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The integration of social networking concepts with the Internet of Things (IoT) has led to the Social
Internet of Things (SloT)—a paradigm enabling autonomous, context-aware interactions among
devices based on social relationships. While this connectivity improves interoperability, it also raises
critical challenges in trust management, secure communication, and data protection. This survey
reviews 225 papers published between 2014 and 18 September 2025, analyzing advancements in SloT
security. Sources include IEEE Xplore, ACM Digital Library, Springer, ScienceDirect (Elsevier), MDPI,
Wiley, Taylor & Francis, and Google Scholar. Blockchain and Al/ML approaches feature prominently,
with blockchain referenced in more than 50 papers, Al/ML in over 80, and many adopting both in
combination. The literature is examined across architectural foundations, security requirements, and
layered defenses, with evaluation most often based on latency, accuracy, scalability, and false-positive
rate. The review further highlights existing security and communication protocols, attack mitigation
strategies, and the adoption of blockchain, cloud, and edge computing for scalable and decentralized
processing. The survey traces the evolution of SloT research, identifies future directions to strengthen
security and transparency, and serves as a reference for researchers and practitioners designing secure
and decentralized SloT environments.

Keywords Social internet of things (SIoT), SIoT security, Threat mitigation, Blockchain and edge computing,
Artificial intelligence (AI) and Machine learning (ML) integration, Communication protocols

The integration of social networking with the Internet of Things (IoT) has led to the emergence of the Social
Internet of Things (SIoT). This integration has brought about various security and privacy challenges that need
to be addressed to ensure the safety of users and their data. The core aspects of SIoT include integrating social
principles into IoT devices, ensuring seamless interoperability, enabling systems to operate independently,
establishing trust and security, and enhancing context awareness. These elements foster interactions between
devices, people, and services, creating a more connected and intelligent world. The increasing use of connected
devices in critical applications has made security in SIoT an urgent and evolving area of research. While many
studies have proposed security solutions for traditional IoT, the social dimension of SIoT introduces unique
challenges related to trust management, privacy preservation, and secure communication. Addressing these
challenges requires a comprehensive perspective that connects system architectures, communication protocols,
attack mitigation techniques, and the emerging integration of enabling technologies such as blockchain for
decentralization, cloud and edge computing for scalable performance, and artificial intelligence and machine
learning for intelligent detection and decision-making. Although a few researchers have previously reviewed
SIoT security, this survey is distinct in its integration-oriented perspective. It systematically covers SIoT literature
from 2014 to 2025, with special emphasis on the most recent advances (2023-2025). Building on earlier reviews,
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our contribution lies in synthesizing diverse results into a layered, taxonomy-driven framework (Fig. 1) that
connects architectures, threats, defenses, technologies, and evaluation methods.

Key Contributions (tied to RQs and Taxonomy in Fig. 1):

1. Mapping SIoT threats and defenses (RQ3, RQ4, Section “Security in SIoT”): We consolidate IoT-based and
SloT-specific attacks into a layer-wise classification across communication protocols, and map countermeasures
into a structured defense taxonomy.

2. Trust-exploitation and relationship-aware perspective (RQ3, RQ5, Subsection 3.4.2): We analyze how
SIoT social relationships (OOR, CLOR, CWOR, POR, SOR) influence attack surfaces and trust exploitation, and
provide a comparative table (Table 4) linking relationships with their security implications.

3. Technology-integration taxonomy (RQ6, Section “Technology”): We categorize recent advances in
blockchain, edge/fog/cloud computing, and AI/ML for SIoT, highlighting their feasibility, integration workflows,
and recent studies (2023-2025) that combine these technologies for decentralized and intelligent security.

4. Application trends and emerging domains (RQ5, RQ9, Section “Emerging trends and applications of
SIoT”): We survey application-driven SIoT research in domains such as smart healthcare, logistics, industrial
IoT, and transportation, emphasizing how emerging trends translate into real-world deployments.
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Figure 1. Tree-based taxonomy of surveyed research.
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5. Security techniques (RQ7, Section “Security in SIoT”): We organize data security, blockchain-based
mechanisms, access control, trust management, privacy preservation, and secure communication protocols into
a layered set of techniques adapted to SIoT environments.

6. Evaluation metrics and tooling synthesis (RQ8, Section “Tools and evaluation metrics in IoT/SIoT
environments”): We collate tools (e.g., NS-3, iFogSim, Ganache) and performance metrics (latency, scalability,
trust accuracy, energy overhead), and review how they have been applied in SIoT evaluations. This provides a
foundation for benchmarking and reproducibility.

7. Gap analysis and future directions (RQ9Y, Section “Conclusion and discussion”): We identify unresolved
challenges in scalability, privacy preservation, explainability, and cross-layer security, and propose directions for
research beyond 2025.

Related survey

Several surveys have been conducted to review the security of Social Internet of Things (SIoT), and their findings
are summarized in Table 1. The works by' and* provide the most comprehensive coverage, strongly addressing
core areas such as requirements, attacks, applications, protocols, and security techniques. Reference? further
explore technology integration and performance evaluation, particularly within trust management systems.
Papers like® and* address a wide range of topics with a focus on resource discovery and false service advertisement,
respectively, offering partial insights into integration and tool support. Studies such as® focus more narrowly on
SIoT architecture but provide moderate consideration across multiple dimensions. Other contributions such as®
and’ highlight specific attack scenarios (e.g., malicious code injection and decentralization), but only partially
cover broader evaluation metrics. The paper by® emphasizes social relationships, offering strong insights into
applications and parameters but lacking in protocol and integration discussions. Overall, while some papers
offer comprehensive evaluations, others focus on specialized issues within the SIoT ecosystem, highlighting the
fragmented but evolving nature of security research in this domain.

Scoring was performed manually by the first author and cross-checked by the research supervisor to ensure
consistency. Each column indicates the extent to which the surveyed paper addressed the attribute: v (explicitly
covered), % (partially covered or indirectly addressed), and X (not covered). Coding was based on full-text
assessment of all included surveys using a standardized template. While the rubric was consistently applied,
some interpretive subjectivity may remain, which we acknowledge as a limitation. Reference numbers (Ref.
No) in the first column map directly to the corresponding citations in the bibliography. “Evaluation tools”
refers to explicit use of simulation or testbed frameworks (e.g., NS-3, OMNeT++, iFogSim, TensorFlow), and
“Performance evaluation parameters” refers to measurable system metrics (e.g., latency, throughput, scalability,
trust accuracy, false positive rate, energy consumption, availability). The detailed scoring sheet is provided as
Supplement S2 (tablel_related_surveys.csv) for transparency and reproducibility.

Purpose of survey

The purpose of this survey is to systematically review existing research on security mechanisms within the
Social Internet of Things (SIoT) ecosystem. It aims to identify and categorize prior work based on key aspects
such as security requirements, attack models, protocol support, trust and privacy techniques, technological
integrations (e.g., AI/ML, blockchain, edge/cloud computing), tool usage, and performance evaluation practices.
By benchmarking these studies, this survey highlights the limitations and research gaps in current solutions
particularly the lack of unified, scalable, and context-aware security frameworks. This assessment not only
clarifies the state of the art but also forms the foundation for positioning our proposed work as a novel and
necessary contribution to secure SIoT design.

Motivation of survey
The increasing deployment of smart devices and their autonomous interactions in the Social Internet of Things
(SIoT) has raised critical concerns around trust, privacy, security, and interoperability. Despite a growing

Existing Performance
Security Security | security | Integration of | Evaluation | evaluation

Ref. no Year | requirements | Attacks | Applications | protocols | technique | technologies | tools parameters | Aspects considered
! 2018 | v/ v v v v * X X Existing IoT architectures
8 2019 | v v v v v * v v Social relationships
3 2020 | v X v v * * X v Resource Discovery
4 2023 | v v v v X * v v False service advertisement
6 2023 |/ v v v * * v X Malicious code injection attack
7 2023 |V v v v v v * * Review of decentralization
d 2023 |/ v v v v v * * Challenges and attacks in SIoT
5 2024 | v v v * v * X * SIoT architecture
10 2024 | v v v v v * v v Types of IoT attacks
2 2025 | v v v v v v v v Trust Management
Our survey | 2025 | / < d d / d d sepects ited it bl

Table 1. Related surveys. Legend: v/ = Fully covered; % = Covered; X = Not covered
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number of research efforts addressing specific security challenges, existing surveys often focus narrowly on
individual techniques or layers, lacking a comprehensive, multi-dimensional view that considers both technical
and social dynamics in SIoT environments. Moreover, with the rapid evolution of enabling technologies—such
as blockchain, edge/fog computing, and AI/ML—there is a pressing need to re-evaluate how these integrations
affect security architectures. This motivates a structured survey to bridge fragmented knowledge, uncover gaps
in current solutions, and guide the development of more robust, scalable, and decentralized security mechanisms
tailored for next-generation SIoT systems.

Organisation of paper
Figure 1 illustrates the taxonomy of this survey. Section Summaries:

Section “Introduction”: Introduces the study and its motivation.

Section “Survey methodology”: Details the systematic review methodology, including sources, search
criteria, and inclusion/exclusion strategies ensuring transparency and coverage.

Section “From WSN to SIoT: evolution, architecture, and key concepts”: Reviews the evolution from WSNs
to IoT and SIoT. Highlights SIoT architecture, social object interactions, and distinctions from IoT, along with
key research directions and challenges.

Section “Security in SIoT”: Examines SIoT security requirements and challenges (e.g., Sybil attacks, trust
manipulation), mapped to protocol layers and associated defense mechanisms.

Section “Emerging trends and applications of SIoT”: Discusses emerging trends like decentralized trust
and context-aware analytics. Explores SIoT applications across domains such as healthcare, transportation, and
smart homes.

Section “Technology”: Covers enabling technologies—blockchain, federated learning, fog/cloud computing,
and AI/ML—for secure, scalable, and intelligent SIoT systems, with recent research insights.

Section “Security techniques™ Surveys layered security techniques including encryption, access control,
trust evaluation, privacy preservation, and secure communication protocols.

Section “Tools and evaluation metrics in IoT/SIoT environments”: Describes evaluation tools (e.g., NS-3,
iFogSim, Ganache) and key metrics (latency, trust accuracy, scalability) for benchmarking SIoT systems using
standardized testing frameworks.

Section “Conclusion and discussion™ This survey traced SIoT’s evolution from WSNs to socially aware,
secure IoT ecosystems. It highlighted SIoT’s architecture, trust-centric interactions, and enabling technologies
like blockchain, edge/fog/cloud computing, and AI/ML. While advancements support decentralization and
intelligence, challenges remain—lightweight trust models, privacy, interoperability, and scalability trade-offs.
Future research must address ethical, social, and regulatory concerns as SIoT expands into critical sectors.

Survey methodology

Systematic reviews and mapping

We adopted the systematic survey mapping methodology outlined by'! and!? to construct this comprehensive
review, enabling a structured and reproducible analysis across diverse research domains. The following ten
research questions, numbered 1-10 in this section and later referenced as RQ1-RQ10 in the relevant sections,
guide the remainder of this paper and form the basis of the systematic review and mapping process.

1. How has the Social Internet of Things (SIoT) evolved from traditional Wireless Sensor Networks (WSNs)
and IoT, and what are the key differences in architecture and social interaction models?

2. What systematic approach has been adopted to collect, filter, and analyze relevant SIoT literature from 2014
to 2025, and how does it ensure transparency and reproducibility?

3. What are the key security requirements of SIoT systems, and what unique challenges arise due to their
decentralized, dynamic, and socially driven nature?

4. What types of attacks are most prevalent in SIoT environments, and how are they mapped across commu-
nication protocol layers?

5. What are the emerging trends in SIoT research, and how are these trends reflected in real-world applica-
tions such as smart healthcare, transportation, logistics, and industrial IoT?

6. How are emerging technologies such as blockchain, edge/fog/cloud computing, and machine learning (ML)
being integrated into SIoT systems, and what are their roles, benefits, and limitations in enabling secure,
intelligent, and decentralized operations?

7. What core security techniques are used in SIoT systems—including encryption, access control, trust man-
agement, privacy preservation, and secure communication and how do they address the system’s unique
vulnerabilities?

8. What tools and simulation environments are commonly used to model, simulate, and evaluate Social In-
ternet of Things (SIoT) systems, and what performance metrics and validation parameters are adopted in
recent research studies?

9. What are the persistent research gaps and future challenges in developing scalable, interoperable, and pri-
vacy-preserving SIoT systems?

10. What are the core security challenges in SIoT systems?

Literature sources and search strategies

This section addresses RQ2. We queried IEEE Xplore, ACM Digital Library, Elsevier (ScienceDirect),
SpringerLink, MDPI, Wiley, Taylor & Francis, and Google Scholar. The last search was 18 Sep 2025; the window
was Jan 2014-18 Sep 2025. A keyword strategy targeted SIoT security (e.g., “SIoT”, “security’, “authentication’,

» «

“access control’, “attacks”, “MQTT”), with database-specific strings given below.
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Figure 3. Publication share by publisher (n = 225).

Selection summary (PRISMA). We identified 325 records in total. After screening, 225 studies were
included (205 full-text and 20 abstract-only due to paywalls), and 100 were excluded at title/abstract. The full
pipeline is shown in Fig. 4; publisher/quartile distribution and overall publisher share are shown in Figs. 2 and
3, respectively.

Canonical query (semantics). (“Social Internet of Things” OR SIoT OR “social IoT”) AND (security OR
privacy OR trust OR authentication OR authorization OR “access control” OR “intrusion detection” OR attack*
OR threat* OR vulnerability OR “key management”) AND (IoT OR “Internet of Things”).

Database-ready strings (examples).

« IEEE Xplore (All Metadata): ( “social internet of things” OR “SIoT” OR “social IoT” ) AND ( security OR pri-
vacy OR trust OR authentication OR “access control” OR “intrusion detection” OR attack* ) AND ( “Internet
of Things” OR IoT ) Refinements: Year=2014-2025; Document Types=Journals, Early Access, Conferences.

« ACMDL:
acmdITitle:(“social internet of things” OR “social IoT” OR SIoT)

AND (security OR privacy OR trust OR authentication OR “access control” OR “intrusion detection” OR
attack®)
Years: 2014-2025; Publication Type: Article, Proceedings.

o SpringerLink / ScienceDirect / Wiley / T&F: Title/ Abstract/Keyword=(“social internet of things” OR “social
IoT” OR SIoT) AND (security OR privacy OR trust OR authentication OR “access control” OR “intrusion
detection” OR attack*). Years: 2014-2025; Content type: Journal Article, Conference Paper, Book Chapter.

» Google Scholar:

“social internet of things” OR SIoT OR “social IoT”
security OR privacy OR trust OR “access control” OR “intrusion detection” OR attack*
Custom range: 2014-2025.Inclusion Criteria Articles were included if they:

1. Addressed security in IoT with relevance to SIoT environments.
Proposed or analyzed effective security measures or protocols.
3. Discussed attacks, threats, or vulnerabilities in IoT/SIoT systems.

g
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4. Covered security issues in IoT applications or communication protocols.
5. Focused on realistic or socially driven IoT use cases involving security.Exclusion Criteria Articles were
excluded if they:

Focused only on generic IoT security without SIoT relevance.
. Purely theoretical work without security relevance.
3. Duplicates or secondary surveys.

N =

Screening workflow
We used a two-pass pipeline aligned with PRISMA (Fig. 4):

1. Pass-1 (Title/Abstract). The first author screened the 325 records after deduplication. Borderline cases were
flagged and independently checked by the supervising author; final decisions were made by consensus. This
stage excluded 100 papers.

2. Pass-2 (Full-text eligibility). Of the remaining 225 studies, 205 were retrieved and assessed in full; 20 were
included based on abstracts only due to paywalls but clear relevance. Disagreements were resolved by discus-
sion; we did not compute a formal inter-rater statistic.

Data-extraction form

Fields captured (systematically across all 225 studies): Year; Title; Venue (publisher/journal or conference);
Type (journal/conference/chapter); Access (OA/paywalled). We did not systematically code additional technical
attributes (e.g., SIoT focus, security topics, protocols, metrics). A machine-readable CSV/JSON containing these
five fields is provided in Supplement S1 (corpus_225.csv).

Time-window justification and publisher skew

The 2014-2025 window captures the emergence and maturation of SIoT security: pre-2014 usage is sparse
and terminologically inconsistent, while the chosen end date (18 Sep 2025) ensures currency. The publisher
distribution (Figs. 2, 3) shows higher counts for IEEE and MDPI; this reflects (i) their larger throughput in IoT/
SIoT and (ii) indexing coverage of our databases. To mitigate skew, we queried multiple publishers and platforms
with uniform strings, deduplicated across sources, and retained venue-diverse evidence.

From WSN to SloT: evolution, architecture, and key concepts

This section comprehensively addresses RQ1 by tracing the progression from WSNs to IoT and then to SIoT,
focusing on architectural developments and the emergence of social interaction models. It includes discussions
on IoT architecture and core functions, the transition to SIoT, SIoT functional architectures, and various social
relationship. A comparative analysis of IoT vs. SIoT architectures is also provided, along with key research
directions, benefits, and challenges of SIoT. To support this discussion, Table 3 presents a synthesized review of
existing SIoT architectures and their core functional components.

WSN to loT: early developments

In our diverse society, social relationships are built on factors such as mutual interest, common goals, and
shared resources, which help solve problems collaboratively. This idea of interconnectivity has also influenced
the evolution of digital systems, transitioning from wireless sensor network (WSN) to Internet of Things and

Records identified via manual keyword-based searches
(Google Scholar & publisher sites)
(n=325)

Records after duplicates removed
(n=325)

Records screened (title/abstract) Records excluded
(n=325) (n=100)
Records retained for eligibility / inclusion Full-text reports retrieved and analyzed
(n=225) (n=205)

‘ Abstract-only (paywalled) but included ‘

(n=20)

Studies included in the final synthesis
(n=225)

Figure 4. PRISMA flow diagram for study selection (search window: 2014-18 Sep 2025). All records were
identified via manual keyword-based searches on Google Scholar and corresponding publisher sites.

Scientific Reports |

(2025) 15:40190 | https://doi.org/10.1038/541598-025-23865-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Social loT

3

Incorporation of social interactions
into loT systems.
Internet of Things » &

Integration of devices into the

internet for broader connectivity. O]T
1 Wireless Sensor

Networks

Initial deployment of sensor
networks for data collection.

Figure 5. WSN to IoT and SIoT.

Cloud Server % N - &3 End Users

- Command Sending

'~- Data Access

I,— 3 Actuators
.
|
,

r- Task Execution

Data Storage —-E

Data Analysis -~

Sensors g ey
&
'

Data Collection -1 ¢’

Environmental Monitoring -~ <+ Process Control

Data Routing -a - Data Access

p——

Network Connectivity -~ ~- Device Management

'

'

1
'
'
'

@ Fog/Edge Computing

r- Local Processing
i

‘- Reduced Latency

Figure 6. IoT infrastructure and communication.

eventually to Social Internet of Things. As illustrated in Fig. 5, this evolution reflects a shift from simple sensing
and data collection to more complex, socially aware systems. WSN consists of distributed nodes that monitor
and collect data on environmental conditions such as temperature, humidity, and motion. These networks
are typically limited to specific applications with limited communication capabilities and lack direct user
interactions. However, they provide the functional data gathering layer necessary for more advanced systems.
Based on the data collection capabilities of WSNs, IOT connects these physical devices to the Internet, enabling
them to communicate, share data and perform actions based on the gathered information'2. In IoT systems,
devices are interconnected to provide improved automation, control, and monitoring in various sections from
smart agriculture to industrial automation. However, interactions in IoT are mostly functional and lack the
dynamic human-like social interactions seen in everyday human relationships.

loT architecture and core functions
The Internet of Things (IoT) is an interconnected network of various types of devices that communicate and
interact seamlessly with each other over the Internet. At the core of IoT devices are sensors and actuators,
which enable them to engage with the physical world and collect valuable data. Sensors detect and measure
environmental changes, converting physical data into digital signals that can be analyzed and interpreted by IoT
devices. Actuators, in contrast, convert digital signals into physical actions, receive commands from IoT devices,
and execute tasks accordingly. As illustrated in Fig. 6, the IoT infrastructure consists of multiple interconnected
components enabling seamless data flow and control. The Internet of Things (IoT) encompasses a wide range of
devices, from common household appliances such as smart thermostats and wearables to industrial machinery and
medical equipment. Although IoT devices offer numerous benefits, including enhanced convenience, improved
efficiency, and data-driven insights, they also pose significant challenges related to security vulnerabilities,
privacy concerns, and technical intricacies. Striking a balance between these advantages and disadvantages is
essential for the effective and responsible implementation of IoT technologies. The applications of IoT are vast
and wide-ranging, spanning multiple domains such as healthcare, finance, education, government, and beyond.
Overview of IoT Functionality A typical IoT infrastructure includes sensors, actuators, devices, a gateway,
and a cloud server. Sensors collect data that are transmitted to the cloud via a gateway for storage and analysis
or to enhance through edge and fog computing. End users can access the data through endpoint devices and
send commands, which are routed back to actuators to manage sensors or perform tasks. Although IoT devices
are compact and compatible, they face challenges such as limited resources and security concerns. Various
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communication methods are used to ensure effective data exchange!. Various communication channels and
methods are utilized to effectively facilitate data exchange between IoT devices.

Existing IoT architectures IoT systems are generally built using a layered approach, and the number
of layers can vary depending on the complexity and requirements of the system. The most common IoT
architectures are the three-layer, four-layer, five-layer, and six-layer architecture as shown in Fig. 7. To ensure
the security of IoT systems, it is crucial to understand the layered architectures, the potential security threats
at each layer, and the existing security measures designed to mitigate these threats. The IoT layered model has
been discussed extensively in the literature, evolving from the three-layer baseline to four, five, and six-layer
enhancements, each addressing security and scalability limitations!. In this study'* they provide a broad IoT
survey, detailing standard architectures such as the 3-layer, 5-layer, and fog gateway models, emphasizing their
roles in perception, processing, and service delivery. The paper also introduces the Social IoT (SIoT) concept,
outlining its basic components (identification, metadata, security controls, discovery, relationship management,
and service composition) and presenting a representative layering (server-side with three layers; device-side
with object and social layers). However, this remains conceptual/illustrative, not a novel SIoT architecture. The
work further highlights middleware requirements (privacy, trust, security) and QoS dimensions (availability,
scalability, interoperability, dependability, performance, mobility), framing open challenges around DoS
resilience, scalability, and trust management. Each evolution in the architecture introduces layers to address
specific IoT challenges such as security, data handling, and scalability, culminating in the six-layer model for
comprehensive protection and efficiency.

Three-Layer Architecture: The simplest model with three layers: Perception Layer: Gathers data from
sensors. Network Layer: Transmits data to processing systems. Application Layer: Provides IoT services
to users. Although foundational, it lacks advanced security features, making it vulnerable to attacks. Four-
Layer Architecture: Builds on the three-layer model by adding a Support Layer between the Perception and
Network layers. The Support Layer authenticates and verifies the data before passing it to the Network Layer,
addressing security flaws in the three-layer model. Five-Layer Architecture: Expands the four-layer model with
two new layers: Processing Layer: Handles data filtering, storage, and analysis to manage big data challenges.
Business Layer: Oversees system management, user privacy, and business logic, addressing application-specific
vulnerabilities and business-level threats. Six-Layer Architecture: Improves functionality and security further
with these layers: Observer layer: Verifies data integrity and authentication from the Perception Layer. Security
Layer: Encrypts data for secure transmission, mitigating risks at the Network Layer. Other layers (Perception,
Processing, Network, and Application) remain, but are more robust, supporting better security, scalability, and
service delivery.

Transition to SloT

The SIoT is the next evolutionary step after the IoT by introducing social, intelligent, and collaborative
interactions between devices and users. In SIoT, devices can autonomously discover, select, and interact with
other devices based on the social relationships they form, enhancing collaborations and functionality. Integrating
the principles of social networking into the Internet of Things (IoT) introduces a new paradigm known as the
Social Internet of Things (SIoT). While IoT connects physical devices over the Internet to collect and exchange
data, SIOT goes beyond allowing these devices to interact with each other and with people in a social, human-
like manner, like interactions on a social media platform. For example, SIoT can transform smart homes by
learning occupants’ preferences and automatically adjusting the settings to improve comfort and efficiency. It
enables smartwatches to share fitness data with friends or participate in group fitness challenges. A smartwatch
might collaborate with a smart refrigerator to suggest healthy food options based on fitness goals. Smart cars
can share real-time traffic updates with each other, optimising routes and reducing congestion. In smart cities,
streetlights can share energy usage data to balance power consumption. Devices can verify the creditability of
each other before sharing sensitive data, reducing the risk of malicious attack. It also enhances entertainment
by facilitating applications that share movie reviews and suggest content based on a user’s past preferences
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Figure 7. IoT layered architectures.
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and enable the sharing of music playlists with friends and family. Incorporating SIoT into our daily life offers
significant advantages, such as enhancing user experience, intelligent decision-making, social and collaborative
interactions, scalability and resource optimization, security and trust management, and unlocking new business
opportunities in a wide range of applications.

Smart Objects: Smart objects are physical devices embedded with microcontrollers, sensors, and actuators
that enable them to collect, process, and share data autonomously over the Internet. Figure 8 shows the overview
of smart objects.

SloT functional architecture and social relationships
This subsection presents a brief discussion of our proposed conceptual functional framework for SIoT. In
addition, we also review recent research contributions from other researchers on advances in SIoT architecture.

This conceptual wheel framework is literature-based (no implementation claim) and integrates recurring
elements highlighted across surveyed SIoT architectures. For instance, service and data discovery features
identified in prior works>!>!6 are implicitly captured in the Device Registration and Data Collection components.
Similarly, trust-centric modules'”!® are reflected in Social Relationships and Privacy & Security. Together, Figs. 9
and 10 provide a synthesized conceptual model abstracted from comparative analysis: Fig. 10 captures the high-
level functional elements, while Fig. 11 illustrates the corresponding sequence interactions. Figure 9 Conceptual
functional architecture of the Social Internet of Things (SIoT). The diagram synthesizes eight core functions—
Device Registration, Social Relationships, Data Collection, Intelligent Decision-Making, Social Interaction,
Personalized Recommendations, Privacy & Security, and Action & Response—highlighting how SIoT couples
social ties with device capabilities. Conceptual illustration; literature-based (no implementation claim).This
architecture provides an overview of the functional components of the SIoT architecture which consists of
various components such as Device Registration, Social Relationships, data collection, Intelligent Decision
making, Social Interaction, Personalized Recommendation, Privacy and security, and Action and response. Each
of these has their own functionalities, while they work together to provide autonomous intelligent decision-
making entities that can connect, collect data, share, and seamlessly communicate between users and other
devices over the Internet within the framework. In the SIoT network, devices such as sensors, wearables, and
smart home appliances would be able to create unique digital identities. These devices form a connection based
on shared goals, built on trust, collaboration, or competition. These IoT devices collect real-time data, processing
it locally (edge computing) or storing it in the cloud to improve the interactions between users, devices, and
other devices within the SIoT network. Emerging technologies such as advanced AI and machine learning
algorithms that support intelligence decision making, allowing devices to adopt to user preferences. They also
facilitate social interactions by sharing data across networks, providing personalized recommendations, and
instant feedback. To ensure security and privacy, robust authentication protocols be implemented, restricting
access to sensitive information collected from devices and users, to further ensure that they can also consider
leveraging blockchain technology. Devices perform automated actions based on gathered data, such as adjusting
home settings or sending alerts, and provide users with post-event summaries to monitor performance and
share insights. This figure is conceptual and distill patterns reported across prior SIoT literature.

Figure 10 refines this view into a functional workflow, represented through labelled interfaces (FO-F7),
separating device-level interactions from control-plane functions. The glossary embedded in the caption specifies
each interface. This conceptual framework emphasizes the role of identity, trust, and policy enforcement as
recurring patterns across surveyed works. A user/app sends data to a device (F0). The device is provisioned and
validated by the Identity Manager (IdM), which also updates the Service/Device Registry (F1-F2). The registry
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Figure 8. Overview of smart objects.
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Figure 10. Functional SIoT framework with labelled interfaces (FO-F7).

answers discovery lookups back to the device (F3). Before execution, the device requests an authorization
decision from the Policy Decision Point (PDP) (F4). The PDP incorporates trust evidence from the Trust/Score
Engine (F5a) and sends its verdict to the Policy Enforcement Point (PEP) (F5). Authorized data traffic is then
enforced on the PEP-device path (F6). All control decisions are audited (F7) to support accountability and
forensics. The container indicates that these functions may be deployed in cloud, fog, or edge infrastructure
while retaining the same conceptual flow. This conceptual framework emphasizes the role of identity, trust,
and policy enforcement as recurring patterns across surveyed works. Table 2 complements this workflow by
mapping each interface (FO-F7) to specific cryptographic operations and their overheads. Device provisioning
(F1) relies on asymmetric key lifetimes, session initiation (F0O) employs TLS/DTLS traffic keys or PUF-based
derivations, and registry lookups (F2-F3) are anchored with signed keys. Authorization (F4) introduces PDP
evaluation costs, while enforcement at the PEP (F5-F6) depends on signed tokens and symmetric encryption
with negligible latency. Trust evidence (F5a) and audit logging (F7) leverage event signatures and blockchain
anchoring, introducing modest but acceptable delays. Together, Fig. 10 and Table 2 capture how cryptographic
defaults underpin the SIoT control workflow.

Interface glossary. FO = User/ App — Device/Thing (data initiation); F1 = Identity provisioning; F2 = Device
registration; F3 = Service discovery; F4 = Access request (to PDP); F5 = Decision (PDP—PEP); F5a = Trust
query (to Trust Engine); F6 = Enforcement/data path (PEP<»Device); F7 = Append-only logging/audit.

Figure 11 illustrates the SIoT process through sequence diagrams. Part (a) outlines service discovery and
authorization: a device is provisioned, registered, and queries the registry; requests are evaluated by the PDP
with evidence from the trust engine; final decisions are enforced through the PEP and recorded in the log.
Part (b) shows the continuous trust update cycle: devices send telemetry to the trust engine, which appends
audit logs, updates the PDP for potential re-evaluation, and publishes reputation summaries to the registry.
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Figure 11. Conceptual SIoT sequence diagrams. (a) Service Discovery and Authorization, showing
provisioning, registry lookup, trust evaluation, and policy enforcement. (b) Trust Update, showing evidence
logging, trust updates, policy re-evaluation, and reputation sharing.
Component/operation | Material/mechanism Lifetime/overhead
Device identity Ed25519 / ECDSA-P256 keypair; finite-field schemes *° 6-12 months (or on reprovision)
Channel session TLS/DTLS traffic keys (HKDF); PUF-based derivation Per connection / transaction
PEP auth token Signed policy token 5-15 minutes rolling refresh
Trust evidence Event signature (Ed25519) Per event (immutable)
Storage at rest AES-GCM symmetric data keys 24h rotation (envelope rewrap)
Audit/anchoring Blockchain anchoring keys 2! 1-3 s commit delay; hourly batching
Registry signing Service registry key 2 3-6 months with audit log
PDP policy check Fog-node policy evaluation 20-50 ms (delegation selection overhead) %
PEP enforcement Policy decision enforcement <5 ms (message interception + enforcement negligible vs PDP)
AES-GCM encryption | Symmetric crypto cost (AES-GCM,; lightweight ciphers such as SIMECK-T ) | <5% CPU
Trust verification Trust/score update 2.2'5,280 Tx/s ¥
Blockchain logging Append-only tamper-evident logs 1-3 s per commit 2

Table 2. Cryptographic key lifetimes and performance overheads (conceptual defaults, grounded in surveyed

SIoT literature).

These interactions highlight both the operational and feedback loops necessary for sustaining trust-aware SIoT

environments.

Comparative analysis of SIoT architectures

Although there is no standard form of an architecture, researchers have proposed their own architecture based
on the underlying concepts of IoT with the SIoT principles. Each evolution in the architecture introduces
new layers to address specific SIoT challenges such as device and data service discovery, security, data storage
and analysis, interoperability, and scalability. Several researches have proposed new SIoT architectures that
integrate social elements into IoT in a cohesive and efficient manner. These architectures aim to enhance device
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interactions by incorporating social networking principles into the IoT, enabling devices to form and manage
social relationships autonomously.

The!® general architecture of SIoT consists of three layers, such as 1. Perception layer: The perception or
sensing layer which is responsible for sensing from the physical environment and collecting data through various
sensing devices such as RFID, Sensors (Temperature, Humidity, Pressure, Motion, etc.) IoT enabled cameras,
GPS, NFC. 2. Network Layer: To establish communication and ensure reliable transmission of data between
various devices and cloud system, various network elements can be employed, including: Cellular networks,
WLAN, LoRaWAN, wireless personal area network can be used. 3. Application layer: This layer serves as a
user interface between end users and IoT, offering a variety of services that facilitate enhanced connectivity,
automation, and decision making. Services such as SIoT application services (Industrial monitoring, Smart
home), Service Discovery, Service management, Data storage, and Database Services.

They® proposed an architecture pattern for SIoT that aligns with a broad spectrum of requirements,
incorporating fundamental elements, such as SIoT Service Discovery: Devices that autonomously discover
services that meet its specific needs, acting as gateway for inter-object relationship, Social Virtual Entity
(SVE): Storage for a social virtual entity that represents digital information of real-world physical objects,
SVE resolution: It provides essential information such as SIoT IDs, service types, and location details that
need to connect to Social Virtual Entity with SIoT services, which enable them to access relevant services and
information, Relationship management: To track and evaluate how devices interact, exchange information and
to ensure that they follow predefined behavior. This helps decide who to trust and work with based on past
experience, relationship behavior, and monitoring. If a device behaves in a certain way, then the system ensures
that it aligns with expected behavior and adjusts when needed. It also checks the system, consciously observes
device interaction, and flags if any problems occur.

The'® proposed Semantic Web of Things (SIoT) architecture consists of multiple layers. The bottom layer
comprises embedded devices and IoT technologies for smart cities, where sensors collect data and transmit
it through UDP / IP or CoAP. The U-KB layer annotates and represents knowledge, structuring received data
using Linked Data principles. The annotation of metadata is stored using OWL-2 ontologies, enabling structured
representation. The Tiny-ME Rationality and Matchmaking Engine employs semantic Rationality for Service
Discovery, processing requests accordingly. The top layer facilitates service discovery and resource discovery
within the SIoT ecosystem, incorporating intelligent decision-making based on available resources. This
architecture integrates annotation based on ontology, enabling efficient data representation and communication
between IoT devices. Using semantic reasoning, you can easily discover services and resources. By combining
COAP, Linked Data, and UDP/IP, the SIoT architecture ensures reliable, interoperable, and efficient IoT
communication.

The S2NeTM architecture, as described in'®, is a distributed middleware solution that leverages semantic
technologies to seamlessly interconnect IoT devices, optimizing data processing and facilitating informed
decision-making through ontology-based semantic reasoning. The architecture consists of three layers: the
Data Collection Platform, which comprises physical devices that detect and perceive data from IoT devices,
sensors, and open data sources, and handles communication protocols such as MQTT, COAP, and HTTP; the
S2NeTM middleware, responsible for data processing, semantic reasoning, and trustworthiness management
through components such as CM, OC, UP, and TM; and the Application Layer, which provides services and
interfaces to users. The effectiveness of this middleware architecture has been demonstrated through a successful
implementation of the Green Route Use Case, where users receive eco-friendly route recommendations based
on real-time environmental data.

As described in!7, a socially aware service recommendation framework is proposed for the Social Internet
of Things (SIoT). This framework considers devices, their owners, and the services offered by these devices.
The framework operates in four stages. Initially, social relationships among devices are identified based on five
types of SIoT relationships (CLOR, CWOR, POR, OOR, SOR) derived from their owners’ social connections.
The devices are then clustered into communities based on their social relationships using a boundary-based
community detection algorithm. Within these communities, users are grouped by common preferences and
behaviors using the Jaccard similarity coefficient, enabling interest-based service suggestions. Finally, a hybrid
filtering approach (collaborative and content-based filtering) is adopted for service recommendation, prioritizing
trustworthy and relevant services based on user-device relationships, interest similarities, and social connectivity
strength. The performance of the framework is evaluated using real-world datasets (Santander Smart City and
Twitter), with metrics including precision, recall, F measure, and computational cost.

They? presented a five-layered SIoT architecture by introducing two new layers: the component abstraction
layer, which provides object profiling, and the social interaction layer, which provides an interface for social
communication between objects and users. The functionality of the remaining layers is similar to that of the IoT
reference architecture.

In this paper?® they proposed comprises of a three-layered architecture, the SIoT server focuses on the
network and application layer to ensure efficient data management, relationship, and service discovery. The
network layer is responsible for transferring data across different networks to enable communication among
various devices within the IoT, interoperability, and protocol adherence. Each of these sub-layers of Application
layer, that is Base, Component, and Interface provide different functionalities such as managing database for
social profiles, object activities, and human data. Ontologies such as OWL-S can be used to represent semantic
relationship, while component sublayer implements core functions such as ID management, Profiling, Owner
control, Relationship Management, Service Discovery, Service composition, and Trustworthiness Management.
The top Interface sublayer provides functionalities to connect to the third-party entities to objects, it can be
either human/ services, which can enable flexible implementation (local, distributed, or cloud-based). The
Gateway and object they vary in their combination of layers based on device capabilities. This SIoT architecture
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fosters interoperability, semantic understanding, and autonomous service discovery among IoT devices. The
Social Internet of Vehicles (SIoV)?® architecture is a complex framework that facilitates communication and
data exchange between vehicles, infrastructure, and the cloud, allowing a variety of services and applications.
At its foundation, the Physical World Layer collects data from various sensors and devices, while the Gateway
Layer acts as an immediate point of communication, comprising the Smart Vehicle module and the Roadside
Unit. The Fog layer processes larger data sets, analyzing data locally at the edge of the network, and the Cloud
Layer is a centralized, remote facility optimized for robust computations and long-term data management. The
Application Layer provides a variety of services and interfaces to users through applications running on vehicles
or in the cloud, handling real-time and historical data while balancing performance and capacity, and raising
privacy concerns due to data sharing with third-party entities According to'?, this architecture consists of four
components such as actors, users, and smart devices that interact via social network, providing services such as
status updates and recommendations, The intelligent system which controls interactions, and managing services.
The interface layer enables user- device interaction which offers services like discovery and data analytics. The
Internet ensures global connectivity, open access, and real-time communication between SIoT devices. Table 3
shows the comparative analysis of SIoT architectures.

Social relationships

Social relationships are formed through shared interests that lead to communities that collaborate and share
information. For example, a book club brings together individuals who enjoy reading and discussing literature,
fostering friendships and knowledge exchange among members. The Internet connects these communities
locally and globally, fostering belonging and cooperation. This interconnectedness forms the Social Internet
of Things (SIOT), where people, devices, and services interact to create a collaborative ecosystem. Various
studies®** have examined different types of social relationships between objects and their users, which are
consolidated in Table 4.

loT vs. SloT: a comparative perspective

The Internet of Things (IoT) is a network of physical devices connected to the Internet that collect and exchange
data. IoT features include device communication with servers or cloud platforms, focusing on machine-to-
machine interaction, centralized control, and security trust models based on authentication and encryption. The
Social Internet of Things (SIoT) expands the IoT by enabling devices to interact in a social-like manner, similar
to human social networks, emphasizing peer-to-peer relationships, trust-based collaboration, and decentralized
smart device cooperation.

Key research directions in the SloT
This section addresses RQ9. The aforementioned challenges have sparked diverse research efforts. This section
highlights key directions addressing those issues, as explored in recent literature.

Service Discovery Service discovery is the process by which a device or user in a network finds and connects
to services offered by other devices or systems automatically and dynamically. For example, consider a vending
machine application installed on your smartphone. This automatic finding and matching process is service
discovery—your app is discovering services (snack vending) being offered by a device (vending machine);
it detects nearby vending machines (using Bluetooth, Wi-Fi, GPS), once connected to that specific machine,
it shows available items (chips, juice, chocolate, etc.). To ensure trustworthy and efficient service discovery
in SIoT?!, proposed a three layered model that combines social trust and QoS prediction. In this study, the
authors®? proposed and implemented a decentralized service registry built on the DSF-IoT framework and a
S/Kademlia-based Distributed Hash Table (DHT). The approach ensures integrity and trust through the use
of signature chains and cryptographically derived identifiers. Service registration and discovery are facilitated
through tertiary pages, which support context-based queries and enable efficient, verifiable indexing. Despite
these advances, most current approaches still risk exposing sensitive identity or location attributes during
discovery. Future protocols must therefore emphasize privacy-preserving service discovery, enabling secure
interaction without requiring disclosure of user or device identities.

Trust management Trust management has become a critical component of SIoT systems, aiming to ensure
secure and reliable interactions among heterogeneous and socially connected devices. Reference? emphasize
that trust management mechanisms involve four core phases: trust composition, trust aggregation, trust
propagation, and trust update. These phases help assess node behavior, detect malicious activity, and maintain
dynamic trust scores within SIoT networks. The authors also propose a blockchain-powered methodology that
integrates decentralized architectures with graph-based trust models (e.g., using Neo4;j) to enhance scalability,
transparency, and resilience against trust-related attacks. Their survey identifies key open challenges such as
real-time trust updates, trust-related attack mitigation, and the integration of smart contracts and consensus
protocols for trust evaluation. However, many existing schemes remain static or computationally heavy, which
makes them unsuitable for resource-constrained SIoT devices. This highlights the need for lightweight, adaptive
trust strategies that can dynamically evolve with device behavior while maintaining low computational overhead.

Network Navigability Network navigability refers to the ability of devices to efficiently discover and
connect with relevant peers or services within a dynamic social graph. Challenges such as device mobility,
evolving contextual dependencies, and spatiotemporal heterogeneity often degrade navigability in large-scale
SIoT networks. To tackle this, TAGLLM?>? introduces a trajectory framework that models devices dynamics
and contextual relations using a hybrid graph encoder and LLM guided token alignment strategy, significantly
improving relation classification and routing performance.

Relationship management In SIoT, relationship management refers to how smart devices establish,
maintain, and update social-like relationships with each other similar to human social networks. The
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Relationship type

Semantic definition

Example

Security implications (attack surface & trust signals)

Ownership Object Relationship (OOR)

Objects continue to interact despite
ownership changes

Smart car retaining traffic data
after resale

Data leakage risk across owners; requires secure data
wiping, provenance, and access control

Social Object Relationship (SOR)

Objects interact via owners’ social
connections

Friends’ fitness wearables syncing
stats

Vulnerable to impersonation or Sybil attacks; trust
inferred from social graph strength

Sibling Object Relationship (SIBOR)

Objects owned by the same user
communicate frequently

Smart home devices (thermostat,
lights, sensors)

Lateral compromise risk; trust derives from shared
owner identity and credentials

Parental Object Relationship (POR)

Sibling devices connected via a parent
entity

Fleet of connected vehicles

Centralized control introduces single point of failure;
parent trust determines child reliability

Co-location Object Relationship (CLOR)

Objects interact due to spatial proximity

Factory robots working together

Susceptible to spoofed/relay attacks; trust based on
verified physical presence

Co-Work Object Relationship (CWOR)

Objects collaborate to complete a task

Robotic arms and conveyors in
packaging

Attack surface in coordination sabotage/DoS; trust
validated through task success consistency

Guest Object Relationship (GOR)

External objects interact with restricted
access

BYOD devices in enterprise

Higher risk of rogue devices; needs strict
authentication, sandboxing, and access policies

Stranger Object Relationship (STGOR)

Limited interactions with unknown devices

Unknown IoT object in range

High uncertainty and unpredictability; requires
anomaly detection and adaptive trust mechanisms

Service-Oriented Object Relationship
(SVOR)

Objects interact with external service
providers

Smart meters subscribed to
weather/utility services

Exposure to API/service misuse; trust depends on
authentication, SLA compliance, blockchain logging

Table 4. SIoT relationship types: definitions, examples, and security implications.

relationships often managed in SIoT are OOR, CLOR , CWOR, SOR, and POR. RM ensures reliable, secure
and meaningful interactions between devices by continuously assessing trustworthiness and context. To address
trust exploitation and privacy leakage, they*! proposed an F-TRM model that classifies relationships and updates
them dynamically using trust values and feedback and secures interactions using cryptographic methods. They
also demonstrate effective relationship evolution and management in dynamic environments.

Explainable and accountable AI/ML integration Machine learning (ML) has been widely applied to SIoT
for anomaly detection, trust prediction, and adaptive service management. However, a major limitation is
the lack of transparency in ML-driven decisions, which hinders accountability and user trust. Most existing
solutions function as black boxes, providing little insight into why a node or service is flagged as malicious
or untrustworthy. To bridge this gap, explainable AI (XAI) techniques such as SHAP and LIME should be
integrated into SIoT security workflows. These methods can provide human-understandable justifications for
anomaly detection or trust evaluations, improving confidence and enabling fair decision-making in multi-
stakeholder environments. Incorporating explainability into SIoT ML pipelines is crucial for accountable security
and ensuring that automated trust management aligns with user expectations and regulatory requirements.
FedXAIIDS is an intrusion detection system that combines federated learning with SHAP-based explainability
to preserve privacy and improve transparency. Tested on the CICIoT2023 dataset, it achieved 88% accuracy
while identifying UDP traffic as a key attack feature, offering a scalable and interpretable IDS for IoT networks™®.
XAI-IoT, proposed by?S, is a framework combining anomaly detection models with seven XAI methods (e.g.,
SHAP, LIME) to enhance transparency in IoT security. Evaluated on MEMS manufacturing and N-BaloT botnet
datasets, it achieves high accuracy (up to 0.99) and reveals key features for failures and attacks, supporting
accountable and interpretable IoT anomaly detection.

Cross-domain interoperability and unified policies One of the key open challenges in SIoT is ensuring
seamless interoperability across heterogeneous domains (e.g., smart healthcare, transportation, and industrial
IoT), where devices often follow distinct trust policies, access-control rules, and security protocols. The absence
of standardized frameworks limits secure collaboration when nodes from different administrative or application
domains interact. Current studies largely focus on intra-domain trust or discovery, leaving cross-domain
integration underexplored. To address this, future efforts should aim at designing unified policy frameworks and
interoperable trust models that allow heterogeneous SIoT systems to share resources and services securely while
maintaining autonomy. Such frameworks should also incorporate decentralized enforcement mechanisms (e.g.,
blockchain-based access-control or distributed identity management) to guarantee auditability and resilience
against policy conflicts.

Merits and challenges of social internet of things
Main merits

1. Enhanced Resource Discovery: Enhanced resource discovery within the social Internet of Things (SIoT)
identifies a sophisticated, context-aware, and socially influenced approach to locate pertinent resources, in-
cluding services, data and other devices, in a dynamic IoT environment. By integrating social relationships,
trust, semantic considerations, and contextual factors, it facilitates efficient, precise, and secure discovery.
Resource discovery functions by identifying devices or objects, as well as the social relationships among
these objects and their users-such as parental, co-location, and co-work relationships. Discovery method-
ologies can be classified into centralized, decentralized, or hybrid approaches. Various types of discovery
include context-aware discovery, which is based on situational reading of data; trust-based discovery, which
relies on past history, recommendations, and reputation scores; social-aware filtering, which considers rela-
tionship types; and semantic discovery and ontologies, which use semantic models (RDF and OWL) based
on meaning, not just keywords. Furthermore, machine learning may be employed optionally for predic-
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tive purposes, along with scalable and decentralized discovery methods, such as distributed hash tables or
blockchains for scalable decentralized and resource discovery. This paper® discusses various categories of
discovery techniques, including data-based and object-based approaches. It also examines different types of
discovery architecture and various protocols for discovery, such as CoAP, MQTT, and UPnP. Additionally,
the paper addresses several challenges encountered in resource discovery.

2. Enhanced Interoperability and Collaboration:

Interoperability refers to the capability of different types of objects, devices, or applications to work together to
exchange information within the SIoT network seamlessly. This ensures that they can communicate and col-
laborate effectively by speaking the same “language” For example, different healthcare hospitals using various
software should be able to share information securely, and an Android mobile device and a Windows laptop
should be able to transfer information via Bluetooth. Enhanced interoperability means improved communi-
cation with fewer compatibility issues, faster data sharing, and secure and reliable support for a greater variety
of devices or systems. This paper®” reviews existing research on semantic interoperability and reusability in
10T, focusing on RDE, OWL, SPARQL, ontologies, and the semantic sensor network ontology. They®® pro-
posed a new architecture referred to as Ontology as a Service. They developed a lightweight ontology for
context-aware systems, based on existing models but customized to their needs. Their results show that their
system successfully mapped and translated between two different systems: smart home and healthcare. They*
proposed a transparent translator that addresses interoperability at two levels. The messaging protocol layer
handles communication protocols such as COAP, MQTT, and HT TP, while the syntactic layer converts JSON,
XML, and CSV using SSN ontology.

3. Improved Scalability: Billions of interconnected devices form autonomous, dynamic social relations, col-
laborating in real time for services like traffic control, public safety, and home automation. These devices
generate data simultaneously, leading to numerous dynamic stream queries and frequent topology changes
as they join, leave, or move. Scalability is crucial for managing increasing devices, users, and interactions
without compromising performance, security, or reliability. AgileDART*’ introduces a decentralized edge
stream processing engine that significantly improves scalability in dynamic, heterogeneous environments. Its
architecture eliminates the single-point bottleneck through distributed operator placement and bandit-based
routing, making it suitable for high-throughput, low-latency applications in SIoT ecosystems.

4. Dynamic Trust Management: A system that continuously evaluates, updates, and adapts the trustworthi-
ness of entities in real time. It considers their environment, context, and behavior to identify and assess new
threats and operational conditions.Secure interactions between different IoT devices that belong to different
people are essential in the SIoT world (smart homes, healthcare, smart cities). For instance, devices like a
smart fridge or smart lock may need to communicate with devices owned by friends, family, or even un-
known users. Trust needs to be continuously evaluated and updated based on behavior, rather than assumed.
Devices can join or leave the network, behave suspiciously, update their firmware, or experience security
breaches. This necessitates dynamic rather than static trust management, where the system automatical-
ly recalculates trust levels and quarantines untrustworthy devices. Interoperability between different trust
models is also important, as not all devices calculate trust in the same way—some use reputation, risk scores,
or certificates. To address this, they41 have built RTrustSim, a simulation of the SIoT environment where the
trustworthiness of devices can change, be measured, and inform decisions such as joining, staying, leav-
ing, or being quarantined automatically. They demonstrated this framework through three use cases: Smart
home, Preventive Health Monitoring, and Dynamic Device Integration.

5. Security and Trust: Security in SIoT defends against technical threats such as unauthorized access, data tam-
pering, spying, and attacks, involving authentication, authorization, confidentiality, integrity, and availability.
Trust, on the other hand, pertains to evaluating the reliability and honesty of another device to determine
whether to interact and share information. It helps devices establish safe and intelligent social connections.
Research?®? has introduced a novel model known as self-adaptive trust management for SIoT. By integrating
MAPE-K and machine learning to manage trust, the trust evaluation task was assigned to fog nodes. Their
simulation within an SIoT network effectively detects malicious devices.

6. Self-Organisation: Smart objects can autonomously locate, connect, and interact with other devices without
human intervention, akin to how individuals establish friendships in real life. These devices form social re-
lationships based on criteria such as shared ownership, common location, and similar interests (e.g., devices
that support similar services). Interaction history also plays a role in the formation of these connections.

7. Context-Aware Service: Devices are designed to be aware of their surroundings and respond intelligently to
various situations, much like humans adjust their behavior based on their perception of their environment.
These devices employ sensors that detect, comprehend, and adapt to contextual information such as location,
time, environmental conditions (e.g., hot, cold, or noisy), user activity (e.g., sleeping, walking, or driving),
and device status (e.g., low battery, active sensor).

Critical research challenges in SIoT systems

The Social Internet of Things (SIoT) faces a range of persistent challenges rooted in its scale, heterogeneity, and
decentralized nature. These include secure trust management, dynamic mobility, interoperability, data privacy,
resource constraints, and complexity in service discovery, all of which impact the resilience, reliability, and
usability of SIoT environments’.
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10.

Trust, Security, and Privacy: SIoT networks are vulnerable to trust manipulation, identity spoofing, infer-
ence attacks, and unauthorized data access. The absence of standardized trust metrics and robust authenti-
cation frameworks exacerbates these issues, especially under dynamic mobility.

Scalability and Network Management: As SIoT networks grow, challenges arise in efficient routing, ser-
vice discovery, and congestion management. Real-time navigation through dynamic social graphs, particu-
larly under dense device populations, remains complex and costly.

Interoperability and Standardization: Fragmented communication protocols, vendor-specific social
models, and the lack of universal standards hinder seamless integration across heterogeneous platforms
and devices.

Relationship Modeling and Management: Devices must dynamically form, update, and revoke social
links. Preventing relationship flooding and distinguishing relationship types (e.g., ownership vs. co-loca-
tion) remains an open challenge.

Autonomy and Intelligence: Equipping SIoT devices with intelligent decision-making capabilities is con-
strained by limited computing power, vulnerability of AT models to adversarial inputs, and the complexity
of real-time context awareness.

Data Ownership and Governance: Managing sensitive, distributed data in multi-owner scenarios poses
concerns about ownership rights, synchronization consistency, and access control in decentralized environ-
ments.

Legal, Ethical, and Social Issues: Ensuring user-centric SIoT systems demands mechanisms for informed
consent, accountability for device actions, and mitigation of embedded social biases.

Service Discovery and Composition: Discovering reliable services in dynamic, decentralized graphs is
challenged by fake service advertisements, limited trust indicators, and context-aware recommendation
bottlenecks.

Integration with Emerging Technologies: Incorporating blockchain, edge/fog computing, and federated
learning into SIoT introduces new challenges ranging from blockchain scalability to energy-efficient trust
models at the edge.

Mobility and Dynamicity: Frequent changes in device locations and interactions complicate service conti-
nuity, object tracking, and context adaptation across constantly evolving environments.

Security in SloT

Key security requirements and challenges in SloT

This subsection addresses RQ3, which focuses on the security requirements and challenges associated with SIoT
systems. Table 5 provide a detailed mapping of these requirements, the corresponding challenges, and potential
solution approaches.

Security requirements in SIoT

In the Social Internet of Things (SIoT), primary key security requirements are the essential principles that a
secure SIoT system must uphold to safeguard users, data, and device interactions. These requirements serve as
foundational elements that form the core security framework for SIoT architecture. Additional requirements,
such as trust management and non-repudiation, build upon or enhance these primary pillars.

1.

Privacy : To protect personal and sensitive data from being exposed or misused, systems focus on giving us-
ers control over their information and ensuring it isn’t collected or shared without permission. Techniques
like data minimization and anonymization reduce the amount of identifiable data stored or processed,
limiting exposure risks. Differential privacy adds noise to datasets, allowing useful insights while preserving
individual privacy. Consent-based data access ensures that users actively allow how and when their data is
used, supporting ethical and transparent data practices.

Trustworthiness: To ensure that devices, users, and services behave reliably and securely, systems use trust
mechanisms that evaluate and predict how entities operate, especially in dynamic or social settings. Trust
evaluation models based on reputation scores or behavior analysis—help assess reliability over time, while
blockchain-based trust logs provide tamper-resistant records of past actions to support transparency and
accountability. Federated learning further enables decentralized behavior prediction by training models
across multiple devices without exposing sensitive data, reinforcing trust without sacrificing privacy. The*?
paper proposes a trust management framework in SIoT that enhances trustworthiness evaluation through
the integration of social similarity, feedback, and honesty. It introduces a novel trust propagation technique
leveraging social relations and contextual data to disseminate trust effectively and identify untrustworthy
nodes. Evaluation using real datasets (Sigcomm and Epinion) demonstrates accurate trust estimation and
secure interaction facilitation.

Integrity: To prevent unauthorized modification of data, systems use techniques that ensure the infor-
mation remains accurate and intact during transmission and storage. Hash functions like SHA-256 pro-
vide a unique fingerprint of the data, helping detect any changes. Digital signatures verify both the origin
and integrity of the content, confirming that it hasn't been altered. Message authentication codes (MACs)
add another layer of protection by allowing verification between trusted parties, ensuring that only data
untouched by tampering reaches its destination. The authors** propose and implement a framework for
analyzing and exploiting smart home IoT firmware. Using reverse engineering, static analysis, entropy as-
sessment, and emulation tools (e.g., QEMU, Radare2), they identify ten critical network-based vulnerabil-
ities—five scoring CVSS 10.0 and five scoring 9.8. The analysis reveals widespread use of unsafe functions
(sprintf, strcpy) and absence of security hardening features (NX, PIE, RELRO, Stack Protection). The study
offers best practices to secure firmware, emphasizing authenticated updates, strong passwords, and secure
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resource limits

Throughput (TPS)

blockchain sharding; MQTT/CoAP

Ref. | Requirement Challenges Metrics/equations Solutions Feasible?
16 Authentication Identity spoofing; Sybil; FAR, FRR; Accuracy = (Valid = Total) DID; blockchain-based ID; lightweight DID = A; Blockchain =
decentralized ID X 100% crypto tokens X; Tokens = v
4 Authorization Context-aware access; collusion; | Access Effectiveness = (Unauthorized - | ABAC, CAAC, RAAC; smart contracts; ABAC/RAAC = V'
malicious propagation Total) x 100%; Policy latency (ms) edge/fog enforcement Smart contracts = X
48 Confidentialit Privacy in sharing; weak Leakage I = MI(User; Leaked); Overhead | E2EE; ECC; AES-CCM; DTLS/CoAP; ECC/AES/DTLS = v/;
Y encryption = Cipher = Plaintext blockchain access control HE=X
T ing: misuse: malici I . _ dified = Total MAGs: si . BC-logwing: SHA-256; MACs/Hashing =
45 Inteerit ampering; misuse; malicious ntegrity Rate = ‘(Unmo ified - Total) Cs; signatures; BC-logging; SHA-256; v: Signatures = s
grity beh. %: 3 918! >
ehavior X 100%; Detection latency (ms) secure boot/updates Bl o
ockchain = X
31 Availabilit DoS/flooding; collusion in dense | Availability = (Uptime < Total) X 100%; | Rate limiting; edge filtering; redundancy; Al/ f\lll;;;l{‘g_/lxdgﬂi;d‘g ;in
24 SloT MTTF; MTTR; PDR = rx -+ tx ML DosS detection; resilient CoAP X -
. § . Trust Accuracy = (Correct <+ Total) X Reputation models; ML-based anomaly . .
2 Trustworthiness Dynam ic trust; fal'se trust; 100%; False Trust Rate; Convergence detection; decay functions; consensus Reletatlon/DecaY: Vs
unreliable reputation A ML = A; BClogs = X
rounds validation
51 Privac Graph inference; contextual Privacy loss (&) in DP; Inference Data minimization; DP; edge/fog processing; | Min/DP = v'; Edge =
¥ leakage; excessive sharing probability; Minimization ratio HE; blockchain selective disclosure vV ;HE=X
n Scalability Heterogeneous devices; growth; | Latency growth L(N + A)/L(N); Edge/fog computing; federated learning; MQTT/CoAP/Edge =

v'; FL/Sharding = A

50

Accountability

No audit trails; decentralized
control; absent monitoring

Auditability = (Logged + Total) X
100%; Verification success

Blockchain logging; secure audit trails; TEEs;
anomaly logs; policy engines

Trails = v'; Blockchain
= A/X; TEEs = A

Interoperability

Protocol mismatch;
heterogeneous devices; cross-
domain access

Success Rate = (Successful + Attempts)
X 100%; Translation latency (ms)

Middleware; IoT-Lite; translators; blockchain
federation; W3C APIs

Middleware/Trans = v';
Blockchain = A

Table 5. Security requirements (Authentication-Interoperability) with challenges, metrics, solutions, and

feasibility. v = lightweight; A = partial; X = heavy.

boot mechanisms. In this®® study proposes a lightweight and secure FOTA mechanism for IoT devices to
counter man-in-the-middle (MITM) attacks using a dual-XOR encryption technique, DEFLATE lossless
compression, and multi-channel key transmission. Compared to AES-based methods, the proposed model
significantly reduces latency, power consumption, and memory usage while maintaining accuracy and re-
sistance to brute-force attacks in constrained environments.

Authentication: To confirm the identity of a user or device, systems rely on various authentication methods
that verify an entity is genuinely who it claims to be. Common techniques include passwords or PINs for ba-
sic access, digital certificates for cryptographic validation, and biometrics like fingerprints or iris scans that
link identity to unique physical traits. Multi-factor authentication (MFA) adds extra layers by combining
two or more of these methods, making unauthorized access significantly harder and strengthening overall
system security. Reference*® proposed a solid identity and access control framework that blends decentral-
ized identifiers (DIDs), soulbound tokens (SBTs), and zero-knowledge proofs (ZKPs). The system protects
user privacy by allowing selective sharing of credentials, uses ERC721-based SBTs to bind identity in a way
that can’t be transferred, and ensures verification through Ethereum smart contracts. These features are a
strong match for SIoT environments, helping prevent identity spoofing, safeguard privacy during social ex-
changes between IoT devices, and support decentralized, trust-driven service access. The inclusion of audit
trails and credential tracking also makes it suitable for regulated and sensitive areas like healthcare, logistics,
and smart cities.

Authorization: To enforce rules about who can access what and what actions are allowed, systems use ac-
cess control mechanisms that ensure authenticated users or devices only perform permitted operations
on specified resources. This is typically achieved through models like Role-Based Access Control (RBAC),
Attribute-Based Access Control (ABAC), or Context-Aware Access Control (CAAC), which define permis-
sions based on roles, attributes, or environmental context. Policy enforcement tools apply these rules across
systems, while smart contract-based permissions can automate and secure access decisions in decentralized
environments using blockchain technologies. A fog-based adaptive context-aware access control framework
(FB-ACAAC) enhances traditional XACML by incorporating dynamic, context-driven policy adjustments
at the fog layer. It mitigates threats such as man-in-the-middle, privilege escalation, and masquerade attacks
through TLS-encrypted communication, least privilege enforcement, and context-aware access decisions.
Performance evaluations demonstrate lower latency and adaptive responsiveness compared to standard
XACML approaches?.

Confidentiality : To prevent unauthorized access to data, systems implement mechanisms that ensure only
authorized users or devices can view or read sensitive information. This is achieved through encryption
methods like AES and ECC, which secure the data itself; access control strategies that regulate who can in-
teract with the data; and secure communication protocols such as SSL/TLS and DTLS, which protect data in
transit across networks. Together, these techniques form a robust defense against data breaches and privacy
violations.*® proposed a lightweight authentication protocol that ensures confidentiality through session
key establishment using hashed credentials and XOR operations, without relying on heavy cryptographic
primitives like ECC or AES.
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10.

Availability: To ensure continuous access to services and data when needed, systems adopt strategies that
keep operations running smoothly even in the face of faults or attacks. Redundancy and failover mech-
anisms provide backup components and automatic switching to maintain uptime during failures. DDoS
protection helps defend against traffic overloads caused by malicious attacks, while load balancing distrib-
utes incoming requests across multiple servers to prevent bottlenecks and improve system responsiveness.
Together, these techniques support high availability and reliable service delivery. A trust and QoS-based
service recommendation model for SIoT is proposed, incorporating availability, reliability, and efficiency in
service prediction using an RSS-based algorithm and trust-aware community clustering®!.

Scalability: To support growth in users, devices, or data without degrading performance, systems employ
scalable solutions that maintain efficiency as demand increases. Distributed architectures like fog, cloud,
and edge computing spread processing across different layers to avoid bottlenecks. Lightweight protocols
and microservices reduce communication and computation overhead, making it easier to handle more con-
nections and transactions. Modular expansion strategies allow systems to add new components or services
incrementally without disrupting existing functionality, ensuring smooth scaling across diverse environ-
ments. The authors in*® propose FLCoin, a scalable blockchain-enabled federated learning architecture for
IoT edge networks. They use a committee-based BFT consensus, elected via the FL process, and a sliding
window mechanism to limit consensus scope. Combined with linear communication and block pruning,
their design achieves a 90% reduction in communication overhead and 35% lower training time compared
to PBFT, ensuring high scalability in large networks.

Accountability : To trace actions back to responsible users or devices, systems use techniques that ensure
every operation is recorded and accountability is maintained. Logging and auditing tools capture detailed
records of activities for review and analysis, while blockchain-based immutable ledgers provide tam-
per-proof evidence of actions. Digital signatures and identity binding link each action to a verified entity,
making it possible to detect misbehavior, investigate incidents, and apply penalties when needed—all sup-
porting transparency and trust in the system. In this work, Ref.>® propose a hybrid IoT security framework
that integrates deep learning for anomaly detection with blockchain for tamper-proof logging. The system
simulates sensor data and diverse attack scenarios using SimPy, and leverages blockchain to ensure that
all events—including sensor malfunctions and detected threats—are immutably recorded for auditability.
The framework achieves 98% detection accuracy across various network sizes and attack types such as
DDoS, MITM, and unauthorized access, thereby supporting accountability through traceable, verifiable,
and non-repudiable event logging.

Interoperability: To enable different systems, devices, and platforms to work together seamlessly, systems
use interoperability techniques that allow data to be exchanged and understood across diverse networks
and vendors. Standardized communication protocols like CoAP, MQTT, and HTTP ensure consistent mes-
sage formats and connectivity. Middleware platforms such as FIWARE and Node-RED act as bridges, inte-
grating heterogeneous devices and services. Additionally, ontology and semantic web approaches provide
common vocabularies and reasoning frameworks, helping systems interpret and use shared data meaning-
fully in distributed environments.

Security challenges in SIoT

This subsection addresses the research question: RQ10. SIoT introduces unique challenges due to its social,
dynamic, and decentralized nature. These challenges highlight the complexity of securing SIoT systems, requiring
innovative solutions that balance security, performance, and usability. While the previous section highlighted
general research challenges in SIoT, this section narrows the focus to security-specific concerns, outlining the
essential requirements and unique threats inherent to securing dynamic and decentralized SIoT environments.
As shown in Table 5, we map each requirement to challenges, metrics, and solutions, and indicate lightweight
feasibility (v), partial feasibility (A), or heavy/unsuitable (X) for constrained SIoT nodes.

1.

Dynamic Trust Relationship: In SIoT, devices and entities interact dynamically, making trust relationships
challenging to manage. Trust levels can change rapidly due to various factors, such as device behavior, user
interactions, or context. This complexity requires adaptive trust management systems.

Identity Spoofing and Sybil Attack: Malicious entities impersonate legitimate devices or users, or create
fake identities to manipulate the system. This can lead to unauthorized access, data theft, or disruption of
services.

Scalability of Security Mechanism As the SIoT network grows, security solutions must scale according-
ly. However, heavyweight security mechanisms may not be feasible due to resource constraints, requiring
lightweight, efficient solutions.

Heterogeneous Devices Devices in SIoT have varying capabilities, security levels, and protocols. This het-
erogeneity creates challenges in implementing uniform security measures, making it essential to develop
adaptable security solutions.

Data Privacy Increased sharing can lead to unintended data exposure, compromising user privacy. This
requires robust data protection mechanisms and fine-grained access control.

Collusion Attacks: Multiple devices collaborate to launch coordinated attacks or deceptions, exploiting
trust relationships and potentially causing significant harm.

Decentralized Management Complexity without a central controller, managing security policies and en-
forcing them consistently becomes increasingly complex, requiring distributed security management solu-
tions.

Context-Aware Access Control Access control decisions depend on dynamic attributes like location, time,
and trust levels. This requires adaptive access control systems that can respond to changing contexts.
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Studies | Threats

Attack Solutions

Identity spoofing

DNS/ARP spoofing for redirection or MitM | ML-based IDS using Random Forest, XGBoost, and SMOTE

Data integrity and Confidentiality | MitM, ARP spoofing/flooding

CNN-based IDPS with SDN Ryu; blocks ports, clears ARP entries

Trust exploitation

Malicious trusted relationships Zero Trust via SDN; cert-based auth, peer policy control

Privacy inference, trust exploitation | Privilege escalation

Anonymization, traffic obfuscation, MAC randomization

DDoS attacks

Service degradation via IlToT DDoS MTDTM with ODENet+LSTM; dynamic traffic control, SDN routing

Table 6. Recent research on SIoT security: mapping threats, attacks, and existing solutions.

Protocol layer Common attacks in SIoT environments Example reference
Physical layer Jamming, Eavesdropping, Radio interference, Signal manipulation 57

Data link/MAC layer | Replay attacks, Collision attacks, Identity spoofing at MAC, Selective forwarding o8

Network layer Sybil attack, Sinkhole attack, Wormhole, Blackhole, Routing table poisoning, Selective packet dropping »

Transport layer Flooding (SYN/UDP), Session hijacking, DoS/DDoS, TCP reset attacks 60

Application layer False data injection, Malicious code injection, Privacy leakage, Malware/botnet attacks, Unauthorized service access | ©

Table 7. Layer-wise mapping of prevalent attacks in SIoT communication protocol stack.

9. Limited Resources Resource-constrained devices may not support strong encryption or analytics, making
it challenging to implement robust security measures without compromising performance.
10. Malicious Relationship propagation Attackers exploit trust-based relationships to spread influence, po-
tentially leading to widespread security breaches. This requires proactive measures to detect and mitigate
such threats.

loT-based attacks relevant to SloT

This subsection addresses RQ4, focusing on conventional IoT attacks that equally affect SIoT due to shared
networking protocols, resource constraints, and communication models. Table 6 presents a structured mapping
of key threats, corresponding attacks, and their mitigation strategies. Furthermore, Table 7 extends this analysis
by categorizing prevalent SIoT attacks across the communication protocol stack, thereby providing a layer-wise
perspective on vulnerabilities and potential countermeasures.

This paper!® reviews key IoT application-layer attacks, including spyware, malware, flooding, spoofing, code
injection, message forging, brute-force, access control, sniffing, and intersection attacks. These attacks target
device software, user credentials, and data transmissions, leading to threats against confidentiality, integrity,
availability, authentication, authorization, and privacy. The authors categorize attacks by type (active/passive),
affected layer, and security impact, offering a clear taxonomy for understanding IoT vulnerabilities. Reference’
provide a detailed survey of attack vectors specific to Social-Internet-of-Things (S-IoT), highlighting threats such
as Sybil attacks, self-promotion, ballot stuffing, on-off targeted transmission, bad-mouthing, and opportunistic
service attacks. The paper reviews mitigation strategies through trust management frameworks, lightweight
cryptographic protocols, and blockchain-enhanced authentication. Security vulnerabilities are also evaluated
using fuzz testing, game-theory-based attack trees, and GAN-based intrusion detection in edge-enabled S-IoT
contexts.

1. Node Capture Attacks: It involves an attacker gaining physical access to an SIoT device, extracting sen-
sitive information like keys or credentials. The device may continue to function normally unless repro-
grammed. This type of attack is common in remote or unattended SIoT deployments, such as in agriculture
or logistics, where devices are more vulnerable to physical tampering. Physical tampering with or stealing of
devices. Reference®! proposed a lightweight authentication scheme tailored for smart home environments,
specifically designed to withstand node capture attacks. Their protocol ensures user anonymity, resists key
compromise, and uses randomized temporary identities to prevent adversarial exploitation of captured
nodes.

2. Fake Node Insertion : Adding unauthorized devices to the network. Imitating legitimate devices to blend
in, these malicious nodes appear as trusted participants, exploiting weak identity verification in SIoT sys-
tems. This enables trust deception and network infiltration. The paper by®? introduces a lightweight authen-
tication mechanism combining hash-chains and Bloom filters to mitigate Sybil attacks, wherein attackers
inject fake node identities into RPL-based IoT networks. The scheme ensures only legitimate, pre-registered
nodes are authenticated, effectively countering fake node insertion and DIS flooding attacks.

3. Eavesdropping: Intercepting raw signals (e.g., RF, IR). Eavesdropping is a threat that can arise at both the
physical and network layers. For example®® demonstrate a practical attack at the physical layer using IR
remotes, and propose a lightweight encryption countermeasure to secure device communications. This
paper’” proposes an effective and accurate method for detecting active eavesdropping in wireless IoT net-
works by leveraging a deep learning classifier. Features are extracted directly from wireless pilot signals,
allowing the system to enhance physical layer security by enabling real-time detection of eavesdroppers
before communication is compromised.
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Side-channel attacks: These attacks exploit physical leakage (e.g., power, timing, electromagnetic, or cache
patterns) or fault injection to extract sensitive information from IoT devices. For instance, Correlation Pow-
er Analysis (CPA) leverages repeated AES key usage by correlating observed power traces with hypothetical
key values to recover secret keys. Kuo et al. % proposed a dynamic AES key replacement mechanism that
combines Moving Target Defense (MTD) with lightweight Diffie-Hellman exchange, demonstrating strong
resistance even after 20,000 CPA attempts. In the SIoT context, physical and side-channel attacks at the de-
vice and control layers can compromise cryptographic keys, enabling long-term infiltration, identity theft,
and replayed trust manipulation. These threats are particularly severe in mobile or resource-constrained
devices that cannot rely on heavy cryptographic protections. Mitigation approaches include PUF-enabled
blockchain frameworks?® that apply physical unclonable functions and role-based verification to resist dif-
ferential fault analysis (DFA) and cache-based exploits, validated through Py-EVM simulations of mobili-
ty-driven IoT scenarios.

DDoS Attacks: A Distributed Denial-of-Service (DDoS) attack involves multiple compromised devices
(like a botnet) coordinating to flood a target with traffic, overwhelming it. Since the traffic comes from
many IP addresses, it’s hard to block without affecting legitimate users. This type of attack disrupts com-
munication and makes services inaccessible by flooding devices with requests. For example, thousands of
IoT devices might be used to flood a DNS provider, taking down major websites. To address the increasing
threat of Distributed DoS attacks in smart home IoT systems, Karmous et al.%> proposed the SDN-ML-IoT
framework that integrates machine learning with software-defined networking to detect and mitigate var-
ious types of DDoS attacks, including SYN floods, CoAP floods, and MQTT broker overloads, achieving
99.99 percentile accuracy.

Denial of Service (DoS) Attack: A single-source attack involves flooding a server or network with excessive
requests from one machine or internet connection, overwhelming it and preventing legitimate access. Since
the traffic comes from one source, it’s easier to detect and block. This type of attack can disable services,
cause timeouts or inaccessibility, and lead to resource exhaustion, commonly affecting cloud-connected
IoT systems and public service endpoints. For instance, a single computer might send thousands of fake
login attempts to crash a website. Reference®® present a lightweight IDS/IPS mechanism integrated into
the firmware of Teltonika GPS IoT devices to detect and mitigate denial of service (DoS) attacks, including
TCP session hijacking. By employing packet validation and rate-limiting techniques, the proposed solution
ensures real-time protection and preserves telemetry functionality through backup routing, enhancing re-
silience in intelligent transportation systems.

On-Off Attack: This attack involves a node behaving well initially to gain trust, then suddenly misbehaving,
repeating this cycle to evade detection. The inconsistent behavior makes it hard to identify as malicious,
exploiting trust in long-term SIoT interactions. It’s a sneaky way to avoid being flagged as a threat. Authors®
IV-based model mitigates on-off attacks by detecting trust value fragmentation—a pattern where nodes
frequently switch between trustworthy and untrustworthy behavior. Once detected, the system can act to
block, penalize, or distrust these devices.

Wormbhole attack: Wormhole Attack involves two colluding nodes creating a tunnel to rapidly transfer
packets, falsely advertising shorter routes and distorting the network topology. This routing manipulation
allows attackers to bypass normal paths, evade trust mechanisms, and disrupt network operations, com-
monly affecting wireless SIoT networks that rely on distance-based routing. In this®” paper authors have
addresses two types of network-layer security threats: wormhole attacks, where malicious devices create
a secret shortcut to manipulate data routing, and blackhole attacks, where a malicious node pretends to
be trustworthy and then drops all packets instead of forwarding them. Inorder to mitigate these type of
attacks they have proposed a cross-layer defense mechanism using an ehnanced support vector machine
based framework that leverages physical, MAC, and network layer interactions to detect and isolate malious
nodes forming virtual tunnels, though designed for wireless ad-hoc networks, the models protocol inde-
pendence and lieghtweight behavior analysis make it well suited of SIoT environemnts vulnerable to similar
routing attacks.

Sybill attack: It is a identity based attack where multiple malicious devices create multiple fake identites
called as sybill node to manipulate, disrupt, or control a network. Consider that you are using a ride-sharing
app that relies on nearby smart cars to find the best route. A Sybil attacker injects many fake “smart cars”
into the network, all controlled by them. The system thinks a road is busy or safe when it’s not causing
wrong routing or traffic manipulation. This study®® proposes SybilPSIoT, a hybrid decentralized method
for prevention and detection, leveraging technologies like smart contracts for secure access control, web of
trust for relationship verification, Bayesian inference and structural balance for Sybil detection, and game
theory for modeling owner behavior and dynamically adjusting thresholds.

Man-in-the-Middle (MitM): Intercepting/modifying communication, In a Man-in-the-Middle (MitM)
attack, a hacker intercepts and possibly alters the communication between two parties, making it seem like
they’re communicating directly with each other when, in fact, the attacker is secretly in control. In order to
mitigate attacks on ZigBee/CoAP-based IoT systems via MQTT, the authors in® proposed two intrusion
detection systems (IDS). They successfully demonstrated the effectiveness of these systems by intercepting
both Denial of Service (DoS) and Man-in-the-Middle (MitM)/masquerade attacks in a real-world experi-
mental setup. Reference>*developed a CNN-based Intrusion Detection and Prevention System integrated
with Software-Defined Networking to mitigate ARP spoofing and ARP flooding MitM attacks in smart
homes, achieving 99.96% detection accuracy and 0.02% FAR across scalable SIoT topologies.

Profile Inference Attack: It involves analyzing SIoT interactions and behavior patterns to infer sensitive
details about users or devices without directly stealing data. This can lead to privacy leakage and behavioral
profiling, commonly affecting smart homes, connected vehicles, and SIoT-based services. Attackers piece
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together seemingly harmless data to uncover privat attributes. Reference’® proposed TrafficDiary, a traffic
analysis attack that infers user demographic attributes (e.g., age and career stage) in smart homes by analyz-
ing encrypted traffic metadata. Using a dual-channel neural network, it achieves 98.68 percent event detec-
tion and 100 percent profile inference accuracy, revealing significant privacy risks even without decrypting
content.

Location tracking: Location Inference Attack involves analyzing communication patterns, timestamps,
or signal strength (RSSI) to determine the physical location of users or devices. This passive attack is hard
to detect and can lead to privacy breaches and user profiling, often targeting mobile SIoT devices and ve-
hicular networks. Recent advancements in passive Wi-Fi signal analysis have led to sophisticated location
tracking attacks. For instance, RFTrack’! enables attackers to infer indoor movement patterns of Wi-Fi de-
vices by analyzing unlabeled RSSI values. It utilizes a reinforcement learning-based approach to reconstruct
device trajectories and build fingerprint maps without physical access to the target environment.

Replay Attacks : Reusing captured data to spoof interactions. Replay attack occurs when an intruder cap-
tures a valid transmission and maliciously retransmits it later to trick a system into gathering unauthorized
access or performing unintended actions. Consider for an example when someone recording your voice
saying a seceret password and then playing it back later to fool a system into thinking its still you, even
though you are not there anymore. To prevent replay attacks, researchers® they've proposed a lightweight
authentication protocol called LCAP for SIoT environments. The protocol assigns each device a unique,
time-sensitive token—like a digital ID card that changes over time. This dynamic token is generated using
the device’s Physical Unclonable Function (PUF) and a timer, ensuring that even if someone captures the
token, it'll be invalid next time. A Merkle tree serves as a ledger of valid tokens, allowing the system to verify
and reject any tokens that don’t match.

Service degradation attack: Service Degradation Attack involves reducing the quality of service without
completely disrupting it. Attackers delay responses, introduce jitter, or manipulate partial data flows, caus-
ing the system to slow down or become erratic. This stealthy attack affects industrial SIoT systems and
smart infrastructure, compromising performance without being overtly noticeable. In industrial IoT (IIoT)
and SIoT environments, service degradation attacks can target the communication and control layers of
smart devices. The study by>® proposed an adaptive Moving Target Defense (MTD) architecture that miti-
gates service degradation attacks in IToT by dynamically filtering traffic, performing service migration, and
preserving resource availability under DDoS conditions.

Fake service advertisement: This an active attack targets the registry/discovery layer, where a malicious
node registers a non-existent or malicious service (e.g., a fabricated “air-quality sensor feed”). Legitimate
users and devices may unknowingly query such entries, leading to wasted resources, privacy breaches, or
cascading trust failures. This undermines both service availability and user confidence in SIoT platforms.
Recent studies have also explored the use of machine learning for detecting deceptive behaviors such as fake
news, bot profiles, and misleading content in online social systems, which can be adapted to address similar
challenges in SIoT, including fake profile creation, bullying, and misinformation spread*. Blockchain-en-
hanced Sensor-as-a-Service (SEaaS) frameworks?? provide concrete defenses by enforcing provenance,
non-repudiation, and ledger-backed validation of service registrations, with effectiveness demonstrated in
smart city case studies involving 200 simulated nodes.

Privilege Escalation: Gaining higher access levels than authorized personnel. In support of the growing
concerns around privacy leakage in smart home environments, Ref.>> proposed IoTBeholder, a low-cost
snooping attack that can infer users’ habitual behaviors and automation rules by analyzing encrypted Wi-Fi
traffic. Their findings reveal that attackers do not need network access or prior knowledge to compromise
user privacy, thus exposing a significant threat in smart home IoT ecosystems.

Authentication and Authorization attack: 72 proposed an EducationalSIoT platform that provides robust
authentication and authorization mechanisms for educational IoT environments. Devices are authenticated
using digital certificates, ensuring secure identity verification. For authorization, the platform extends the
XACML model by incorporating social attributes such as trustworthiness, contact frequency, and social
relationships enabling context-aware access decisions. The access and delegation mechanisms are imple-
mented on a Cosmos SDK-based blockchain, and validated through realistic classroom simulations. The
authors in”? proposed a decentralized solution in which a user needs to register only once and can use a
single identity or credential to access multiple service levels offered by various providers. This is achieved
by leveraging blockchain technology, smart contracts, the Hyperledger Fabric SDK, and non-interactive
zero-knowledge proofs”.

Malicious use of trusted relationship attack: In SIoT or IIoT, devices establish trusted connections, such
as a smart lock trusting a smartphone or a medical sensor trusting a hospital server. However, attackers can
exploit these trusted relationships to gain unauthorized access or perform malicious activities. Reference®*
mitigate the malicious use of trusted relationships by eliminating implicit trust between IToT nodes through
micro-segmentation and Zero Trust principles. Peer-to-peer SDN and mutual certificate-based authentica-
tion ensure that only explicitly authorized interactions occur, preventing unauthorized trust exploitation.
Malicious Code Injection Attack : Code Injection Attack involves exploiting vulnerabilities in firmware or
apps to insert malicious scripts or binaries, allowing attackers to execute harmful instructions on target de-
vices. This can lead to remote code execution, malware infection, and device malfunction, often occurring
through over-the-air updates or smart apps in SIoT. The malware can remain dormant or cause immediate
damage.® reviewed code injection attacks in wireless IoT systems, highlighting vulnerabilities in protocols
like Wi-Fi and Zigbee. They demonstrated real-world attacks using Raspberry Pi and reverse-engineered
IoT firmware to detect malicious code. The study applied IMECA to assess attack severity, offering both
theoretical insights and practical implementations.
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Data Leakage attack: Exposing private or sensitive user data. This paper presents a practical implementa-
tion to detect False Data Injection Attacks (FDIAs) in smart grid networks using various machine learning
algorithms. The authors simulate FDIA on power data from a 10kV solar PV system in a lab environment
and evaluate six ML models (e.g., decision tree, logistic regression, autoencoder). A hybrid ensemble of
decision tree and logistic regression achieves the highest detection performance, with an F1-score of 1 and
model accuracy of 0.99, demonstrating the effectiveness of machine learning for securing smart grid infra-
structures against data manipulation threats’>.

Data poisoning attack: Data Poisoning Attack involves injecting manipulated data into machine learning
or trust models, corrupting their decision-making. This causes models to make inaccurate or biased deci-
sions. Common in SIoT systems with AI/ML-based recommendations or decisions, these attacks distort
trust and compromise model integrity by inserting malicious data into training datasets. The authors”
propose VMGuard, a novel four-layer security framework designed to counter data poisoning attacks in the
vehicular Metaverse. The attack scenario involves malicious SIoT devices injecting false or misleading data
into the system to degrade service quality and user experience. VMGuard uses a reputation-based incentive
mechanism powered by subjective logic to assess and manage the trustworthiness of participating SIoT
devices, thereby ensuring secure and reliable data collection and service delivery.

Black hole Attack: In this attack, a malicious node pretends to be the best route for data, but then secretly
drops all incoming packets, disrupting communication. This can cause a Denial of Service (DoS) attack,
where data is lost without any feedback. This type of attack is common in IoT/SIoT environments that
rely on routing. Reference’” proposed a novel algorithm to detect and mitigate Black Hole attacks in IoT
networks. The approach relies on node authentication, active monitoring by the sink node, and dynamic
routing table updates to isolate malicious nodes. Simulations using NS2 and Simulink showed that the
algorithm significantly restores throughput and packet delivery ratio (PDR) close to normal network con-
ditions, achieving a PDR of 98.21%, thus demonstrating its effectiveness against Black Hole attacks.

Ballot Stuffing : Artificially boost a node’s trust or reputation. Colluding nodes give each other positive
feedback regardless of their actual behavior. Gives high trust scores despite misbehavior. It could lead to
Reputation inflation, trust system manipulation. Reference’® proposed a Multi-Dimensional Trust model
(MDT) that effectively mitigates trust-based attacks such as ballot stuffing and bad-mouthing in VANETs.
The model dynamically adjusts trust weights using an entropy weight method and filters out anomalous
recommendations through the Median Absolute Deviation (MAD) algorithm. This helps prevent malicious
nodes from falsely inflating the trust of colluding partners, a typical strategy in ballot stuffing attacks, there-
by enhancing the robustness and accuracy of trust assessments across the network.

Zero day attack : It is a cyberattack that takes advantage of a previously unknown vulnerability in software,
hardware, or firmware. Since the vulnerability is unknown to the vendor or developer, they have zero days
to patch or fix it before the attack occurs. To tackle the difficulty of detecting zero-day attacks in edge-based
SIoT systems, a heuristic intrusion detection system named DQN-HIDS was proposed. It employs a Deep
Q-Network (DQN) integrated with an LSTM-based learning module to adaptively improve malicious traf-
fic identification under insufficient training data, demonstrating superior detection performance compared
to conventional methods””.

Bad-mouthing: In order to lower trust score of honest nodes, malicious nodes submit unjust negative
feedback regardless of actual behavior, trustworthy nodes appear as untrustworthy. Reference’® mitigate
bad-mouthing by using a median absolute deviation filter to discard anomalous indirect trust values,
while® apply evidence theory fusion to reduce the weight of untrustworthy feedback.

Identity Spoofing attack: Spoofing attacks involve masquerading as a legitimate device or user to deceive
systems, gaining unauthorized access or trust. By faking identities like IP or MAC addresses, attackers trick
systems into accepting them as trusted. This active attack poses threats like data integrity loss, access control
breaches, and trust exploitation, especially in IoT where malicious devices can send false data to manipulate
systems. This®? research article developed an end-to-end ML-based framework to detect spoofing attacks in
IoT environments, providing a unified detection model for both DNS and ARP spoofing.

Snooping attack (Eavesdropping) : Eavesdropping involves intercepting and gathering sensitive infor-
mation from someone else’s data or communication without authorization. Attackers often passively listen
in, capturing data like passwords or messages without altering it. For instance, an attacker might capture
unencrypted Wi-Fi traffic to steal login credentials. This passive attack poses threats like privacy leakage
and data theft. The IoTBeholder system, proposed by™, is a privacy snooping attack tool designed to infer
user behaviors in smart homes by passively sniffing encrypted Wi-Fi traffic (802.11 packets), without any
physical access or network credentials.

Selective Forwarding Attack: Selective Packet Drop Attack involves a compromised node in an SIoT net-
work forwarding some packets while silently dropping others. This partial cooperation makes detection
challenging. The attack degrades trust and causes packet loss, commonly affecting sensor-based SIoT com-
munication. Reference®! proposed FL-DSFA, a federated learning-based model that detects selective for-
warding attacks (SFA) in RPL-based IoT networks. It trains local ML classifiers on RPL traffic features (e.g.,
DIO, DAO, transmission rates) and aggregates them using Federated Averaging, preserving data privacy.
The system achieves 95% accuracy and 97% recall, effectively identifying SFA while minimizing communi-
cation overhead.

Sinkhole Attack: It involves a node falsely advertising itself as the most efficient path, attracting and rerout-
ing traffic through the attacker’s node. This enables traffic interception, manipulation, or denial of service
(DoS). Such attacks are common in trust-based SIoT routing protocols, where nodes rely on trustwor-
thiness to make routing decisions. Researchers have proposed a hybrid edge-assisted intrusion detection
system (EaHIDS) to detect and mitigate Sinkhole Attacks in 6LoWPAN-based IoT networks. This system,
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introduced by*, utilizes a Gaussian Mixture Hidden Markov Model (HMM) to classify node behavior as
Normal, Attacker, or Attacked, based on both host and network-level parameters. By integrating SHAP-
based feature selection and a lightweight blacklisting mechanism at the edge, the solution enhances detec-
tion accuracy and minimizes false positives, energy consumption, and packet loss. According to the study,
the proposed method significantly outperforms existing approaches in terms of precision, recall, F1-score,
and network efficiency, as validated through Contiki Cooja simulations and FIT IoT-LAB testbed experi-
ments.
30. Coordinated / Collusive (Sybil-like Misbehavior)

In coordinated or collusive Sybil-like attacks, multiple compromised SIoT nodes cooperate at the social or ser-
vice discovery layer to artificially boost each other’s reputation. When a new service request is issued, these
colluding nodes upvote one another, biasing the trust engine so that malicious actors dominate and legitimate
nodes are sidelined. The impact is a distorted trust landscape where attackers gain control over service provi-
sioning. Detection and mitigation approaches include game-theoretic intrusion detection models such as the
Strategic Game Model (SGM)?®? and multi-agent IDS frameworks®3, which simulate collusive behavior and
apply counter-strategies. Typical validation datasets involve simulation traces under random deployments
with thousands of iterations.

Layered categorization in SloT communication protocols:

In this subsection, we discuss the communication architecture in the Social Internet of Things (SIoT). In SIoT,
the communication infrastructure is tailored for resource-constrained devices, dynamic social interactions, and
scalability across heterogeneous networks. To meet these requirements, a simplified and layered communication
model is often adopted, one that diverges slightly from the traditional 7-layer OSI model. The most practical and
widely adopted layers for communication in the SIoT environment are summarized in Table 8. SIoT applications
span multiple domains and are built upon these foundational layers.

Application Layer: The application layer in SIoT manages device-level services, user interactions, and
social relationship management. Protocols like MQTT, CoAP, and HTTP operate here, defining how messages
are formatted and exchanged using models like publish/subscribe or request/response, while also supporting
authentication and trust. Once a message is generated using one of these protocols, it is transmitted over the
network using either TCP (for reliable, ordered delivery) or UDP (for lightweight, fast communication). Finally,
the message reaches its intended destination via the network layer, where IP addressing and routing (IPv4/IPv6)
ensure proper delivery across the internet or local networks.

o MQTT (Message Queuing Telemetry Transport): A lightweight publish/subscribe protocol operating over
TCP, suitable for smart homes and wearables where reliable delivery is crucial.

o CoAP (Constrained Application Protocol): A RESTful protocol operating over UDP, optimized for con-
strained, low-power devices that require minimal overhead.

o HTTP (Hyper Text Transfer Protocol): A request/response standard web protocol operating over TCP, com-
monly used for IoT dashboards and cloud services, though less efficient for constrained devices.Transport
Layer: The transport layer ensures the delivery of messages either reliably or with low latency, using protocols
such as TCP, UDP, TLS, and DTLS. Two main transport protocols are used here:

o TCP (Transmission Control Protocol): Provides reliable, connection-oriented, end-to-end communication,
supporting features like acknowledgment, retransmission, and message ordering. It is used by protocols such
as MQTT and HT TP, which require assured delivery.

o UDP (User Datagram Protocol): Fast and connectionless, offering low overhead but no delivery guarantees.
It is used by CoAP, where quick delivery is prioritized over reliability, making it suitable for constrained en-
vironments.

« To secure communication at this layer:

- TLS (Transport Layer Security): Operates on top of TCP, encrypting protocols like HTTP and MQTT,
and providing confidentiality, integrity, and authentication.

- DTLS (Datagram TLS): Operates on top of UDP, encrypting CoAP traffic and offering the same level of
security as TLS, but tailored for the unreliable nature of UDP.Network Layer: Manages routing and ad-
dressing in large, dynamic Social IoT (SIoT) networks. It utilizes key protocols such as:

o IPv6: Provides a vast address space.
o 6LoWPAN: Compresses IPv6 for low-power links.

Layer

Roles in SIoT

Handled By

Application Layer

Manages device services,user interaction, social logic,message formatting

MQTT, CoAP, HTTP, JSON, authentication models

Transport Layer

Ensures message delivery(reliability, order, or speed); provides security

TCP, UDP, TLS, DTLS

Network Layer

Routes data using IP addressing

1Pv4, IPv6

Data Link Layer

Device-to-device data transfer, MAC addressing

WiFi, Zigbee, BLE

Table 8. SIoT protocol stack layers and their functions.
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RPL: Enables routing in lossy and constrained networks.

These protocols ensure efficient and secure routing across mobile and intermittently connected SIoT nodes.

Link Layer: Handles direct device-to-device communication, media access control, and error detection.

Technologies at this layer include:

BLE: Optimized for energy savings.
Zigbee: Suitable for mesh-based automation.
LoRa: Ideal for long-range, low-power applications.

» Wi-Fi: Supports high-bandwidth cloud access.

Layer-based existing security protocol in SloT

This subsection addresses RQ4, highlighting how security is implemented across various layers of the SIoT
architecture. Each layer incorporates specific security protocols aligned with its roles and inherent vulnerabilities.
Table 9 provides a comprehensive mapping of SIoT layers, associated security protocols, their primary security
objectives, and example attacks—illustrating how prevalent threats are distributed across the protocol stack.

1.

Perception layer: When we collect data from devices like RFID tags, sensors, and actuators, we face some
serious security threats. These devices can be compromised through node capture, fake node injection, or
even physical tampering. To tackle these issues, we are turning to lightweight cryptography protocols such as
PRESENT, HIGHT, or TEA which are designed specifically for devices with limited resources. To prevent ma-
nipulated or maliciously crafted service announcements in resource-constrained environments, lightweight
cryptography solutions like SIMECK?? ensure strong ciphertext randomness and structural unpredictability,
thereby resisting false service advertisement attacks. Although the Tiny Encryption Algorithm (TEA) is fast
and simple, making it suitable for software implementation, it exhibits weaknesses in randomness. On the
other hand, SIMECK is a lightweight cipher, but its security can be compromised with few rounds. Existing
reduced-round ciphers, such as SPECK-R, require security enhancements to match the strength of their full-
round counterparts. To address these limitations, the SIMECK-T construction has been proposed, which
combines the strengths of both SIMECK and TEA. SIMECK-T employs an outer layer of SIMECK rounds
and an inner layer of embedded TEA rounds. This “nesting” of TEA within SIMECK enhances random-
ness, resistance to cryptanalysis, and security without relying on substitution boxes (S-boxes). SIMECK-T
achieves these security benefits while remaining lightweight, making it suitable for resource-constrained
environments.

« In SIoT environmet where devices are resource constrained, light weight cryptographic protocols like
PRESENT are particularly suitable. The work by®* demonstrates a high-throughput hardware implemen-
tation of the PRESENT cipher optimized for medical IoT applications, highlighting its potential for secure
and efficient communication in latency-sensitive and resource-limited SIoT systems.

o Advanced Encryption Standard(AES): Ref.¥proposed a Relativity Strength Security Framework for SIoT
that uses AES-256 encryption with relationship-derived keys to secure device communication. The frame-
work integrates Q-learning for adaptive routing and decision trees for service availability prediction,
achieving 88.75% security effectiveness and 97.5% service availability. The novel use of social relationship
strength as a basis for encryption makes it context-aware and more resilient to attacks.

« Eliptic Curve Cryptography (ECC) is a type of public key cryptography known for offering strong security
with smaller key sizes, making it particularly suitable for lightweight environments such as IoT and SIoT.
The work by Yang et al.®® demonstrates a hardware implementation of a lightweight two-phase authentica-

XMPP+TLS, JWT

Exemplar

Study SIoT Layer | Key Security Mechanisms / Protocols Primary Security Goal Example Threats

24 Perception AES-CCM, ECC/ECDH, PUF-based keying, PKI, HMAC-SHA-256, Authentication, data confidentiality, device | Device spoofing, physical
Layer secure boot / TrustZone-M integrity/identity tampering, key extraction

% Network IEEE 802.15.4 security (AES-CCM*), 6LOWPAN, RPL (secure modes), | Secure data transmission, routing integrity, | Eavesdropping, wormhole,
Layer IPsec/ESP (IPv6), Thread, LoRaWAN 1.1 security link-layer confidentiality Sybil, link replay

91 Transport . Encrypted transport, session security, Replay, man-in-the-
Layer TLS 1.3, DTLS 1.3, QUIC/HTTP/3 (where applicable) forward secrecy middle, downgrade

94 M1ddl'eware OAuth 2.0, OpenID Connect, ACE-OAuth profiles, UMA 2.0, XACML | Access control, delegated authorization, Pr1v1leg§ escalation, token
/ Service - : o theft/misuse, profile
L (ABAC), Macaroons, Zero-knowledge proofs privacy-preserving authorization .

ayer inference
-~ OSCORE+COSE/CWT, CoAP+DTLS, MQTT/MQTT-SN over TLS, ) ) -

101 Application LwM2M Security (DTLS/OSCORE), OPC UA Security, DDS Security, End-to-end/object security for gpphcgtlon Spoofed messages, data

Layer data, secure messaging, session integrity leakage, injection/replay

103

Social Layer

Blockchain smart contracts, Verifiable Credentials / DIDs, reputation
systems (Beta, EigenTrust, Subjective Logic), Sybil-resistant graph
methods (e.g., SybilRank/Guard), game-theoretic trust models

Trust management, reputation validation,
social relationship integrity, Sybil resistance

Bad-mouthing, ballot-
stuffing, fake relationship
creation, collusion

Table 9. Security mechanisms/protocols and threat mapping with referenced studies. OSCORE = Object
Security for Constrained REST; COSE = CBOR Object Signing and Encryption; CWT = CBOR Web Token.
Stack items like 6LoWPAN, IEEE 802.15.4, Thread, and LoRaWAN are listed as mechanisms where their
security modes are employed.
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tion mechanism for Industrial IoT (ITIoT) using ECC and trusted tokens to ensure secure communication
and data integrity in resource-constrained environments. The proposed scheme offers robust security, ef-
fectively withstanding various types of attacks, including replay attacks, eavesdropping, man-in-the-mid-
dle attacks, and simulation attacks, while also providing strong mutual authentication and ensuring for-
ward secrecy.

« RFID security protocols protect the communication between RFID tags, readers, and backend servers,
ensuring confidentiality, authenticity, integrity, and privacy. Given the limited computational power and
storage of low-cost RFID tags, these protocols are designed to be efficient and effective.In scenarios where
lightweight batch detection of counterfeit tags is required without revealing or managing individual hash
functions, the Group-based Slot Constraint (GSC) scheme®” offers a scalable solution by exploiting slot
correlation among tags within trusted groups. The authors®® proposed an ultra-lightweight RFID authen-
tication protocol (ULRARP+) suitable for low-cost RFID tags, addressing limitations of earlier schemes
like HB+, which require multiple rounds, are vulnerable to man-in-the-middle attacks, and do not sup-
port mutual authentication or key updates. The proposed protocol uses only minimal operations such as
XOR, rotation, and permutation. The authors justify the protocols security through both informal analysis
(covering 12 types of attacks) and formal verification using GNY logic, and explicitly compare ULRARP+
with existing lightweight RFID protocols such as LRSAS+, LRARP, and LRARP+, demonstrating superior
security and lower computational cost.

« Physical Unclonable Functions (PUFs) are like a unique DNA for electronic devices. They leverage tiny im-
perfections that occur during manufacturing to create an unclonable “digital fingerprint” that’s exclusive to
each device. This provides a robust way to identify and authenticate hardware. The authors in® propose a
three-factor blockchain-based mutual authentication system that leverages Physical Unclonable Functions
(PUFs) for hardware-based identity generation, providing resistance against cloning and impersonation
attacks. The system includes both formal and informal security analyses, employs PBFT for consensus,
and utilizes smart contracts for transaction validation and member verification. It also compares security
features such as anonymity, revocation, confidentiality, and resistance to replay attacks with existing ap-
proaches.

2. Network Layer : This layer is responsible for transmission of data between devices and servers. Various

threats include Eveasdropping, Sybill attack, wormhole and DDOS.To handle these types of attacks various
security protocols are discussed.

o IPSec (Internet Protocol Security): Secure communication at IP layer, to keep communication secure in
SDN-controlled networks, the cryptographic keys used in IPsec must be updated periodically a process
known as rekeying. While traditional IPsec deployments rely on IKEv2 to manage this process, IKE-less
SDN environments delegate rekeying responsibilities to the SDN controller. Reference®® addressed this
by designing, implementing, and evaluating four distinct rekeying algorithms. All four approaches aim to
securely replace expired IPsec Security Associations (SAs) without disrupting ongoing communication.
These algorithms differ primarily in two aspects such as the timing of inbound and outbound SA installa-
tion, and the mechanism used to remove old SAs—either explicitly or implicitly.

« DTLS (Datagram Transport Layer Security): They proposed a modified”* DTLS handshake protocol that
replaces traditional X.509 certificates with LightCert4IoT, a compact, self-signed certificate framework
verified through the Ethereum blockchain. This approach reduces cryptographic overhead, energy con-
sumption, and handshake delay, making it suitable for resource-constrained IoT devices. By leveraging
blockchain-verified lightweight certificates and decentralized device registration, LightCert4IoT mitigates
common IoT authentication threats, including rogue certificates, DoS vulnerabilities, and central PKI
compromise.

o 6LoWPAN Security Extensions: Low-power IoT devices have some challenges such as they run on tiny
batteries, have limited memory, and send small packets of data (like 127 bytes). But when they need to talk
to the internet, things get tricky. IPv6, the standard internet protocol, has big headers (40 bytes) that don’t
fit well with these tiny packets. That's where 6LoOWPAN comes in, it’s a special protocol that helps IPv6
work efficiently over low-power wireless networks, like those used in Zigbee and Thread devices. It makes
it possible for these small devices to communicate with the internet without wasting energy or resources.
Reference®? propose SLGAS, a lightweight group authentication protocol for 6LoOWPAN networks with
PMIPv6 support. SLGAS uses temporary IDs, alias identities, and aggregated MACs to provide secure
mutual authentication for resource-constrained sensor nodes, while protecting against threats like key
leakage, replay attacks, and impersonation. RPL Secure Mode: Secure routing in low-power networks, the
secure mode of RPL has some security limitations, like relying on static symmetric keys that can be vulner-
able to attacks. To address this, ref.”> came up with a new solution that uses ECDH (a type of cryptographic
technique) to dynamically generate session keys and add extra layers of authentication. This approach
makes it harder for attackers to intercept or impersonate devices, while also being efficient in terms of
computation and communication resources.

o OAuth 2.0 / OpenID Connect: OAuth 2.0 allows third-party apps to access a user’s resources without
sharing their login credentials, granting limited access instead. OpenID Connect builds on OAuth 2.0 by
adding a layer of authentication, enabling apps to verify a user’s identity and retrieve basic profile infor-
mation. Reference® OIDC 2 enhances OpenID Connect by introducing short-lived, JSON-based Identity
Certification Tokens (ICTs) for secure, end-to-end user authentication. They implemented the protocol by
extending existing OIDC servers and evaluated its use in real-world applications such as video conferenc-
ing, instant messaging, and email. Their approach effectively addresses security threats like token replay,
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impersonation, and key compromise through mechanisms like proof-of-possession and ephemeral keys,
offering a user-friendly alternative to PGP and S/MIME.

3. The Transport Layer: It is responsible for ensuring reliable data transmission, flow control, error checking,
and congestion avoidance between socially connected IoT devices over a network. Unlike traditional internet
applications, SIoT nodes are often resource-constrained, mobile, and interact in dynamic social relation-
ships, which places unique demands on this layer.

TLS/SSL:* propose a TLS 1.3 handshake extension that replaces traditional X.509 certificates with Ver-
ifiable Credentials (VCs), enabling Self-Sovereign Identity (SSI) authentication directly at the transport
layer. Their approach, fully compliant with RFC-8446 and RFC-7250, minimizes changes to the TLS state
machine by leveraging existing extensions and introduces a new (did,ethods) field for decentralized
identifier resolution. Implemented in OpenSSL and tested on IoT hardware using the IOTA Tangle as the
DLT, the solution demonstrates competitive handshake latency, hybrid authentication support, and scala-
ble identity management for large-scale IoT deployments.

DTLS : Recent efforts like LightCert4IoT®! propose replacing traditional X.509 certificates with light-
weight, blockchain-stored credentials, significantly reducing DTLS handshake time and energy overhead,
while supporting decentralized trust—an important advancement for constrained SIoT environments.

4. Middleware/Service Layer: The Middleware/Service Layer handles data processing, service discovery, and
trust management to mitigate threats like malicious service ads, privilege escalation, and profile inference.
The security protocols employed at this layer are reviewed below.

XACML (eXtensible Access Control Markup Language): XACML is a standard access control policy lan-
guage developed by OASIS. It’s primarily XML-based (with adaptations for JSON possible) and supports
attribute-based access control (ABAC). This makes it highly flexible and capable of fine-grained control,
allowing for precise and detailed access control decisions. Reference’? came up with a new access control
framework for educational IoT settings, building on the XACML model. Their approach adds a social twist
by considering device relationships and trust levels when making authorization decisions. They also in-
troduced a way for delegation and prioritized rules, all secured through blockchain technology. This setup
ensures decentralized and tamper-proof access control, effectively protecting against threats like Man-in-
the-middle and Replay attacks.

RBAC/ABAC(Role/Attribute-Based Access Control): Policy enforcement mechanisms, Ref.”® proposed a
multi-factor authentication and key negotiation scheme for smart factories, combining Role-Based Access
Control (RBAC), Elliptic Curve Cryptography (ECC), secret sharing mechanisms, and access control lists
(ACLs). The scheme supports mutual authentication, session key agreement, forward secrecy, and user
anonymity, and is resistant to replay attacks, masquerading, and smart card/device theft. Formal security
analysis using BAN logic confirms the correctness of the authentication and key establishment processes.

Blockchain-Based Access Control: Immutable logs and smart contract enforcement, although the system®”
does not implement traditional access control models like RBAC or ABAC, it achieves blockchain-based
enforcement through cryptographic authentication (ECDSA), smart contract logic restriction, and im-
mutable logging. Only entities with valid private keys can invoke contract functions, and all actions are
traceable on the Ethereum ledger, enabling tamper-proof, auditable enforcement suitable for secure IoT
data management.

Reputation-based Protocols: Trust scores are based on device behavior history. Reference’® proposed
VMGuard, a four-layer reputation-based security framework that mitigates data poisoning attacks in the
vehicular Metaverse. The system uses blockchain to maintain immutable reputation profiles for SIoT de-
vices and enforces trust-based access to semantic data sharing. A subjective logic model evaluates SIoT
behavior across interactions, and only trusted devices are allowed to contribute data, achieving effective
access enforcement through decentralized trust evaluation.
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5. Application Layer: The application layer provides the user interface, data presentation, and application logic,
making it vulnerable to threats like spoofing, data leakage, and user impersonation. To mitigate these risks,
implementing robust security protocols is essential.

SSL/TLS: Secure communication channels, Ref.”® introduced Threat-TLS, a network tool that detects sus-
picious TLS connections by analyzing traffic for threat patterns like outdated protocols, weak ciphers, and
flawed certificates. Integrated with popular tools, Threat-TLS validates threats using CVE data and actively
checks for vulnerabilities, enabling near-real-time detection of compromised TLS configurations.

JSON Web Token (JWT): Authentication and secure session management. Reference®® introduced a secure
cloud data storage system utilizing JSON Web Tokens (JWT) for stateless, token-based authentication. This
approach, when applied to IoT and Social IoT environments, supports scalable, lightweight, and secure
access control mechanisms—offering interoperability with multi-cloud storage, time-based OTP, and TLS
channels to ensure confidentiality and authenticity across distributed nodes.

Two-Factor Authentication (2FA): Enhanced user verification. Reference'® introduced a two-factor au-
thentication scheme utilizing smart cards for IoT-enabled Telecare Medical Information Systems (TMIS).
Designed with resource-constrained biomedical devices in mind, the scheme leverages Hyperelliptic Curve
Cryptography (HECC) to reduce computational and communication costs. It achieves mutual authentica-
tion, secure session key establishment, user anonymity, and strong resilience against various attacks such
as replay, impersonation, and denial-of-service. The scheme’s security is validated through both informal
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analysis and the formal Real-Or-Random (ROR) model, while performance comparisons demonstrate its
enhanced efficiency and cost-effectiveness over traditional ECC-based approaches.

« Digital Certificates / PKI: End-to-end encryption and device identity validation. Reference!®! present Ti-
nyOCSP, a lightweight certificate revocation protocol designed for constrained IoT devices. By optimizing
PKI validation workflows using CBOR/CoAP and Bloom-filter-based CRLs, they enable scalable, ener-
gy-efficient digital certificate management in resource-limited environments, facilitating end-to-end PKI
deployment in IoT.

6. Social Layer (SIoT-Specific):This layer oversees the social dynamics among IoT devices—such as ownership
ties, friendships, and neighbor associations. It faces specific threats like trust manipulation attacks (e.g.,
ballot stuffing and bad-mouthing) and the creation of fraudulent social links. To ensure reliable interactions,
appropriate security protocols or models must be integrated to detect and mitigate these risks.

o Trust Management Models (e.g., TIRec, F-TRM): Infer and update trust scores. Trust Management Mod-
els for SIoT include solutions like TIRec and F-TRM. The F-TRM model** dynamically evaluates trust
based on device friendliness and transactional feedback. It incorporates privacy-preserving mechanisms
using GA-based pseudorandom encryption and Attribute-Based Encryption (ABE), offering robust de-
fense against false recommendations, impersonation, and social trust attacks. Its adaptability and layered
cryptographic protections make it a suitable trust model for SIoT security protocols.

« Social Relationship Validation Protocols: Authenticate and validate declared relationships, Trust-SIoT!??
integrates social relationship validation into its trust framework by modeling object-to-object ties (OOR,
POR, CLOR, etc.) as a knowledge graph. Using RotL-based knowledge graph embeddings, the framework
quantifies relationship strength (C-DoR), which is then incorporated into a neural network-based trust
classifier. This approach serves as an implicit social relationship validation protocol in the trust evaluation
process.

o Blockchain with Smart Contracts: Record social interactions immutably SCoTMan, proposed by'?, is a
blockchain-based trust model for Social Internet of Things (SIoT) that leverages smart contracts on Hy-
perledger Fabric. By combining Bayesian trust evaluation with social similarity-based recommendations,
SCoTMan tackles scalability and security issues in resource-constrained IoT environments, ensuring ro-
bust trust management and low overhead.

o Game-Theoretic Approaches: Detect and mitigate collusion in trust feedback, building on game theory,
Ref 104 developed GAZETA, a zero-trust authentication framework for 5G IoT networks that effectively
counters lateral movement attacks. By integrating Markov games and Bayesian updates with multi-source
evidence, GAZETA enhances cyber resilience and optimizes access control based on dynamic trust scores.

« Interoperability and discovery protocols: Key discovery and interoperability protocols in SIoT include
mDNS, DNS-SD, UPnP, and DDS, which enable devices to identify and interact with socially relevant
peers. mDNS( multicast DNS) allows devices to resolve names without a central DNS server by using
multicast within local networks (e.g., finding smartlight.local), while DNS-SD( DNS based service dis-
covery) works alongside mDNS to advertise device services such as a smart fridge offering temperature
monitoring. UPnP (Universal plug and play) facilitates automatic discovery and interaction among devic-
es, commonly used in home automation despite some security concerns. DDS (Data distribution service
) is a real-time, high-performance publish/subscribe middleware with built-in Quality of Service (QoS),
widely used in robotics, autonomous systems, and industrial IoT for reliable and scalable data sharing.
In SIoT communication, certain OSI layers are typically excluded or abstracted due to the nature of con-
strained devices and simplified architectures. The session layer is often merged into the application layer,
as explicit session control is minimal. The presentation layer is also bypassed, with functions like data
formatting and encryption handled directly by application (e.g., JSON) or transport protocols (e.g., TLS).
Similarly, the physical layer is implicitly managed by link-layer technologies such as BLE and Zigbee, and
is rarely exposed or configured directly in SIoT protocol stacks.!®® implemented and evaluated a low-cost
smart refrigerator system that enables users to interact with the device through a mobile application and
voice commands. The system captures fridge contents using a Night Vision camera and performs object
detection using a lightweight YOLOv5n model, which was deployed on both Raspberry Pi and Android
platforms using TensorFlow Lite. Their work focuses on application-layer functionalities such as remote
access, natural language interaction, and cloud-based image retrieval over HTTPS.
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Emerging trends and applications of SloT

This section addresses RQ5, focusing on emerging trends in SIoT research and their reflection in practical, real-
world applications. As shown in Table 10 and Fig. 12, various SIoT applications are categorized and illustrated,
including domains such as smart healthcare, transportation, logistics, and industrial IoT.

Emerging trends in SloT
1. AI-Driven SIoT

The work in'% implemented an Al-driven digital city platform leveraging various technologies such as IoT,
Al cloud computing, big data, and cybersecurity to create an intelligent and data-driven urban management
system. Specifically, focusing on Indonesian cities to enable them to regulate the data-based governance system
with real-world implementation in Semarang city.

2. Blockchain for SIoT

The research proposed in'’” develops a simulation-based blockchain SCM to improve trackability, security,
and efficiency in shipment tracking; they have implemented a digital ledger where each item has been assigned a
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Figure 12. Applications of social internet of things (SIoT).
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unique ID, ensuring immutability through the hash pointer connecting transaction blocks. In addition, they have
implemented IoT base real-time tracking using navigation and communication sensors to monitor shipment
and detect lost items. They integrate machine learning technique for backorder prediction using customer data
from Kaggle to train models like SVM, KNN, Random Forest and AdaBoost, the performance evaluation shows
that random forest shows surpass over other models. Reference!®® proposed a decentralized Ethereum-based
payment framework tailored for low-connectivity environments. The model integrates auxiliary nodes, smart
contracts, and incentive-driven auditors to enhance trust. Empirical results showed a 79% reduction in block
time, 28% increase in throughput, 30% lower energy consumption, 68% shorter confirmation time, 63% reduced
execution time, 46% higher block production rate, and 82% reduced network variability, offering a resilient and
secure architecture applicable to SIoT contexts.

3. Edge and Fog Computing

This paper'® proposes a double auction-based incentive mechanism called Truthful Auction for Fog Systems
(TAFS) to enhance IoT applications in offloading computing networks. TAFS incentivizes fog nodes to share
idle resources, maximizing resource utilization while maintaining fairness and truthfulness. It ensures economic
properties such as truthfulness, individual rationality, and budget balance. The paper also presents a heuristic
algorithm to efficiently allocate resources, minimizing latency. Simulations demonstrate that TAFS improves
system efficiency, user experience, and fairness compared to previous methods.

4. Integration of 5G and SIoT

The analysis presented in'!® demonstrates the integration of blockchain and the Social Internet of Things
(SIoT) by proposing a hybrid trust management system. This system ensures secure, decentralized and reliable
communication between autonomous devices within 5G networks, which is optimized for environments
with constrained devices and can function effectively even in partial or no coverage scenarios using local
trust mechanisms. In addition, it provides security against Sybil attacks and malicious tampering through the
application of blockchain technology.

6. Digital twins in SIoT:

They!'!! have introduced a new innovative approach, a software-based security layer called’‘CommandFence,
a framework based on the concept of digit twin for smart home systems compared to the existing access control
mechanism, which significantly improves security without requiring hardware changes; that prevents risky states
from being encountered when an application command interacts with human activities and environmental
variations. In''2, they have designed and developed a Digital Twin Authoring Tool (DTAT) that creates real-
time digital replicas of physical objects to facilitate smart cities in optimizing transportation and urban planning
using 3D modeling, VR and simulation techniques.

SloT applications

The applications of SIoT span across various industries, enabling connected devices to communicate, coordinate,
and make autonomous decisions while integrating social interactions. SIoT is expanding across various industries
such as industrial manufacturing, retail and e-commerce, automotive and transportation, smart homes, etc. As
shown in Fig. 12, various SIoT domains exist.

1. Smart Homes and Personal Assistants According to this analysis!!!, they have examined the access con-
trol mechanism in voice-controlled systems within multiuser environments, specifically focusing on Ama-
zon Alexa. They have identified two critical vulnerabilities, such as the use of simple commands and target-
ed commands. They have revealed security flaws in the existing voice control mechanism by highlighting
its risk and providing recommendations to enhance security while also encouraging service providers to
improve access control. They!!? proposed 2FIDS, a fog-based federated learning intrusion detection sys-
tem for smart homes. It allows IoT devices to collaboratively train a deep learning model (LSTM) without
sharing raw data, preserving privacy. The system operates at the fog layer using secure communication
(TLS over gRPC), ensures trusted client registration, and applies model compression to reduce latency and
overhead. It is tested on three real IoT datasets (BoT-IoT, TON-IoT, MQT Tset), achieving high detection
accuracy (>96

2. Smart Cities

This study demonstrates'!* by the integration of RPA, LCDP, ISSP to optimize smart city automation. Robotic
Process Automation (RPA), which is a software technology that automates repetitive, rule-based digital tasks
(more like a bot that mimics human actions on a computer), acts as a sensing tool alongside technologies
like IoT devices, sensors, and APIs, it works within the ISSP. It is used for automating rule-based digital tasks
(e.g., web scraping, data entry). RPA mimics human interaction with web portals and databases to collect
and integrate data (e.g., extracting flood report from government websites). Low-Code Development Plat-
forms (LCDP) and the Integrated Smart System Platform (ISSP) to optimize smart city automation. LCDP
enables non-programmers to design automation workflow using a drag and drop interface. ISSP is the core
framework for automation by integrating different data sources, IoT devices, AI while RPA can help extract
and process unstructured data that traditional IoT cannot handle.They'!® proposed an IoT-enabled LSTM-
based model for predicting pressure anomalies in urban water supply systems. Using real-time sensor data
and seasonal time features (month, hour, day type), their optimized LSTM model achieved a MAPE of 4.79%,
enabling early accident detection and faster emergency response. The study used a real-world prototype in
Gomel, Belarus, and highlighted the benefits of using deep learning for smart city infrastructure monitoring,
though it was limited by dataset duration and lack of standard simulation tools. In this paper they'!¢ proposed
a graph-based scalability enhancement scheme for Ethereum blockchains, introducing a Proof-of-Validation
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(PoV) consensus with auditor nodes, hash-binding, and efficient replication/retrieval to reduce storage over-
head. The scheme was implemented in Python and simulated with 2000 nodes, 10-50 transactions per block,
and up to 50,000 blocks. Results show that nodes require only 15 MB storage overhead (vs. ~8 GB in conven-
tional Ethereum), new node configuration takes ~370 ms (= 320 x faster than 4-5 h in baseline Ethereum),
and retrieval/validation achieves significantly higher throughput, >30% lower latency, and reduced process-
ing time compared to EBC, ESSE, and ESM models. These improvements make the design well-suited for IoT
and smart city SIoT deployments where scalability and trust are critical.

3. Healthcare and Wearable Technology

In their study'!” they provide a valuable insight into comparative performance analysis of popular wearable
devices such as Fitbit Sense, Empatica E4, and GSR3 plus to monitor electrodermal and cardiac activities.!'®
provides detailed information on current technologies in AI and available wearable devices dedicated to sex-
ual health. This study'", indicates that by incorporating technologies such as machine learning, the social
Internet of Things, and cloud architecture, one could improve the provision of healthcare service in cities by
ensuring accurate and time-sensitive data distribution, leading to efficient healthcare management. It pro-
vides a detailed review while emphasizing Internet of medical Things, its emerging technologies, also provides
analysis of for disease prediction and remote monitoring innovative approaches for integration of ML and AI
in IoMT. Privacy and security measures by providing advanced cryptographic solutions and incorporating
blockchain technology for data protection. In this work!?® authors proposes ML-RASPF, a machine learn-
ing-based framework for real-time and rate-adaptive IoT service provisioning in smart healthcare environ-
ments. It utilizes a mist-edge-cloud architecture and integrates LSTM for traffic prediction, GBDT for delay
estimation, and Deep Q-Network (DQN) reinforcement learning for adaptive control. The framework jointly
optimizes latency and service delivery rate, outperforming four baselines in simulation. It achieves up to 20%
lower latency, 18% higher throughput, and 19% reduced energy consumption, making it suitable for dynamic,
QoS-critical healthcare applications.

4. Industrial IoT (IIoT) and smart Manufacturing:Their paper'?! introduced “federated learning” for priva-
cy-aware decentralized training. This method optimizes communication and power resources while ensur-
ing high data transmission for device-to-device communication and cellular users in 6G IIoT digital twin
edge networks. Improve network throughput and reduce inference.

5. Smart Environment The authors'?? developed a low-cost, real-time computer vision system for a small
humanoid robot using an ESP32-CAM and a lightweight tiny-YOLO model, enabling accurate object de-
tection and decision-making in crowded environments with minimal hardware requirements.

6. Smart Energy

The paper'?*devises an integrated MILP-based solution to optimize the deployment of Smart Mobile Power
Banks (SMPBs) for on-demand electric vehicle charging and vehicle-to-grid (V2G) support, leveraging a
bi-level optimization framework and real-world data for simulation-based evaluation. A blockchain-en-
hanced AI framework has been proposed to improve power consumption prediction in smart grids. The
system incorporates Z-Score normalization and spatial-temporal correlation (STC) for data preprocessing
and feature extraction, while forecasting is handled by an LSTM-RNN optimized using the Improved Sparrow
Search Algorithm (ISSA). To ensure secure and decentralized data exchange, it integrates a blockchain-based
authentication and authorization (DAA) mechanism. The BSET-AVVO protocol enables low-latency com-
munication and adaptive Volt-VAR optimization for real-time demand response. According to'?*, this mod-
el demonstrates superior performance over existing methods in terms of MSE, energy efficiency, latency,
throughput, and response time. Reference!>> developed a decentralized application using Ethereum smart
contracts to manage power balancing in renewable energy grids with prosumers. Their prototype, tested on
the Volta testnet, ensures non-repudiable command dissemination, trustless modulation execution, and pro-
sumer accountability. The system supports up to 290 distributed energy resources (DERs) before hitting
performance limits due to transaction delays, gas costs, and network congestion. The study emphasizes the
suitability of blockchain for secure, scalable energy coordination, but also highlights the constraints of public
Ethereum networks under time-sensitive loads.

7. Autonomous Vehicles and Smart Transportation:

This study'?® provides an in-depth analysis of the Tesla Model 3 standard range with lithium iron phosphate
cells. Provides open-source experimental data on powertrain efficiency, range, and operation strategies. This
could be valuable information for improving electric vehicle technology, mitigating environmental impact,
and supporting the transition to clean energy.

8. Agriculture and Precision Farming: The research presented in'?” provides us with comprehensive biblio-
metric analysis to explore global trends, and emerging research gaps in IoT-driven soil less farming, it high-
lights various aspects of opportunities and challenges in using IoT-enabled smart precision farming in soil
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less agriculture, analyzed technological advances for real-time monitoring automation and AI-driven de-
cision making for improved crop production, and identified obstacles (such as energy consumption, tech-
nological dependency, and the need for specialized expertise), also they have examined the leading nations
and institutions at the cutting edge of research in this field. They emphasize that interdisciplinary research,
policy support, and technological advancement will be essential for developing global smart farming solu-
tions. They'?® have provided a better solution for a smart farming using machine learning techniques by
developing a Smart farming System. The workflow of this system is done in five stages which includes data
acquisition (Rice Seedling and WeedNet datasets), feature extraction (MobileNet architecture), classifica-
tion (SVM to distinguish between rice and land and crops and weed), segmentation (K-means clustering)
and performance evaluation (accuracy, precision, recall, and F1 score). They successfully demonstrated
from their result the higher efficiency in classification, weed detection, and precision agriculture. Refer-
ence'? proposed an Al-driven agricultural intelligence model combining IoT sensors, cloud analytics, edge
computing, and blockchain to enable precision farming, pest control, and supply chain transparency, show-
ing improvements like 30% water savings and 20% increase in crop quality.
9. Smart mobility

To address the challenge that traffic outlier detection struggles with real-time performance and fails to properly
handle the randomness and uncertainty in traffic flow data, the authors'*® proposed a solution by combining
Stochastic Differential Equations (SDEs) with Gaussian Process Regression (GPR) to create a framework ca-
pable of modeling both deterministic trends and random fluctuations in traffic data. They leveraged Bayesian
inference, employed the Whale Optimization Algorithm (WOA) for hyperparameter tuning, and used a boot-
strapped thresholding method to control the false positive rate. The model was evaluated using real-world
traffic data from California’s PeMS dataset and compared with baseline methods such as polynomial regres-
sion and standalone GPR. The proposed method achieved high performance with an AUC of 0.938, FPR of
1.95%, and MSE of 0.0013, outperforming the baseline approaches.

10. Smart logistics

The authors'3!developed a reinforcement learning-based framework to dynamically plan and control the paths
of multiple automated guided vehicles (AGVs) in smart warehouses. Their model integrates real-time data
from IoT and CPS systems to optimize AGV routing, task assignment, and battery management. They validat-
ed their approach through simulation, showing improved order completion rates and reduced travel distances
compared to traditional optimization methods.

11. Smart retail and supply chains: In!*?, they have conducted a game theory based analysis to compare dif-
ferent financing strategies with and without blockchain. They have analyzed the approach of mathematical
modeling of financing by considering two scenarios such as non-cooperative vs. cooperative, with and
without blockchain. They have proposed a risk sharing mechanism to improve finance coordination in the
supply chain, with the numerical analysis they were able to realize that the impact of blockchain adoption
would have potential benefits and provide decision making insight for financial managers and supply chain
participants.

12. Smart Grid : The authors'?* developed a novel optimization algorithm to assess and manage smart grid
operations under emergency conditions. Their method integrates a Mixed-Integer Linear Programming
(MILP) optimizer with Artificial Neural Networks (ANNs) to forecast renewable energy (PV and wind)
production. The goal is to maximize grid autonomy while minimizing CO2 emissions and energy cur-
tailments. The system dynamically adapts to the disconnection of key components (e.g., PV, BESS, diesel
generator) and evaluates the impact of 15 emergency scenarios on autonomy, sustainability, and post-emer-
gency recovery. The solution is tested on a real smart grid model in Spain using PowerFactory, forming part
of the EU Horizon 2020 TIGON project.

Technology

This section addresses RQ6, focusing on the integration of three key technologies—Blockchain, Edge/Fog/Cloud
Computing, and AI/ML—within IoT and SIoT environments. For Blockchain, we discuss core features such as
smart contracts, immutable ledgers, consensus mechanisms, blockchain types, and typical blockchain workflows.
We then introduce the role of edge, cloud, and fog layers in enhancing SIoT functionality. Additionally, we
explore the capabilities of AI/ML, including common ML techniques used in SIoT. For each technology, recent
studies (2023-2025) are reviewed to demonstrate their benefits, limitations, and applications in enabling secure,
intelligent, and decentralized SIoT operations.

Blockchain technology

Blockchain in SIoT serves as a decentralized ledger that records interactions, enables secure transaction logging,
and supports trust frameworks through smart contracts and consensus mechanisms. It enforces a tamper proof
permanent record, enables decentralized trust and identity management, and allows secure service access with
detailed interaction logging. This eliminates reliance on central authorities, enhances transparency and data
integrity, and helps prevent trust manipulation and data forgery. However, challenges include scalability issues
such as latency and energy use on public chains, increased storage and resource demands on IoT devices, and the
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complexity of integrating smart contracts with flexible trust models. Reference!* classify blockchain systems into

public and private types, where public blockchains like Bitcoin and Ethereum enable unrestricted participation,
while private blockchains such as MultiChain limit access to verified entities. They also examine key consensus
mechanisms—including Proof of Work (PoW), Proof of Stake (PoS), Practical Byzantine Fault Tolerance
(PBFT), and Delegated Proof of Stake (DPoS)—each offering distinct trade-offs in energy efficiency, scalability,
and trustworthiness. The study introduces smart contracts as autonomous, self-executing code blocks embedded
within blockchain networks, allowing agreements to unfold without third-party intervention. Additionally, it
emphasizes the immutable, tamper-proof, and auditable nature of blockchain and IOTA technologies, both of
which reinforce data integrity and trust in decentralized environments.

A. Smart Contract: A smart contract is like a digital agreement that automatically executes when certain
conditions are met, with rules and actions written into code. It’s similar to a vending machine where you put in
money, select a snack, and the machine dispenses it, automating processes and ensuring all parties follow the
rules without intermediaries.

B. Immutable ledger: An immutable ledger is a record book that can’t be altered or deleted once something
is written in it. It’s like a permanent, transparent diary that keeps a history of all transactions or events, ensuring
their accuracy and trustworthiness. Think of it like a notarized document, but digital, where every entry is time-
stamped and linked to previous entries, making it tamper-proof and reliable.

C. Consensus mechanism:

The consensus in blockchain is a protocol that ensures that all nodes agree on the ledger’s state, preventing
issues like double-spending and maintaining integrity. It’s crucial for trust and security, especially in dynamic
environments with resource-constrained devices, where selecting the right consensus algorithm impacts
scalability, security, and energy efficiency. Types of Consensus Mechanisms as follows :

1. Proof of Work (PoW): Used in Bitcoin, but high computational cost makes it unsuitable for SIoT due to en-
ergy and time constraints.

2. Proof of Stake (PoS): Validators are chosen based on their stake in the network, more energy-efficient than
PoW, but may require reputation-aware modifications for SIoT contexts.

3. Practical Byzantine Fault Tolerance (PBFT): Tolerates malicious or faulty nodes (up to 1/3), often used in
permissioned blockchains, suitable for closed SIoT networks like smart cities or vehicular networks with
known node identities.

4. Delegated Proof of Stake (DPoS): Users vote for a small group of validators, offering high throughput and
faster consensus, useful for lightweight or semi-centralized SIoT.

5. Proof of Authority (PoA): Consensus is reached by a few trusted nodes, suitable for private SIoT deploy-
ments like industrial IoT with known stakeholders.

6. Federated Consensus: Used in systems like Ripple or Stellar, devices agree via trusted subsets or quorum
slices, ideal for trust-based SIoT environments.D: Types of Blockchain Different types of blockchain such
as public, private, consortium, and hybrid are used based on the specific requirements and trust model of
the application, such as data privacy, access control, decentralization level, and scalability. As summarized in
Table 11, different blockchain architectures offer varying levels of transparency, scalability, and suitability for
SIoT environments. Each type is briefly described below.

1. Public Blockchain:A public blockchain is open to everyone, fully decentralized, and allows anyone to join,
view, and participate in the network. Examples include Bitcoin and Ethereum. This type of blockchain is suit-
able for applications like Open SIoT systems, global data sharing, and cryptocurrencies, where transparency
and accessibility are crucial.

2. Private Blockchain: A private blockchain is restricted to a single organization or group, with controlled access
and permissions. Examples include Hyperledger Fabric. This type of blockchain is ideal for internal SIoT
deployments and secure enterprise applications, where data privacy and access control are essential.

3. Consortium (Federated) Blockchain: A consortium blockchain is controlled by a group of pre-selected or-
ganizations or nodes, offering a semi-decentralized structure. Examples include R3 Corda and Quorum.
This type of blockchain is well-suited for collaborative SIoT platforms, such as smart cities or joint industry
projects, where multiple stakeholders need to work together while maintaining some level of control.

4. Hybrid Blockchain: A hybrid blockchain blends public and private blockchain features, allowing for both
transparent and restricted data access. Examples include Dragonchain and IBM Food Trust. This model is
ideal for SIoT applications requiring a balance of transparency and privacy, such as supply chain manage-
ment with IoT devices.

E: Typical Blockchain Workflow The typical blockchain workflow in SIoT begins with a transaction initiation
phase, where a user or IoT device, such as a smart sensor, actuator, or camera, generates a transaction. This

Blockchain type | Examples When to choose

Public Ethereum, Polygon Open networks where high transparency and decentralization are needed
Consortium Hyperledger Fabric Enterprise or research environments with multiple known stakeholders
Permissioned Hyperledger Indy, Corda | Applications requiring strong identity management and privacy

Lightweight (IoT) | IOTA, Algorand, Nano Ideal for low-power SIoT devices; supports DAG or fast consensus mechanisms

Table 11. Blockchain types and their relevance to SIoT applications.
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transaction could involve sending sensor readings, requesting access to a service, or initiating device-to-device
communication. Each transaction includes essential information such as the initiator’s identity, the intended
action, and a digital signature that authenticates the request. Once created, the transaction is broadcast to all
nodes in the peer-to-peer (P2P) blockchain network. This ensures that every participating device or node
becomes aware of the request, promoting transparency and decentralized handling. In this phase, all nodes in
the network receive the transaction and prepare to validate it without relying on a centralized authority. The
next step is validation, which is handled by the blockchain’s consensus mechanism. This is a critical phase where
the network agrees on the legitimacy of the transaction. Different types of blockchains use different consensus
algorithms. For instance, Proof of Work (PoW) relies on solving complex mathematical puzzles, while Proof
of Stake (PoS) selects validators based on their economic stake in the network. In permissioned or consortium
blockchains often used in SIoT, protocols like Practical Byzantine Fault Tolerance (PBFT) are preferred for their
efficiency and fault tolerance. Through consensus, the transaction is either approved or rejected by the network.
If the transaction involves predefined logic or conditions, it may trigger a smart contract. Smart contracts
are self-executing code segments embedded in the blockchain that automatically perform actions when certain
criteria are met. For example, if a temperature sensor detects that the reading exceeds a threshold (e.g., 50° C), the
smart contract could automatically trigger an alert and activate a cooling mechanism. This enables automation
and trustless execution within SIoT ecosystems. After successful validation, the transaction is grouped with other
verified transactions to form a new block. This block includes a timestamp, the hash of the previous block, and
all the validated transactions thereby maintaining a tamper-proof chain of events. Once the block is created, it
is appended to the blockchain in a sequential, chronological manner, ensuring the immutability of past records.
This immutability is vital for SIoT systems, as it guarantees that historical data such as trust ratings, service
logs, or identity records cannot be altered without detection. Following this, the updated blockchain ledger
is propagated across the entire network, ensuring that all nodes remain synchronized. Each node thus retains
an identical, verified copy of the ledger, enabling decentralized auditability and verification. This distributed
nature makes blockchain inherently resilient to failures and attacks, as there is no single point of control or
compromise. Finally, the transaction is marked as complete. It becomes a permanent part of the ledger and can
be used for future queries, audits, or cross validation in trust management protocols. Throughout this workflow,
blockchain enforces several key security principles: cryptography ensures confidentiality and authentication;
decentralization eliminates single points of failure; and transparency coupled with immutability upholds data
integrity and traceability. This entire workflow collectively enhances the trustworthiness, autonomy, and security
of interactions in SIoT networks. Shows the typical Blockchain workflow cycle refer to Fig. 13. Reference!®
illustrate the blockchain transaction process using a block structure that includes cryptographic hashes,
timestamps, Merkle trees, and consensus validation. Each transaction is recorded immutably, forming a tamper-
proof, distributed ledger that supports secure data acquisition and storage in decentralized environments.

Modular integration strategy for application-specific SIoT systems

Not all SIoT applications require all three technologies simultaneously. Depending on system constraints and
priorities such as latency sensitivity, resource availability, or privacy developers may combine any two technologies
for a customized solution. This modular approach allows scalable and cost-effective SIoT deployment tailored
to specific needs. As summarized in Table 12, recent SIoT systems integrate Blockchain, AI/ML, and Edge/
Fog/Cloud technologies to achieve trustworthy, real-time, and privacy-preserving analytics across domains
such as healthcare, smart manufacturing, and urban waste management, while facing trade-offs in latency,
synchronization, and energy efficiency. Overall, these hybrid integrations illustrate the evolving trend of multi-
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Figure 13. Blockchain workflow cycle.
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This paper

technology convergence in SIoT, seeking to balance trust, explainability, and efficiency within heterogeneous
environments.

Blockchain + AI/ML + Cloud or Edge/Fog Integration This integration combines blockchain’s decentral-
ized trust and data integrity features with AI/MLs predictive intelligence, and anchors them within edge/fog
nodes to enable real-time, secure, and autonomous decision-making close to the data source.

Blockchain enhances SIoT with decentralization, immutability, and automated trust mechanisms, providing

benefits like tamper-proof device identities through Decentralized Identity, automated access control via
Smart Contracts(enforce access rules and automate trust updates), and secure interaction logs on an Immuta-
ble Ledger. However, it faces limitations such as high latency and energy consumption, particularly on public
chains, and not adaptability and intelligence on its own, making it less suitable for real-time, resource-con-
strained IoT environments. Reference? proposed SecureSIoTChain, a blockchain-based security framework
for SIoT that integrates Graph Neural Networks (GNN) and R-ECDSA for relationship-aware trust inference,
secure communication, and decentralized device authentication. The model achieves 95% accuracy and out-
performs existing methods in throughput, latency, and trust metrics. In this study they'*® proposed a block-
chain-based authentication framework for secure IoT networks, using a permissioned ledger to manage de-
centralized device identities and ensure lightweight authentication. The system improves identity verification
and reduces reliance on centralized authorities, but still faces challenges in scalability and storage overhead.

In this work!¥’ they proposed CyberGuard, a hybrid framework that integrates blockchain-based trust man-

agement with machine learning (SVM, KNN, RF) for secure and efficient resource allocation in edge and fog
computing. The system leverages Trust2Vec embeddings and ensemble learning to achieve high prediction
accuracy (F1-score: 98.18%) while ensuring data integrity through blockchain. Though effective, the frame-
work introduces computational and storage overhead, and its scalability in real-time environments remains a
challenge. Ideal for systems needing trust analytics and audit trails (e.g., autonomous fleets).

138 introduces a blockchain and Al-driven secure communication framework for smart home net-
works, integrating Firebase-based blockchain authentication to maintain tamper-proof transaction records
and leveraging neural networks with the Dragonfly Algorithm to classify transactions as Smart T (trusted),
Mod T (moderate), or Avoid T (risky). Cloud-based data processing supports real-time evaluation and rank-
ing, achieving 96.54% accuracy in detecting false authentications while reducing computational complexity
by 10.14% compared to existing methods. The proposed solution, validated through 20,000 simulations on
Matlab and Google Colab without a physical testbed, outperforms RTS-DELM and data fusion techniques in
both security and efficiency, significantly strengthening smart home security and optimizing IoT communi-
cation.

They'* present BlockFaa$, a blockchain-enabled, serverless computing framework designed for Al-driven

IoT healthcare applications, specifically targeting heart disease risk prediction. The framework integrates a
high-performance XGBoost ML model, a SHA-3 (Keccak)-based blockchain module for ensuring data im-
mutability, and TLS protocols for secure communication. Deployed on Google Cloud Functions, BlockFaaS
addresses the limitations of resource-constrained IoT devices by offloading computation to the serverless
cloud while preserving data integrity, privacy, and scalability. The authors compare BlockFaa$ against existing
frameworks (HealthFaaS and AIBLOCK), demonstrating improvements in AUC prediction performance,
energy efficiency, and cold start latency analysis under real-world workloads.

In this study'* they proposed a blockchain-based federated learning framework for ECG anomaly detection

in IoT, leveraging edge-fog-cloud computing. Their system combines autoencoder-based AI/ML with smart
contracts on a Ganache blockchain for secure, decentralized training. Simulation results using iFogSim2
showed edge-layer deployment outperformed fog and cloud in energy efficiency, latency, cost, and execution
time while maintaining privacy.

Work | Integration type Purpose Use cases Strength Limitations
Blockchain + Al/ Enhance trust and decision-making Trust score prediction, Ensures immutable trust history + High complexity and model
140 ML + Cloud or through verifiable data and intelligent intrusion detection, intellizent behavior learnin: Y drift; blockchain latency;
Edge/Fog analytics anomaly detection 8 & requires frequent model updates
e Cloud + Edge/Fog Enable real-time apomaly detection w%th Smart home elderly Real-time ML on Ras'pberry'Pl— Non- Used s1mulz?ted sensor data (not
+ AML local edge processing (on Raspberry Pi) monitorine system wearable passive sensing, Privacy- live), Caregiver mobile app not
and cloud-based visualization 8 Sy aware design with dashboard yet developed
146 Digital Twin + Enable cyber-physical mirroring, Smart rpanufa_cturmg, Real-time digital mirroring, High Syn.Chromzétlf)r.l over}}ead;
Edge/Fog/Cloud + L. ! predictive maintenance, . . . model mismatch; digital twin
) predictive analytics, and secure control . decentralized analytics and traceability
Blockchain secure twin control setup cost

142

Blockchain +
Federated Learning

Privacy-preserving ECG anomaly

Healthcare IoT; Remote
cardiac monitoring with

Low latency, enhanced privacy,
decentralized model training, tamper-

Increased cost, execution time,
energy use due to blockchain

ensemble learning in IoT-enabled
environments

automated waste sorting
from images

performance; outperforms traditional
models (SVM, XGBoost)

+ Edge-Fog-Cloud | detection and real-time decision making | mobile/wearable ECG . overhead; partial energy
C . N proof storage via smart contracts deli I
omputing sensors modeling only
Improve waste classification accuracy Smart waste management | Low-complexity model with 85% No explicit use of edge/cloud;
148 AIML + ToT using deep learning and optimized in smart cities with accuracy; CSO optimization improves | real-time deployment and

scalability not discussed; limited
to image-only input

Table 12. SIoT integration types with purpose, strengths, and limitations.
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2. Cloud + Edge/Fog + AI/ML Integration The integration of Cloud, Edge/Fog computing, and AI/ML tech-

nologies forms a synergistic framework that enhances the capabilities of Social Internet of Things (SIoT)
applications, particularly in latency-sensitive and intelligence-driven domains like smart healthcare and au-
tonomous systems. Edge and Fog nodes alleviate the computational burden on resource-constrained SIoT
devices by performing local processing. This enables real-time decision-making, context-awareness, and
bandwidth savings, making them ideal for time-critical applications. However, these nodes often lack built-
in mechanisms for transparency, auditability, and secure data anchoring, which raises concerns about data
tampering and opaque trust decisions in the absence of blockchain-like support. In contrast, the Cloud Layer
offers centralized infrastructure to handle computationally intensive tasks, such as training AI/ML models,
performing cross-node data aggregation, and distributing optimized models to edge nodes. While the cloud
enables scalability and model refinement, it introduces latency, privacy risks, and centralization vulnerabil-
ities, particularly when sensitive user or device data are transmitted and stored offsite. AI/ML technologies
empower the SIoT environment by enabling autonomous behavior analysis, adaptive trust scoring, anomaly
detection, and personalized responses. These capabilities allow the system to dynamically learn from inter-
action patterns, assess trustworthiness, and respond to anomalies in device behavior. However, the deploy-
ment of AI/ML in SIoT also introduces challenges. These include a lack of explainability and verifiability of
model decisions, susceptibility to adversarial attacks (e.g., data poisoning), and the absence of tamper-proof
mechanisms for storing or validating outcomes, which can reduce trust in automated processes. Reference!*!
propose a cloud-fog-edge pipeline for smart agriculture that performs real-time image classification (e.g., to-
mato disease detection) using a ResNet-based CNN model. The model is trained on the cloud, optimized via
TensorFlow Lite and the Tensil framework, and executed on edge FPGA devices (PYNQ Z2). They demon-
strate minimal accuracy loss ( 0.83%) and significant latency reduction when executed at the Fog layer.
Reference!*? present an edge-based IoT system using non-wearable sensors and machine learning (Isolation
Forest and LSTM) for real-time elderly health monitoring. The system ensures privacy, low latency, and effec-
tive anomaly detection, achieving 92.29% accuracy on the CASAS TM029 dataset and featuring a dashboard
for caregivers and doctors.!*? proposed a fault-tolerant fog-based SIoT architecture (FSIoT) that uses Markov
chains to model and recover from transient and permanent node failures. By integrating K-means clustering
and trust-based node evaluation, the system improves availability, reliability, and fault detection accuracy.
The model assumes fog/cloud nodes are fault-free and was validated via simulation on 70 nodes.
Blockchain + Edge/Fog: Suitable for secure identity and fast decision-making (e.g., smart factories). For
modular integration of blockchain and edge computing in application-specific SIoT systems, Ref.!** pro-
posed a blockchain-assisted edge computing architecture tailored for IToT environments, introducing a nov-
el Proof-of-Authentication (PoAh) consensus mechanism. The architecture leverages smart contracts and
lightweight blockchain nodes deployed at the edge, ensuring scalable and trustworthy data sharing, device
authentication, and traceability. Their PoAh model, implemented via Hyperledger Fabric and Docker con-
tainers, significantly reduces authentication time and energy usage while maintaining a high transaction rate
(up to 1273 TPS), making it suitable for resource-constrained industrial systems.

4. Cloud + edge + AI/ML Integration

The authors present a comprehensive framework that integrates IoT, edge computing, cloud computing, and AI/

ML to enable real-time, intelligent decision-making. They design and implement hybrid architectures where
Al models are trained in the cloud and deployed at the edge for low-latency inference. Practical implemen-
tations like DILoCC (for distributed incremental learning) and SHIRS (for smart indoor air monitoring)
demonstrate how this integration can be applied in real-world smart city and industrial contexts. The paper
also addresses key challenges such as energy efficiency, model compression, federated learning, and ethical AI
usel®,

5. Digital Twin + Edge/Fog/Cloud + Blockchain:

A blockchain-enabled digital twin vehicular edge network (DTVEN) is proposed to enable secure and efficient

task offloading in vehicular edge environments. The architecture combines digital twins for real-time mon-
itoring of 3C (computation, communication, caching) resources with a blockchain layer utilizing Delegated
Proof of Stake (DPoS) consensus and smart contracts for decentralized coordination. As presented by'%, an
improved cuckoo algorithm is used to optimize task offloading decisions, and a greedy resource allocation
strategy is applied to minimize consensus overhead, resulting in lower network cost and enhanced edge co-
operation.

6. Federated Learning + Edge/Fog + AI/ML/ Explainable AI (XAI):

This work®® introduces a privacy-preserving Federated Learning-based IDS with Explainable Al (XAI), using

SHAP values for interpretability across decentralized edge devices. Four clients train ANNs on the CICI-
0T2023 attack dataset, with FedAvg aggregating models at the server. The global model achieves 88.2% test-
ing accuracy, with UDP identified as the most impactful feature via SHAP. Key metrics include Precision
(0.8908), Recall (0.684), and F1-Score (0.705), highlighting strong detection performance and interpretability
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7. Federated Learning + Edge/Fog : They'?’ designed a federated blockchain-based authentication scheme
specifically for cross-domain IIoT device interactions in smart factories. Their scheme eliminates centralized
authorities by using a Hyperledger Fabric consortium chain, with smart contracts handling device registra-
tion, mutual authentication, and revocation. Performance evaluation showed the architecture improves trust,
security, and scalability, although latency increases with the number of peer nodes. Both works demonstrate
the viability of decentralized blockchain-based identity and trust frameworks for IIoT, but differ in consen-
sus design, system scope, and optimization focus.

8. AI/ML+IoT+ Swarm:

This'*® study presents a low-complexity waste classification model for smart cities, combining VGG16 feature
extraction with a Random Forest classifier optimized by Cat Swarm Optimization (CSO). The model achieves
85% accuracy and 0.85 AUC on a six-class garbage dataset, surpassing SVM, XGBoost, and logistic regression
in key metrics. Its efficiency and balanced performance make it suitable for real-time IoT-enabled smart city
applications.

Proposed unified conceptual framework for SIoT systems using blockchain-cloud, edge/Fog-AI/ML integration

To overcome the above limitations, we propose a conceptual organization of phases, a unified SIoT framework
that leverages the combined strengths of blockchain, cloud computing, edge/fog environments, and AI/ML to
deliver an intelligent, secure, and scalable solution for decentralized trust and interaction management. Cloud
enables global AI model training and data aggregation, fog and edge layers handle real-time computation
and context inference, while blockchain ensures secure identity, immutable logging, decentralized trust, and
verifiable service interactions.

o Blockchain: Handles identity registration, trust anchoring, and access control through smart contracts.
 Cloud Infrastructure: Manages large-scale data storage, global coordination, and long-term trust analytics.
« Edge/Fog Nodes: Enable fast, localized decision-making and host Al inference engines.

o AI/ML Models: Predict trust, detect anomalies, and assist in smart service recommendations.

As shown in Fig. 14, the unified conceptual framework for SIoT is a consolidation of heterogeneous approaches
reported in the literature. It is presented as a survey based reference model rather than an implemented design.
Prior works propose diverse architectures for blockchain, AI/ML, and edge/fog integration in IoT. For example,
They 2! present a three-layer smart city security architecture combining Al-driven anomaly detection with
Ethereum based confidentiality and consensus, achieving >98% detection accuracy and 4500 TPS throughput.
In this paper !° they propose an Ethereum based framework for mobile IoT sensors with dual communication
modes, trust computation, and cost modeling, demonstrating 38% reduced overhead and 28% lower latency
in simulations. Similarly, in this paper they 2 introduced a blockchain enhanced Sensor-as-a-Service (SEaa$)
model with modular smart contracts, enabling secure data trading and showing improved efficiency in energy,
latency, and throughput metrics. Figure 14 abstracts these functional roles such as identity management, trust
evaluation, provenance auditing, and policy enforcement into a single conceptual framework. This consolidation
provides a high-level reference view of how these technologies may interoperate in SIoT, without making
implementation claims. The diagram illustrates eight key phases.

1. Decentralized identity and device onboarding

Devices generate decentralized identities (DIDs) and register them on a blockchain, ensuring tamper-proof
identification and secure on boarding. This is achieved through local ECDSA (Elliptic Curve Digital Signa-
ture algorithm to verify authenticity of data) key pair generation at the edge and registering the DID on a
blockchain like Polygon or Fabric, with metadata stored locally or in the cloud if needed, effectively securing
against identity spoofing.

2. Social Relationship Establishment

Devices form relationships via edge/fog proximity discovery, registering links on a blockchain as friend, co-lo-
cation, or service relationships. These relationships are represented as traceable and immutable social links,
defined as on-chain mappings that can be optionally tokenized as NFTs for enhanced visibility. Digital sig-
natures facilitate updates and verification, ensuring a secure and transparent network of interactions, while
blockchain’s immutable ledger prevents fake or manipulated links, building a reliable social graph.

3. Trust Evaluation and Reputation Building

A dynamic, context-aware trust scoring system is implemented through a smart contract like ReputationManag-
er.sol, storing and updating trust scores based on weighted history, recent, and behavior consistency. Histor-
ical interactions calculate on-chain reputation, and malicious behavior is automatically penalized, ensuring a
secure and trustworthy network.
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Figure 14. Unified conceptual framework for SIoT.

4. Smart Contract Deployment for Access and Service Control

Smart contracts like AccessManager.sol, TokenAuthorization.sol, and DelegationManager.sol automate access
and service rules, enabling role-based, attribute-based, and token-based access control, as well as social dele-
gation rules. These contracts define service-level access conditions on-chain, eliminating central access con-
trol lists and supporting dynamic, rule-based security in a decentralized manner.

5. Service Discovery and Publishing Devices autonomously find and advertise services through the Ser-
viceRegistry.sol smart contract, where they publish services by calling registerService(), emitting events like
ServiceRegistered that other devices can listen to. Queryable functions like getServiceByType() and getNear-
byServices() enable decentralized lookups, while metadata such as tags, location, and device type enhances
matchmaking, ensuring real-time, decentralized, and tamper-proof service discovery.

6. Secure service interactions They are enabled through DID-based Verifiable Credentials for device authen-
tication and access control contracts for authorization. Data exchange occurs off-chain, with on-chain an-
choring of data hashes ensuring tamper-evidence, and optional encryption provides confidentiality for data
in transit and at rest, resulting in scalable, secure, and private service transactions.

7. Feedback Logging and Reputation Update Interactions are logged on-chain for traceability and trust com-
putation, allowing devices to submit feedback that updates trust scores and flags misbehavior, thereby ensur-
ing auditability, accountability, and dispute resolution through immutable records.

8. Incentivization and Token Economy (Optional) A token economy is established through an ERC-20 or
ERC-721 token contract, rewarding devices for verified services, uptime, and good behavior, while tokens
can be used for resource requests, service fees, or trust upgrades, fostering cooperation and sustainability in
decentralized environments.

Cost and feasibility considerations of blockchain in SIoT

Blockchain adoption in SIoT applications is hindered by regulatory uncertainty, organizational readiness, and
cost concerns. Challenges include varying regional regulations, standardization, and lack of internal expertise,
while viable workarounds include private blockchains, Layer-2 solutions(eg., Ploygon, IOTA for lightweight
deployments), and off-chain data storage . Ultimately, blockchain should be adopted strategically, focusing
on applications that require tamper-evidence, decentralized identity, and global trust anchors, rather than
universally applying it to all SIoT applications.

Other key technologies for decentralized SIoT without blockchain

In scenarios where blockchain integration is impractical due to cost, resource constraints, or energy limitations,
several other technologies can support decentralized SIoT architectures. These alternatives help maintain
distributed intelligence, trust coordination, and peer-to-peer communication, even in the absence of a global
ledger. These technologies offer modular, scalable, and cost-effective pathways to decentralization. While they
may not guarantee the same tamper-evidence or global consensus as blockchain, they provide flexible design
options for SIoT applications where decentralization is desired but blockchain is infeasible.
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1. Federated Learning: Enables multiple devices to collaboratively train machine learning models without shar-
ing raw data, preserving privacy and distributing computational load. Federated learning has been increas-
ingly adopted for privacy-preserving intrusion detection in IoT systems. Reference'* proposed an FL-based
IDS integrating deep learning and chimp optimization, achieving superior detection accuracy across distrib-
uted IoT devices. Reference!™ proposed a novel FL-IoT framework combining federated learning with Ti-
nyML for resource-constrained microcontrollers, enabling efficient, privacy-preserving model training and
inference at the edge.

2. Swarm Learning: A fully decentralized variation of federated learning that eliminates the need for a cen-
tral coordinator by using peer-to-peer consensus. Reference!>! present MatSwarm, a swarm learning-based
framework that integrates federated learning, blockchain, and trusted execution environments (TEEs) to
enable secure, decentralized model training across multiple institutions. Unlike traditional FL, MatSwarm
removes the need for a central aggregator by using blockchain-based consensus. It employs a swarm transfer
learning method to improve generalization on non-i.i.d. datasets and uses Intel SGX to safeguard data integ-
rity and confidentiality. Validated on real-world materials data, MatSwarm demonstrates strong resilience to
poisoning attacks and superior performance in accuracy, scalability, and security, highlighting its effective-
ness in multi-party computation for sensitive scientific domains.

3. Gossip Protocols: Employ probabilistic message spreading where each device shares updates with a few ran-
domly selected peers, useful for distributing trust scores or alerts. Gossip protocols offer a lightweight, ful-
ly decentralized alternative for knowledge dissemination in SIoT environments. Reference!®? introduced a
generic coordination model leveraging a gossip mechanism for decentralized learning in microgrids. Their
approach supports two variants such as Gossip Federated Learning (GFDL) and Gossip Ensemble Learning
(GEL), allowing nodes to exchange model weights or prediction outputs, respectively. These methods ensure
privacy (data never leaves the node), scalability, and flexibility in dynamic edge environments making them
promising for SIoT trust-building, anomaly detection, and behavior prediction without relying on block-
chain.

4. Multi-Agent Reinforcement Learning (MARL): Distributed agents learn behaviors through local interac-
tions and coordination, suitable for dynamic trust and decision-making.!*® demonstrated that Multi-Agent
Deep Reinforcement Learning (MADRL), when combined with edge computing, significantly improves
SIoT network navigability and service recommendation performance by adaptively optimizing friendship
paths and enabling real-time, personalized decision-making in decentralized environments.

5. Peer-to-Peer (P2P) Overlay Networks: Enable devices to form mesh-like topologies for direct communica-
tion, resource sharing, and decentralized service discovery. Recent advancements in peer-to-peer overlay
structures such as TSPeer leverage sensor fingerprinting to enhance trust and reputation in mobile SIoT
environments without relying on blockchain mechanisms'>*.

6. Publish-Subscribe Systems (e.g., MQTT): Support asynchronous messaging and event-driven communica-
tion among distributed nodes, minimizing centralized dependencies. A secure and decentralized publish/
subscribe system was proposed by'®, integrating topic-based pub/sub messaging with a distributed P2P
overlay using hash chains for end-to-end security, suitable for trustable SIoT applications even without
blockchain.

Recent studies leveraging blockchain technology in IoT and SIoT environments(2023-2025)
BMIS (Blockchain-based Mobile IoT System) logs real-time sensor data on Ethereum for data traceability.”’
introduced a Blockchain-Based Mobile IoT System (BMIS) that combines a modular multi-sensor device with
cloud and blockchain integration. The system enables real-time monitoring through ThingSpeak and tamper-
resistant storage via Ethereum smart contracts. This dual-path architecture enhances the trustworthiness,
traceability, and mobility of IoT data collection systems. They'*® proposed DrunkChain, a blockchain-enabled
IoT system for preventing drunk driving by continuously monitoring blood alcohol levels and driving behavior.
The system ensures secure, immutable data transfer to a central police account using the Algorand blockchain,
showcasing the effective integration of blockchain in vehicular IoT and trust-critical SIoT applications.
Physical Unclonable Functions (PUFs) Blockchain-based mutual authentication schemes using PUFs
have been proposed to resist cloning and impersonation attacks. A lightweight, blockchain-based mutual
authentication and key agreement protocol designed for cross-domain IToT systems with digital twin integration
is presented in'®’. The solution combines Physically Unclonable Functions (PUFs), smart contracts, and a
blockchain ledger to ensure decentralized and tamper-resistant authentication. Formal and informal security
analyses confirm the protocol’s resistance to various IloT-specific threats. Recent access control models leveraging
blockchain have ensured secure service invocation and user-device interactions in vehicular and smart home
SIoT networks. For instance, in'*® proposed a zero-trust framework combining blockchain, smart contracts, and
inner-product encryption to enforce fine-grained access control and decentralized identity management across
domains such as smart homes and vehicular systems, ensuring efficient and tamper-resistant service interactions
in a 6G-enabled SIoT environment.

Edge, cloud/ fog computing
In this subsection, we discuss the different types of cloud services and the typical three-layer architecture
comprising edge, fog, and cloud computing, as briefly outlined below. Edge, fog/cloud computing collaboratively
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enhance the scalability, responsiveness, and intelligence of SIoT systems. Cloud platforms provide centralized
resources for large scale storage, big data analytics, trust modeling, historical behavior analysis, and global service
management. In contrast, edge and fog layers are deployed closer to devices to enable real-time decision-making,
local trust evaluation, and context-aware service delivery. This layered architecture reduces latency, bandwidth
usage, and response time for sensitive tasks, while offloading computation from resource-constrained devices and
supporting hierarchical processing. It also improves fault tolerance and system scalability. However, challenges
persist, including maintaining data consistency across layers, enforcing security at multiple distributed points,
and managing the cost and complexity of deploying and orchestrating fog and edge infrastructure.

Figure 15 shows a typical three-layer architecture comprising edge, fog, and cloud computing. Each layer is
responsible for specific tasks to ensure efficient data processing, communication, and service delivery within IoT
and SIoT environments.

1. Edge devices: This layer captures and generates real-time data, with limited processing power, storage, and
computing capabilities. Examples include CCTV cameras, autonomous vehicles, and smartphones.

2. Fog Nodes: Key responsibilities of fog nodes include preprocessing and filtering data, performing laten-
cy-sensitive analytics, and acting as an intermediary between edge devices and the cloud. Examples include
local servers, gateways, and routers.

3. Cloud: The cloud is responsible for centralized data storage, processing, and long-term analytics, including
machine learning model training. Examples include remote data centers and cloud infrastructure. The cloud
offers high scalability, massive computational resources, and a global data view, enabling efficient processing
and analysis of large-scale data.Types of Cloud Services Different types of cloud services are briefly men-
tioned in the below.

1. TaaS (Infrastructure as a Service): Provides virtualized hardware and storage (e.g., AWS EC2).
2. PaaS (Platform as a Service): Offers tools for application development and deployment.
3. SaaS$ (Software as a Service): Delivers end-user services like dashboards and social interfaces.

Recent studies leveraging edge and computing in IoT and SIoT environments (2023-2025)

This study'® demonstrates how edge—cloud combined can address the computational and latency demands of
dynamic IoT applications, particularly in mission-critical domains like smart energy grids. Reference!'*® propose
a novel Edge/Cloud architecture tailored for the Social Internet of Things (SIoT), enabling the integration of
Virtual Users (VUs) and Social Virtual Objects (SVOs) through a containerized microservices infrastructure.
Their solution automates deployment, supports user clustering, and enables low-latency service migration
via edge computing. The architecture addresses scalability, security, and automation needs, validated through
experimental evaluation using AWS-based environments. The study demonstrates performance improvements
over traditional platforms like Google App Engine, making it a key recent advancement in SIoT infrastructure
design. Reference'®! implemented a Cloud-Edge-IoT continuum model for Industry 4.0 using EdgeCloudSim
and SUMO simulators. Their work demonstrates how edge-cloud architectures can support low-latency task
offloading and intelligent transportation use cases, making it a significant contribution to recent advances in IoT
and SIoT edge-cloud integrations.

FOG NODES

]
I%‘):o

EDGE DEVICES

Figure 15. Edge, fog and cloud computing layers.
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Aland ML
Al and ML boost the intelligence and self-sufficiency of Social Internet of Things (SIoT) devices, allowing them
to learn from interactions and context. Key AI/ML capabilities in SIoT include:

1. Trust prediction models: Assessing device reliability through machine learning-based analysis of social
behavior. Machine learning techniques have increasingly been applied to predict trust in vehicular networks
by analyzing behavioral attributes such as packet delivery ratio and interaction frequency. In one such study,
a trust management heuristic was developed using supervised classifiers like SVM and KNN to identify ma-
licious vehicles in an Internet of Vehicles environment!®2. The model achieved high classification accuracy
by first clustering unlabeled data and then applying classification on mean parametric scores to distinguish
between trustworthy and untrustworthy nodes.

2. Anomaly detection: Identifying unusual patterns or suspicious communication. Recent advances in ex-
plainable AI (XAI) techniques have improved the interpretability of trust prediction models for IoT anom-
aly detection. For instance, Ref.* proposed an XAI-IoT framework that integrates single and ensemble Al
models with XAI tools such as SHAP, LIME, and CEM to accurately detect anomalies and explain model
predictions in both sensor-based and network-based IoT systems.

3. Context-aware recommendations: Providing personalized service suggestions based on learned preferenc-
es and device usage history. Reference!®® proposed a Triple Attentive Neural Network (TANN) combining
context-aware session similarity and frequent graph pattern mining for recommendation in Smart EMS.
While not IoT-specific, the AI/ML-driven framework is adaptable for session-based recommendations in
SIoT settings involving user-device interactions and contextual session data. They'®* proposed a new frame-
work called MAFDRL- a recommender system for friendship path selection in SIoT which utilizes optimal
policy learning (via DRL and SAC) and preserves privacy (via FL), thereby improving recommendation
accuracy and efficiency in large-scale, dynamic SIoT environments.

ML techniques

Machine learning (ML) models in the Social Internet of Things (SIoT) are deployed across edge, fog, and
cloud layers to enable dynamic trust evaluation, anomaly detection, relationship classification, and intelligent
service/resource discovery. By analyzing historical interactions, social ties, and quality-of-service parameters,
ML enhances context-aware service recommendations and improves system responsiveness in dynamic
environments. These models classify user-device relationships, detect intrusions through behavioral pattern
learning, and support adaptive trust management, reducing reliance on static rules or manual configurations.
Despite these advances, ML integration in SIoT faces challenges such as frequent model updates, computational
overhead on resource-constrained devices, and vulnerabilities to adversarial inputs and data poisoning. Given
SIoT’s heterogeneity and evolving nature, choosing appropriate ML techniques is vital for scalability, privacy
preservation, and robust decision-making. Figure 16 categorizes various ML approaches based on their
operational goals such as regression, classification, clustering, deep learning, and emerging paradigms. These
techniques are widely adopted in SIoT applications to analyze user behavior, predict trustworthiness, group
devices, and adapt to temporal patterns in service delivery. A brief description of each technique, along with its
typical use in SIoT contexts, is provided below.

1. Regression (less common in SIoT)

« Linear Regression: Linear Regression is a basic model that assumes a straight-line relationship between
input and output variables, meaning the output increases or decreases proportionally with the input. In
SIoT systems, it can be used to predict trust scores between devices based on the frequency of successful
data exchanges, where each additional reliable interaction adds a fixed increment to the trust score, rang-
ing from 0 to 1. This approach is simple, fast, and works effectively as a baseline analysis tool when device
interactions follow consistent patterns and the data isn’t too noisy. The researchers!'®® applied linear regres-
sion to examine the relationship between several independent variables—perceived usefulness, perceived
ease of use, attitude toward SIoT, perceived privacy risk, and trust—and the dependent variable of SIoT
adoption. Results showed that perceived ease of use and attitude had a statistically significant influence on
SIoT adoption, while perceived usefulness, privacy risk, and trust did not. These findings underscore how
regression analysis can isolate the most impactful predictors in user behavior modeling.

« Support Vector Regression : Support Vector Regression creates a prediction model that fits data within
a margin of tolerance, forming a “trust tube” around expected values that helps focus on significant in-
consistencies while ignoring minor deviations. In SIoT systems, it is especially useful for predicting trust
scores between devices that may experience occasional delays or minor glitches, as it flexibly handles small
hiccups like one-time misfires and flags major issues such as repeated misinformation. SVR excels in man-
aging uncertainty since IoT networks often produce noisy data, it learns from social interaction patterns
by modeling relationship strength over time, and it avoids overreacting to isolated bad behavior, making it
highly suitable for dynamic and unpredictable environments.

« Random Forest Regression: Random Forest Regression is an ensemble model that uses multiple decision
trees, each trained on different features and logic paths, and then averages their predictions to produce a
final output. In SIoT systems, it can forecast trust scores by analyzing factors such as interaction frequen-
cy, data accuracy, battery level, and network latency, with each tree emphasizing different attributes—for
instance, one focusing on latency and another on reliability. This collaborative approach results in a robust
trust estimate that effectively captures complex, nonlinear relationships, resists outliers, and adapts well to
messy or incomplete device data.
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Figure 16. Machine learning techniques commonly used in SIoT.

2. Classification

Logistic Regression: Logistic Regression is a linear classification model that estimates probabilities by fit-
ting input features—such as authentication success rate, interaction duration, energy consumption, and
firmware update history—to a logistic curve. In SIoT systems, it's commonly used to classify devices as
“trusted” or “untrusted,” offering quick and interpretable decisions ideal for lightweight, resource-con-
strained environments. While it’s fast and well-suited for binary classification in linearly separable data, it
tends to underperform with complex or nonlinear trust patterns due to its inherent simplicity and limited
decision boundaries. A dual-layer strategy to enhance survivability in Industrial IoT systems is proposed
through the combination of machine learning-driven device identification and a blockchain-enabled smart
contract framework. Reference!® evaluated 12 ML models—including LR, SVM, KNN, RE, GB, CNN,
and LSTM—and identified LSTM as the most accurate, achieving 98.96% accuracy. Their smart contract
architecture further supports secure data exchange and access control in smart home data marketplaces.
This hybrid approach reinforces IIoT resilience, trust, and security.

Naive Bayes: Naive Bayes is a probabilistic classifier built on Bayes’ Theorem, making rapid predictions
by assuming that each input feature—such as device manufacturer reputation, data transmission integ-
rity, sensor context (e.g. location and temperature), and unauthorized access frequency—contributes in-
dependently to the final trust estimate. In SIoT systems, this model excels in early-stage trust screening
using sparse or categorical metadata, offering scalable and efficient performance. While it’s well-suited for
tasks like spam detection and document classification, its core independence assumption can oversimplify
complex interactions between trust indicators, potentially limiting accuracy in nuanced environments. To
address the increasing prevalence of diabetes,'®” developed a supervised machine learning model to pre-
dict diabetes using the Pima Indians Diabetes dataset. The study compares the performance of k-Nearest
Neighbors (KNN) and Naive Bayes classifiers across multiple data splits and concludes that Naive Bayes
consistently outperforms KNN in terms of accuracy, precision, and recall.

Decision Tree(DT):Decision Tree (DT) is a highly interpretable, tree-structured classification model that
splits data based on feature conditions—perfect for rule-based trust systems in SIoT. It can assess trustwor-
thiness using inputs like peer interaction frequency, security patch history, latency thresholds, and anom-
aly scores, leading to decisions such as “If latency > 400ms and anomaly score > 0.6 — Untrusted” DTs
are versatile, handling both numerical and categorical data, and are valuable for exploratory analysis and
rapid prototyping. However, they are prone to overfitting and may generalize poorly in complex or noisy
SIoT environments unless combined with techniques like pruning or ensembles.

K-Nearest Neighbours(KNN): It is a lazy learning algorithm that classifies devices by comparing them to
the closest instances in feature space—leveraging patterns like firmware version, network reliability, trust
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rating history, and CPU usage. In SIoT systems, it supports neighborhood-based trust inference where a
new device inherits trust labels from its most similar peers; if most neighbors are trusted, it likely is too.
This simplicity allows KNN to adapt dynamically without a training phase, making it suitable for well-clus-
tered trust datasets. However, it becomes computationally heavy with large data and is sensitive to irrele-
vant features and inconsistent scaling, requiring careful preprocessing to maintain accuracy. Building on
traditional KNN approaches, this study'®® adapts the algorithm to handle mixed data types—numeric and
string—allowing for more nuanced classification of plant commodities based on environmental profiles
Support Vector Machine(SVM):

SVM is a powerful classification model that identifies the optimal boundary—or hyperplane—to sepa-
rate data points, often using kernel functions to handle complex, non-linear relationships. In SIoT sys-
tems, it’s effective for discerning trustworthiness based on rich features like signal strength anomalies,
conflict resolution history, access control outcomes, and multimodal trust scores. By mapping data into
higher-dimensional space, SVM creates clearer separation between trusted and untrusted devices, yielding
high accuracy for binary trust classification. Though it thrives in feature-rich environments, SVM can be
computationally intensive and demands careful kernel and parameter tuning, making it better suited for
smaller, high-stakes datasets like bioinformatics or nuanced trust modeling. Reference!® applied an SVM
classifier optimized using the Pelican Optimization Algorithm for real-time gender identification from
facial video frames. While the work is not SIoT-specific, its use of human-centered, real-time visual data
and edge-deployable machine learning aligns with many SIoT use cases such as surveillance and social de-
vice interaction, showcasing how SVM can be enhanced for improved classification accuracy and reduced
latency in intelligent IoT systems.

Random Forest: Random Forest is a collective approach that builds multiple decision trees using varied
subsets of trust features—such as interaction frequency, data accuracy, battery status, and network laten-
cy—and then combines their predictions to produce a strong, reliable classification. In SIoT systems, this
method captures diverse aspects of trust, with each tree focusing on a different priority (e.g., one may high-
light latency while another weighs energy reliability), resulting in robust trust evaluations even with noisy
or incomplete data. Random Forest models are especially effective for handling complex classification tasks
and collaborative trust analysis, though they tend to require more computational power and can be harder
to interpret compared to using a single decision tree. This!”? paper presents a predictive framework that
combines IoT-based environmental sensing with machine learning models to forecast forest fires. The
study utilizes weather and historical fire data, employing algorithms like Random Forest, XGBoost, KNN,
Decision Trees, and Logistic Regression. The XGBoost and Random Forest models achieved the best per-
formance, with accuracies up to 97.52%. IoT devices (e.g., sensors and drones) provide real-time environ-
mental data (temperature, humidity, wind speed, etc.), enhancing the model’s responsiveness and accuracy.
The integration supports early fire risk detection, resource optimization, and improved decision-making
in wildfire management.

3. Clustering

K-means:K-means is a partition-based clustering algorithm that divides data into k distinct groups, each
defined by a central point called a centroid. It works by iteratively assigning data points—such as SIoT de-
vice metrics like communication latency, interaction frequency, and energy usage—to the nearest centroid
and adjusting those centroids until the clusters stabilize. This makes it useful for grouping similar devices
(e.g., low-energy sensors vs. high-throughput routers) to optimize trust assessment and service efficiency.
While K-means is fast, scalable, and simple to implement—especially effective for spherical clusters—it
requires predefining k, struggles with irregular cluster shapes, and is sensitive to outliers and how centroids
are initially placed. It's well-suited for behavioral clustering, performance-based device grouping, and load
balancing in IoT networks. A novel cluster-based aggregation model for the Social Internet of Things (SIoT)
was proposed that integrates relationship-aware cluster head selection using Decision Tree algorithms with
K-Means clustering and Huffman coding for data compression. The model selects cluster heads based on
object relationships and profiling features, compresses data at the cluster head, and forwards it to the sink
node, significantly improving energy efficiency, network lifetime, and aggregation accuracy. Simulations
conducted using the SIoT-CCN simulator demonstrated superior performance over existing clustering and
aggregation methods in terms of BIC scores, silhouette scores, and transmission overhead!”".

DBSCAN : DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a clustering algo-
rithm that groups closely packed data points together while marking isolated or low-density points as out-
liers—making it especially useful for discovering natural data structures without needing to predefine the
number of clusters. In SIoT systems, it can effectively detect clusters of trusted devices based on trust score
proximity and highlight compromised or anomalous behavior as noise. DBSCAN excels at identifying
irregularly shaped clusters and automatically detecting outliers, which is ideal for anomaly detection and
spatial analysis in smart environments. However, its performance depends heavily on selecting appropriate
distance and density parameters, and it may struggle with datasets where cluster densities vary signifi-
cantly. In their study!'”? they applied DBSCAN clustering to group geographically proximate IoT-enabled
bike-sharing stations, enabling socially contextual forecasting of shared mobility demand. Though not ex-
plicitly framed within the SIoT paradigm, the clustering of physical IoT nodes and subsequent demand
prediction reflects spatial-social grouping logic relevant to SIoT applications in smart transportation. A
two-step community detection algorithm was proposed for efficient service provisioning in SIoT, com-
bining Louvain for social structure analysis and DBSCAN to refine communities by removing outliers
and merging spatially dense device clusters. Reference!”®> demonstrated that this DBSCAN-enhanced stage
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improves modularity, execution time, and the quality of service composition, enabling faster and more
scalable service discovery within socially connected IoT networks.

« Hierarchical Clustering : Hierarchical Clustering builds a layered structure of clusters by either progres-
sively merging similar data points (agglomerative) or recursively splitting larger groups (divisive), often
visualized through dendrograms that depict nested relationships. In SIoT systems, this approach supports
creating trust hierarchies—such as grouping devices first by manufacturer and then further dividing them
by interaction behavior or security profiles—making it valuable for semantic reasoning and ontology struc-
turing. While the method offers interpretable cluster trees and avoids needing a predefined cluster count,
it can be computationally intensive, sensitive to noise and feature scaling, and challenging when deciding
where to “cut” the hierarchy to form final clusters. It shines in domain-driven clustering, trust modeling,
and taxonomy development. Reference!”* introduced a hierarchical clustering-based FL framework (Fed-
CHAR) that identifies similarities among distributed users to improve personalization and robustness.
Their method, though designed for HAR, is adaptable to SIoT, where clustering socially connected objects
can improve collaborative intelligence, fairness, and security in a decentralized setting.

4. Deep learning

o ANN: Artificial Neural Network (ANN) ANNs are the foundational deep learning models inspired by
biological neurons. They consist of multiple interconnected layers of nodes that learn patterns by adjusting
weights during training. In SIoT systems, ANNs can predict trust scores or detect anomalies from features
like transmission rates, authentication logs, and latency patterns. They are flexible for various tasks, easy
to scale, general-purpose model however may require large data for training, less suited for spatial or se-
quential patterns . They are suitable for basic trust estimation, sensor fusion, generic pattern recognition.'”
propose semantic rules for service discovery in SIoT, and evaluate multiple ML classifiers - Decision Tree,
Naive Bayes, KNN, and ANN to predict health services and discover context-aware resources based on
object relationships. ANN, KNN, and DT showed high performance (100% in most test ratios). The model
leveraged object-object and user-object relationships for context-aware service discovery.

o CNN: Convolutional Neural Network (CNN), CNNss are specialized for spatial data and use convolutional
layers to detect local patterns. Though famous for image tasks, they're also effective in analyzing structured
data like time-series sensor outputs. In SIoT, CNNs can detect localized anomalies or behavioral deviations
in network traffic graphs or sensor maps. Excellent at capturing local features, efficient with grid-like data .
However less suited for sequential data without modifications. They are well suited for Visual data analysis,
spatio-temporal trust modeling, anomaly detection in device states. Reference!”® proposed a feature selec-
tion framework for SIoT that integrates TransCNN—a deep learning model combining Transformer and
CNN layers—with the Chaos Game Optimization (CGO) algorithm. TransCNN extracts robust features
from both text and numerical data, while CGO identifies the most relevant ones to boost classification per-
formance. By blending representation learning with heuristic-driven selection, the model adapts to diverse
SIoT tasks. Tested on eight datasets, it surpassed ten leading methods in accuracy, sensitivity, specificity,
feature count, and fitness value, proving its effectiveness in reducing dimensionality while preserving pre-
dictive strength.

« LSTM/RNN: Recurrent Neural Networks (RNNs) and their enhanced variant Long Short-Term Memory
(LSTM) networks are deep learning architectures specifically designed to handle sequential and time-de-
pendent data. Unlike traditional models that treat each input independently, RNNs maintain internal states
that persist across input steps—allowing them to capture temporal dependencies. LSTMs improve upon
standard RNNs by integrating memory cells and gates that help them remember long-term relationships
and prevent issues like vanishing gradients during training. In SIoT systems, these models are ideal for
modeling evolving trust behaviors, forecasting device interactions, or detecting changes in communication
patterns over time. Their strength lies in effectively learning patterns from sequences such as authenti-
cation histories or periodic sensor anomalies. However, training these models can be computationally
intensive, and managing long sequences or tuning parameters may require expertise and careful design.
A hybrid LSTM-RNN model optimized with Lion Optimization is proposed for IoT-based cardiac patient
monitoring, achieving 99.99% accuracy. The system enables real-time analysis of vital signs and enhances
prediction performance through intelligent feature selection!””.

« Autoencoders:Autoencoders Autoencoders learn to compress and reconstruct data, capturing essential
features while filtering noise. They’re powerful for unsupervised anomaly detection in SIoT, flagging devi-
ations in trust scores or sensor data. A well-trained autoencoder reconstructs typical behavior accurately,
while anomalies trigger reconstruction errors. They are unsupervised learning, effective in anomaly detec-
tion and dimensionality reduction . They May fail with highly noisy data, interpretability can be limited
. Suitable for feature compression, trust anomaly detection, privacy-aware representation learning. The
study!”® propose an autoencoder-based malware analysis framework that leverages grayscale and RGB
imagery representations of malware to enhance IoT security in Smart Cities. Their approach investigates
various autoencoder (AE) architectures, including convolutional variational AEs, to classify malware ef-
ficiently. Experiments demonstrate that the method is robust across different input shapes and supports
multi-label classification, making it suitable for complex Smart City IoT environments.

5. Other Emerging ML Technique

o Federated Learning: A decentralized approach to training machine learning models across multiple devices
or nodes without transferring raw data to a central server. Instead, each device trains its own model locally
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and shares only the learned parameters, preserving data privacy. This is particularly powerful in SIoT sys-
tems, where trust evaluation or behavior analysis can be collaboratively learned across edge devices—such
as smart sensors or IoT gateways—without compromising sensitive personal or network-level information.
It addresses both scalability and privacy concerns, though challenges like non-uniform data distribution
and limited computational resources across devices require thoughtful model design and aggregation strat-
egies. To mitigate the high communication burden typically seen in decentralized federated learning (DFL)
systems with numerous interconnected social nodes in Social Internet of Things (SIoT) environments, a
dynamic multi-cluster DFL (DMC-DFL) framework was developed by!'”’, utilizing a Limited Label Propa-
gation Algorithm (LLPA) for adaptive clustering. This communication-optimized approach is tailored for
networks with evolving topologies and features a training workflow comprising local updates, intra-cluster
coordination, and inter-cluster communication. Extensive experiments on four datasets showed that the
proposed method substantially improves communication efficiency and training performance compared
to existing DFL benchmarks.

« Reinforcement Learning: It involves training agents to make sequential decisions by interacting with an
environment and receiving feedback in the form of rewards or penalties. In SIoT contexts, RL can be
used to optimize trust-aware routing, adaptive access control, or autonomous decision-making for devices
that learn from long-term outcomes. For example, a node might learn to avoid untrustworthy neighbors
or reward collaborative behavior over time. RL excels at modeling dynamic interactions but often de-
mands substantial exploration and tuning, making it computationally intensive and occasionally unstable
in large, noisy environments. Reference'>® devised an edge-centric service recommendation framework
for Social IoT (SIoT) systems, leveraging Multi-Agent Deep Reinforcement Learning (MADRL) to opti-
mize friendship path routing and service discovery. The system incorporates decentralized edge caching
and cooperative multi-agent learning to enable scalable, low-latency, and context-aware recommendations.
Experimental results reveal that the framework outperforms existing approaches in accuracy, operational
efficiency, and adaptability across dynamic SIoT environments.

o Swarm Intelligence: Draws inspiration from collective behavior in nature—like ant colonies or bird flocks—
to develop distributed problem-solving systems. In SIoT, swarm-based algorithms can be used for decen-
tralized trust computation, resilient network formation, and resource-aware task allocation where indi-
vidual devices act locally but contribute to a coherent global strategy. The strength of swarm intelligence
lies in its adaptability, fault tolerance, and scalability, especially in unpredictable or resource-constrained
conditions. However, designing effective coordination mechanisms and ensuring convergence across di-
verse agents can pose challenges as system complexity increases. Reference!®® proposed a swarm intelli-
gence-driven method for feature selection in SIoT systems by integrating quantum-inspired enhancements
into the Artificial Hummingbird Algorithm (AHA). The upgraded Quantum AHA (QAHA) achieved a
more effective exploration-exploitation trade-off and surpassed eight competing metaheuristic algorithms
in terms of accuracy and dimensionality reduction across benchmark and real-world SIoT datasets.

Recent studies leveraging AIML in IoT & SloT environments (2023-2025)

Federated learning approaches have been explored to preserve user privacy while training models across
distributed SIoT devices.!®! proposed and implemented SIDS, a trust-aware federated intrusion detection system
for SIoT. They introduced a GAN-based poisoning attack to demonstrate federated learning vulnerabilities and
validated their approach using real-world datasets. This study implements a federated hybrid deep learning
framework tailored for distributed IoT edge environments, preserving privacy and improving intrusion
detection accuracy through FHDBN and optimization techniques!®?. Deep learning-based frameworks have
been adopted for profile inference and malicious node detection. Reference!'®> RIOT-ML provides an open-
source toolkit that enables the deployment, evaluation, and secure updating of TinyML models on low-power
IoT devices, contributing to real-world applications of AI/ML in resource-constrained environments. A deep
learning-based framework called EITM was proposed and implemented for effective node identification in SIoT
networks, which employs node embedding techniques and LSTM models to select influential nodes'!. The
method was evaluated using real-world SmartSantander datasets and compared against conventional baselines
using multiple performance metrics.

Security techniques

This section addresses RQ7, by reviewing various security techniques employed in SIoT systems, including
data protection mechanisms, blockchain-based solutions, access control models, trust management strategies,
privacy-preserving methods, and secure communication protocols. These techniques form the foundational
components for securing the Social Internet of Things (SIoT), as supported by the cited literature. A detailed
comparison of evaluation strategies is presented in Table 13, while a comprehensive review of the security
techniques is summarized in Table 14.

Data security mechanisms

This subsection presents a review of existing security mechanisms namely, authentication and authorization,
encryption techniques, and methods ensuring data integrity and confidentiality as referenced in the cited
literature.

1. Authentication and Authorization Authentication verifies the identity of a device or user (e.g., a smart lock
recognizing the owner’s phone). Authorization determines what actions the authenticated entity is allowed to
perform (e.g., only the homeowner can unlock the door, while guests are restricted). In the context of secure
device access for IoT-based smart home environments, Ref."’! introduce an authentication and key agree-
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Ref. | Domain Eval. type Tools used Lang. Metrics Result
185 | Smart Grid Prototype Raspberry Pi 4B, Flask Python 3.11 | Auth. time (ms) ~46 ms @256-bit; scales to 2048-bit
% &e;ll}t{};)care Simulation | Hyperledger Caliper, Solidity | Solidity (Eth) | Throughput, cost, utilization Secure, efficient; fixed signature size
= Social IoT éimulatiorll + Python stack (SciPy, SKO, etc.) | Python Accuracy, latency, trust, privacy 9% acc., 280 Tx/s, 2.25 latency, high trust/
omparative privacy scores
186 | Healthcare Simulation | Smart Contracts, IPES, Solidity Doc. verify time (2.2s), security, Fast, decentralized, tamper-proof verification
Ethereum/Polygon automation
Hyperledger Fabric/Besu, L Access latency, trust accuracy, cert | <200ms avg. access; fast onboarding,
187
Access Control Prototype CouchDB, AWS Solidity/Go verify time RSA+KYC used
188 | Group Decision Simulation + |\ p . 4p (custom) Not specified | GCD, ICD, preference plots GCD 2 0.901 in 2 rounds; outperforms
Case Study baselines
189 | Cloud Offloading Conceptual SSIM, C2C, RMSE, diff. ops Python, Reduction ratio, recon. accuracy High data savings; generalizable across [oT
projection MATLAB types
. Raspberry Pi-2, Mbed OS, MPT, TPT, DTLS overhead, Scales linearly; TPT = 2.5s; ~3.8MB/thread;
190
Gateway Security | Real Testbed Wireshark ¢ Power low power overhead; blocks illegal clients
Table 13. Summary of evaluation of security techniques in SIoT literature.
Ref. | Domain Purpose Threat tackled Core tech Proposed method | Strengths Limitations Future work
. . Optimize for IoT;
185 . 1 | Quantum-safe Replay, spoofing, RSA + One-Time Session-based Quantum-safe, R i
Smart Grid auth for meters quantum threats Pad dynamic keying prevents spoofing Key sync, scaling limits enable distributed
support
Quantum threats, . . . Lo Combine with
2% Quantum-safe . Blockchain, Three-phase hybrid | Strong privacy, Overhead, limited
Healthcare EHR encryption tampering, key ECDSA, Dilithium | encryption quantum safety scalability Al/loT for
misuse efficiency
. Access control Tampering, privacy | Blockchain, Smart | Relationship-based | Granular access, Improve dynamic
25
Social loT via social trust leaks Contracts access rules trust-aware sharing Latency, complex contracts trust updates
186 | Healthcare EHR auth and Iz?lﬂgz?i%’e d Blockchain, SBT, SBT-based selective SZISit(iggtf}] rivac SBTs non-transferable, Scale and apply
validation aceess IPFS, DL disclosure decentrali)za[:tion ¥ key loss cross-industry
187 Is_;gil; ‘l}ie;a}ll— tgﬁzABAC Spoofing, trust Fabric, Besu, smart | Modular contracts, | Supports zero-trust, | Setup complexity, Add edge AT FL,
E yorie abuse contracts, KYC trust scoring adaptive control recalibration delay DID features
nergy blockchain
188 MAGDM fgia;c: s via Incomplete trust, SNA, trust network, | Trust feedback via fggtigiorf:;;?uirl d Needs accurate input, high QESYI;? re‘iztale
Systems us v low agreement confidence model | mediator uracys w compute > 1arg
trust proof cases
189 | IoT Cloud | Reduce cloud Latency, energy, Change detection, | Only send when Less data, retains Threshold tuning, depends | Extend to other
Offloading | data transfer load | bandwidth relational encoding | change detected utility on cloud decode data types
. Monolithic,
Smart | Secure MQTT- | EVeSdrOPPINg, I ppygy 5 gMs, | concurrent SecGw | ENCrypted SN-GW ‘ Explore non-GW
190 . MITM, replay, N N . hop; resilient, Extra memory, slight delay; | MQTT-SN
Gateway SN gateway using P multithreading, with DTLS + Jabl. d o /RMS . d
Security DTLS spoofing, rogue ClientList mutual auth via scalable, supports needs pre-config security to reduce
auth, DoS KMS multiplexing compute load

Table 14. Review of security techniques in SIoT.

ment scheme based on Modified Honey Encryption and Elliptic Curve Cryptography. The scheme ensures
authorized access through session key negotiation and identity verification, while resisting various attacks
such as replay, eavesdropping, and impersonation. A smart delegation mechanism was proposed to enhance
authorization in SIoT by selecting delegatees based on social links, delegator behavior, and history, reduc-
ing overhead while maintaining flexibility**. The authors propose a novel quantum-resistant authentication
system for smart meters in smart grids, using a hybrid RSA with One-Time Pad (OTP) approach. Unlike
traditional RSA, their method changes the encryption key modulus (n;) for every session and never discloses
it, achieving dynamic authentication as required by the EU NIS2 directive. They introduce an efficient key
exchange protocol based on transmitting only the difference (An;) between session keys, ensuring absolute
security even against quantum attacks. The system was implemented and tested on a Raspberry Pi, showing
practical performance (~50 ms) for 256-bit security, suitable for low-power IoT devices '%.

Encryption:It is the process of converting readable data (plaintext) into an unreadable format (ciphertext) to
protect it from unauthorized access. Only someone with the correct decryption key can convert the cipher-
text back into plaintext.?® developed a blockchain-based hybrid encryption scheme combining ECDSA and
Dilithium to enhance data security and resist quantum attacks, offering valuable encryption mechanisms for
SIoT systems.

Data integrity and confidentiality These are pivotal concepts in SIoT to ensure that transmitted or stored
data remains accurate, consistent, and unaltered, and to guarantee that sensitive information is kept pri-
vate and accessible only to authorized devices or users. In the event that a device receives tampered data, it
might make erroneous decisions, such as mistakenly unlocking a smart door. Reference!®? proposed a block-
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chain-based security framework that integrates decentralization, smart contracts, and federated learning. It
is designed to offer a tamper-proof, scalable, and low-latency solution for vehicular networks, focusing on
data confidentiality, integrity and attack resilience in the Internet of Vehicles (IoVT). The authors® present
SecureSIoTChain, a blockchain-based security framework for the Social Internet of Things (SIoT). It com-
bines Graph Neural Networks (GNN) for dynamic relationship inference with Relationship-Elliptic Curve
Digital Signature Algorithm (R-ECDSA) for secure device authentication and communication. This frame-
work ensures data confidentiality, integrity, and anomaly detection, achieving high performance with 95%
accuracy and 96% precision. Simulations demonstrate its superiority in throughput, latency, and security
metrics.

Blockchain based mechanism

This subsection reviews blockchain-based mechanisms, highlighting decentralization for distributed control,
immutable ledgers for tamper-proof records, and smart contracts for automated rule enforcement, as discussed
in existing literature.

1. Decentralization Decentralization means removing dependency on a single centralized entity by distrib-
uting control and decision making among several nodes.This allows device to communicate independent-
ly without supervision. Blockchain technology facilitate decentralization by providing secure data sharing,
automated smart contracts, and establishing trust without the need for central authority. It is necessary to
achieve decentralization in SIoT by leveraging blockchain technology in order to avoid single point failure
and performance bottlneck faced in centralised system. As described in'*%, have introduced a decentral-
ized blockchain-based solution that incorporates a censorship-resistant mechanism, ensuring unrestricted
data flow from sensors to the blockchain and from the blockchain to actuators. The study” evaluated three
trust management models (centralized, distributed, and blockchain-based), demonstrating the advantages
of blockchain-based trust management. It provided an in-depth analysis of IoT classifications (IoMT, IIoT,
IoV, and SIoT), requirements, challenges, and applications of IoT. Reference!** Researchers have introduced
a blockchain-based consensus protocol for securing IoT networks. Using Ethereum as a decentralized plat-
form, they validated their protocol through simulations. This protocol enables IoT devices to participate in
consensus, validate transactions, and maintain the blockchain, ensuring network security even in the pres-
ence of malicious devices. The protocol operates in stages, including pre-prepare, prepare, and commit, to
achieve secure agreement.

2. Immutable Ledger

Immutable ledger offers a great solution as once data is recorded it cannot be altered, this can be benicial in SIoT
environment for securing transactional records, device behaviour logs, and access control events. A block-
chain-based solution is developed, leveraging immutability, transparency, and decentralization, combined
with soulbound tokens, to create a tamper-proof and privacy-preserving identity verification system. A soul-
bound tokens (SBTs), a non-transferable application of blockchain technology, on the Ethereum Polygon net-
work, combined with cloud computing and IPFS for off-chain storage of medical documents. This approach
enables secure, decentralized, and efficient verification of medical records, surpassing traditional NFT-based
methods and offering an autonomous alternative to manual or centralized verification processes'®.This sys-
tem has potential applications in integration with AL biometrics, IoT, and Social IoT (SIoT), offering a robust
and secure identity management framework. This study'®> proposes a novel approach integrating Al-driven
task distribution with a decentralized mechanism for task assignment and validation, leveraging the Proof
of Authority (POA) consensus mechanism. This POA-blockchain-based system, combined with Cloud In-
ternet of Things (CIIoT), addresses key challenges such as task distribution, resource utilization, transaction
processing, and scalability. The proposed system aims to minimize resource waste, improve energy efficiency
through Dynamic Voltage and Frequency Scaling (DVFS), reduce operational costs and carbon footprint, and
enhance overall efficiency.

3. Smart contract

Smart contract refers to self executing a code when certain condition are met without human intervention.
Example dispensing a chocolate bar on a vendeing machine. A novel Sybil detection and prevention method,
SybilPSIoT has been developed for SIoT environmet, integrating web of trust, signed social networks, smart
contracts and game theory to effectively mitigate Sybil attacks®®. They have!®proposed a scalabel trust model
SCoTMan, for Social Internet of Things environment that integrates smart contract on Hyperledger fabric to
handle both trust computations such as direct and direct , while keeping in mind real world constraints.

Access control mechanism

This subsection reviews existing access control mechanisms, including Role-Based Control (RBC) ensuring
access based on predefined roles, Attribute-Based Control (ABC) ensuring fine-grained access through user
attributes, and social contextual access control ensuring permissions based on social relationships and context,
as supported by the cited literature.
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1. Role Based Access control: Role based access control is a security mechanism that restricts access based on
roles( Admin, editor, user, viewers ) assigned to individual users. In their study'®® they proposed an efficient
and secure data processing framework for role based access control (RBAC).

2. Attribute Based Access Control: In attribute based accces control mechanism, the decisions are made on the
combination of attributes such as users, resouces, actions, environment/context. This'®” study, implements a
dynamic (time-based) attribute-based access control(ABAC) framework on a private Ethereum blockchain,
demonstrating that while initial deployment of four smart contract is costlier than traditional access control
lists(ACLs), the ABAC approach proves more gas-efficient for policy updates and attribute management,
offering scalabale and cost-effective access control for growing smart city infrastructure. The authors!*®
proposed a dynamic attribute-based access control mechanism , replacing static mechanisms (MAC, DAC,
RBAC, and ABAC) with a more flexible and real-time capable solution for device monitoring and access
management. They'®” propose a dynamic attribute-based access control (ABAC) model using a hybrid
blockchain architecture (Hyperledger Fabric + Besu) for smart home energy systems. The system integrates
KYC verification, smart contracts, and real-time trust recalibration to securely manage device access, prevent
unauthorized interactions, and support adaptive policy enforcement in line with zero-trust principles.

3. Social contextual Access Control

Access decisions are based on dynamic, relationship-driven, and behavior-sensitive information, moving be-
yond traditional static rules such as Role-Based Access Control (RBAC) and Attribute-Based Access Control
(ABAC). The proposed model utilizes a deep learning-based approach, leveraging Graph Neural Networks
(GNNs) and attention mechanisms to make context-aware decisions grounded in both users’ social rela-
tionships and individual preferences'®. This method enables personalized and adaptive access control in
Social Internet of Things (SIoT) networks, making it well-suited to environments where user behavior and
device relationships evolve over time. The CARAC model provides adaptive and fine-grained access control
by combining contextual data, mathematical weighting, and fuzzy logic within a game-theoretic framework.
This approach enhances safety in high-risk scenarios, outperforming ABAC with minimal impact on perfor-
mance?®. In this work?®!, DSA-Block model is proposed as a secure, decentralized access control framework
for IoT systems, integrating blockchain and optimization techniques to enable trust-based access delegation
and privacy-preserving data sharing. It employs Hyperledger Fabric as the private blockchain platform, lev-
eraging Trusted PBFT for consensus among trusted nodes and HECC for lightweight cryptographic opera-
tions. Access requests are filtered using SHA-256 hashing, while Shannon Entropy supports dynamic trust
evaluation and user revocation. The model ensures data privacy through Laplace-based differential privacy
and selects optimal edge node delegators using the Rock Hyraxes Swarm Optimization (RHSO) algorithm,
factoring in trust, energy, and load. The IoT environment and system performance are simulated using NS-3
(v3.26), demonstrating a scalable, attack-resistant, and privacy-aware architecture for secure data sharing and
access control.

Trust management

This section reviews existing trust management approaches, including reputation-based trust, which evaluates
trust through past behavior, social trust networks that leverage social relationships, trust propagation that
enables transitive trust, hybrid trust that combines multiple sources, and decentralized trust that establishes
trust without a central authority, as discussed in the literature.

1. Reputation Based System In trust management, the reputation based system is a method for assessing and
measuring the trustworthiness of an enity such as device, user, or a service, based on past interactions and
feedback from others in that network. It plays an important role espcially in decentralized environment
over centralized authority. To address the issue when VPN collects data through SIoT devices, delivered
content might be tampered inorder to degrade QoS and user experience to tackle researchers implement-
ed VMGuard, a four-layer reputation-based incentive framework, to defend against data poisoning attacks
in the vehicular metaverse. The framework assesses the trust worthiness of participating Social Internet of
Things (SIoT) devices, ensuring reliable data collection and service delivery”®

2. Social Trust Network By integrating fuzzy logic, trust modeling, network theory, and optimization tech-
niques, this study?®? introduces a trust-based group decision model that leverages discrete Z-numbers to
enhance decision-making in social trust networks.

3. Trust propagation

Trust propagation refers to indirect trust between entities without direct relationships by leveraging trust rela-
tionships along network paths. Researchers®®® have developed SISR, a hybrid trust-aware recommendation
system that combines explicit and implicit trust models with latent feature mining. By utilizing trust propaga-
tion, SISR extends trust beyond direct relationships, enhancing recommendation accuracy even with sparse
trust data. By leveraging concepts from Social Network Analysis (SNA), fuzzy logic, opinion dynamics, and
decision theory, the authors!'®® proposed a consensus-reaching model that incorporates a hybrid dynamic
trust network along with a trust propagation and aggregation mechanism. These mechanisms ensure that
even when decision makers lack direct relationships, trust can still be effectively inferred and aggregated,
which is critical in sparse or incomplete networks. The proposed model facilitates reliable trust assessment
through the integration of both static social ties and dynamic preference similarities.

Scientific Reports |

(2025) 15:40190 | https://doi.org/10.1038/541598-025-23865-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

4. Hybrid Trust

Hybrid trust management means combining two or more different approaches to evaluate trust between devices
in a network especially in Social Internet of Things. To address the challenge of trust evaluation in a hetero-
geneous Social Internet of Things (SIoT) environment, the authors in?** propose a hybrid trust management
framework tailored for multi-service SIoT networks. They have considered graph based trust, interaction
based trust and human plus device intelligence.The paper introduced AI-SIoT, a hybrid service architecture
that integrates heterogeneous IoT devices in smart cities using semantic web technologies and artificial intelli-
gence. By enabling semantic interoperability and Al-based decision-making, the system supports trust-aware

service provisioning across diverse environments?%.

5. Decentralized Trust Decentralized trust is a trust management model where trust relationships are estab-
lished and maintained without relying on a single central authority. Instead, trust decisions are made collec-
tively or based on local information by nodes or entities within the network.This’paper conducts an in-depth
review of blockchain-based decentralized trust management systems across four IoT classes: IoMT, IIoT, IoV,
and SIoT.

Privacy preserving technique

In this subsection, we discuss three widely adopted privacy preseving techniques such as Differential
privacy(used in Healthcare, smarthomes, or social platforms), Privacy preseving data sharing( using Blockchain,
homomorphic encryption, or secure APIs) , and minimization(any sensor netowork). These methods applies
across the domians are not tied to specific technology. These methods are foundational and versatile, forming
core of many SIoT privacy framework. Besides these there are other advanced methods, such as?®® Zero-
Knowledge Proofs(ZKPs)...etc.

1. Differential privacy

This Differential privacy is a mathematical technique that protects individual privacy in datasets while enabling
analysis, ensuring that the outcome remains roughly the same whether or not a single individual’s data is
included. It's widely applied in Data Science, Al, and Social Internet of Things (SIoT) to preserve privacy.
The proposed®”” study introduces a solution for data protection, combining Local Differential Privacy (LDP)
and Randomized Response (RR) at the user level, with privacy-aware computation techniques (HMM and
obfuscation) at the central server level. An additional layer of differential privacy provides extra security. This
approach is well-suited for safeguarding data in smart home and smart environment applications. Reference’!
Proposed a differential privacy preserving solution called as DPSmartCity , an SDN integrated , dynamic
privacy preserving mechanism for safe guarding sensitive data in smart city IoT environment.

2. Annonimization Anonymization it is a process of removing identifying detials from data to prevent indivi-
uals from being recognized, it is commonly used to protect privacy in dataset, ensuring personal information
cannot be traced back to the specific people. The authors*® conducted a comprehensive survey on dei-
dentification, anonymization and psedonymization techniques, evaluating them against smart city specific
privacy challenges. When IoT devices communicate with each other over different blockchain networks, it’s
difficult to be compatible and private. This article?’® proposed a privacy protection protocol, using two main
techniques, such as Groth16 Zero-knowledge proof, coin mixing technology and virtual external address
mapping via generation function, a smart method to move assests across blockchain without revealing their
identity.

3. Privacy preserving data sharing

The privacy preserving data sharing is a process that allows data to be shared and analaysed without compramis-
ing on its privacy. In**®, a PP-SVM framework is presented for a privacy-preserving industrial IoT data sharing
and analysis, leveraging blockchain-based security and SVM-based machine learning techniques to protect
data privacy. The BP3-MTS blockchain-based solution enables secure and private error data sharing for mar-
itime transportation. Advanced sensor-equipped vessels dynamically share GNSS error data with common
vessels, allowing them to correct their positioning. This decentralized approach leverages zk-SNARKs, Merkle

trees, and Ethereum-based smart contracts to ensure privacy, transparency, and transaction fairness®'°.

4. Data minimization

A privacy preserving princple, in which data collecting, processing and storing only the minimum amount of
personal or sensitive data that is required to achieve a specific purpose. To reduce the amount of data trans-
mitted from IoT devices to the cloud, Ref.!® proposed a generalized data transmission reduction model. Their
approach leverages change detection techniques such as SSIM (for image data), Cloud-to-Cloud distance (for
LiDAR point clouds), and absolute difference (for sensor values), along with mathematical formalization to
decide when and what data should be transmitted.

Scientific Reports |

(2025) 15:40190 | https://doi.org/10.1038/541598-025-23865-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

5. Instruction Detection Intrusion detection means identifying malicious activities or unauthorised access
attempts within IoT network. To detect known and unknown attacks, minimise false positive, to enable early
and accurate detection of suspicious traffic. To address the security challenges arising from cyberattacks on
vulnerable IoT devices, the authors?!! proposed a framework named HybridChain-IDS. This framework of-
fers an intelligent and privacy-preserving security solution for edge-assisted IoT environments by integrating
secure authentication and access control, employing advanced bi-level intrusion detection to reduce false
alarms, and enabling real-time threat response through the use of blockchain and graph-based analysis.

Secure communication protocols

In this subsection, we discuss secure communication protocols such as MQTT over SSL/TLS and DTLS over
UDP are widely used protocols in IoT and SIoT systems for secure communication between IoT devices and
servers using the MQTT protocol. while these protocols form a foundation for secure communication in SIoT
systems. They ensure layered encryption , mutual authentication, and resilience against network level threats
such as spoofing, eavesdropping, and DoS attack.

1. MQTT with SSL/TLS, DTLS Instead of TLS/DTLS, resource heavy proptocols for contrained IoT devic-
es the authors?!2 proposed an Ethereum based consortium blockchchain (decentralized brokers), makes
MQTT secure and scalabale for real world supply chain by integrating blockchain based trust, OTP based
authentication, smart contract automation, while keeping the system lightweight for constrained IoT devic-
es.

2. Datagram transport layer security over UDP

DTLS provides security similar to TLS but operates over UDP, making it ideal for low latency applicaton in SIoT.
It safegaurds data exchanges through encryption and authentication while considering constrained networks.
The authors'® proposed a security enhanced MQTT-SN gateway called as SecGW. This proposed model is a
mutithreaded, DTLS-secured gateway which is designed to protect sensor node to gateway hop in MQTT-SN
architecture.

3. COAP Constrained Application protocol with DTLS

COAP( Constrainted Application Protocol) is a web-based, light weight protocol designed for contrained de-
vices and networks for IoT devices, allowing efficient communitication protocol over UDP. Combined with
DTLS( Datagram Transport Layer Security) it ensures secure bidirectional communication in SIoT environ-
ments, protecting against eavesdropping and unauthorized access. The LightCert4IoT model, originally pro-
posed for’! securing IoT communications via CoAP over DTLS, can also be extended to Social IoT( SIoT) en-
vironments. SIoT, which enables trust based interactions among IoT devices, can benifit from LightCert4IoT’s
decentralized authentication mechanism. By eliminating traditional PKI/CA dependencies and leveraging
Ethereum based smart contracts for self-signed certificates, SIoT networks can enhance device trust relation-
ships, reduce energy consumption, and secure large-scale IoT deployments while maintaining efficient data.

Tools and evaluation metrics in IoT/SloT environments

This section addresses RQ8, focusing on tools and simulation environments commonly used to model, simulate,
and evaluate systems within both IoT and SIoT contexts. We review blockchain development tools, AI/ML
frameworks, trust, privacy, and security tools, simulation and emulation environments, middleware platforms,
as well as ontologies and semantic technologies. Additionally, standard evaluation metrics and validation
parameters adopted in recent studies are summarized to highlight common performance assessment strategies.
Table 15 presents a summary of tool usage across multiple studies, while Table 16 outlines the evaluation metrics
and validation approaches used in recent literature.

Tools

In this subsection, we provide a comprehensive overview of various categories of tools that support the
development and deployment of IoT and Social Internet of Things (SIoT) systems. These tools play a crucial
role in simulating network behaviors, enabling intelligent processing, ensuring secure communication, and
managing device interoperability across heterogeneous environments. Each of these tool categories contributes
to solving specific challenges in IoT and SIoT systems, and the choice of tools largely depends on the application
domain, scalability requirements, device capabilities, and the intended use-case scenario. Besides there are other
tools too but these are commonly used.

1. Simulation and Emulation Tools—These tools are essential for testing IoT/SIoT architectures, communi-
cation protocols, trust models, and network behaviors under different conditions without deploying them
in real-world environments. They help validate performance, scalability, and security aspects before actual
implementation.

« Cooja(Contiki- NG): A network simulator designed to model low-power wireless protocols, mobility
patterns, and trust-based routing mechanisms, enabling the evaluation of IoT protocols in resource-con-
strained environments and Social IoT (SIoT) trust frameworks. They’! developed a blockchain-based au-
thentication mechanism called LightCert4IoT for CoOAP/DTLS in IoT environments, leveraging a custom
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Tool category/tool name ‘ 224 ‘ 146 ‘ 91 ‘ 222 ‘ 220 ‘ 218 ‘ 215 ‘ 25 ‘ 201 ‘ 138

Blockchain development tools

Ganache v v
Truffle v
Remix IDE v v
Hardhat
MetaMask v v
Web3.js v
AI/ML tools
TensorFlow Lite / Micro v

Federated Learning (e.g., Flower) v v

Scikit-learn / PyTorch v

Trust, privacy, and security tools

Hyperledger Fabric / Besu 4 v

uTrust
TruSDN
OpenABE

Simulation and emulation tools
Cooja (Contiki-NG) v
NS-3 v

iFogSim / iFogSim2 v
YAFS
MATLAB / Simulink v v

Middleware and IoT platforms
FIWARE

Node-RED

Kaa IoT Platform

Eclipse Ditto v

Mainflux

Ontologies and semantic tools

SSN

SAREF v
ToT-Lite

Protégé v

Table 15. Tool usage across multiple references.

certificate scheme to replace traditional PKI/CA dependency. Their implementation used the Ethereum
blockchain (Sepolia testnet) to store device certificates and public keys through smart contracts coded
in Solidity, deployed via Remix IDE and managed using MetaMask for secure transaction handling. The
Web3 module within their Lightweight Registration Agent (LRA) enabled communication between IoT
devices and the blockchain for certificate validation. Performance evaluation using the Cooja-Contiki sim-
ulator revealed that LightCert4IoT significantly outperformed conventional X.509-based systems in terms
of DTLS handshake time, energy efficiency, and memory usage, highlighting its lightweight and scalable
design for resource-constrained IoT settings. This?® work proposes a Blockchain-based Federated Learn-
ing (BCFL) system deployed across Edge-Fog-Cloud layers to enable secure, decentralized ECG anomaly
detection. Using Ganache for smart contract deployment and iFogSim2 for simulation, it compares place-
ment strategies (edge, fog, cloud) and demonstrates that edge deployment achieves superior performance
in latency, cost, and energy. The system uses autoencoder models within a Flower-based FL setup, integrat-
ing smart contracts to maintain trust and privacy without sharing raw data.

« CCNSim:CCNSim: An artificial intelligence enabled classification, clustering and navigation simulator for
Social Internet of Things

o NS-3:A network simulator designed to model low-power wireless protocols, mobility patterns, and trust-
based routing mechanisms, enabling the evaluation of IoT protocols in resource-constrained environments
IoT/ (SIoT) Social trust frameworks.

« iFogSim /iFogSim2: A fog/edge simulator that emulates fog-cloud architectures while incorporating la-
tency, trust, and access control models, enabling the simulation of resource management strategies and
latency-sensitive IoT or SIoT deployments.

A smart building resource optimization model is designed using real-time data from IoT devices like CO2
sensors, CCTV cameras, and light sensors, implemented within a Fog-Cloud architecture and simulated
via iFogSim2. The setup is evaluated on a MacBook Pro (2.3 GHz, 8-core Intel Core 19, 16 GB RAM) under
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Ref. | Domain Eval. type | Dataset Tools used Lang. Metrics Result
Smart . . . . . . Fog: 91.38% lower latency, 38.95% less
213
Building Simulation | iFogSim2 traces iFogSim2 Java Energy, Latency, BW BW than Cloud
. 0, 1
25 SIoT Security | Simulation 16 d?vs, 10 rel., 21 GNN, Blockchain, SciPy stack | Python Acc., Prec., Trust, GNN: ?5 % acc., 280 Tx/s, 2.2s delay, high
services Latency, Thrpt. sec./priv. scores
216 gﬁ[}hcare Testbed WUSTL-EHMS (16K) | Scikit-learn, ARGUS, Streamlit | Python Acc., Prec.,, Recall, F1 | VAE: 91.6% acc.; 8 vitals in real-time GUI
201 glouc!—loT Simulation | Synthetic traffic HECC, HL Fabric, PBET, DB Python, C++ | Acc,, Latency, Thrpt. | 94% acc., low latency, 80 kb/s throughput
ecurity RHSO
Simulation | BoT-IoT, TON-IoT, FL: up to 96.5% acc., reduced delay/
113 > , s
Smart Home (FL) MQTTset TensorFlow, Keras, gRPC, TLS | Python Acc,, ROC-AUG, F1 overhead
. . RPi 3, IR Cam, YOLOV5n,
s Smart Sim. + Custom IR images (13 Do > 7 Prec., Recall, mAP@0.5 = 97.1%, Prec. = 91.5%, Recall
105 £ > 5 s >
Kitchen IoT Testbed classes, 1518 aug.) gtilgit;’ Firebase, Android Python, Java mAP®@0.5, F1 =94.6%, Cost = 224
68 SIoT Security | Simulation SWIM + Brightkite Custom Python simulation Python AUG, FP, EN, Time, ngher AUC’ lgwer FP/EN vs. SybilSCAR;
(synthetic + real) Memory similar time; slightly more memory
21 Smart City Simulation CIC-IoT (105 devices, | Ethereum (Go-Ethereum, Python, Accuracy, Processing | Acc. 98.4%, up to 99.8% (Spoofing),
Security 33 attacks, 7 classes) Ganache), PySpark, NN NodeJS time, Throughput 0.389s, 4500 tx/s
2 0T / SEaa$ Sim. & Synthetic IoT sensing | Ethereum (SCs), Ganache, Solidity, Latency, Throughput, Lat. 1-2s, Thru. 15-20 tx/s, Gas 21k-40k,
Prototype | data Truffle, Remix Python/JS Gas cost, Scalability | scalable, secure
. . CICIoT2023 (105 Acc., Prec., Rec. Train 88.4%, Test 88.2%, Prec. 0.89, Rec.
35 , » » s § §
IDS for IoT | Simulation devices, 33 attacks) ANN + FL (FedAvg) + SHAP | Python FI, Loss 0.68, F1 0.70

Table 16. Performance review.

fixed and scalable scenarios, with fixed deployments featuring 7 cameras, 17 CO2 sensors, and 22 light
sensors, while scalable scenarios range device counts from 20 to 200. Device specifications—such as MIPS,
RAM, and network parameters—are drawn from manufacturers’ datasheets. Performance is assessed using
metrics like energy consumption, latency, and bandwidth utilization, with fog-based configurations in
the scalable scenario showing notable improvements: up to 4.35% in energy efficiency, 91.38% in latency
reduction, and 38.95% in reduced bandwidth usage®!®.

YAFS:An event-driven simulator that models dynamic edge/fog deployments, node mobility, and sys-
tem-level failures, supporting the evaluation of resilience, mobility scenarios, and application behavior in
IoT /SIoT environments.

MATLAB/Simulink:

A custom modeling tool designed to support mobility modeling, behavioral logic design, and the simula-
tion of trust algorithms, enabling the prototyping of trust frameworks, integration of AI/ML techniques,
and exploration of advanced mobility patterns in IoT. Reference!* utilized MATLAB R2016a as the core
simulation platform to develop and assess their blockchain-enabled digital twin vehicular edge network
(DTVEN). The study evaluated performance across various strategies by analyzing task offloading effi-
ciency, latency, energy consumption, and overall network cost. Central to their approach was an Improved
Cuckoo Algorithm (ICA) for optimizing task offloading ratios, paired with a greedy strategy to enhance
blockchain consensus efficiency. The ICA incorporated sophisticated metaheuristic refinements, including
a Levy flight-driven global search, cosine-decreasing discovery probability, Latin Hypercube Sampling for
initializing the population, and a hybridization with Golden Sine Algorithm (GSA) and Particle Swarm
Optimization (PSO) to boost convergence speed and solution precision. All components were custom-de-
veloped and executed within MATLAB, independent of any third-party machine learning or blockchain
simulation tools.

2. Middleware and IoT Platforms—Middleware solutions and platforms provide a layer of abstraction between
IoT devices and applications, facilitating device integration, data management, interoperability, and service
orchestration. These platforms often offer built-in support for device registration, communication protocols,
rule engines, and analytics.

FIRWARE: An open-source IoT middleware platform offering APIs, device management capabilities, and
data processing functions, tailored for smart city applications and modular, scalable IoT deployments.
The framework establishes secure authentication for Digital Twin (DT) ecosystems by employing Tiny-
JAMBU, a lightweight authenticated encryption algorithm, to ensure both confidentiality and device legit-
imacy during communication. It integrates Eclipse Ditto as the DT platform, utilizing MQTT over TLS/
SSL to facilitate secure, bidirectional messaging. Authentication is strictly enforced before any interaction
occurs, requiring that the decrypted cipher corresponds to the designated ThingID of the Digital Twin and
that the computed encryption tag matches the one received, ensuring precise and reliable identity verifica-
tion?!4,

In this work?!"%, a Digital Twin Network (DTN) architecture is introduced for Industrial IoT (IIoT) envi-
ronments, leveraging Eclipse Hono to integrate heterogeneous IoT devices and Eclipse Ditto for managing
digital twin entities. The architecture supports real-time synchronization of device states and delivers intel-
ligent services such as predictive maintenance, dynamic resource allocation, security oversight, energy op-
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timization, and adaptive QoS/QoE management. A case study, conducted using the IEEE 802.15.4e TSCH
protocol, demonstrates the DTN’s effectiveness in resource scheduling, where policies dynamically adjust
in response to changing network conditions through simulation.

o Node-RED: “A flow-based development tool that enables visual programming for interconnecting devices,
APIs, and services, supporting rapid prototyping, real-time edge data processing, and streamlined orches-
tration of lightweight SIoT applications.

o Kaa IoT Platform:An IoT middleware platform offering comprehensive device lifecycle management,
seamless data acquisition, and analytics capabilities—tailored for industrial IoT, healthcare applications,
and efficient fleet and sensor network operations

« Ecdlipse Ditto: A digital twin framework that oversees virtual replicas of IoT devices, ensuring real-time
synchronization of physical and virtual states—empowering smart factory automation, remote monitor-
ing, and twin-driven control in Social IoT (SIoT) deployments.

o Mainflux :An Industrial IoT platform that provides device management, messaging infrastructure, and
robust data security within a microservices architecture—optimized for scalable, secure Social IoT (SIoT)
deployments in industrial environments.

3. AI/ML Toolkits for IoT/SIoT Intelligence—The integration of artificial intelligence and machine learning en-
ables IoT/SIoT systems to perform intelligent tasks such as anomaly detection, context-aware decision-mak-
ing, pattern recognition, and predictive maintenance. These toolkits support training, evaluation, and de-
ployment of AI models either on the cloud, edge, or directly on constrained devices.

An Al-powered intrusion detection system (IDS) for the Internet of Medical Things (IoMT) is proposed to
detect man-in-the-middle (MITM) and spoofing attacks by integrating a secure IoT-edge architecture with
machine learning and deep learning techniques. The IDS leverages real-time biometric and network flow data
from the WUSTL-EHMS-2020 testbed, with preprocessing done via the ARGUS tool to create a balanced da-
taset. Eight classification models, including Variational Autoencoders (VAEs), Feedforward Neural Networks
(FNN), XGBoost, Light GBM, Random Forest, SVM, and Logistic Regression, were evaluated using accuracy,
precision, recall, and F1-score as performance metrics—VAE achieving the highest accuracy at 91.61%. The
system was developed using Python libraries such as Pandas, NumPy, Scikit-learn, and Matplotlib, and de-
ployed through a Streamlit-based frontend supporting real-time prediction from eight vital parameters?'°.

This?!” study presents a federated intrusion detection system (IDS) that leverages a shallow artificial neural
network (ANN) as the global model, collaboratively trained across four virtual clients using the Flower fed-
erated learning framework (v1.0.0). The implementation, built in Python, uses Scikit-learn’s MinMaxScaler
for preprocessing, and adopts a client-server architecture for distributed training. Experiments ran on a Li-
nux Mint 20.3 Cinnamon setup featuring an Intel Core i7-5960X CPU and 32 GB RAM, with the ToN_IoT
and CICIDS2017 datasets supporting both binary and multiclass classification tasks. To evaluate aggregation
performance, the study compares FedAvg (as the baseline) with FedAvgM, FedAdam, and FedAdagrad under
various training configurations.

A federated learning based framework is proposed for intrusion and credit card fraud detection, employing
IIDNet an enhanced convolutional neural network—as the shared model across 10 clients using the Flower
framework. FedAvg acts as the main aggregation method, with FedProx and FedOpt included for perfor-
mance comparison. Implementation relies on Python with TensorFlow and Scikit-learn, running on Google
Colab with NVIDIA GPU support. Two datasets, UNSW-NB15 and a credit card fraud dataset, are used for
training and evaluation, with metrics such as accuracy, precision, recall, F1-score, and AUC guiding the as-

sessment of model effectiveness?!®.

o TensorFlow Lite /Micro: A lightweight machine learning inference engine optimized for executing ML
models on resource-constrained edge devices, such as microcontrollers—enabling real-time anomaly de-
tection and predictive maintenance in Social IoT (SIoT) environments.

o Federated Learning(e.g., Flower,FedML): A distributed machine learning framework that facilitates collab-
orative model training across multiple devices while preserving data privacy—empowering personalized
intelligence and cross-device learning in Social IoT (SIoT) environments

o Scikit-learn /PyTorch: A general-purpose machine learning and deep learning library offering compre-
hensive tools for model training and deployment—supporting trust evaluation, pattern recognition, and
behavior modeling in Social IoT (SIoT) systems

4. Trust, Privacy, and Security Tools:

The paper?'? proposes a secure, cloud-based telemetry framework for drone data that uses hybrid encryption—
combining Attribute-Based Encryption (ABE) via OpenABE for session key control and symmetric encryp-
tion for efficiency. A Cryptographic Agility Metric is introduced to evaluate encryption performance, access
policy enforcement, and system overhead across environments. The framework also compares ABE libraries
(Rabe, GoFE, CiFEr, Charm), leverages OpenSSL for RSA-based benchmarking, and references supportive
tools like RELIC, MIRACL, and ALE platforms (e.g., LogSentinel, AWS Crypto Tools) to showcase real-world
applicability.

The study??® used Ethereum (via Hyperledger Besu) and Hyperledger Fabric as the core blockchain platforms.
Hyperledger Caliper was employed to benchmark performance under DDoS attacks. Docker containers host-
ed network components, while Remix IDE and MetaMask were used for Ethereum smart contract deploy-
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This paper

ment. Chaincode in Hyperledger Fabric was developed using Go, Java, and JavaScript. The benchmarking
scripts ran using Node.js, with the entire setup executed on a Debian OS environment through WSL2 on a
MacBook Air M1.

The authors??! present a blockchain-enabled extension to IoT platforms by integrating Hyperledger Besu, an en-

terprise-grade Ethereum client, into the open-source Home Assistant system. Their solution introduces a pri-
vate blockchain connector, leverages Kafka for data queuing and WebSocket for real-time subscriptions, and
uses Solidity smart contracts to securely log IoT transactions. The implementation adopts the QBFT Proof of
Authority consensus protocol on Hyperledger Besu and is packaged within a Docker-based environment to
facilitate seamless deployment and replication.

« Hyperledger Fabric/ : A permissioned blockchain framework featuring a modular architecture with inte-
grated identity management and privacy-preserving mechanisms—enabling secure and scalable deploy-
ments in supply chain IoT, consortium-driven Social IoT (SIoT) systems, and healthcare data exchange

« Hyperledger Besu :An enterprise-grade Ethereum client compatible with both public and private networks,
enabling secure and efficient smart contract execution within permissioned Social IoT (SIoT) ecosystems.

o uTrust: A trust management framework that facilitates negotiation, assessment, and policy enforcement
across distributed systems—enabling trust-based access control in heterogeneous Social IoT (SIoT) net-
works

o TruSDN:A blockchain-integrated Software Defined Networking (SDN) security framework that enhances
trust, transparency, and access control—supporting secure IoT infrastructure with dynamic routing and
policy enforcement.

o OpenABE : An attribute-based encryption (ABE) toolkit that enforces cryptographic access control
through attribute-driven policies—enabling fine-grained, secure data sharing in IoT and Social IoT (SIoT)
environments.

Ontologies and Semantic Tools for SloT—Ontologies play a significant role in modeling relationships among
entities in SIoT, supporting context awareness, semantic interoperability, and trust reasoning. Semantic tools
enable the use of shared vocabularies and structured data representation, making interactions more mean-
ingful and automated.

In this?? introduced the Semantic Smart Home System (SSHS), a knowledge-driven home automation frame-

work designed to enhance IoT interoperability and scenario complexity through Semantic Web technologies.
The system integrates data from physical and virtual IoT devices using the SAREF ontology and infers ac-
tions—like adjusting lighting or activating irrigation—by applying SWRL rules through the Pellet reason-
er. It supports scenarios such as energy monitoring, visitor notifications via light signals, and weather-re-
sponsive irrigation. Development tools included OWL for device modeling, SWRL and SAREF for semantic
rule definition and standardization, and Owlready2 for ontology manipulation within Python, the primary
implementation language. Protégé was used for ontology validation, while the OpenWeather API provided
real-time environmental data, enabling context-aware automation without vendor lock-in.

223 proposed an OWL- and SWRL-based ontology to classify and detect conflicts among smart home
automation rules. Using Protégé, they modeled a comprehensive system that identifies simultaneous execu-
tion, chaining, rule redundancy, cross-environmental impacts, and safety violations. The proposed method
covers complex interactions often missed in prior models and improves detection coverage across five conflict
classes.

o SSN (Semantic Sensor Network): “An ontology standard that formally defines sensors, observations, and
associated concepts in a machine-interpretable format—facilitating semantic annotation, interoperability,
and automated reasoning in Social IoT (SIoT) systems.

« SAREF:An IoT ontology framework that provides standardized semantic definitions for smart appliances
and device interoperability—supporting semantic modeling across smart homes, intelligent buildings, and
cross-domain IoT ecosystems.

o ToT-Lite:A lightweight IoT ontology that serves as a streamlined extension of the Semantic Sensor Network
(SSN) standard—designed for resource-efficient semantic annotation in constrained Social IoT (SIoT) en-
vironments with limited-capacity devices.

o Protege:A graphical user interface (GUI)-based ontology development tool for constructing, modifying,
and visualizing ontologies (e.g., OWL)—enabling the design of customized semantic models and reason-
ing frameworks tailored for Social IoT (SIoT) systems.

6. Blockchain Development Tools for IoT/SIoT—With the rise of blockchain as a decentralized trust infrastruc-

ture, development tools such as Ganache, Truffle, Hardhat, and IPFS enable secure data management, smart
contract execution, and transparent interactions among IoT devices and users in SIoT environments. These
tools support the design and testing of blockchain-based applications tailored to the limitations and needs of
IoT systems.

o Ganache : It provides a local, private Ethereum blockchain with pre-funded test accounts and instant min-
ing, allowing for fast and cost-free testing in an isolated environment without relying on a public testnet.
The authors They proposed a four-layer architecture (IoT device layer, Edge layer, Blockchain layer, and
Application layer) for managing IoT data communication using blockchain and smart contracts. The sys-
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tem is designed using a publish/subscribe model and ensures secure, trustless, and decentralized commu-
nication while avoiding direct blockchain interaction by IoT devices to reduce resource consumption®*,

o Truffle: A comprehensive development toolkit for smart contracts, handling writing, compilation, migra-
tion, and testing, with seamless integration with Ganache. They?**developed a food supply chain man-
agement prototype using Ethereum smart contracts, where Ganache was employed as a local blockchain
environment to test and deploy contracts. The study demonstrated how Ganache enables controlled testing
conditions, including simulated mining, transaction cost tracking, and ether balance updates, validating
the deployment and migration of contracts in a secure and isolated setup.

« Remix IDE: A web-based Solidity Integrated Development Environment (IDE) that offers online code,
editing, compilation, deployment for Solidity smart contracts, all without requiring local setup. It’s perfect
for rapid prototyping, Educational purposes, Debugging small projects . However, it might not be suitable
for complex or large-scale projects.

« Hardhat:It provides a development environment & task runner, a modern, highly customizable alternative
to Truffle. It facilitates testing, script execution, and contract deployment, with robust plugin support.
Widely adopted in professional Ethereum projects due to its greater flexibility compared to Truffle.

o MetaMask: Wallet + Web3 Bridge, a browser extension enabling users to sign transactions, manage ac-
counts, and seamlessly connect to decentralized applications (dApps). Essential for facilitating smart con-
tract interactions through a frontend interface when real users engage via a web browser.

o Web3.js: JavaScript SDK, a JavaScript library designed to connect Node.js or browser-based applications
to the Ethereum blockchain. It facilitates transaction signing and smart contract interactions, serving as
a bridge between frontend or backend environments and Ethereum. Commonly used alongside tools like
Truffle, Hardhat, or MetaMask.

« IFPS: Decentralized File Storage, a peer-to-peer file system that enables off-chain data storage while main-
taining on-chain references. Ideal for handling large files, logs, and metadata that are impractical to store
directly on the blockchain.

Performance metrics and parameters

Evaluation metrics play a vital role in analyzing the performance, reliability, and security of proposed models,
architectures, and algorithms. The choice of metrics typically depends on the specific focus of the work—such as
trust management, routing protocols, access control, service discovery, or security frameworks—each requiring
tailored assessment criteria. In this section we will discuss about some commonly used standard evaluation
metrics in IoT/SIoT environment.

1. Trust and Reputation Evaluation :

o Trust Accuracy: How many trust predictions were correct (both positive and negative) out of all predic-
tions.

TP+ TN
TP+TN+ FP+FN

Accuracy =
TP = true positives (correctly predicted trusted); TN = true negatives (correctly predicted untrusted); FP = false
positives (incorrectly predicted trusted);FN = false negatives (incorrectly predicted untrusted).

o MAE: Mean Absolute Error (MAE) tells us how far off our trust predictions are, on average. It looks at the
difference between what we guessed and what the actual values were, and then averages those differences.
Every mistake, big or small, is treated the same.

n

1
MAE:gZ

=1

T, — Ty

o n is the total number of predictions; ﬁ is the predicted trust score; T is the actual (true) trust score; |-|
denotes the absolute value.

o RMSE : Mean Absolute Error (MAE) tells us how far off our trust predictions are, on average. It looks at the
difference between what we guessed and what the actual values were, and then averages those differences.
Every mistake, big or small, is treated the same.This formula is widely used in evaluating trust models that
output continuous trust scores (e.g., values in the range [0, 1]) rather than binary labels.

Where: n is the number of trust predictions; T} is the predicted trust score; T is the ground truth trust score.

o Accuracy, Precision, Recall, F1-score:
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In trust management, entities are typically labeled as Trusted (safe to interact with) or Untrusted (to avoid),
and a trust classifier—such as an AI/ML model or a rule-based system—is used to assign these labels.
The performance of this classifier is then evaluated using key metrics: accuracy gives an overall sense of
how often it’s correct; precision checks whether the system mistakenly trusted untrustworthy nodes; recall
measures if it failed to recognize genuinely trustworthy entities; and the F1 score assesses how well it bal-
ances precision and recall to ensure reliable trust assessments.

Acewracy — TP+ TN
Y =T P TN+ FP+ FN
Precision =— 1
IO =T P T EP
TP
Recall —m
Fl —2 Precision - Recall

" Precision + Recall
o T P: True Positives — correctly predicted trusted entities; 7N: True Negatives — correctly predicted un-
trusted entities; F'P: False Positives — untrusted entities wrongly predicted as trusted; F'N: False Nega-
tives — trusted entities wrongly predicted as untrusted.
2. Network and communication performance
« Packet Delivery ratio(PDR): Ratio of successfully delivered packets to total sent.

Total Packets Received
Total Packets Sent

PDR =

« End-to -End Delay: Average latency from source to destination.

n

1 recv sen.
Delayavg = g Z(tl — 1 d)

i=1

« Throughput:Total successful message delivery over time (bps/kbps).

Total Bits Received
Time Taken

Throughput =
o Message overhead: Additional control or trust messages transmitted in the network.

1 Messages
Overhead = Control Messages
Total Messages

« Hop Count: Average number of hops between nodes during communication.
1 n
Avg Hops = — Z Hops;
- n
i=1
3. Security and Privacy Metrics Used when dealing with identity, access control, and resistance to attacks.

« Attack Detection Rate: Percentage of attacks correctly identified.

TP

DR=——
R= TP+ N

« False Alarm Rate: Incorrect detection of benign behavior as malicious.

FP

FAR= —
R=frpiTn

« Resilience to Sybil/On-Off/Bad-Mouthing attacks: Specific to trust systems.
Entropy: Measures uncertainty or unpredictability in communications (for privacy leakage assessment).
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« Anonymity set size: Number of indistinguishable users/nodes for privacy-preserving systems.
4. System and Resource Efficiency: Relevant when SIoT is deployed on edge, fog, or embedded systems:
o Execution Time: Time taken to execute algorithms or protocols.
« Energy Consumption: Especially important for battery-powered IoT nodes.
E=P-t
o Memory and CPU Usage: System resource requirements.

CPU Time

CPU Utilization = (m

) x 100%

« Scalability: Performance as the number of nodes or services increases.

5. Social Relationship Evaluation: Specific to SIoT, where relationships among objects (like ownership, co-loca-
tion) are used:

« Social Closeness Score: Quantifies relationship strength between devices.

Normalized interaction frequency / duration / proximity € [0, 1]

« Friendship Ratio: Ratio of direct/indirect socially connected nodes.
o Community Detection Accuracy: Measures accuracy in clustering socially-linked IoT nodes.

Correctly Clustered Nodes

A =
ceuracy Total Nodes

6. ML/AI-Based Evaluation(when used): If trust prediction or anomaly detection uses AI/ML:

o ROC Curve and AUC: The ROC (Receiver Operating Characteristic) curve shows the trade-off between
True Positive Rate (Recall) and False Positive Rate across different thresholds of a binary classifier. A curve
closer to the top-left corner indicates better performance, while the diagonal represents random guessing.
The Area Under the Curve (AUC) condenses this into a single score—1.0 means perfect classification, and
0.5 reflects random performance.

. TP
True Positive Rate (TPR) “TPTFN

.. FP
False Positive Rate (FPR) =FPITN

« Confusion Matrix: A 2x2 matrix showing predicted vs actual class counts.

TP FN
FP TN

o Training Time:Time taken to train the model on data.
« Inference Time: Time taken to make a single prediction (per node/message)

Performance evaluation review

In this subsection, we review several papers to examine how existing metrics are used to evaluate system
performance across IoT and SIoT environments. This analysis helps us better understand and compare different
approaches.

Standard evaluation types

In order to ensure consistency across surveyed works, we classify evaluation approaches in IoT/SIoT research into

five categories: simulation, prototype/testbed, dataset-based validation, emulation, and analytical/theoretical.
As shown in Table 17, this taxonomy provides a unified lens for comparing diverse studies and clarifying the

types of experimental validation adopted. Building on this foundation, the following section summarizes the

commonly reported metrics and benchmarking suites that complement these evaluation approaches.

Summary of standardized metrics and benchmarking suite
To align evaluation practices in IoT/SIoT research, we summarize standardized metric definitions, map tools to
evaluation questions, and recommend a minimal benchmarking suite based on recent literature.

Standardized Metrics.
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Evaluation type Description/examples
Si . Experiments conducted using simulators such as MATLAB, NS-3, OMNeT++, CloudSim, iFogSim, or Google Colab.
imulation ) ) o
Typically used for performance studies (e.g., latency, scalability, throughput, energy)
Prototype/testbed Hardware-based implementations (e.g., Raspberry Pi, Arduino, FPGA, edge/fog nodes, or small-scale IoT deployments).

Demonstrates feasibility in realistic IocT/SIoT environments

Real-world dataset

Evaluation performed on public datasets (e.g., UNSW-NB15, CICIDS, IoT-23, UCI IoT datasets) or custom sensor/IoT
data collected in the field. Used to validate detection accuracy, trust prediction, etc

Emulation

Virtualized or cloud-based test environments (e.g., Mininet, containerized clusters, digital twins). Offers controlled
experiments closer to deployment scenarios.

Analytical/theoretical Formal analysis, mathematical modeling, security proofs, or purely theoretical validation without experimental deployment

Table 17. Standard evaluation type categories in IoT/SIoT research.

« Latency / Delay: End-to-end message delay between sender and receiver, reported in milliseconds. Recom-
mended to present as percentiles (50th, 90th, 95th) to capture both median and tail performance.

o Throughput: Number of successful transactions or messages per unit time, typically expressed as transac-
tions per second (tx/s) or packets per second (pps). Indicates the system’s processing capacity under load.

o Scalability: Maximum number of IoT/SIoT nodes supported while maintaining acceptable latency (< 200
ms) and throughput. Often plotted as performance versus node count.

o Trust/ Intrusion Detection Accuracy: Ratio of correct predictions (trusted/untrusted) to total predictions:

TP+TN
TP+TN+ FP+ FN

Accuracy =

where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives. Other measures
may include precision, recall, and F1-score.

« False Positive Rate (FPR): Fraction of benign events incorrectly classified as malicious:

FpP

FPR= 7N

A low FPR s critical in SIoT, as frequent false alarms degrade trust.

o Energy Consumption / Processing Overhead: Energy usage per device (m], J, or battery %), along with
computational load (CPU time, memory footprint). Reported per operation or per message to compare light-
weight versus heavy mechanisms.

« Availability / Reliability: Percentage of uptime or successful service delivery under stress/failure scenarios:

Uptime

Total Time x 100%

Availability =

Reliability may also be reported as Mean Time Between Failures (MTBF) or resilience against attacks/
failures.Tool-to-Metric Mapping.

o NS-3: Suitable for protocol-level latency, routing overhead, and throughput.

« iFogSim/iFogSim2: Used for resource placement, energy-latency trade-offs, and scalability analysis.

« Ganache/Truffle: Applied for blockchain auditability, transaction delay, and smart contract cost.

o Scikit-learn, PyTorch, Flower: Commonly used for trust accuracy, anomaly detection, and ML-driven eval-
uation.Minimal Benchmarking Suite (Recommended). For comparability across SIoT studies, we recom-
mend the following minimal set:

Latency percentiles (50th and 95th).

Trust accuracy with false positive rate (FPR).

Scalability evaluation up to ~500 nodes.

Auditability: smart contract cost and transaction delay.

Availability (% uptime under stress/failure). Typical Ranges from Literature.

S

Latency: 20-200 ms, with fog-based deployments often < 50 ms.

« Trust Accuracy: 85-97% depending on dataset and method.

o Scalability: 50-500 nodes in most simulation and testbed studies.

o Availability: Above 98%, with blockchain-based approaches approaching 99.9%.
o Energy Efficiency: Up to 4-5% gains vs. baseline IoT systems.

 Bandwidth Saving: 38-40% reduction through fog/blockchain offloading.
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Representative ranges are derived from multiple studies in recent literature 2>!13201.213.216 " This summary
provides a concise benchmarking reference, ensuring that IoT/SIoT evaluations are more systematic, replicable,
and comparable across future studies.

Conclusion and discussion

SIoT represents a transformative shift in how smart objects interact and collaborate. By bridging the physical and
social worlds, SIoT opens new frontiers for context-aware services, decentralized intelligence, and trustworthy
cyber-physical systems. Continued interdisciplinary research and real-world experimentation will be key to
realizing the full potential of socially driven IoT environments. Based on this literature review, future researchers
and system designers can benefit from a comprehensive understanding of existing security techniques, modular
technology integration strategies, evaluation tools, and performance parameters. These insights can serve as a
foundation for designing and implementing secure, scalable, and intelligent SIoT systems. In future work, we
aim to leverage these findings to develop a practical SIoT implementation capable of mitigating ongoing security
threat and addressing emerging attack vectors.

Limitations and future work
While this survey provides a comprehensive review of SIoT security, several limitations and open challenges
remain that point toward future research directions.

Limitations of this survey:

o Selection and coverage: Although we systematically surveyed literature from 2014 to 2025 across major data-
bases (IEEE, ACM, Springer, Elsevier, MDPI), niche or regional studies may be underrepresented.

« Scoring subjectivity: The (v'/ x/X) rubric and inter-rater checks reduce bias, but the evaluation of tools and
performance metrics inevitably involves a degree of subjectivity.

« Comparability of results: Despite collating performance metrics and tools, the lack of standardized bench-
marking frameworks across studies makes it difficult to directly compare reported outcomes.

« Integration scope: Although several studies have implemented blockchain, edge/fog, and AI/ML techniques
for SIoT, most efforts are confined to prototypes, conceptual designs, simulations, or controlled testbeds. Ev-
idence of robust, large-scale real-world deployments is still scarce.Future research directions (derived from
gaps identified in Sections ITI-VIII):

« Lightweight dynamic trust models (Section “Key research directions in the SIoT”, RQ4):

Existing trust mechanisms are often static or computationally heavy; adaptive, lightweight trust strategies are
needed for resource-constrained SIoT nodes.

« Privacy-preserving service discovery (Section “Key research directions in the SIoT”, RQ4): Current dis-
covery mechanisms frequently expose sensitive identity or location attributes; future protocols should enable
secure interaction without disclosure.

« Cross-domain interoperability and unified policies (Section “Key research directions in the SIoT”, RQ4):
Standardized access-control and trust policies across heterogeneous SIoT domains remain largely unex-
plored, limiting secure interoperability.

« Explainable and accountable AI/ML integration (Section “Key research directions in the SIoT” & Sub-
section 6.3.1 , RQ4): ML-based anomaly detection and trust prediction lack transparency; incorporating
explainable Al (e.g., SHAP, LIME) is crucial for accountable decision-making.

« Benchmarking and reproducibility frameworks (Section “Tools and evaluation metrics in IoT/SIoT envi-
ronments”, RQ8): Reported evaluation parameters (latency, scalability, trust accuracy, energy overhead) vary
widely; standardized datasets, toolkits, and parameter ranges are needed.

« Dataset and trace availability (Section “Survey methodology”, RQ2): SIoT-specific datasets and reproduci-
ble traces (e.g., discovery logs, attack scenarios) are scarce; curating open datasets would strengthen compa-
rability and validation.

To enhance transparency and reuse, we provide two machine-readable CSV files as supplementary material:
Supplement S1 (corpus_225.csv) contains the corpus of the 225 included studies (Year; Title; Venue; Type;
Access), and Supplement S2 (tablel_related_surveys.csv) contains the data underlying Table 1 (Reference No.;
Year; Security requirements; Attack types/applications; Security protocols; Security techniques; Technology
integration; Evaluation tools; Performance metrics). These artifacts support reproducibility, enable independent
verification, and provide a foundation for extended SIoT research.

Data availability

Derived data supporting the findings of this study are available as supplementary material: S1 ( corpus_225.
csv) and S2( tablel_related_surveys.csv). These files contain metadata and annotations extracted from the cited
literature; no new experimental datasets were generated.
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