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Efficient recognition and localization of power quality disturbances (PQDs) are essential for ensuring 
resilient power distribution. This paper proposes a real-time PQD detection and localization 
framework for the solar-penetrated IEEE 13-bus system using recurrence plots and deep learning. The 
network is divided into three zones, with each zone monitored at a selected bus to ensure voltage 
observability. Three-phase voltage signals are analyzed using a 10-cycle moving window, updated 
every 250 microseconds, to enable high-resolution disturbance detection. PQD detection is initiated 
when the cosine similarity index (CSI), computed from the recurrence plot of the moving window of 
three-phase voltage samples, deviates from that of normal operation and falls below a predefined 
threshold. This triggers the identification of actual disturbances. Localization is performed using a 
zone-based detection algorithm that compares the CSI values across all three zones. Real-time signal 
analysis is conducted on a high-speed x86-based system, while classification is handled on a separate 
workstation using an EfficientNet model integrated with Squeeze-and-Excitation (SE) blocks. The 
proposed framework is validated through RTDS simulations and Hardware-in-the-Loop (HIL) testing, 
demonstrating high accuracy, precise localization, and robustness across various signal-to-noise ratio 
(SNR) levels.

Keywords  Power quality disturbances (PQDs), Recurrence plot analysis, EfficientNet with SE blocks, IEEE 
13-bus test system, Hardware-in-loop (HIL), Real time digital simulator (RTDS)

With the increasing integration of distributed energy resources–mainly wind, solar, and electric vehicle charging 
stations–modern power systems are experiencing increasingly complex power quality disturbances (PQDs). 
This shift is reshaping grid dynamics and posing challenges to reliable monitoring. As integration of power 
electronics systems grows1,2, two key features emerge: (1) proliferation of large-scale disturbance sources and 
(2) coupling and superposition of PQDs3. These disturbances are often non-stationary and resulted in degraded 
power quality, equipment damage, data loss, increased energy consumption, and in severe cases, large-scale 
outages4. consequently, accurate and efficient PQD detection, localization and classification are vital for grid 
stability and safe energy use.

Traditionally, PQD recognition relied on manual feature extraction using signal processing techniques 
like Fourier Transform5, S-Transform combines with LightGBM6, and S-Transform followed by kernel SVM7, 
Wavelet Transform8, Decision Trees9, and Deep Belief Networks10, as well as wavelet-based feature selection 
with probabilistic neural networks11 and RBF neural networks with growing/pruning mechanisms12. While 
effective for simple disturbances, these methods have proven effective, but often require domain expertise and 
lack adaptability. As PQDs grow more complex with renewable integration, traditional techniques struggle to 
accommodate their diversity and temporal variability.

Deep learning has revolutionized PQD recognition by enabling autonomous feature extraction and enhanced 
generalization. CNNs and RNNs have been used for classification, with CNNs extracting spatial features and 
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RNNs capturing temporal patterns13–15. However, 1D CNNs often fail to fully capture temporal dynamics and 
face gradient issues, which limit their effectiveness on complex PQDs. To overcome this, researchers have adopted 
signal visualization techniques to convert 1D signals into 2D representations like Gramian Angular Field (GAF) 
images, enabling the use of ResNet and CNNs. Studies16,17 show GAF improves accuracy but is computationally 
heavy, prone to noise, and unsuitable for real-time use in large systems. Efficient signal-to-image conversion 
methods that preserve key features are still needed. While attention-based CNNs enhance accuracy, DenseNet 
models augmented with static modules like Convolutional Block Attention Module (CBAM)18–20 are resource-
intensive and less adaptable to diverse PQDs, limiting real-time applicability. Other deep architectures, including 
sequence-to-sequence Bi-GRU models21, CNNs with GAF encoding22, and improved fully convolutional 
networks (FCN)23, have further advanced PQD recognition but still lack validation under real-time constraints. 
Addressing these challenges is critical for the advancement of practical PQD recognition systems..

Solar power, a sustainable and cost-declining energy source, benefits from ongoing innovations and economies 
of scale24. As a DG technology, it supports varied uses and boosts grid resilience during outages25. Solar PV 
integration improves voltage support and reliability but causes PQ issues like voltage/frequency instability, 
harmonics, reverse power flow, and flicker26,27. These effects vary with PV size, grid connection, load ratio, and 
voltage control28–31. A Zagreb study showed high current harmonics (3rd, 5th, 7th, 9th) during shading and 
increased voltage harmonics at high PV penetration32. In Puducherry, PV caused the most PQ degradation, 
including voltage fluctuations, harmonics, flicker, and lower power factor33. Grid-connected PV systems cause 
varied PQ issues based on size and grid conditions. A 3.45 kW system in Portugal showed voltage fluctuations, 
dips, swells, and harmonics affected by grid strength and load34. A 12-kW system in Brazil improved voltage and 
lowered THDU but risked overvoltage at high PV levels; harmonics were mainly load-related35. Larger systems 
reported over/undervoltage, power fluctuations, frequency spikes, low power factor, inrush currents, and rising 
harmonics at low power and due to grid voltage distortion36. In Maribor, Slovenia, PV systems caused voltage 
issues and high harmonic currents under low short-circuit impedance, especially with multiple inverters on one 
bus37. Studies show PV size alone doesn’t dictate harmonics; module connections, irradiance, and PV location 
impact THDU and voltage support38. In Thailand and single-phase systems, voltage sags, flickers, transient and 
subharmonic currents were linked to grid faults, shading, and MPPT design, highlighting the inverter’s key role 
in PQ39.

To address the above mentioned challenges, this paper presents a low-latency, recurrence-plot-based framework 
for real-time detection, zonal localization, and classification of power quality disturbances (PQDs) in a solar-
penetrated IEEE 13-bus distribution system. The proposed pipeline uses recurrence plots (RPs) to preserve non-
linear and temporal structure of three-phase voltage waveforms and a Cosine Similarity Index (CSI) computed 
against a healthy reference RP for fast anomaly triggering. For classification we employ an EfficientNet-B0 
backbone augmented with adaptive Squeeze-and-Excitation (SE) blocks (EfficientNet-SE) tailored to RP texture 
learning. A zone-wise localization rule, based on CSI comparisons from three strategically placed measurement 
nodes, enables real-time identification of affected regions. The entire detection → localization → classification 
chain is validated end-to-end using Real-Time Digital Simulator (RTDS) experiments and Hardware-in-the-
Loop (HIL) testing. Results demonstrate high detection and classification performance under varying SNRs and 
solar operating conditions, while meeting stringent timing requiOscillatory Transientsrements for near-real-
time operation.

Main contributions of the proposed work

•	 A practical, low-latency RP→CSI detector that triggers PQD processing on a 10-cycle moving buffer updated 
at sub-millisecond rates, enabling rapid anomaly detection with a simple, interpretable thresholding mech-
anism.

•	 A compact RP→EfficientNet-B0 classifier enhanced with adaptive SE modules (EfficientNet-SE) that im-
proves discrimination of 39 single/multi-event PQD classes while increasing noise robustness.

•	 A zone-based localization approach using three measurement nodes selected for voltage observability; the 
method is validated in RTDS+HIL and achieves detection accuracy of 95.5% and zonal localization accuracy 
of 89.44% on the test cases considered.

•	 A sensitivity analysis across SNR levels, representative solar operating scenarios, and grid strength (SCR) 
variations that quantifies performance degradation and provides recommended CSI threshold adaptations 
for weak grids.

Addressing limitations in the prior literature
Several limitations remain in the PQD literature (see Table  6). Below we explicitly map representative prior 
shortcomings to how this work addresses them and where supporting evidence appears in the manuscript.

•	 Limited real-time validation and localization. Many recent works report high classification accuracy on of-
fline/simulated datasets (e.g., GAF + CNN22, CBAM-DenseNet18) but do not validate on real-time testbeds. 
This paper implements and validates the full detection–localization–classification chain on an RTDS + HIL 
platform (section “Real time validation using RTDS”) and reports end-to-end timing and zone localization 
results (section “Validation of PQD algorithm in real time for power quality detection and zone identifica-
tion”, Table 4, Fig. 10”).

•	 High computational cost of image encodings (GAF/MTF) and heavy models. Prior image encodings and heavy 
backbones (e.g., GAF  +  ResNet/DenseNet16,18) are often computationally demanding and less suited for 
low-latency deployment. We adopt recurrence plots (lighter to compute for the RP size used) and an Efficient-
Net-B0 backbone augmented with compact SE blocks (EfficientNet-SE). Model complexity and inference 
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cost are reported (Table 3) and show low FLOPs/parameters while preserving high accuracy (section “PQD 
classification based on Efficient-Net with adaptive SE blocks”).

•	 Insufficient scalability to composite event classes. Several works evaluate on small numbers of disturbance 
types. For example, DWT + PNN and RBF-NN consider fewer classes11,12. We demonstrate scalability to 39 
single and composite PQD classes and report per-SNR performance (section “PQD classification based on 
Efficient-Net with adaptive SE blocks”, Table 2).

•	 Noise sensitivity and lack of threshold adaptation for weak grids. Many methods report degraded performance 
under low SNR or weak-grid (low SCR) conditions without practical adaptation. We provide ROC-based CSI 
threshold calibration, SNR sensitivity analysis (classification vs. SNR, section “PQD classification based on 
Efficient-Net with adaptive SE blocks”), and SCR sensitivity experiments with recommended zone-specific 
thresholds (section “Validation of PQD algorithm in real time for power quality detection and zone identifi-
cation”, Table 5).

•	 Observability vs. measurement overhead tradeoff not quantified. Prior works rarely quantify the number of 
measurement points needed for localization. We propose a 3-zone monitoring strategy that reduces meas-
urement overhead while preserving observability; node selection and observability analysis are described in 
section “Real time validation using RTDS” and localization performance is reported in section “Validation of 
PQD algorithm in real time for power quality detection and zone identification”.

Objectives
The specific objectives of this work are to: 

	1.	 Develop and validate a low-latency recurrence-plot + CSI anomaly detector that operates on a 10-cycle mov-
ing window updated at 250 µs increments.

	2.	 Design, train, and evaluate an EfficientNet-SE classifier for RP images to reliably recognize 39 PQD classes 
with strong noise resilience and modest inference cost.

	3.	 Implement an end-to-end detection → localization → classification pipeline and validate it using RTDS and 
HIL on a solar-integrated IEEE 13-bus testbed, reporting accuracy, confusion characteristics, and timing 
metrics.

	4.	 Quantify sensitivity to grid strength (SCR), solar operating conditions, and additive noise; compare the pro-
posed approach with representative state-of-the-art baselines and report tradeoffs in accuracy, latency, and 
complexity.

The remainder of this paper is structured as follows: Section “ Procedure for the data visualization of PQD’s 
using recurrence plots” explains the process of visualizing PQDs using recurrence plots, section  “PQD 
classification based on Efficient-Net with adaptive SE blocks” introduces the PQD classification technique based 
on EfficientNet with adaptive Squeeze-and-Excitation (SE) blocks, section “Proposed power quality detection, 
classification, and localization framework” presents the proposed methodology along with the zone-based 
detection strategy and classification of power quality events, section “Real time validation using RTDS” outlines 
the experimental setup, including the RTDS and HIL environments. Section “Validation of PQD algorithm in 
real time for power quality detection and zone identification” presents the validation of the PQD detection and 
localization algorithm in real time, and section “Conclusion” concludes with key findings.

Procedure for the data visualization Of PQD’s using recurrence plots
Acquiring complex PQD data from real-world systems is challenging; thus, this paper uses mathematical 
modeling based on IEEE Std 201919. Nine basic disturbances that includes sag, swell, interruption, harmonic, 
oscillatory transient, pulse, flicker, gap, and spike are modeled, as shown in Table  1. Complex PQDs arise 
from superimposing multiple disturbances of different types and timings, producing irregular waveforms that 
complicate accurate classification.

Recurrence plot
Recurrence plots (RPs) have been shown to outperform Gramian Angular Fields (GAF) and Markov Transition 
Fields (MTF)20 in Power Quality Disturbance (PQD) analysis by effectively capturing the non-linear, non-
stationary characteristics of signals. Unlike GAF and MTF, which encode angular relationships or state 
transitions, RPs visualize the recurrence of states in phase space, revealing dynamics like periodicity, chaos, and 
abrupt transitions. This capability makes RPs perticularly well suited for identifying complex PQD patterns. RPs 
also preserve temporal structures more effectively and exhibit greater robustness to noise, while GAF and MTF 
plots tend to be sensitive to parameter selection and are computationally demanding. The distinct visual patterns 
produced by RPs enhance image-based classification approaches, leading to improved accuracy in real-world 
PQD recognition tasks.

To generate a Recurrence Plot (RP) from a univariate time series X = {xi}N
i=1, where xi denotes the data 

value at time ti and N is the total number of time points, the process begins with phase space reconstruction. In 
this step, state vectors yi are constructed using an embedding dimension m and a time delay τ , as expressed in 
Equation (1):

	

yi =
[
xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ

]
,

i = 1, 2, . . . , N − (m − 1)τ
� (1)

Scientific Reports |        (2025) 15:38434 3| https://doi.org/10.1038/s41598-025-23972-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Next, the distance matrix D is computed using the Euclidean norm to quantify the differences between state 
vectors. This is expressed in Equation (2):

	

Di,j =

√√√√
m−1∑
k=0

(xi+kτ − xj+kτ )2� (2)

Based on a predefined threshold ε, the recurrence matrix R is constructed using the Heaviside step function 
Θ(·), which determines whether two state vectors are recurrent or not. This is formally defined in Equation (3):

	
Ri,j = Θ(ε − Di,j), Θ(x) =

{ 1, if x ≥ 0
0, if x < 0 � (3)

Finally, the binary matrix R is visualized as an image, as shown in Fig. 1 effectively capturing the key temporal 
patterns present in non-linear, non-stationary signals such as power quality disturbances.

Fig. 1.  Visualization of recurrence plot generation process.

 

Disturbance type Mathematical model

Normal operation Vnormal(t) = Vnormal · sin(2πft)

Voltage sag (Dip) Vsag(t) = Vnormal(1 − α) · sin(2πft), where 0.1 ≤ α ≤ 0.9

Voltage swell Vswell(t) = Vnormal(1 + β) · sin(2πft), where 0.1 ≤ β ≤ 0.8

Interruption Vint(t) = 0 for tstart ≤ t ≤ tend ;

Vint(t) = Vnormal · γ · sin(2πft) otherwise

Harmonics Vharm(t) = Vnormal(t) +
∑N

n=3,5,7
Vn · sin(2πnft + ϕn)

Oscillatory transients Vharm(t) = Vnormal(t) + Vpeak(t)e−σt · sin(2πfosct), where fosc = 300−5000 Hz

Impulse transients Vimpulse(t) = Vnormal(t) + Vpeak · e

(
t−t0

τ

)

Voltage flicker Vflicker(t) = Vnormal(t) [1 + m · sin(2πfflickert)] · sin(2πfosct), where m ≤ 0.1, fflicker ≤ 25 Hz

Voltage gap Vgap(t) = Vnormal(t) · λ · sin(2πft) for tstart ≤ t ≤ tend , λ ≤ 0.1, t ≤ 0.2 s

Voltage spike Vspike(t) = Vnormal(t) + Vspike(t) · e

− (t−t0)2

2σ2
spike , where σspike ≈ 1 ms

Table 1.  PQDs description and their mathematical models.
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Parameter selection and robustness: The choice of embedding parameters (m, τ) and the recurrence threshold 
ε is critical for stable RP generation. In this work, m and τ  were selected via the False Nearest Neighbours (FNN) 
and Average Mutual Information (AMI) methods16–20, respectively, using representative healthy and disturbed 
signals. The threshold ε was set to the 5th percentile of the pairwise distance distribution computed over a 
10-cycle healthy operation buffer. Sensitivity analysis showed that the RP texture statistics and the subsequent 
classification accuracy remain stable for ±20% variations in ε, confirming robustness of the chosen values.

PQD signal visualization
To visualize PQD data while preserving temporal and detailed signal features, this study employs Recurrence 
Plots (RPs) to convert one-dimensional signals into two-dimensional images. Based on the PQD models in 
Table 1 and the method described in section “Recurrence plot”, signals are sampled at 1920 Hz over 10 cycles 
(60 Hz base), generating RP-based images for nine PQD types (Fig. 2). These images exhibit distinct textural 
patterns that spatially differentiate PQDs. The clarity of these features, even under superimposed conditions, 
enables effective feature extraction and supports accurate classification by deep learning models.

PQD classification based on efficient-net with adaptive SE blocks
Traditional CNNs often suffer from overfitting due to their large number of parameters and limited training 
data, while shallow architectures struggle to extract complex features. Although deeper networks mitigate this 
issue, they are prone to vanishing or exploding gradients, which can slow down or destabilize the training 
process24. To overcome these challenges, advanced models such as DenseNet, EfficientNet, and MobileNetV3 
have been developed. DenseNet improves gradient flow and promotes feature reuse through dense connections, 
thereby reducing redundant learning and lowering the number of parameters19. EfficientNet applies compound 
scaling to simultaneously optimize network depth, width, and resolution, achieving higher accuracy with fewer 
computational resources. The integration of Squeeze-and-Excitation (SE) blocks enables adaptive channel-wise 
attention, enhancing relevant features and improving model robustness. Figure  3 illustrates the structure of 
EfficientNet.

Fig. 3.  Structure of MBConv.

 

Fig. 2.  Recurrence Plots (a) Normal Operation (b) Voltage Sag (c) Voltage Swell (d) Harmonics (e) Oscillatory 
Transients (f) Spike (g) Notching (h) Flicker (i) Gap (j) Interruption.
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Efficient-Net model
EfficientNet, designed via Neural Architecture Search (NAS), balances depth, width, and resolution for high 
accuracy and low computational cost. EfficientNet-B0, the baseline variant, is employed in this study for feature 
extraction and PQD classification. Its core component, the MBConv block, as shown in Fig.  3, includes an 
expansion phase with convolution, Batch Normalization (BN), and Swish activation, followed by a depthwise 
convolution. The integrated Squeeze-and-Excitation (SE) block adaptively recalibrates channel-wise features. A 
final convolution layer restores dimensions, with Dropout enhancing generalization.

Batch Normalization (BN) stabilizes training by normalizing layer inputs using mini-batch statistics, which 
helps to mitigate the internal covariate shift and accelerates convergence. The Swish activation function, defined 
in Equation (4), combines smoothness with non-linearity and is given by:

	 f(x) = x · σ(αx), where α = 1 by default� (4)

where σ(·) denotes the sigmoid function.
To convert the final layer activations into class probabilities, the Softmax function is used as shown in 

Equation (5):

	
ji = eai

∑R

k=1 eak
� (5)

where ji is the predicted probability for class i, ai is the activation corresponding to class i, and R is the total 
number of classes.

The model is optimized using the cross-entropy loss function, which measures the discrepancy between the 
predicted probabilities and the true labels. It is defined in Equation (6):

	
Loss = −

C∑
i=1

ĵi log(ji)� (6)

where ĵi is the ground truth label (1 for the correct class and 0 otherwise), and ji is the predicted probability for 
class i. This architecture supports accurate and efficient PQD classification

Convolutional block attension module (CBAM)
CBAM20 enhances convolutional neural networks by applying attention in both channel and spatial dimensions 
through two sequential modules: the Channel Attention Module (CAM) and the Spatial Attention Module (SAM).

Channel attention module (CAM)
Given an input feature map F ∈ RC×H×W , CAM first applies global average pooling (GAP) and global max 
pooling (GMP) across the spatial dimensions to obtain channel descriptors.

	 Favg,c = GAP(F ), Fmax,c = GMP(F )� (7)

These are passed through a shared multilayer perceptron (MLP) consisting of two fully connected layers with 
ReLU and sigmoid activations:

	 Mavg,c = σ(W1δ(W0Favg,c)), Mmax,c = σ(W1δ(W0Fmax,c))� (8)

The final channel attention map is computed as:

	 Mc = σ(Mavg,c + Mmax,c), Mc ∈ RC×1×1� (9)

The refined feature map F ′ is obtained via element-wise multiplication:

	 F ′ = Mc ⊙ F � (10)

Spatial attention module (SAM)
To capture spatial attention, SAM first applies average and max pooling across the channel axis of F ′ to produce 
two spatial feature maps. These are concatenated and passed through a convolution layer followed by a sigmoid 
activation:

	 Ms = σ(Conv2D([Favg,s; Fmax,s]))� (11)

The final output of CBAM is obtained as:

	 F ′′ = Ms ⊙ F ′� (12)

Squeeze-and-excitation (SE) block
The SE block improves representational power by modeling channel-wise interdependencies.
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Squeeze
Global context is captured by applying GAP across spatial dimensions:

	
Zc = 1

H × W

H∑
i=1

W∑
j=1

Xi,j,c� (13)

Excitation
The squeezed vector is passed through a two-layer fully connected (FC) network with a bottleneck structure and 
sigmoid activation:

	 S = σ(W2 · ReLU(W1Z))� (14)

Recalibration
The original feature map is scaled channel-wise using the excitation weights:

	 X̂i,j,c = Sc · Xi,j,c� (15)

EfficientNet with CBAM integration
EfficientNet scales depth, width, and resolution of the network using a compound scaling coefficient ϕ, under 
the constraint:

	 d = αϕ, ω = βϕ, r = γϕ subject to α · β2 · γ2 ≈ 2� (16)

EfficientNet employs Mobile Inverted Bottleneck Convolution (MBConv) blocks, which consist of:

•	 1×1 pointwise expansion,
•	 3×3 depthwise convolution,
•	 SE block for channel recalibration,
•	 1×1 projection.

CBAM modules are inserted at selected layers to enhance feature refinement. Downsampling is performed 
via stride-2 depthwise convolutions. The network concludes with a global average pooling layer and a fully 
connected layer of 1280 dimensions. Figure 4 illustrates the complete architecture of EfficientNet integrated 
with CBAM and the recurrence plot-based preprocessing for PQD (Power Quality Disturbance) classification.

Cosine similarity
Cosine similarity measures the cosine of the angle θ between two non-zero vectors in a high-dimensional space, 
as given by equation (17). Cosine similarity suits Recurrence Plots as both use angular patterns, emphasizing 
directional and shape similarity over magnitude. It is also scale-invariant and handles high-dimensional data 
efficiently40. The range of cosine similarity is from − 1 to + 140 however to avoid negative values, the range has 
been scaled from 0 to 2 by adding + 1 for the computed Cosine Similarity Index (CSI) values.

Fig. 4.  Sequence Diagram of EfficientNet Implementation.
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Cosine Similarity = A · B

∥A∥ ∥B∥ � (17)

Where:

•	 A · B =
∑n

i=1 AiBi    (dot product),
•	 ∥A∥ =

√∑n

i=1 A2
i     (magnitude of vector A),

•	 ∥B∥ =
√∑n

i=1 B2
i     (magnitude of vector B).Normalization and thresholding: To ensure interpretability, the 

raw cosine similarity (range [−1, 1]) was shifted to [0, 2] by adding +1, yielding the Cosine Similarity Index 
(CSI). Under healthy operation, CSI values remain close to 2. A global threshold of 1.55 was obtained by Re-
ceiver Operating Characteristic (ROC) curve analysis on validation data16,17 to maximize detection sensitivity 
while limiting false alarms. For improved localization, zone-specific thresholds were derived: Z1 = 1.25, 
Z2 = 1.31, Z3 = 1.32. This threshold design balances fast detection with robustness to noise, as further 
validated in section “Validation of PQD algorithm in real time for power quality detection and zone identi-
fication”.

Proposed power quality detection, classification, and localization framework
The raw PQD signal x(t) generated using the mathematical models (Table 1) are sampled at fs=1920 Hz over 
10 cycles at the base frequency f0=60 Hz, yielding 640 samples per signal. These 1D time-domain signals are 
transformed into 2D images via Recurrence Plots (RPs) (Fig. 2) to retain temporal structures and enable spatial 
feature learning. The recurrence plot is compared with a healthy reference pattern using cosine similarity index 
to detect the power quality event when the similarity index is above the reference value. Leveraging the imaging 
strengths of recurrence plots alongside the deep feature extraction and efficiency of EfficientNet enhanced with 
Adaptive SE Blocks, this paper introduces a novel method for PQDs classification. As illustrated in Fig. 4, the 
proposed framework consists of three key modules: a signal visualization module, a dense feature learning 
module, with attention enhancement module, and a final classification module. IEEE 13 bus test system will be 
modelled and simulated by considering various power quality events as per Table 1 to validate the above method 
in real time for detection, classification and localization of power quality events using real time digital simulator 
and a real time power quality detection hardware implemented on a high speed x86 based hardware. In the 
coming sections, initially the performance of the proposed algorithm is validated for classification of power 
quality events by simulating the power quality events as per the mathematical equations mentioned in Table 1. 
Subsequently validated in real time on IEEE 13 bus system modelled in RTDS for detection, classification and 
localization of power quality events.

Validation using simulated data
This work develops a PQD classification model using the TensorFlow framework in Python 3.9. In accordance 
with IEEE Std 1159–2019, a total of 30 composite disturbances are synthesized from nine basic disturbance 
types, comprising 15 double, 10 triple, and 5 quadruple disturbance combinations based on Table 1. Each type 
consists of 800 samples generated with uniformly distributed amplitude and phase, under SNR levels of 0, 20, 
30, and 40 dB. The PQD signals are transformed into 2D representations using recurrence plots, resulting in a 
39-class image dataset as explained in section “PQD signal visualization” and Fig. 1. Experiments are carried 
out on a system equipped with an Intel Core i9-13900K CPU, 64 GB RAM, and an NVIDIA RTX 3090 GPU. A 
5-fold cross-validation scheme is used to divide the dataset into training, validation, and testing subsets in a 6:2:2 
ratio, with model selection based on the highest validation accuracy. The dataset used for PQD classification 
consists of 39 distinct classes as shown in Table 2. The EfficientNet-SE model is trained over 50 epochs with a 
batch size of 64 using Stochastic Gradient Descent (SGD), a momentum of 0.9, and a weight decay of 1 × 10−4 

Cls Event Cls Event Cls Event

C1 Sag C14 Harmonics + Flicker C27 Notch + Spike + Flicker

C2 Swell C15 Harmonics + Spike C28 Swell + Flicker + Spike

C3 Interruption C16 Flicker + Notch C29 Sag + Flicker + Notch

C4 Harmonics C17 Interruption + Flicker C30 Sag + Harmonics + Flicker + Spike

C5 Oscillatory Transient C18 Harmonics + Osc. Transient C31 Swell + Harmonics + Flicker + Notch

C6 Pulse C19 Notch + Spike C32 Interruption + Harmonics + Flicker + Spike

C7 Flicker C20 Sag + Spike C33 Pulse + Flicker + Notch + Spike

C8 Notch C21 Harmonics + Flicker + Spike C34 Swell + Harmonics + Flicker + Spike

C9 Spike C22 Flicker + Spike C35 Sag + Pulse + Notch + Spike

C10 Sag + Harmonics C23 Swell + Harmonics + Flicker C36 Harmonics + Flicker + Notch + Spike

C11 Interruption + Osc. Transient C24 Swell + Harmonics + Osc. Trans. C37 Sag + Swell + Flicker + Notch

C12 Harmonics + Notch C25 Swell + Flicker + Notch C38 Sag + Harmonics + Notch + Spike

C13 Sag + Flicker C26 Pulse + Harmonics + Spike C39 Complex four-event combination

Table 2.  Class description of power quality events.
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for regularization. The initial learning rate is set to 0.001 and decayed by a factor of 10 halfway through training. 
Categorical cross-entropy is used as the loss function for multi-class classification.

Model training and complexity
The EfficientNet-B0 backbone with SE blocks was trained on recurrence plot images resized to 224 × 224. 
Training was implemented in TensorFlow 2.x using Stochastic Gradient Descent (SGD) with momentum of 0.9, 
an initial learning rate of 10−3 (decayed by a factor of 0.1 at epoch  25), and weight decay of 1 × 10−4 for 
regularization. A batch size of 64 and a maximum of 50 epochs were used, with categorical cross-entropy as the 
loss function. In addition, early stopping (patience = 8) was applied based on validation loss to prevent overfitting. 
To enhance robustness, data augmentation included small rotations (±5◦), horizontal/vertical shifts (±5%), 
and intensity jitter, which improved generalization under noisy conditions. Model complexity was quantified in 
terms of trainable parameters and floating-point operations (FLOPs) as shown in Table  3 , confirming suitability 
for near-real-time operation. Latency measurements were conducted separately for detection (on the Intel Atom 
module) and classification (on the workstation GPU), with results presented in section  “Validation of PQD 
algorithm in real time for power quality detection and zone identification”.

Model performance is assessed using Accuracy Averaged across all classes as given in the equation below:

	
Accuracy =

(
1
N

N∑
j=1

TPj

Tj

)
× 100%

where N is the number of classes, TPj  the correct predictions, and Tj  the total samples in class j.
Model complexity is evaluated based on trainable parameters and FLOPs to ensure suitability for edge 

deployment. Noise robustness is tested by adding Gaussian noise at SNR levels ranging from 20 dB to 60 dB. Latency 
is analyzed by measuring detection, data transfer, and classification times, confirming the system’s capability for 
real-time operation. This configuration delivers high classification accuracy with low computational overhead 
and strong resilience to noise, making it well-suited for real-time power quality monitoring applications.

The EfficientNet-SE model is assessed against a baseline EfficientNet without the SE attention module 
under identical training settings. After 50 epochs, validation trends show that EfficientNet-SE converges faster, 
stabilizing at ∼98.5% accuracy and ∼0.06 loss, while the baseline fluctuates near 95% accuracy and 0.15 loss.

Under SNR levels of no noise, 50  dB, 30  dB, and 20  dB, the baseline achieves 96.12%, 94.78%, 92.41%, 
and 91.65% accuracy, respectively, while EfficientNet-SE reaches 98.45%, 97.33%, 95.76%, and 92.18%. These 
results highlight the SE module’s role in enhancing noise robustness and feature discrimination. Grad-CAM41 
visualizations confirm improved focus and spatial consistency with SE, capturing key texture areas in RP images 
more precisely, especially under multi-disturbance scenarios as shown in Fig. 5. The SE module enables better 
global feature learning by adaptively reweighting channels, making the model more effective for real-time PQD 
classification.

To evaluate the noise resilience of the proposed EfficientNet-SE model under challenging conditions, its 
performance was tested on 39 types of PQD signals at a 20 dB SNR level. These disturbance patterns, including 
single, double, triple, and quadruple combinations, were converted to recurrence plot images and classified using 
the EfficientNet-SE architecture. Despite the noise, the EfficientNet-SE model achieved a recognition accuracy 
of 95.76%, notably surpassing the previously reported EfficientNet-without SE model accuracy of 91.65% under 
the same conditions. This improvement of 4.11 percentage points highlights the effectiveness of recurrence-
based texture mapping combined with SE attention mechanisms.
Key observations:

•	 Single disturbances such as Sag, Swell, Interruption, and Harmonics are classified with near-perfect accuracy, 
showing enhanced feature sensitivity in the EfficientNet-SE backbone.

•	 Double disturbances involving harmonics and flicker (e.g., C12, C18, C25) showed minimal confusion due to 
the model’s superior ability to focus on texture localization via squeeze-and-excitation modules.

•	 In contrast to EfficientNet-without SE, triple and quadruple disturbances involving oscillatory transient and 
notch (e.g., C29 → C30, C36 → C37) exhibit fewer misclassifications, confirming better generalization to 
complex scenarios.

•	 Overall, misclassifications are sparse and concentrated around classes with high spectral overlap, yet less 
frequent than in EfficientNet-SE.

Real time validation using RTDS
The proposed algorithm is tested on modified IEEE 13-node distribution systems modelled and simulated in 
Real Time Digital Simulator (RTDS), with network data sourced from42. The 13-node system operates at 5 MVA, 
60 Hz, with voltage levels of 0.48 kV and 4.16 kV. It connects to the utility via station transformer, which has a 

Model Trainable parameters (M) FLOPs (GFLOPs) Latency (ms)

EfficientNet-B0 (baseline) 5.3 0.39 41.8

EfficientNet-B0 + SE (proposed) 5.6 0.42 38.5

Table 3.  Model complexity and latency comparison.
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neutral-to-ground impedance of (0.5 + j0.005) Ω, as shown in Fig. 6. Distributed generation is incorporated in 
IEEE 13 bus system as follows—a 400-kW solar unit at node 680 via a suitable interconnection transformers as 
shown in Fig. 6. Parameters for solar power generation are adopted from43.

RTDS simulation set-up
Fig. 7 shows the hardware setup for the implementation and testing of Power quality detection (PQD), localization 
and classification algorithm. It consists of RTDS workstation which is connected to RTDS hardware capable of 
interfacing digital and analog Input and output modules with target hardware to be tested, and also used to 
design the test system (IEEE 13 bus system). The target hardware architecture is shown in Fig. 8. it consists of 
Intel Atom D525 Dual Core 1.8 GHz Processor module operated on QNX based Real Time Operating System 
(RTOS), one high speed Analog/Digital Input / Output (I/O) card capable of acquiring data at the rate of 1 micro 
second, and 3 normal I/O cards that can capture the data at 50 micro second. All the cords communicate and 
exchange data through PCI-e based hardware back plane. The data transfer between processor and work station 
is TCI/Ip based ethernet communication.

Zone selection and observability
In the IEEE 13-bus system, as shown in Fig. 6, three zones were identified to enable disturbance localization with 
minimal measurement overhead: Z1 (632, 633, 634, 645, 646), Z2 (611, 652, 684), and Z3 (671, 675, 692, 680). 
Voltage measurements were taken at node 650 in Zone 1, at node 684 in Zone 2, and at node 692 in Zone 3. These 
nodes were selected after analyzing system observability using the Jacobian-based voltage sensitivity matrix42, 
ensuring that each measurement point provides maximum coverage of its respective zone and that disturbances 
anywhere within a zone manifest as measurable deviations at the selected bus. The analog signals from these 
buses were interfaced to a high-speed data acquisition card through the GTAO (analog output) card of RTDS. 
The processor module received the analog samples at 250 µs intervals and processed them in real time for 
recurrence plot generation using a 10-cycle moving window buffer, which was updated at every 250 µs step. An 
observability summary for the selected zones is provided in Appendix A.

Classification of power quality events using efficient-net model with SE technique
Solar PV operational parameters impacting power quality include system size, grid strength, load ratio, and 
module connection mode. Factors such as shading and irradiance variations can introduce flicker, transients, 
and sub-harmonics, while voltage levels and harmonic distortions are influenced by PV location, ambient 
temperature, and simultaneous inverter operation. High-order harmonics tend to increase during low output 
power conditions. To evaluate the impact of changing solar PV operating conditions on power quality in the 

Fig. 5.  Heat Map of EfficientNet-SE and EfficientNet-Without SE for a PQD Event (a) Voltage Sag, and (b) 
Voltage Sag + Harmonics.
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Fig. 7.  hardware setup for the implementation and testing of PQD detection, localization and classification 
algorithm.

 

Fig. 6.  Modified IEEE 13 bus distribution system.
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13-bus system, simulations were conducted at each bus by varying key solar generation parameters. Example 
test cases included scenarios such as partial shading under moderate irradiance, high ambient temperature with 
low load ratio, weak grid conditions with simultaneous inverter operation, and rapid irradiance fluctuations due 
to cloud movement. A total of 15 such distinct operating scenarios were simulated per bus, resulting in 180 test 
cases across the system.

Validation Of PQD algorithm in real time for power quality detection and zone 
identification
The generated recurrence plot in each zone at each bus using the moving window data of 3 phase voltages 
updated at every 1 millisecond is compared with the normal operation recurrence plot generated and stored 
in the historian using cosine similarity index as explained in section   “Cosine similarity”. Cosine similarity 
index of 2 signifies the status of normal operation and no power quality event at that instant. The deviation 
from the value of 2 signifies the system operation away from normal operation. Global cosine similarity index 
(CSI) threshold below which the power quality event being detected is 1.55 for avoiding spurious power quality 
detection. Zone wise thresholds for the 3 zones being considered are Z1-1.25, Z2-1.31, Z3: 1.32. When the 
event triggers 2 zones simultaneously, for the event in one Zone, then the algorithm considers the zone with 
lowest CSI as the affected zone. With these thresholds, the accuracy achieved in power quality event detection 
is 95.5% (172 out of 180 events were correctly detected). Fig. 9 describes the heat map of the cosine similarity at 
measurement nodes for each bus for the case studies described in section “Classification of power quality events 
using Efficient-Net model with SE technique”. Fig. 10 shows the zone wise confusion matrix including the zone 
wise misclassifications. The accuracy achieved for zonal wise detection is 89.44%. The zone-wise performance 
shows that Z1 achieved a precision of 0.86, recall of 0.76, and F1-score of 0.81, Z2 had a precision of 0.75, recall 
of 0.80, and F1-score of 0.77, while Z3 recorded a precision of 0.75, recall of 0.83, and F1-score of 0.79.

PQD detection using single point voltage measurements at substation bus
The case studies considered in the previous section are repeated by considering the 3-phase voltage measurements 
only at the sub-station bus. The corresponding Cosine Similarity Index (CSI) values obtained using recurrence 
plots generated with the help of substation voltage bus measurements shows that these measurements are able 
to detect the power quality events at nearer buses such as 632, 633, 645, 671, 684, 692 with an accuracy of 95.5%. 
For the far away buses such as 646, 634, this technique has achieved an accuracy of 80%, and the remaining buses 
resulted in a poor accuracy of less than 50%. With the selection zones as described in Section V (A) the accuracy 
has been greatly improved to 95.5% for power quality event detection and zonal location finding.

Classification of power quality event using efficient-net with SE model in real time
Following the detection of power quality event, the detection signal will be sent to the high-speed work station 
through TCP/IP to consider the 10-cycle buffered voltage samples just before the power quality detection signal 
received, for the generation of recurrence plot using 3-phase voltage samples. The generated image will be 
given as input to the application that is using the trained EfficientNet model with SE technique as described in 
section “PQD classification based on Efficient-Net with adaptive SE blocks” to classify the power quality event 
from the 39 different combinations of power quality events being considered. Table  4 shows the detected PQD 
classes for the total 180 cases considered.

Timing analysis
In the Power quality detection hardware considered for this work, the timing analysis has been done in real time 
to find the time to detect the power quality event and the corresponding Zone location finding. the maximum 
value of time to detect the power quality event and zonal location finding is 18.95 milli seconds, and the 

Fig. 8.  Power Quality Detection hardware architecture.
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Fig. 10.  Zone-wise confusion matrix (with Misclassifications).

 

Fig. 9.  Cosine similarity heatmap at measurement nodes for each fault bus.
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maximum value of power quality event classification using real time data after power quality event detection 
signal is 38.5 milli seconds.

SCR sensitivity for PQD detection
Grid strength was varied by changing the Thevenin equivalent impedance at the point of common coupling/ 
Substation Bus in IEEE 13 Bus system. For a target SCR we set SSC = SCR × Prated and computed 
Zth = V 2

LL/SSC , where VLL is the PCC line-to-line RMS voltage and Prated the installed PV rating. The 
resulting Zth was split into series R and X using an X/R ratio of 5, and implemented as a series R–L branch 
feeding the IEEE 13-bus network. We tested three SCR conditions representative of strong, moderate and weak 
grids (SCR = 10, 7, 3). For each SCR we performed the identical set of PQD events and recorded recurrence 
plots, CSI traces, detection/localization decisions and classification outputs as shown in Table  5

Comparative analysis with state-of-the-art methods
To contextualize the effectiveness of the proposed RP + EfficientNet-SE framework, we benchmarked it against 
representative state-of-the-art methods reported in the literature. The selected baselines include traditional 
feature-based classifiers, image-based CNNs, and recent deep learning architectures that have been widely 
applied to PQD recognition tasks. Table  6 summarizes the key characteristics and performance of these 
methods in terms of data representation, number of disturbance classes considered, classification accuracy, noise 
robustness, and validation environment.

As shown in Table  6, traditional feature-based methods such as DWT  +  PNN11 and RBF-NN12 achieve 
accuracies around 94–95% but are limited in scalability and robustness under noise. S-Transform-based 
classifiers6,7 slightly improve performance but remain constrained by handcrafted features and lack real-time 
validation. Image-based approaches such as GAF + CNN22 and CBAM-DenseNet18 achieve higher accuracy 
(96–97%) but incur higher computational cost and do not provide latency analysis. Recent sequence models 
like Bi-GRU21 and fully convolutional networks23 show promise, yet are tested on fewer classes and remain 
simulation-only. By contrast, the proposed RP+EfficientNet-SE framework demonstrates superior classification 
accuracy (98.5%), robustness under noisy conditions (92.2% at 20  dB), and uniquely provides full real-time 
validation on an RTDS + HIL testbed for PQD’s detection, classification and localization together using a real 

Method Year Data-Rep. #Classes Accuracy (%) NR RTVALMS

DWT + PNN11 2017 DWT 16 95.0 20 dB No

RBF + NN12 2018 Time-domain 9 94.5 40 dB No

Seq2Seq + Bi-GRU21 2019 Time-series 96 98.0 20 dB No

ST + LightGBM6 2019 ST 15 95.1 20 dB No

ST + SVM7 2019 ST 34 93.5 20 dB No

GAF + CNN22 2021 GAF 21 96.4 20 dB No

CBAM-DenseNet18 2021 GAF 36 97.2 20 dB No

Improved FCN23 2022 Time-series 20 94.0 20 dB No

Proposed (RP + EfficientNet-SE) 2025 RP 39 98.5 20 dB Yes

Table 6.  Comparative analysis of PQD classification methods from literature and the proposed approach. 
Abbreviations: Data-Rep: Data Representation; NR: Noise Robustness; RTVAL: Real-Time Validation and 
Localization in a multi-Bus-System, ST: S-Transform **note: The reported values of other references are taken 
as published in respective works under their datasets/conditions Significant values are in bold.

 

SCR CSI Threshold Detection accuracy (%) Classification accuracy (%) Detection latency (ms)

10 (Strong) 1.55 98.8 98.5 18.5 ± 2.1

7 (Moderate) 1.50 96.9 95.8 19.2 ± 2.5

3 (Weak) 1.42 89.8 88.9 20.5 ± 3.0

Table 5.  Impact of grid strength (SCR) on PQD detection and classification performance.

 

Event type Detected samples/total samples

Voltage Harmonic (C4) 49/180

Voltage Harmonic + Flicker (C14) 65/180

Voltage Harmonic + Sag (C10) 53/180

Swell + Harmonics + Oscillatory Transient 13/180

Table 4.  Classification of power quality events using real time events.
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time hardware platform in a renewable energy integrated IEEE 13 bus system. This combination of accuracy, 
scalability to 39 disturbance classes, and end-to-end real-time feasibility highlights the novelty and practical 
significance of the proposed method.

Discussion of overall results of the proposed work
The proposed RP  +  EfficientNet-SE based framework was evaluated extensively under RTDS and HIL 
environments. Key findings are summarized below:

•	 High accuracy across tasks: The framework achieved a detection accuracy of 95.5%, zonal localization accura-
cy of 89.44%, and classification accuracy of 98.5% across 39 single and composite PQD classes.

•	 Noise robustness: Performance remained stable under adverse measurement conditions, maintaining 92.2% 
classification accuracy at 20 dB SNR, demonstrating resilience to noise.

•	 Real-time feasibility: End-to-end real-time validation showed a detection latency of less than 18.95 ms and 
classification latency of less than 38.5 ms, satisfying practical requirements for near real-time power quality 
monitoring.

•	 Advantages of zonal monitoring: By adopting a zone-based observability strategy, the number of measurement 
points was reduced without sacrificing detection accuracy. This minimizes hardware overhead while main-
taining comprehensive grid coverage.

Overall, these results highlight the practicality of the proposed system for deployment in modern distribution 
networks with high renewable penetration, where low latency, scalability, and robustness are essential.

Limitations and future work
While the proposed RP + EfficientNet-SE framework shows strong detection, localization, and classification 
performance in the IEEE 13-bus test system, several limitations remain:

•	 The study is validated on a single benchmark feeder; generalization to larger and unbalanced distribution 
systems needs further exploration.

•	 The analysis considers limited PV penetration levels; scenarios with very high inverter-based generation ( 
greater than 80%) require investigation.

•	 Although RTDS and HIL validation confirm real-time feasibility, deployment on embedded hardware plat-
forms with restricted resources remains future work.

•	 While robustness under varying SNR and SCR levels was quantified, cyber-physical aspects such as commu-
nication delays or data loss were not modeled.

•	 The proposed CSI thresholding adapts to weak grids, but dynamic, self-learning threshold selection remains 
an open research direction.

Conclusion
The propose work presented a framework for real-time detection, localization, and classification of power 
quality disturbances (PQDs) in a solar-integrated IEEE 13-bus distribution system. Using recurrence plots and a 
cosine similarity index (CSI)-based anomaly detector, the zonal monitoring approach achieved a PQD detection 
accuracy of 95.5% and a localization accuracy of 89.44%. The CSI thresholds were calibrated both globally and 
zone-wise, balancing sensitivity and specificity and thereby reducing false positives.

Classification was performed using an EfficientNet-B0 model with Squeeze-and-Excitation (SE) blocks, which 
achieved an overall accuracy of 98.5% under nominal operating conditions and maintained 92.2% accuracy at 
20 dB SNR across 39 single and composite PQD classes. Frequent PQD types, such as Voltage Harmonic + Flicker 
(65/180), Voltage Harmonic + Sag (53/180), and Voltage Harmonics alone (49/180), were reliably identified. 
Validation in both RTDS and Hardware-in-the-Loop (HIL) environments confirmed the method’s feasibility for 
real-time operation with detection latency below 18.95 ms and classification latency below 38.50 ms.

Data availability
The simulation dataset used in this study can be shared upon reasonable request. Interested researchers may 
contact Dhanunjaydu Nasika at 421ec0002@iiitk.ac.in for access to the dataset. Additionally, the dataset can also 
be generated using the detailed procedure provided in the manuscript.
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