly used in SIoT.
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rating history, and CPU usage. In SIoT systems, it supports neighborhood-based trust inference where a 
new device inherits trust labels from its most similar peers; if most neighbors are trusted, it likely is too. 
This simplicity allows KNN to adapt dynamically without a training phase, making it suitable for well-clus-
tered trust datasets. However, it becomes computationally heavy with large data and is sensitive to irrele-
vant features and inconsistent scaling, requiring careful preprocessing to maintain accuracy. Building on 
traditional KNN approaches, this study168 adapts the algorithm to handle mixed data types—numeric and 
string—allowing for more nuanced classification of plant commodities based on environmental profiles

•	 Support Vector Machine(SVM):
	 SVM is a powerful classification model that identifies the optimal boundary—or hyperplane—to sepa-

rate data points, often using kernel functions to handle complex, non-linear relationships. In SIoT sys-
tems, it’s effective for discerning trustworthiness based on rich features like signal strength anomalies, 
conflict resolution history, access control outcomes, and multimodal trust scores. By mapping data into 
higher-dimensional space, SVM creates clearer separation between trusted and untrusted devices, yielding 
high accuracy for binary trust classification. Though it thrives in feature-rich environments, SVM can be 
computationally intensive and demands careful kernel and parameter tuning, making it better suited for 
smaller, high-stakes datasets like bioinformatics or nuanced trust modeling. Reference169 applied an SVM 
classifier optimized using the Pelican Optimization Algorithm for real-time gender identification from 
facial video frames. While the work is not SIoT-specific, its use of human-centered, real-time visual data 
and edge-deployable machine learning aligns with many SIoT use cases such as surveillance and social de-
vice interaction, showcasing how SVM can be enhanced for improved classification accuracy and reduced 
latency in intelligent IoT systems.

•	 Random Forest: Random Forest is a collective approach that builds multiple decision trees using varied 
subsets of trust features—such as interaction frequency, data accuracy, battery status, and network laten-
cy—and then combines their predictions to produce a strong, reliable classification. In SIoT systems, this 
method captures diverse aspects of trust, with each tree focusing on a different priority (e.g., one may high-
light latency while another weighs energy reliability), resulting in robust trust evaluations even with noisy 
or incomplete data. Random Forest models are especially effective for handling complex classification tasks 
and collaborative trust analysis, though they tend to require more computational power and can be harder 
to interpret compared to using a single decision tree. This170 paper presents a predictive framework that 
combines IoT-based environmental sensing with machine learning models to forecast forest fires. The 
study utilizes weather and historical fire data, employing algorithms like Random Forest, XGBoost, KNN, 
Decision Trees, and Logistic Regression. The XGBoost and Random Forest models achieved the best per-
formance, with accuracies up to 97.52%. IoT devices (e.g., sensors and drones) provide real-time environ-
mental data (temperature, humidity, wind speed, etc.), enhancing the model’s responsiveness and accuracy. 
The integration supports early fire risk detection, resource optimization, and improved decision-making 
in wildfire management.

	3.	 Clustering

•	 K-means:K-means is a partition-based clustering algorithm that divides data into k distinct groups, each 
defined by a central point called a centroid. It works by iteratively assigning data points—such as SIoT de-
vice metrics like communication latency, interaction frequency, and energy usage—to the nearest centroid 
and adjusting those centroids until the clusters stabilize. This makes it useful for grouping similar devices 
(e.g., low-energy sensors vs. high-throughput routers) to optimize trust assessment and service efficiency. 
While K-means is fast, scalable, and simple to implement—especially effective for spherical clusters—it 
requires predefining k, struggles with irregular cluster shapes, and is sensitive to outliers and how centroids 
are initially placed. It’s well-suited for behavioral clustering, performance-based device grouping, and load 
balancing in IoT networks. A novel cluster-based aggregation model for the Social Internet of Things (SIoT) 
was proposed that integrates relationship-aware cluster head selection using Decision Tree algorithms with 
K-Means clustering and Huffman coding for data compression. The model selects cluster heads based on 
object relationships and profiling features, compresses data at the cluster head, and forwards it to the sink 
node, significantly improving energy efficiency, network lifetime, and aggregation accuracy. Simulations 
conducted using the SIoT-CCN simulator demonstrated superior performance over existing clustering and 
aggregation methods in terms of BIC scores, silhouette scores, and transmission overhead171.

•	 DBSCAN : DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a clustering algo-
rithm that groups closely packed data points together while marking isolated or low-density points as out-
liers—making it especially useful for discovering natural data structures without needing to predefine the 
number of clusters. In SIoT systems, it can effectively detect clusters of trusted devices based on trust score 
proximity and highlight compromised or anomalous behavior as noise. DBSCAN excels at identifying 
irregularly shaped clusters and automatically detecting outliers, which is ideal for anomaly detection and 
spatial analysis in smart environments. However, its performance depends heavily on selecting appropriate 
distance and density parameters, and it may struggle with datasets where cluster densities vary signifi-
cantly. In their study172 they applied DBSCAN clustering to group geographically proximate IoT-enabled 
bike-sharing stations, enabling socially contextual forecasting of shared mobility demand. Though not ex-
plicitly framed within the SIoT paradigm, the clustering of physical IoT nodes and subsequent demand 
prediction reflects spatial-social grouping logic relevant to SIoT applications in smart transportation. A 
two-step community detection algorithm was proposed for efficient service provisioning in SIoT, com-
bining Louvain for social structure analysis and DBSCAN to refine communities by removing outliers 
and merging spatially dense device clusters. Reference173 demonstrated that this DBSCAN-enhanced stage 
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improves modularity, execution time, and the quality of service composition, enabling faster and more 
scalable service discovery within socially connected IoT networks.

•	 Hierarchical Clustering : Hierarchical Clustering builds a layered structure of clusters by either progres-
sively merging similar data points (agglomerative) or recursively splitting larger groups (divisive), often 
visualized through dendrograms that depict nested relationships. In SIoT systems, this approach supports 
creating trust hierarchies—such as grouping devices first by manufacturer and then further dividing them 
by interaction behavior or security profiles—making it valuable for semantic reasoning and ontology struc-
turing. While the method offers interpretable cluster trees and avoids needing a predefined cluster count, 
it can be computationally intensive, sensitive to noise and feature scaling, and challenging when deciding 
where to “cut” the hierarchy to form final clusters. It shines in domain-driven clustering, trust modeling, 
and taxonomy development. Reference174 introduced a hierarchical clustering-based FL framework (Fed-
CHAR) that identifies similarities among distributed users to improve personalization and robustness. 
Their method, though designed for HAR, is adaptable to SIoT, where clustering socially connected objects 
can improve collaborative intelligence, fairness, and security in a decentralized setting.

	4.	 Deep learning

•	 ANN: Artificial Neural Network (ANN) ANNs are the foundational deep learning models inspired by 
biological neurons. They consist of multiple interconnected layers of nodes that learn patterns by adjusting 
weights during training. In SIoT systems, ANNs can predict trust scores or detect anomalies from features 
like transmission rates, authentication logs, and latency patterns. They are flexible for various tasks, easy 
to scale, general-purpose model however may require large data for training, less suited for spatial or se-
quential patterns . They are suitable for basic trust estimation, sensor fusion, generic pattern recognition.175 
propose semantic rules for service discovery in SIoT, and evaluate multiple ML classifiers - Decision Tree, 
Naive Bayes, KNN, and ANN to predict health services and discover context-aware resources based on 
object relationships. ANN, KNN, and DT showed high performance (100% in most test ratios). The model 
leveraged object-object and user-object relationships for context-aware service discovery.

•	 CNN: Convolutional Neural Network (CNN), CNNs are specialized for spatial data and use convolutional 
layers to detect local patterns. Though famous for image tasks, they’re also effective in analyzing structured 
data like time-series sensor outputs. In SIoT, CNNs can detect localized anomalies or behavioral deviations 
in network traffic graphs or sensor maps. Excellent at capturing local features, efficient with grid-like data . 
However less suited for sequential data without modifications. They are well suited for Visual data analysis, 
spatio-temporal trust modeling, anomaly detection in device states. Reference176 proposed a feature selec-
tion framework for SIoT that integrates TransCNN—a deep learning model combining Transformer and 
CNN layers—with the Chaos Game Optimization (CGO) algorithm. TransCNN extracts robust features 
from both text and numerical data, while CGO identifies the most relevant ones to boost classification per-
formance. By blending representation learning with heuristic-driven selection, the model adapts to diverse 
SIoT tasks. Tested on eight datasets, it surpassed ten leading methods in accuracy, sensitivity, specificity, 
feature count, and fitness value, proving its effectiveness in reducing dimensionality while preserving pre-
dictive strength.

•	 LSTM/RNN: Recurrent Neural Networks (RNNs) and their enhanced variant Long Short-Term Memory 
(LSTM) networks are deep learning architectures specifically designed to handle sequential and time-de-
pendent data. Unlike traditional models that treat each input independently, RNNs maintain internal states 
that persist across input steps—allowing them to capture temporal dependencies. LSTMs improve upon 
standard RNNs by integrating memory cells and gates that help them remember long-term relationships 
and prevent issues like vanishing gradients during training. In SIoT systems, these models are ideal for 
modeling evolving trust behaviors, forecasting device interactions, or detecting changes in communication 
patterns over time. Their strength lies in effectively learning patterns from sequences such as authenti-
cation histories or periodic sensor anomalies. However, training these models can be computationally 
intensive, and managing long sequences or tuning parameters may require expertise and careful design. 
A hybrid LSTM-RNN model optimized with Lion Optimization is proposed for IoT-based cardiac patient 
monitoring, achieving 99.99% accuracy. The system enables real-time analysis of vital signs and enhances 
prediction performance through intelligent feature selection177.

•	 Autoencoders:Autoencoders Autoencoders learn to compress and reconstruct data, capturing essential 
features while filtering noise. They’re powerful for unsupervised anomaly detection in SIoT, flagging devi-
ations in trust scores or sensor data. A well-trained autoencoder reconstructs typical behavior accurately, 
while anomalies trigger reconstruction errors. They are unsupervised learning, effective in anomaly detec-
tion and dimensionality reduction . They May fail with highly noisy data, interpretability can be limited 
. Suitable for feature compression, trust anomaly detection, privacy-aware representation learning. The 
study178 propose an autoencoder-based malware analysis framework that leverages grayscale and RGB 
imagery representations of malware to enhance IoT security in Smart Cities. Their approach investigates 
various autoencoder (AE) architectures, including convolutional variational AEs, to classify malware ef-
ficiently. Experiments demonstrate that the method is robust across different input shapes and supports 
multi-label classification, making it suitable for complex Smart City IoT environments.

	5.	 Other Emerging ML Technique

•	 Federated Learning: A decentralized approach to training machine learning models across multiple devices 
or nodes without transferring raw data to a central server. Instead, each device trains its own model locally 
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and shares only the learned parameters, preserving data privacy. This is particularly powerful in SIoT sys-
tems, where trust evaluation or behavior analysis can be collaboratively learned across edge devices—such 
as smart sensors or IoT gateways—without compromising sensitive personal or network-level information. 
It addresses both scalability and privacy concerns, though challenges like non-uniform data distribution 
and limited computational resources across devices require thoughtful model design and aggregation strat-
egies. To mitigate the high communication burden typically seen in decentralized federated learning (DFL) 
systems with numerous interconnected social nodes in Social Internet of Things (SIoT) environments, a 
dynamic multi-cluster DFL (DMC-DFL) framework was developed by179, utilizing a Limited Label Propa-
gation Algorithm (LLPA) for adaptive clustering. This communication-optimized approach is tailored for 
networks with evolving topologies and features a training workflow comprising local updates, intra-cluster 
coordination, and inter-cluster communication. Extensive experiments on four datasets showed that the 
proposed method substantially improves communication efficiency and training performance compared 
to existing DFL benchmarks.

•	 Reinforcement Learning: It involves training agents to make sequential decisions by interacting with an 
environment and receiving feedback in the form of rewards or penalties. In SIoT contexts, RL can be 
used to optimize trust-aware routing, adaptive access control, or autonomous decision-making for devices 
that learn from long-term outcomes. For example, a node might learn to avoid untrustworthy neighbors 
or reward collaborative behavior over time. RL excels at modeling dynamic interactions but often de-
mands substantial exploration and tuning, making it computationally intensive and occasionally unstable 
in large, noisy environments. Reference153 devised an edge-centric service recommendation framework 
for Social IoT (SIoT) systems, leveraging Multi-Agent Deep Reinforcement Learning (MADRL) to opti-
mize friendship path routing and service discovery. The system incorporates decentralized edge caching 
and cooperative multi-agent learning to enable scalable, low-latency, and context-aware recommendations. 
Experimental results reveal that the framework outperforms existing approaches in accuracy, operational 
efficiency, and adaptability across dynamic SIoT environments.

•	 Swarm Intelligence: Draws inspiration from collective behavior in nature—like ant colonies or bird flocks—
to develop distributed problem-solving systems. In SIoT, swarm-based algorithms can be used for decen-
tralized trust computation, resilient network formation, and resource-aware task allocation where indi-
vidual devices act locally but contribute to a coherent global strategy. The strength of swarm intelligence 
lies in its adaptability, fault tolerance, and scalability, especially in unpredictable or resource-constrained 
conditions. However, designing effective coordination mechanisms and ensuring convergence across di-
verse agents can pose challenges as system complexity increases. Reference180 proposed a swarm intelli-
gence-driven method for feature selection in SIoT systems by integrating quantum-inspired enhancements 
into the Artificial Hummingbird Algorithm (AHA). The upgraded Quantum AHA (QAHA) achieved a 
more effective exploration–exploitation trade-off and surpassed eight competing metaheuristic algorithms 
in terms of accuracy and dimensionality reduction across benchmark and real-world SIoT datasets.

Recent studies leveraging AIML in IoT & SIoT environments (2023–2025)
Federated learning approaches have been explored to preserve user privacy while training models across 
distributed SIoT devices.181 proposed and implemented SIDS, a trust-aware federated intrusion detection system 
for SIoT. They introduced a GAN-based poisoning attack to demonstrate federated learning vulnerabilities and 
validated their approach using real-world datasets. This study implements a federated hybrid deep learning 
framework tailored for distributed IoT edge environments, preserving privacy and improving intrusion 
detection accuracy through FHDBN and optimization techniques182. Deep learning-based frameworks have 
been adopted for profile inference and malicious node detection. Reference183 RIOT-ML provides an open-
source toolkit that enables the deployment, evaluation, and secure updating of TinyML models on low-power 
IoT devices, contributing to real-world applications of AI/ML in resource-constrained environments. A deep 
learning-based framework called EITM was proposed and implemented for effective node identification in SIoT 
networks, which employs node embedding techniques and LSTM models to select influential nodes184. The 
method was evaluated using real-world SmartSantander datasets and compared against conventional baselines 
using multiple performance metrics.

Security techniques
This section addresses RQ7, by reviewing various security techniques employed in SIoT systems, including 
data protection mechanisms, blockchain-based solutions, access control models, trust management strategies, 
privacy-preserving methods, and secure communication protocols. These techniques form the foundational 
components for securing the Social Internet of Things (SIoT), as supported by the cited literature. A detailed 
comparison of evaluation strategies is presented in Table  13, while a comprehensive review of the security 
techniques is summarized in Table 14.

Data security mechanisms
This subsection presents a review of existing security mechanisms namely, authentication and authorization, 
encryption techniques, and methods ensuring data integrity and confidentiality as referenced in the cited 
literature. 

	1.	 Authentication and Authorization Authentication verifies the identity of a device or user (e.g., a smart lock 
recognizing the owner’s phone). Authorization determines what actions the authenticated entity is allowed to 
perform (e.g., only the homeowner can unlock the door, while guests are restricted). In the context of secure 
device access for IoT-based smart home environments, Ref.191 introduce an authentication and key agree-
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ment scheme based on Modified Honey Encryption and Elliptic Curve Cryptography. The scheme ensures 
authorized access through session key negotiation and identity verification, while resisting various attacks 
such as replay, eavesdropping, and impersonation. A smart delegation mechanism was proposed to enhance 
authorization in SIoT by selecting delegatees based on social links, delegator behavior, and history, reduc-
ing overhead while maintaining flexibility23.The authors propose a novel quantum-resistant authentication 
system for smart meters in smart grids, using a hybrid RSA with One-Time Pad (OTP) approach. Unlike 
traditional RSA, their method changes the encryption key modulus (ni) for every session and never discloses 
it, achieving dynamic authentication as required by the EU NIS2 directive. They introduce an efficient key 
exchange protocol based on transmitting only the difference (∆ni) between session keys, ensuring absolute 
security even against quantum attacks. The system was implemented and tested on a Raspberry Pi, showing 
practical performance (∼50 ms) for 256-bit security, suitable for low-power IoT devices 185.

	2.	 Encryption:It is the process of converting readable data (plaintext) into an unreadable format (ciphertext) to 
protect it from unauthorized access. Only someone with the correct decryption key can convert the cipher-
text back into plaintext.26 developed a blockchain-based hybrid encryption scheme combining ECDSA and 
Dilithium to enhance data security and resist quantum attacks, offering valuable encryption mechanisms for 
SIoT systems.

	3.	 Data integrity and confidentiality These are pivotal concepts in SIoT to ensure that transmitted or stored 
data remains accurate, consistent, and unaltered, and to guarantee that sensitive information is kept pri-
vate and accessible only to authorized devices or users. In the event that a device receives tampered data, it 
might make erroneous decisions, such as mistakenly unlocking a smart door. Reference192 proposed a block-

Ref. Domain Purpose Threat tackled Core tech Proposed method Strengths Limitations Future work

185 Smart Grid Quantum-safe 
auth for meters

Replay, spoofing, 
quantum threats

RSA + One-Time 
Pad

Session-based 
dynamic keying

Quantum-safe, 
prevents spoofing Key sync, scaling limits

Optimize for IoT; 
enable distributed 
support

26 Healthcare Quantum-safe 
EHR encryption

Quantum threats, 
tampering, key 
misuse

Blockchain, 
ECDSA, Dilithium

Three-phase hybrid 
encryption

Strong privacy, 
quantum safety

Overhead, limited 
scalability

Combine with 
AI/IoT for 
efficiency

25 Social IoT Access control 
via social trust

Tampering, privacy 
leaks

Blockchain, Smart 
Contracts

Relationship-based 
access rules

Granular access, 
trust-aware sharing Latency, complex contracts Improve dynamic 

trust updates

186 Healthcare EHR auth and 
validation

Tampering, 
unauthorized 
access

Blockchain, SBT, 
IPFS, DL

SBT-based selective 
disclosure

Fast EHR 
validation, privacy, 
decentralization

SBTs non-transferable, 
key loss

Scale and apply 
cross-industry

187
Smart 
Home 
Energy

Real-time ABAC 
via hybrid 
blockchain

Spoofing, trust 
abuse

Fabric, Besu, smart 
contracts, KYC

Modular contracts, 
trust scoring

Supports zero-trust, 
adaptive control

Setup complexity, 
recalibration delay

Add edge AI, FL, 
DID features

188 MAGDM 
Systems

Enhance 
consensus via 
trust

Incomplete trust, 
low agreement

SNA, trust network, 
confidence model

Trust feedback via 
mediator

Better consensus 
accuracy, real-world 
proof

Needs accurate input, high 
compute

Apply to real-
time, large-scale 
cases

189 IoT Cloud 
Offloading

Reduce cloud 
data transfer load

Latency, energy, 
bandwidth

Change detection, 
relational encoding

Only send when 
change detected

Less data, retains 
utility

Threshold tuning, depends 
on cloud decode

Extend to other 
data types

190
Smart 
Gateway 
Security

Secure MQTT-
SN gateway using 
DTLS

Eavesdropping, 
MITM, replay, 
spoofing, rogue 
auth, DoS

DTLS 1.2, KMS, 
multithreading, 
ClientList

Monolithic, 
concurrent SecGW 
with DTLS + 
mutual auth via 
KMS

Encrypted SN-GW 
hop; resilient, 
scalable, supports 
multiplexing

Extra memory, slight delay; 
needs pre-config/KMS

Explore non-GW 
MQTT-SN 
security to reduce 
compute load

Table 14.  Review of security techniques in SIoT.

 

Ref. Domain Eval. type Tools used Lang. Metrics Result
185 Smart Grid Prototype Raspberry Pi 4B, Flask Python 3.11 Auth. time (ms) ∼46 ms @256-bit; scales to 2048-bit

26 Healthcare 
(EHRs) Simulation Hyperledger Caliper, Solidity Solidity (Eth) Throughput, cost, utilization Secure, efficient; fixed signature size

25 Social IoT Simulation + 
Comparative Python stack (SciPy, SKO, etc.) Python Accuracy, latency, trust, privacy 95% acc., 280 Tx/s, 2.2s latency, high trust/

privacy scores

186 Healthcare Simulation Smart Contracts, IPFS, 
Ethereum/Polygon Solidity Doc. verify time ( 2.2s), security, 

automation Fast, decentralized, tamper-proof verification

187 Access Control Prototype Hyperledger Fabric/Besu, 
CouchDB, AWS Solidity/Go Access latency, trust accuracy, cert 

verify time
<200ms avg. access; fast onboarding, 
RSA+KYC used

188 Group Decision Simulation + 
Case Study MATLAB (custom) Not specified GCD, ICD, preference plots GCD ≥ 0.901 in 2 rounds; outperforms 

baselines

189 Cloud Offloading Conceptual 
projection SSIM, C2C, RMSE, diff. ops Python, 

MATLAB Reduction ratio, recon. accuracy High data savings; generalizable across IoT 
types

190 Gateway Security Real Testbed Raspberry Pi-2, Mbed OS, 
Wireshark C MPT, TPT, DTLS overhead, 

Power
Scales linearly; TPT ≈ 2.5s; ∼3.8MB/thread; 
low power overhead; blocks illegal clients

Table 13.  Summary of evaluation of security techniques in SIoT literature.
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chain-based security framework that integrates decentralization, smart contracts, and federated learning. It 
is designed to offer a tamper-proof, scalable, and low-latency solution for vehicular networks, focusing on 
data confidentiality, integrity and attack resilience in the Internet of Vehicles (IoVT). The authors25 present 
SecureSIoTChain, a blockchain-based security framework for the Social Internet of Things (SIoT). It com-
bines Graph Neural Networks (GNN) for dynamic relationship inference with Relationship-Elliptic Curve 
Digital Signature Algorithm (R-ECDSA) for secure device authentication and communication. This frame-
work ensures data confidentiality, integrity, and anomaly detection, achieving high performance with 95% 
accuracy and 96% precision. Simulations demonstrate its superiority in throughput, latency, and security 
metrics.

Blockchain based mechanism
This subsection reviews blockchain-based mechanisms, highlighting decentralization for distributed control, 
immutable ledgers for tamper-proof records, and smart contracts for automated rule enforcement, as discussed 
in existing literature. 

	1.	 Decentralization Decentralization means removing dependency on a single centralized entity by distrib-
uting control and decision making among several nodes.This allows device to communicate independent-
ly without supervision. Blockchain technology facilitate decentralization by providing secure data sharing, 
automated smart contracts, and establishing trust without the need for central authority. It is necessary to 
achieve decentralization in SIoT by leveraging blockchain technology in order to avoid single point failure 
and performance bottlneck faced in centralised system. As described in193, have introduced a decentral-
ized blockchain-based solution that incorporates a censorship-resistant mechanism, ensuring unrestricted 
data flow from sensors to the blockchain and from the blockchain to actuators. The study7 evaluated three 
trust management models (centralized, distributed, and blockchain-based), demonstrating the advantages 
of blockchain-based trust management. It provided an in-depth analysis of IoT classifications (IoMT, IIoT, 
IoV, and SIoT), requirements, challenges, and applications of IoT. Reference194 Researchers have introduced 
a blockchain-based consensus protocol for securing IoT networks. Using Ethereum as a decentralized plat-
form, they validated their protocol through simulations. This protocol enables IoT devices to participate in 
consensus, validate transactions, and maintain the blockchain, ensuring network security even in the pres-
ence of malicious devices. The protocol operates in stages, including pre-prepare, prepare, and commit, to 
achieve secure agreement.

	2.	 Immutable Ledger

	Immutable ledger offers a great solution as once data is recorded it cannot be altered, this can be benicial in SIoT 
environment for securing transactional records, device behaviour logs, and access control events. A block-
chain-based solution is developed, leveraging immutability, transparency, and decentralization, combined 
with soulbound tokens, to create a tamper-proof and privacy-preserving identity verification system. A soul-
bound tokens (SBTs), a non-transferable application of blockchain technology, on the Ethereum Polygon net-
work, combined with cloud computing and IPFS for off-chain storage of medical documents. This approach 
enables secure, decentralized, and efficient verification of medical records, surpassing traditional NFT-based 
methods and offering an autonomous alternative to manual or centralized verification processes186.This sys-
tem has potential applications in integration with AI, biometrics, IoT, and Social IoT (SIoT), offering a robust 
and secure identity management framework. This study195 proposes a novel approach integrating AI-driven 
task distribution with a decentralized mechanism for task assignment and validation, leveraging the Proof 
of Authority (POA) consensus mechanism. This POA-blockchain-based system, combined with Cloud In-
ternet of Things (CIIoT), addresses key challenges such as task distribution, resource utilization, transaction 
processing, and scalability. The proposed system aims to minimize resource waste, improve energy efficiency 
through Dynamic Voltage and Frequency Scaling (DVFS), reduce operational costs and carbon footprint, and 
enhance overall efficiency.

	3.	 Smart contract

	Smart contract refers to self executing a code when certain condition are met without human intervention. 
Example dispensing a chocolate bar on a vendeing machine. A novel Sybil detection and prevention method, 
SybilPSIoT has been developed for SIoT environmet, integrating web of trust, signed social networks, smart 
contracts and game theory to effectively mitigate Sybil attacks68. They have103proposed a scalabel trust model 
SCoTMan, for Social Internet of Things environment that integrates smart contract on Hyperledger fabric to 
handle both trust computations such as direct and direct , while keeping in mind real world constraints.

Access control mechanism
This subsection reviews existing access control mechanisms, including Role-Based Control (RBC) ensuring 
access based on predefined roles, Attribute-Based Control (ABC) ensuring fine-grained access through user 
attributes, and social contextual access control ensuring permissions based on social relationships and context, 
as supported by the cited literature. 
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	1.	 Role Based Access control: Role based access control is a security mechanism that restricts access based on 
roles( Admin, editor, user, viewers ) assigned to individual users. In their study196 they proposed an efficient 
and secure data processing framework for role based access control (RBAC).

	2.	 Attribute Based Access Control: In attribute based accces control mechanism, the decisions are made on the 
combination of attributes such as users, resouces, actions, environment/context. This197 study, implements a 
dynamic (time-based) attribute-based access control(ABAC) framework on a private Ethereum blockchain, 
demonstrating that while initial deployment of four smart contract is costlier than traditional access control 
lists(ACLs), the ABAC approach proves more gas-efficient for policy updates and attribute management, 
offering scalabale and cost-effective access control for growing smart city infrastructure. The authors198 
proposed a dynamic attribute-based access control mechanism , replacing static mechanisms (MAC, DAC, 
RBAC, and ABAC) with a more flexible and real-time capable solution for device monitoring and access 
management. They187 propose a dynamic attribute-based access control (ABAC) model using a hybrid 
blockchain architecture (Hyperledger Fabric + Besu) for smart home energy systems. The system integrates 
KYC verification, smart contracts, and real-time trust recalibration to securely manage device access, prevent 
unauthorized interactions, and support adaptive policy enforcement in line with zero-trust principles.

	3.	 Social contextual Access Control 

	Access decisions are based on dynamic, relationship-driven, and behavior-sensitive information, moving be-
yond traditional static rules such as Role-Based Access Control (RBAC) and Attribute-Based Access Control 
(ABAC). The proposed model utilizes a deep learning-based approach, leveraging Graph Neural Networks 
(GNNs) and attention mechanisms to make context-aware decisions grounded in both users’ social rela-
tionships and individual preferences199. This method enables personalized and adaptive access control in 
Social Internet of Things (SIoT) networks, making it well-suited to environments where user behavior and 
device relationships evolve over time. The CARAC model provides adaptive and fine-grained access control 
by combining contextual data, mathematical weighting, and fuzzy logic within a game-theoretic framework. 
This approach enhances safety in high-risk scenarios, outperforming ABAC with minimal impact on perfor-
mance200. In this work201, DSA-Block model is proposed as a secure, decentralized access control framework 
for IoT systems, integrating blockchain and optimization techniques to enable trust-based access delegation 
and privacy-preserving data sharing. It employs Hyperledger Fabric as the private blockchain platform, lev-
eraging Trusted PBFT for consensus among trusted nodes and HECC for lightweight cryptographic opera-
tions. Access requests are filtered using SHA-256 hashing, while Shannon Entropy supports dynamic trust 
evaluation and user revocation. The model ensures data privacy through Laplace-based differential privacy 
and selects optimal edge node delegators using the Rock Hyraxes Swarm Optimization (RHSO) algorithm, 
factoring in trust, energy, and load. The IoT environment and system performance are simulated using NS-3 
(v3.26), demonstrating a scalable, attack-resistant, and privacy-aware architecture for secure data sharing and 
access control.

Trust management
This section reviews existing trust management approaches, including reputation-based trust, which evaluates 
trust through past behavior, social trust networks that leverage social relationships, trust propagation that 
enables transitive trust, hybrid trust that combines multiple sources, and decentralized trust that establishes 
trust without a central authority, as discussed in the literature. 

	1.	  Reputation Based System In trust management, the reputation based system is a method for assessing and 
measuring the trustworthiness of an enity such as device, user, or a service, based on past interactions and 
feedback from others in that network. It plays an important role espcially in decentralized environment 
over centralized authority. To address the issue when VPN collects data through SIoT devices, delivered 
content might be tampered inorder to degrade QoS and user experience to tackle researchers implement-
ed VMGuard, a four-layer reputation-based incentive framework, to defend against data poisoning attacks 
in the vehicular metaverse. The framework assesses the trust worthiness of participating Social Internet of 
Things (SIoT) devices, ensuring reliable data collection and service delivery76

	2.	 Social Trust Network  By integrating fuzzy logic, trust modeling, network theory, and optimization tech-
niques, this study202 introduces a trust-based group decision model that leverages discrete Z-numbers to 
enhance decision-making in social trust networks.

	3.	 Trust propagation

	Trust propagation refers to indirect trust between entities without direct relationships by leveraging trust rela-
tionships along network paths. Researchers203 have developed SISR, a hybrid trust-aware recommendation 
system that combines explicit and implicit trust models with latent feature mining. By utilizing trust propaga-
tion, SISR extends trust beyond direct relationships, enhancing recommendation accuracy even with sparse 
trust data. By leveraging concepts from Social Network Analysis (SNA), fuzzy logic, opinion dynamics, and 
decision theory, the authors188 proposed a consensus-reaching model that incorporates a hybrid dynamic 
trust network along with a trust propagation and aggregation mechanism. These mechanisms ensure that 
even when decision makers lack direct relationships, trust can still be effectively inferred and aggregated, 
which is critical in sparse or incomplete networks. The proposed model facilitates reliable trust assessment 
through the integration of both static social ties and dynamic preference similarities.
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	4.	 Hybrid Trust

	Hybrid trust management means combining two or more different approaches to evaluate trust between devices 
in a network especially in Social Internet of Things. To address the challenge of trust evaluation in a hetero-
geneous Social Internet of Things (SIoT) environment, the authors in204 propose a hybrid trust management 
framework tailored for multi-service SIoT networks. They have considered graph based trust, interaction 
based trust and human plus device intelligence.The paper introduced AI-SIoT, a hybrid service architecture 
that integrates heterogeneous IoT devices in smart cities using semantic web technologies and artificial intelli-
gence. By enabling semantic interoperability and AI-based decision-making, the system supports trust-aware 
service provisioning across diverse environments205.

	5.	 Decentralized Trust Decentralized trust is a trust management model where trust relationships are estab-
lished and maintained without relying on a single central authority. Instead, trust decisions are made collec-
tively or based on local information by nodes or entities within the network.This7paper conducts an in-depth 
review of blockchain-based decentralized trust management systems across four IoT classes: IoMT, IIoT, IoV, 
and SIoT.

Privacy preserving technique
In this subsection, we discuss three widely adopted privacy preseving techniques such as Differential 
privacy(used in Healthcare, smarthomes, or social platforms), Privacy preseving data sharing( using Blockchain, 
homomorphic encryption, or secure APIs) , and minimization(any sensor netowork). These methods applies 
across the domians are not tied to specific technology. These methods are foundational and versatile, forming 
core of many SIoT privacy framework. Besides these there are other advanced methods, such as206 Zero-
Knowledge Proofs(ZKPs)...etc. 

	1.	 Differential privacy

	This Differential privacy is a mathematical technique that protects individual privacy in datasets while enabling 
analysis, ensuring that the outcome remains roughly the same whether or not a single individual’s data is 
included. It’s widely applied in Data Science, AI, and Social Internet of Things (SIoT) to preserve privacy. 
The proposed207 study introduces a solution for data protection, combining Local Differential Privacy (LDP) 
and Randomized Response (RR) at the user level, with privacy-aware computation techniques (HMM and 
obfuscation) at the central server level. An additional layer of differential privacy provides extra security. This 
approach is well-suited for safeguarding data in smart home and smart environment applications. Reference51 
Proposed a differential privacy preserving solution called as DPSmartCity , an SDN integrated , dynamic 
privacy preserving mechanism for safe guarding sensitive data in smart city IoT environment.

	2.	 Annonimization Anonymization it is a process of removing identifying detials from data to prevent indivi-
uals from being recognized, it is commonly used to protect privacy in dataset, ensuring personal information 
cannot be traced back to the specific people. The authors208 conducted a comprehensive survey on dei-
dentification, anonymization and psedonymization techniques, evaluating them against smart city specific 
privacy challenges. When IoT devices communicate with each other over different blockchain networks, it’s 
difficult to be compatible and private. This article206 proposed a privacy protection protocol, using two main 
techniques, such as Groth16 Zero-knowledge proof, coin mixing technology and virtual external address 
mapping via generation function, a smart method to move assests across blockchain without revealing their 
identity.

	3.	 Privacy preserving data sharing

	The privacy preserving data sharing is a process that allows data to be shared and analaysed without compramis-
ing on its privacy. In209, a PP-SVM framework is presented for a privacy-preserving industrial IoT data sharing 
and analysis, leveraging blockchain-based security and SVM-based machine learning techniques to protect 
data privacy. The BP3-MTS blockchain-based solution enables secure and private error data sharing for mar-
itime transportation. Advanced sensor-equipped vessels dynamically share GNSS error data with common 
vessels, allowing them to correct their positioning. This decentralized approach leverages zk-SNARKs, Merkle 
trees, and Ethereum-based smart contracts to ensure privacy, transparency, and transaction fairness210.

	4.	 Data minimization

	A privacy preserving princple, in which data collecting, processing and storing only the minimum amount of 
personal or sensitive data that is required to achieve a specific purpose. To reduce the amount of data trans-
mitted from IoT devices to the cloud, Ref.189 proposed a generalized data transmission reduction model. Their 
approach leverages change detection techniques such as SSIM (for image data), Cloud-to-Cloud distance (for 
LiDAR point clouds), and absolute difference (for sensor values), along with mathematical formalization to 
decide when and what data should be transmitted.
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	5.	 Instruction Detection Intrusion detection means identifying malicious activities or unauthorised access 
attempts within IoT network. To detect known and unknown attacks, minimise false positive, to enable early 
and accurate detection of suspicious traffic. To address the security challenges arising from cyberattacks on 
vulnerable IoT devices, the authors211 proposed a framework named HybridChain-IDS. This framework of-
fers an intelligent and privacy-preserving security solution for edge-assisted IoT environments by integrating 
secure authentication and access control, employing advanced bi-level intrusion detection to reduce false 
alarms, and enabling real-time threat response through the use of blockchain and graph-based analysis.

Secure communication protocols
In this subsection, we discuss secure communication protocols such as MQTT over SSL/TLS and DTLS over 
UDP are widely used protocols in IoT and SIoT systems for secure communication between IoT devices and 
servers using the MQTT protocol. while these protocols form a foundation for secure communication in SIoT 
systems. They ensure layered encryption , mutual authentication, and resilience against network level threats 
such as spoofing, eavesdropping, and DoS attack. 

	1.	  MQTT with SSL/TLS, DTLS Instead of TLS/DTLS, resource heavy proptocols for contrained IoT devic-
es the authors212 proposed an Ethereum based consortium blockchchain (decentralized brokers), makes 
MQTT secure and scalabale for real world supply chain by integrating blockchain based trust, OTP based 
authentication, smart contract automation, while keeping the system lightweight for constrained IoT devic-
es.

	2.	 Datagram transport layer security over UDP

	DTLS provides security similar to TLS but operates over UDP, making it ideal for low latency applicaton in SIoT. 
It safegaurds data exchanges through encryption and authentication while considering constrained networks. 
The authors190 proposed a security enhanced MQTT-SN gateway called as SecGW. This proposed model is a 
mutithreaded, DTLS-secured gateway which is designed to protect sensor node to gateway hop in MQTT-SN 
architecture.

	3.	 COAP Constrained Application protocol with DTLS

	COAP( Constrainted Application Protocol) is a web-based, light weight protocol designed for contrained de-
vices and networks for IoT devices, allowing efficient communitication protocol over UDP. Combined with 
DTLS( Datagram Transport Layer Security) it ensures secure bidirectional communication in SIoT environ-
ments, protecting against eavesdropping and unauthorized access. The LightCert4IoT model, originally pro-
posed for91 securing IoT communications via CoAP over DTLS, can also be extended to Social IoT( SIoT) en-
vironments. SIoT, which enables trust based interactions among IoT devices, can benifit from LightCert4IoT’s 
decentralized authentication mechanism. By eliminating traditional PKI/CA dependencies and leveraging 
Ethereum based smart contracts for self-signed certificates, SIoT networks can enhance device trust relation-
ships, reduce energy consumption, and secure large-scale IoT deployments while maintaining efficient data.

Tools and evaluation metrics in IoT/SIoT environments
This section addresses RQ8, focusing on tools and simulation environments commonly used to model, simulate, 
and evaluate systems within both IoT and SIoT contexts. We review blockchain development tools, AI/ML 
frameworks, trust, privacy, and security tools, simulation and emulation environments, middleware platforms, 
as well as ontologies and semantic technologies. Additionally, standard evaluation metrics and validation 
parameters adopted in recent studies are summarized to highlight common performance assessment strategies. 
Table 15 presents a summary of tool usage across multiple studies, while Table 16 outlines the evaluation metrics 
and validation approaches used in recent literature.

Tools
In this subsection, we provide a comprehensive overview of various categories of tools that support the 
development and deployment of IoT and Social Internet of Things (SIoT) systems. These tools play a crucial 
role in simulating network behaviors, enabling intelligent processing, ensuring secure communication, and 
managing device interoperability across heterogeneous environments. Each of these tool categories contributes 
to solving specific challenges in IoT and SIoT systems, and the choice of tools largely depends on the application 
domain, scalability requirements, device capabilities, and the intended use-case scenario. Besides there are other 
tools too but these are commonly used. 

	1.	 Simulation and Emulation Tools—These tools are essential for testing IoT/SIoT architectures, communi-
cation protocols, trust models, and network behaviors under different conditions without deploying them 
in real-world environments. They help validate performance, scalability, and security aspects before actual 
implementation.

•	 Cooja(Contiki- NG): A network simulator designed to model low-power wireless protocols, mobility 
patterns, and trust-based routing mechanisms, enabling the evaluation of IoT protocols in resource-con-
strained environments and Social IoT (SIoT) trust frameworks. They91 developed a blockchain-based au-
thentication mechanism called LightCert4IoT for CoAP/DTLS in IoT environments, leveraging a custom 
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certificate scheme to replace traditional PKI/CA dependency. Their implementation used the Ethereum 
blockchain (Sepolia testnet) to store device certificates and public keys through smart contracts coded 
in Solidity, deployed via Remix IDE and managed using MetaMask for secure transaction handling. The 
Web3 module within their Lightweight Registration Agent (LRA) enabled communication between IoT 
devices and the blockchain for certificate validation. Performance evaluation using the Cooja–Contiki sim-
ulator revealed that LightCert4IoT significantly outperformed conventional X.509-based systems in terms 
of DTLS handshake time, energy efficiency, and memory usage, highlighting its lightweight and scalable 
design for resource-constrained IoT settings. This25 work proposes a Blockchain-based Federated Learn-
ing (BCFL) system deployed across Edge-Fog-Cloud layers to enable secure, decentralized ECG anomaly 
detection. Using Ganache for smart contract deployment and iFogSim2 for simulation, it compares place-
ment strategies (edge, fog, cloud) and demonstrates that edge deployment achieves superior performance 
in latency, cost, and energy. The system uses autoencoder models within a Flower-based FL setup, integrat-
ing smart contracts to maintain trust and privacy without sharing raw data.

•	 CCNSim:CCNSim: An artificial intelligence enabled classification, clustering and navigation simulator for 
Social Internet of Things

•	 NS-3:A network simulator designed to model low-power wireless protocols, mobility patterns, and trust-
based routing mechanisms, enabling the evaluation of IoT protocols in resource-constrained environments 
IoT/ (SIoT) Social trust frameworks.

•	 iFogSim /iFogSim2: A fog/edge simulator that emulates fog–cloud architectures while incorporating la-
tency, trust, and access control models, enabling the simulation of resource management strategies and 
latency-sensitive IoT or SIoT deployments.

	 A smart building resource optimization model is designed using real-time data from IoT devices like CO2 
sensors, CCTV cameras, and light sensors, implemented within a Fog–Cloud architecture and simulated 
via iFogSim2. The setup is evaluated on a MacBook Pro (2.3 GHz, 8-core Intel Core i9, 16 GB RAM) under 

Tool category/tool name 224 146 91 222 220 218 215 25 201 138

Blockchain development tools

Ganache ✓ ✓

Truffle ✓

Remix IDE ✓ ✓

Hardhat

MetaMask ✓ ✓

Web3.js ✓

AI/ML tools

TensorFlow Lite / Micro ✓

Federated Learning (e.g., Flower) ✓ ✓

Scikit-learn / PyTorch ✓

Trust, privacy, and security tools

Hyperledger Fabric / Besu ✓ ✓

uTrust

TruSDN

OpenABE

Simulation and emulation tools

Cooja (Contiki-NG) ✓

NS-3 ✓

iFogSim / iFogSim2 ✓

YAFS

MATLAB / Simulink ✓ ✓

Middleware and IoT platforms

FIWARE

Node-RED

Kaa IoT Platform

Eclipse Ditto ✓

Mainflux

Ontologies and semantic tools

SSN

SAREF ✓

IoT-Lite

Protégé ✓

Table 15.  Tool usage across multiple references.
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fixed and scalable scenarios, with fixed deployments featuring 7 cameras, 17 CO2 sensors, and 22 light 
sensors, while scalable scenarios range device counts from 20 to 200. Device specifications—such as MIPS, 
RAM, and network parameters—are drawn from manufacturers’ datasheets. Performance is assessed using 
metrics like energy consumption, latency, and bandwidth utilization, with fog-based configurations in 
the scalable scenario showing notable improvements: up to 4.35% in energy efficiency, 91.38% in latency 
reduction, and 38.95% in reduced bandwidth usage213.

•	 YAFS:An event-driven simulator that models dynamic edge/fog deployments, node mobility, and sys-
tem-level failures, supporting the evaluation of resilience, mobility scenarios, and application behavior in 
IoT /SIoT environments.

•	 MATLAB/Simulink:
	 A custom modeling tool designed to support mobility modeling, behavioral logic design, and the simula-

tion of trust algorithms, enabling the prototyping of trust frameworks, integration of AI/ML techniques, 
and exploration of advanced mobility patterns in IoT. Reference146 utilized MATLAB R2016a as the core 
simulation platform to develop and assess their blockchain-enabled digital twin vehicular edge network 
(DTVEN). The study evaluated performance across various strategies by analyzing task offloading effi-
ciency, latency, energy consumption, and overall network cost. Central to their approach was an Improved 
Cuckoo Algorithm (ICA) for optimizing task offloading ratios, paired with a greedy strategy to enhance 
blockchain consensus efficiency. The ICA incorporated sophisticated metaheuristic refinements, including 
a Levy flight-driven global search, cosine-decreasing discovery probability, Latin Hypercube Sampling for 
initializing the population, and a hybridization with Golden Sine Algorithm (GSA) and Particle Swarm 
Optimization (PSO) to boost convergence speed and solution precision. All components were custom-de-
veloped and executed within MATLAB, independent of any third-party machine learning or blockchain 
simulation tools.

	2.	 Middleware and IoT Platforms—Middleware solutions and platforms provide a layer of abstraction between 
IoT devices and applications, facilitating device integration, data management, interoperability, and service 
orchestration. These platforms often offer built-in support for device registration, communication protocols, 
rule engines, and analytics.

•	 FIRWARE: An open-source IoT middleware platform offering APIs, device management capabilities, and 
data processing functions, tailored for smart city applications and modular, scalable IoT deployments.

	 The framework establishes secure authentication for Digital Twin (DT) ecosystems by employing Tiny-
JAMBU, a lightweight authenticated encryption algorithm, to ensure both confidentiality and device legit-
imacy during communication. It integrates Eclipse Ditto as the DT platform, utilizing MQTT over TLS/
SSL to facilitate secure, bidirectional messaging. Authentication is strictly enforced before any interaction 
occurs, requiring that the decrypted cipher corresponds to the designated ThingID of the Digital Twin and 
that the computed encryption tag matches the one received, ensuring precise and reliable identity verifica-
tion214.

	 In this work215, a Digital Twin Network (DTN) architecture is introduced for Industrial IoT (IIoT) envi-
ronments, leveraging Eclipse Hono to integrate heterogeneous IoT devices and Eclipse Ditto for managing 
digital twin entities. The architecture supports real-time synchronization of device states and delivers intel-
ligent services such as predictive maintenance, dynamic resource allocation, security oversight, energy op-

Ref. Domain Eval. type Dataset Tools used Lang. Metrics Result

213 Smart 
Building Simulation iFogSim2 traces iFogSim2 Java Energy, Latency, BW Fog: 91.38% lower latency, 38.95% less 

BW than Cloud

25 SIoT Security Simulation 16 devs, 10 rel., 21 
services GNN, Blockchain, SciPy stack Python Acc., Prec., Trust, 

Latency, Thrpt.
GNN: 95% acc., 280 Tx/s, 2.2s delay, high 
sec./priv. scores

216 Healthcare 
IoMT Testbed WUSTL-EHMS (16K) Scikit-learn, ARGUS, Streamlit Python Acc., Prec., Recall, F1 VAE: 91.6% acc.; 8 vitals in real-time GUI

201 Cloud-IoT 
Security Simulation Synthetic traffic HECC, HL Fabric, PBFT, DP, 

RHSO Python, C++ Acc., Latency, Thrpt. 94% acc., low latency, 80 kb/s throughput

113 Smart Home Simulation 
(FL)

BoT-IoT, TON-IoT, 
MQTTset TensorFlow, Keras, gRPC, TLS Python Acc., ROC-AUC, F1 FL: up to 96.5% acc., reduced delay/

overhead

105 Smart 
Kitchen IoT

Sim. + 
Testbed

Custom IR images (13 
classes, 1518 aug.)

RPi 3, IR Cam, YOLOv5n, 
TFLite, Firebase, Android 
Studio

Python, Java Prec., Recall, 
mAP@0.5, F1

mAP@0.5 = 97.1%, Prec. = 91.5%, Recall 
= 94.6%, Cost = 224

68 SIoT Security Simulation SWIM + Brightkite 
(synthetic + real) Custom Python simulation Python AUC, FP, FN, Time, 

Memory
Higher AUC, lower FP/FN vs. SybilSCAR; 
similar time; slightly more memory

21 Smart City 
Security Simulation CIC-IoT (105 devices, 

33 attacks, 7 classes)
Ethereum (Go-Ethereum, 
Ganache), PySpark, NN

Python, 
NodeJS

Accuracy, Processing 
time, Throughput

Acc. 98.4%, up to 99.8% (Spoofing), 
0.389s, 4500 tx/s

22 IoT / SEaaS Sim. & 
Prototype

Synthetic IoT sensing 
data

Ethereum (SCs), Ganache, 
Truffle, Remix

Solidity, 
Python/JS

Latency, Throughput, 
Gas cost, Scalability

Lat. 1–2s, Thru. 15–20 tx/s, Gas 21k–40k, 
scalable, secure

35 IDS for IoT Simulation CICIoT2023 (105 
devices, 33 attacks) ANN + FL (FedAvg) + SHAP Python Acc., Prec., Rec., 

F1, Loss
Train 88.4%, Test 88.2%, Prec. 0.89, Rec. 
0.68, F1 0.70

Table 16.  Performance review.
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timization, and adaptive QoS/QoE management. A case study, conducted using the IEEE 802.15.4e TSCH 
protocol, demonstrates the DTN’s effectiveness in resource scheduling, where policies dynamically adjust 
in response to changing network conditions through simulation.

•	 Node-RED: “A flow-based development tool that enables visual programming for interconnecting devices, 
APIs, and services, supporting rapid prototyping, real-time edge data processing, and streamlined orches-
tration of lightweight SIoT applications.

•	 Kaa IoT Platform:An IoT middleware platform offering comprehensive device lifecycle management, 
seamless data acquisition, and analytics capabilities—tailored for industrial IoT, healthcare applications, 
and efficient fleet and sensor network operations

•	 Eclipse Ditto: A digital twin framework that oversees virtual replicas of IoT devices, ensuring real-time 
synchronization of physical and virtual states—empowering smart factory automation, remote monitor-
ing, and twin-driven control in Social IoT (SIoT) deployments.

•	 Mainflux :An Industrial IoT platform that provides device management, messaging infrastructure, and 
robust data security within a microservices architecture—optimized for scalable, secure Social IoT (SIoT) 
deployments in industrial environments.

	3.	 AI/ML Toolkits for IoT/SIoT Intelligence—The integration of artificial intelligence and machine learning en-
ables IoT/SIoT systems to perform intelligent tasks such as anomaly detection, context-aware decision-mak-
ing, pattern recognition, and predictive maintenance. These toolkits support training, evaluation, and de-
ployment of AI models either on the cloud, edge, or directly on constrained devices.

	An AI-powered intrusion detection system (IDS) for the Internet of Medical Things (IoMT) is proposed to 
detect man-in-the-middle (MITM) and spoofing attacks by integrating a secure IoT-edge architecture with 
machine learning and deep learning techniques. The IDS leverages real-time biometric and network flow data 
from the WUSTL-EHMS-2020 testbed, with preprocessing done via the ARGUS tool to create a balanced da-
taset. Eight classification models, including Variational Autoencoders (VAEs), Feedforward Neural Networks 
(FNN), XGBoost, LightGBM, Random Forest, SVM, and Logistic Regression, were evaluated using accuracy, 
precision, recall, and F1-score as performance metrics—VAE achieving the highest accuracy at 91.61%. The 
system was developed using Python libraries such as Pandas, NumPy, Scikit-learn, and Matplotlib, and de-
ployed through a Streamlit-based frontend supporting real-time prediction from eight vital parameters216.

	This217 study presents a federated intrusion detection system (IDS) that leverages a shallow artificial neural 
network (ANN) as the global model, collaboratively trained across four virtual clients using the Flower fed-
erated learning framework (v1.0.0). The implementation, built in Python, uses Scikit-learn’s MinMaxScaler 
for preprocessing, and adopts a client–server architecture for distributed training. Experiments ran on a Li-
nux Mint 20.3 Cinnamon setup featuring an Intel Core i7-5960X CPU and 32 GB RAM, with the ToN_IoT 
and CICIDS2017 datasets supporting both binary and multiclass classification tasks. To evaluate aggregation 
performance, the study compares FedAvg (as the baseline) with FedAvgM, FedAdam, and FedAdagrad under 
various training configurations.

A federated learning based framework is proposed for intrusion and credit card fraud detection, employing 
IIDNet an enhanced convolutional neural network—as the shared model across 10 clients using the Flower 
framework. FedAvg acts as the main aggregation method, with FedProx and FedOpt included for perfor-
mance comparison. Implementation relies on Python with TensorFlow and Scikit-learn, running on Google 
Colab with NVIDIA GPU support. Two datasets, UNSW-NB15 and a credit card fraud dataset, are used for 
training and evaluation, with metrics such as accuracy, precision, recall, F1-score, and AUC guiding the as-
sessment of model effectiveness218.

•	 TensorFlow Lite /Micro: A lightweight machine learning inference engine optimized for executing ML 
models on resource-constrained edge devices, such as microcontrollers—enabling real-time anomaly de-
tection and predictive maintenance in Social IoT (SIoT) environments.

•	 Federated Learning(e.g., Flower,FedML): A distributed machine learning framework that facilitates collab-
orative model training across multiple devices while preserving data privacy—empowering personalized 
intelligence and cross-device learning in Social IoT (SIoT) environments

•	 Scikit-learn /PyTorch: A general-purpose machine learning and deep learning library offering compre-
hensive tools for model training and deployment—supporting trust evaluation, pattern recognition, and 
behavior modeling in Social IoT (SIoT) systems

	4.	 Trust, Privacy, and Security Tools:

	The paper219 proposes a secure, cloud-based telemetry framework for drone data that uses hybrid encryption—
combining Attribute-Based Encryption (ABE) via OpenABE for session key control and symmetric encryp-
tion for efficiency. A Cryptographic Agility Metric is introduced to evaluate encryption performance, access 
policy enforcement, and system overhead across environments. The framework also compares ABE libraries 
(Rabe, GoFE, CiFEr, Charm), leverages OpenSSL for RSA-based benchmarking, and references supportive 
tools like RELIC, MIRACL, and ALE platforms (e.g., LogSentinel, AWS Crypto Tools) to showcase real-world 
applicability.

	The study220 used Ethereum (via Hyperledger Besu) and Hyperledger Fabric as the core blockchain platforms. 
Hyperledger Caliper was employed to benchmark performance under DDoS attacks. Docker containers host-
ed network components, while Remix IDE and MetaMask were used for Ethereum smart contract deploy-

Scientific Reports |        (2025) 15:40190 53| https://doi.org/10.1038/s41598-025-23865-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


ment. Chaincode in Hyperledger Fabric was developed using Go, Java, and JavaScript. The benchmarking 
scripts ran using Node.js, with the entire setup executed on a Debian OS environment through WSL2 on a 
MacBook Air M1.

The authors221 present a blockchain-enabled extension to IoT platforms by integrating Hyperledger Besu, an en-
terprise-grade Ethereum client, into the open-source Home Assistant system. Their solution introduces a pri-
vate blockchain connector, leverages Kafka for data queuing and WebSocket for real-time subscriptions, and 
uses Solidity smart contracts to securely log IoT transactions. The implementation adopts the QBFT Proof of 
Authority consensus protocol on Hyperledger Besu and is packaged within a Docker-based environment to 
facilitate seamless deployment and replication.

•	 Hyperledger Fabric/ : A permissioned blockchain framework featuring a modular architecture with inte-
grated identity management and privacy-preserving mechanisms—enabling secure and scalable deploy-
ments in supply chain IoT, consortium-driven Social IoT (SIoT) systems, and healthcare data exchange

•	 Hyperledger Besu :An enterprise-grade Ethereum client compatible with both public and private networks, 
enabling secure and efficient smart contract execution within permissioned Social IoT (SIoT) ecosystems.

•	 uTrust: A trust management framework that facilitates negotiation, assessment, and policy enforcement 
across distributed systems—enabling trust-based access control in heterogeneous Social IoT (SIoT) net-
works

•	 TruSDN:A blockchain-integrated Software Defined Networking (SDN) security framework that enhances 
trust, transparency, and access control—supporting secure IoT infrastructure with dynamic routing and 
policy enforcement.

•	 OpenABE : An attribute-based encryption (ABE) toolkit that enforces cryptographic access control 
through attribute-driven policies—enabling fine-grained, secure data sharing in IoT and Social IoT (SIoT) 
environments.

	5.	 Ontologies and Semantic Tools for SIoT—Ontologies play a significant role in modeling relationships among 
entities in SIoT, supporting context awareness, semantic interoperability, and trust reasoning. Semantic tools 
enable the use of shared vocabularies and structured data representation, making interactions more mean-
ingful and automated.

	In this222 introduced the Semantic Smart Home System (SSHS), a knowledge-driven home automation frame-
work designed to enhance IoT interoperability and scenario complexity through Semantic Web technologies. 
The system integrates data from physical and virtual IoT devices using the SAREF ontology and infers ac-
tions—like adjusting lighting or activating irrigation—by applying SWRL rules through the Pellet reason-
er. It supports scenarios such as energy monitoring, visitor notifications via light signals, and weather-re-
sponsive irrigation. Development tools included OWL for device modeling, SWRL and SAREF for semantic 
rule definition and standardization, and Owlready2 for ontology manipulation within Python, the primary 
implementation language. Protégé was used for ontology validation, while the OpenWeather API provided 
real-time environmental data, enabling context-aware automation without vendor lock-in.

This paper223 proposed an OWL- and SWRL-based ontology to classify and detect conflicts among smart home 
automation rules. Using Protégé, they modeled a comprehensive system that identifies simultaneous execu-
tion, chaining, rule redundancy, cross-environmental impacts, and safety violations. The proposed method 
covers complex interactions often missed in prior models and improves detection coverage across five conflict 
classes.

•	 SSN (Semantic Sensor Network): “An ontology standard that formally defines sensors, observations, and 
associated concepts in a machine-interpretable format—facilitating semantic annotation, interoperability, 
and automated reasoning in Social IoT (SIoT) systems.

•	 SAREF:An IoT ontology framework that provides standardized semantic definitions for smart appliances 
and device interoperability—supporting semantic modeling across smart homes, intelligent buildings, and 
cross-domain IoT ecosystems.

•	 IoT-Lite:A lightweight IoT ontology that serves as a streamlined extension of the Semantic Sensor Network 
(SSN) standard—designed for resource-efficient semantic annotation in constrained Social IoT (SIoT) en-
vironments with limited-capacity devices.

•	 Protege:A graphical user interface (GUI)-based ontology development tool for constructing, modifying, 
and visualizing ontologies (e.g., OWL)—enabling the design of customized semantic models and reason-
ing frameworks tailored for Social IoT (SIoT) systems.

	6.	 Blockchain Development Tools for IoT/SIoT—With the rise of blockchain as a decentralized trust infrastruc-
ture, development tools such as Ganache, Truffle, Hardhat, and IPFS enable secure data management, smart 
contract execution, and transparent interactions among IoT devices and users in SIoT environments. These 
tools support the design and testing of blockchain-based applications tailored to the limitations and needs of 
IoT systems.

•	 Ganache : It provides a local, private Ethereum blockchain with pre-funded test accounts and instant min-
ing, allowing for fast and cost-free testing in an isolated environment without relying on a public testnet. 
The authors They proposed a four-layer architecture (IoT device layer, Edge layer, Blockchain layer, and 
Application layer) for managing IoT data communication using blockchain and smart contracts. The sys-
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tem is designed using a publish/subscribe model and ensures secure, trustless, and decentralized commu-
nication while avoiding direct blockchain interaction by IoT devices to reduce resource consumption224.

•	 Truffle: A comprehensive development toolkit for smart contracts, handling writing, compilation, migra-
tion, and testing, with seamless integration with Ganache. They225developed a food supply chain man-
agement prototype using Ethereum smart contracts, where Ganache was employed as a local blockchain 
environment to test and deploy contracts. The study demonstrated how Ganache enables controlled testing 
conditions, including simulated mining, transaction cost tracking, and ether balance updates, validating 
the deployment and migration of contracts in a secure and isolated setup.

•	 Remix IDE: A web-based Solidity Integrated Development Environment (IDE) that offers online code, 
editing, compilation, deployment for Solidity smart contracts, all without requiring local setup. It’s perfect 
for rapid prototyping, Educational purposes, Debugging small projects . However, it might not be suitable 
for complex or large-scale projects.

•	 Hardhat:It provides a development environment & task runner, a modern, highly customizable alternative 
to Truffle. It facilitates testing, script execution, and contract deployment, with robust plugin support. 
Widely adopted in professional Ethereum projects due to its greater flexibility compared to Truffle.

•	 MetaMask: Wallet + Web3 Bridge, a browser extension enabling users to sign transactions, manage ac-
counts, and seamlessly connect to decentralized applications (dApps). Essential for facilitating smart con-
tract interactions through a frontend interface when real users engage via a web browser.

•	 Web3.js: JavaScript SDK, a JavaScript library designed to connect Node.js or browser-based applications 
to the Ethereum blockchain. It facilitates transaction signing and smart contract interactions, serving as 
a bridge between frontend or backend environments and Ethereum. Commonly used alongside tools like 
Truffle, Hardhat, or MetaMask.

•	 IFPS: Decentralized File Storage, a peer-to-peer file system that enables off-chain data storage while main-
taining on-chain references. Ideal for handling large files, logs, and metadata that are impractical to store 
directly on the blockchain.

Performance metrics and parameters
Evaluation metrics play a vital role in analyzing the performance, reliability, and security of proposed models, 
architectures, and algorithms. The choice of metrics typically depends on the specific focus of the work—such as 
trust management, routing protocols, access control, service discovery, or security frameworks—each requiring 
tailored assessment criteria. In this section we will discuss about some commonly used standard evaluation 
metrics in IoT/SIoT environment. 

	1.	 Trust and Reputation Evaluation :

•	 Trust Accuracy: How many trust predictions were correct (both positive and negative) out of all predic-
tions. 

	
Accuracy = T P + T N

T P + T N + F P + F N

	 TP = true positives (correctly predicted trusted);TN = true negatives (correctly predicted untrusted); FP = false 
positives (incorrectly predicted trusted);FN = false negatives (incorrectly predicted untrusted).

•	 MAE: Mean Absolute Error (MAE) tells us how far off our trust predictions are, on average. It looks at the 
difference between what we guessed and what the actual values were, and then averages those differences. 
Every mistake, big or small, is treated the same. 

	
MAE = 1

n

n∑
i=1

∣∣T̂i − Ti

∣∣

•	 n is the total number of predictions; T̂i is the predicted trust score; Ti is the actual (true) trust score; |·| 
denotes the absolute value.

•	 RMSE : Mean Absolute Error (MAE) tells us how far off our trust predictions are, on average. It looks at the 
difference between what we guessed and what the actual values were, and then averages those differences. 
Every mistake, big or small, is treated the same.This formula is widely used in evaluating trust models that 
output continuous trust scores (e.g., values in the range [0, 1]) rather than binary labels. 

	

RMSE =

√√√√ 1
n

n∑
i=1

(
T̂i − Ti

)2

	 Where: n is the number of trust predictions; T̂i is the predicted trust score; Ti is the ground truth trust score.

•	 Accuracy, Precision, Recall, F1-score:
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	 In trust management, entities are typically labeled as Trusted (safe to interact with) or Untrusted (to avoid), 
and a trust classifier—such as an AI/ML model or a rule-based system—is used to assign these labels. 
The performance of this classifier is then evaluated using key metrics: accuracy gives an overall sense of 
how often it’s correct; precision checks whether the system mistakenly trusted untrustworthy nodes; recall 
measures if it failed to recognize genuinely trustworthy entities; and the F1 score assesses how well it bal-
ances precision and recall to ensure reliable trust assessments. 

	

Accuracy = T P + T N

T P + T N + F P + F N

Precision = T P

T P + F P

Recall = T P

T P + F N

F1 =2 · Precision · Recall
Precision + Recall

•	 T P : True Positives — correctly predicted trusted entities; T N : True Negatives — correctly predicted un-
trusted entities; F P : False Positives — untrusted entities wrongly predicted as trusted; F N : False Nega-
tives — trusted entities wrongly predicted as untrusted.

	2.	 Network and communication performance

•	 Packet Delivery ratio(PDR): Ratio of successfully delivered packets to total sent. 

	
PDR = Total Packets Received

Total Packets Sent

•	 End-to -End Delay: Average latency from source to destination. 

	
Delayavg = 1

n

n∑
i=1

(trecvi − tsend
i )

•	 Throughput:Total successful message delivery over time (bps/kbps). 

	
Throughput = Total Bits Received

Time Taken

•	 Message overhead: Additional control or trust messages transmitted in the network. 

	
Overhead = Control Messages

Total Messages

•	 Hop Count: Average number of hops between nodes during communication. 

	
Avg_Hops = 1

n

n∑
i=1

Hopsi

	3.	 Security and Privacy Metrics Used when dealing with identity, access control, and resistance to attacks.

•	 Attack Detection Rate: Percentage of attacks correctly identified. 

	
DR = T P

T P + F N

•	 False Alarm Rate: Incorrect detection of benign behavior as malicious. 

	
FAR = F P

F P + T N

•	 Resilience to Sybil/On-Off/Bad-Mouthing attacks: Specific to trust systems.
•	 Entropy: Measures uncertainty or unpredictability in communications (for privacy leakage assessment).
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•	 Anonymity set size: Number of indistinguishable users/nodes for privacy-preserving systems.

	4.	 System and Resource Efficiency: Relevant when SIoT is deployed on edge, fog, or embedded systems:

•	 Execution Time: Time taken to execute algorithms or protocols.
•	 Energy Consumption: Especially important for battery-powered IoT nodes. 

	 E = P · t

•	 Memory and CPU Usage: System resource requirements. 

	
CPU Utilization =

( CPU Time
Total Time

)
× 100%

•	 Scalability: Performance as the number of nodes or services increases.

	5.	 Social Relationship Evaluation: Specific to SIoT, where relationships among objects (like ownership, co-loca-
tion) are used:

•	 Social Closeness Score: Quantifies relationship strength between devices. 

	 Normalized interaction frequency / duration / proximity ∈ [0, 1]

•	 Friendship Ratio: Ratio of direct/indirect socially connected nodes.
•	 Community Detection Accuracy: Measures accuracy in clustering socially-linked IoT nodes. 

	
Accuracy = Correctly Clustered Nodes

Total Nodes

	6.	 ML/AI-Based Evaluation(when used): If trust prediction or anomaly detection uses AI/ML:

•	 ROC Curve and AUC: The ROC (Receiver Operating Characteristic) curve shows the trade-off between 
True Positive Rate (Recall) and False Positive Rate across different thresholds of a binary classifier. A curve 
closer to the top-left corner indicates better performance, while the diagonal represents random guessing. 
The Area Under the Curve (AUC) condenses this into a single score—1.0 means perfect classification, and 
0.5 reflects random performance. 

	

True Positive Rate (TPR) = T P

T P + F N

False Positive Rate (FPR) = F P

F P + T N

•	 Confusion Matrix: A 2x2 matrix showing predicted vs actual class counts. 

	

[
T P F N
F P T N

]

•	 Training Time:Time taken to train the model on data.
•	 Inference Time: Time taken to make a single prediction (per node/message)

Performance evaluation review
In this subsection, we review several papers to examine how existing metrics are used to evaluate system 
performance across IoT and SIoT environments. This analysis helps us better understand and compare different 
approaches.

Standard evaluation types
In order to ensure consistency across surveyed works, we classify evaluation approaches in IoT/SIoT research into 
five categories: simulation, prototype/testbed, dataset-based validation, emulation, and analytical/theoretical.

As shown in Table 17, this taxonomy provides a unified lens for comparing diverse studies and clarifying the 
types of experimental validation adopted. Building on this foundation, the following section summarizes the 
commonly reported metrics and benchmarking suites that complement these evaluation approaches.

Summary of standardized metrics and benchmarking suite
To align evaluation practices in IoT/SIoT research, we summarize standardized metric definitions, map tools to 
evaluation questions, and recommend a minimal benchmarking suite based on recent literature.

Standardized Metrics.
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•	 Latency / Delay: End-to-end message delay between sender and receiver, reported in milliseconds. Recom-
mended to present as percentiles (50th, 90th, 95th) to capture both median and tail performance.

•	 Throughput: Number of successful transactions or messages per unit time, typically expressed as transac-
tions per second (tx/s) or packets per second (pps). Indicates the system’s processing capacity under load.

•	 Scalability: Maximum number of IoT/SIoT nodes supported while maintaining acceptable latency (< 200 
ms) and throughput. Often plotted as performance versus node count.

•	 Trust / Intrusion Detection Accuracy: Ratio of correct predictions (trusted/untrusted) to total predictions: 

	
Accuracy = T P + T N

T P + T N + F P + F N

 where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives. Other measures 
may include precision, recall, and F1-score.

•	 False Positive Rate (FPR): Fraction of benign events incorrectly classified as malicious: 

	
FPR = F P

F P + T N

 A low FPR is critical in SIoT, as frequent false alarms degrade trust.

•	 Energy Consumption / Processing Overhead: Energy usage per device (mJ, J, or battery %), along with 
computational load (CPU time, memory footprint). Reported per operation or per message to compare light-
weight versus heavy mechanisms.

•	 Availability / Reliability: Percentage of uptime or successful service delivery under stress/failure scenarios: 

	
Availability = Uptime

Total Time
× 100%

 Reliability may also be reported as Mean Time Between Failures (MTBF) or resilience against attacks/
failures.Tool-to-Metric Mapping.

•	 NS-3: Suitable for protocol-level latency, routing overhead, and throughput.
•	 iFogSim/iFogSim2: Used for resource placement, energy–latency trade-offs, and scalability analysis.
•	 Ganache/Truffle: Applied for blockchain auditability, transaction delay, and smart contract cost.
•	 Scikit-learn, PyTorch, Flower: Commonly used for trust accuracy, anomaly detection, and ML-driven eval-

uation.Minimal Benchmarking Suite (Recommended). For comparability across SIoT studies, we recom-
mend the following minimal set: 

	1.	 Latency percentiles (50th and 95th).
	2.	 Trust accuracy with false positive rate (FPR).
	3.	 Scalability evaluation up to ∼500 nodes.
	4.	 Auditability: smart contract cost and transaction delay.
	5.	 Availability (% uptime under stress/failure).Typical Ranges from Literature.

•	 Latency: 20–200 ms, with fog-based deployments often < 50 ms.
•	 Trust Accuracy: 85–97% depending on dataset and method.
•	 Scalability: 50–500 nodes in most simulation and testbed studies.
•	 Availability: Above 98%, with blockchain-based approaches approaching 99.9%.
•	 Energy Efficiency: Up to 4–5% gains vs. baseline IoT systems.
•	 Bandwidth Saving: 38–40% reduction through fog/blockchain offloading.

Evaluation type Description/examples

Simulation Experiments conducted using simulators such as MATLAB, NS-3, OMNeT++, CloudSim, iFogSim, or Google Colab. 
Typically used for performance studies (e.g., latency, scalability, throughput, energy)

Prototype/testbed Hardware-based implementations (e.g., Raspberry Pi, Arduino, FPGA, edge/fog nodes, or small-scale IoT deployments). 
Demonstrates feasibility in realistic IoT/SIoT environments

Real-world dataset Evaluation performed on public datasets (e.g., UNSW-NB15, CICIDS, IoT-23, UCI IoT datasets) or custom sensor/IoT 
data collected in the field. Used to validate detection accuracy, trust prediction, etc

Emulation Virtualized or cloud-based test environments (e.g., Mininet, containerized clusters, digital twins). Offers controlled 
experiments closer to deployment scenarios.

Analytical/theoretical Formal analysis, mathematical modeling, security proofs, or purely theoretical validation without experimental deployment

Table 17.  Standard evaluation type categories in IoT/SIoT research.
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Representative ranges are derived from multiple studies in recent literature  25,113,201,213,216. This summary 
provides a concise benchmarking reference, ensuring that IoT/SIoT evaluations are more systematic, replicable, 
and comparable across future studies.

Conclusion and discussion
SIoT represents a transformative shift in how smart objects interact and collaborate. By bridging the physical and 
social worlds, SIoT opens new frontiers for context-aware services, decentralized intelligence, and trustworthy 
cyber-physical systems. Continued interdisciplinary research and real-world experimentation will be key to 
realizing the full potential of socially driven IoT environments. Based on this literature review, future researchers 
and system designers can benefit from a comprehensive understanding of existing security techniques, modular 
technology integration strategies, evaluation tools, and performance parameters. These insights can serve as a 
foundation for designing and implementing secure, scalable, and intelligent SIoT systems. In future work, we 
aim to leverage these findings to develop a practical SIoT implementation capable of mitigating ongoing security 
threat and addressing emerging attack vectors.

Limitations and future work
While this survey provides a comprehensive review of SIoT security, several limitations and open challenges 
remain that point toward future research directions.

Limitations of this survey:

•	 Selection and coverage: Although we systematically surveyed literature from 2014 to 2025 across major data-
bases (IEEE, ACM, Springer, Elsevier, MDPI), niche or regional studies may be underrepresented.

•	 Scoring subjectivity: The (✓/ ⋆/✗) rubric and inter-rater checks reduce bias, but the evaluation of tools and 
performance metrics inevitably involves a degree of subjectivity.

•	 Comparability of results: Despite collating performance metrics and tools, the lack of standardized bench-
marking frameworks across studies makes it difficult to directly compare reported outcomes.

•	 Integration scope: Although several studies have implemented blockchain, edge/fog, and AI/ML techniques 
for SIoT, most efforts are confined to prototypes, conceptual designs, simulations, or controlled testbeds. Ev-
idence of robust, large-scale real-world deployments is still scarce.Future research directions (derived from 
gaps identified in Sections III–VIII):

•	 Lightweight dynamic trust models (Section “Key research directions in the SIoT”, RQ4):
	 Existing trust mechanisms are often static or computationally heavy; adaptive, lightweight trust strategies are 

needed for resource-constrained SIoT nodes.
•	 Privacy-preserving service discovery (Section  “Key research directions in the SIoT”, RQ4): Current dis-

covery mechanisms frequently expose sensitive identity or location attributes; future protocols should enable 
secure interaction without disclosure.

•	 Cross-domain interoperability and unified policies (Section “Key research directions in the SIoT”, RQ4): 
Standardized access-control and trust policies across heterogeneous SIoT domains remain largely unex-
plored, limiting secure interoperability.

•	 Explainable and accountable AI/ML integration (Section  “Key research directions in the SIoT” & Sub-
section  6.3.1 , RQ4): ML-based anomaly detection and trust prediction lack transparency; incorporating 
explainable AI (e.g., SHAP, LIME) is crucial for accountable decision-making.

•	 Benchmarking and reproducibility frameworks (Section “Tools and evaluation metrics in IoT/SIoT envi-
ronments”, RQ8): Reported evaluation parameters (latency, scalability, trust accuracy, energy overhead) vary 
widely; standardized datasets, toolkits, and parameter ranges are needed.

•	 Dataset and trace availability (Section “Survey methodology”, RQ2): SIoT-specific datasets and reproduci-
ble traces (e.g., discovery logs, attack scenarios) are scarce; curating open datasets would strengthen compa-
rability and validation.

To enhance transparency and reuse, we provide two machine-readable CSV files as supplementary material: 
Supplement S1 (corpus_225.csv) contains the corpus of the 225 included studies (Year; Title; Venue; Type; 
Access), and Supplement S2 (table1_related_surveys.csv) contains the data underlying Table 1 (Reference No.; 
Year; Security requirements; Attack types/applications; Security protocols; Security techniques; Technology 
integration; Evaluation tools; Performance metrics). These artifacts support reproducibility, enable independent 
verification, and provide a foundation for extended SIoT research.

Data availability
Derived data supporting the findings of this study are available as supplementary material: S1 ( corpus_225.
csv) and S2( table1_related_surveys.csv). These files contain metadata and annotations extracted from the cited 
literature; no new experimental datasets were generated.
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