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Comparative thermoelastic
analysis of semiconductors with an
external heat source under three
theories

B. Das'™’, N. Islam? & A. Lahiri2

This article explores the three-dimensional thermoelastic problem in a homogeneous, isotropic
rectangular plate subjected to an external heat source and an electromagnetic field under three
theories: nonlocal classical coupled dynamical theory (NLCDC), nonlocal Lord-Shulman theory (NLLS),
and nonlocal dual phase-lag theory (NLDPL). Normal mode analysis is applied to the governing
equations and employs the eigenvalue approach methodology to obtain an analytical closed-form
solution. Comparative numerical differentiations are performed for three different semiconductors:
Silicon (Si), Germanium (Ge), and Gallium Arsenide (GaAs). The results are presented graphically in
both two-dimensional and three-dimensional formats based on fixed physical parameters of the three
semiconductors. The results reveal the significant effects of the comparisons across the three theories,
the heat source, electromagnetic field, and thermoelastic coupling parameter, which are influenced
by the non-local theory with ultra-short thermoelastic response. Different values of energy band gap
(Ey) for the three semiconductors (Si, Ge, and GaAs) produce more pronounced characteristics for the
variations in thermoelastic properties.

Keywords Magneto-thermoelasticity, Semiconductors, Energy band gap, Normal mode analysis, Eigenvalue
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In modern electronic theory and photothermoelasticity, both the effect of thermoelasticity and magnetoelasticity
is required. The interactions between thermal, mechanical, and optical effect can be countered to get a more
accurate performance. Semiconductors and intrinsic semiconductors have a wide range of applications in
modern electronics devices. This technology is based on the analysis of all the significant properties of Si, Ge,
GaN, GaAs and InP which are used mainly in high-frequency optoelectronic devices. The small amount of
impurities or dopants, such as phosphorus (P), antimony (Sb), arsenic (As), etc., causes it to be a conductor, and
different types of dopants make it n-type or p-type conductors. This type of semiconductor is extensively used
in diodes, integrated circuits (ICs) and many modern electronic gadgets. In the presence of an electromagnetic
field, the Lorentz force plays a significant role in interacting between the electromagnetic field, strain, stress
components, and temperature distribution in an electromagnetothermoelastic medium. This type of interactions
have many applications such as tectonic plate theory in geophysics, plasma physics, theory of wave propagation
in thermal and electrical engineering field. Different types of energy bands of the semiconductor are illustrated in
Fig. 1b. The energy band theory mainly describes the characteristics of semiconductors and insulators. Mustafi'
investigated that the energy band gap (Eg) depends on the temperature, the density of the dopant and the carrier
density of the semiconductors or intrinsic semiconductors. Recently, Kumar et al.? investigated the behaviour
of photothermal waves in a semiconducting medium using the dual phase lag (DPL) thermoelasticity theory
with nonlocal effects. Ahmed et al.? proposed a novel nonlocal mathematical model for thermo-photo-elasticity
to address the limitations of classical theories in understanding the interactions between thermal, mechanical,
and photoelastic deformations in semiconductors like silicon and germanium. Zenkour* developed a system of
four coupled thermoelastic differential equations incorporating a photothermal process. The study presented
the refined multiphase-lag (RPL) theory to describe the thermoelastic photothermal response of a half-space
semiconducting medium. Othman et al.’ investigated the coupled two-dimensional magneto-thermoelastic
problem of a thermally perfect conducting half-space solid in the presence of a moving internal heat source.
Mahdy et al.® studied the one-dimensional deformation of a semiconducting elastic medium subjected to a
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Fig. 1. (a) Schematic representation of an isotropic and homogeneous thermoelastic semiconductor with finite
height (z = h) in the presence of an external heat source (Q) and magnetic field (Ho). (b) Typical energy
band diagram of a crystalline semiconductor. Specifically, F plays a crucial role in characterising the intrinsic
semiconductors into conductors by decreasing the electrical resistance.

strong magnetic field with Hall current. The study also accounted for the effect of micro-temperature when a
laser beam was applied to the outer surface of the medium. Alqahtani” introduces the analytical solution for
thermal, elastic, and plasma waves generated by focused laser beams in semiconductor materials. Salah et al.®
studied the effects of magnetic fields and initial stress on a rotating semiconductor medium with ramp-type
heating subjected to specific boundary conditions.

Traditionally, the theory of elasticity states the mathematical expression to determine the stress and strain
of the medium. Biot’ introduced the classical coupled thermoelasticity(CCTE) theory which is based on the
conventional Fourier’s law of heat conduction under a high temperature environment. Later, generalized
thermoelastic theories: Lord and Shulman (LS)'° theory, Green-Lindsay (GL)!! theory, and Green-Naghdi!'?-!4
theory modified the basic paradoxes of conventional theory. Basically, the dissipative theory of energy proposed
by Green-Nagdi'>!® predicts a more appropriate model of mechanical and thermal situations where precision
and optimal performance are required. High energy gradient machine, laser heating tools, nuclear reactor, etc.
where the heat propagation with finite speed and energy dissipation is more crucial. Othman et al.! studied
generalized thermoelasticity using the Lord-Shulman theory with one relaxation time to examine photothermal
wave behavior in a semiconducting medium. Lotfy et al.!® investigated the basic characteristics of plane wave
propagation in the presence of an electromagnetic field that addresses the problem of two temperatures for a
semi infinite two-dimensional semiconducting medium. Othman et al.'” investigated the influence of gravity in
a homogeneous, isotropic semiconducting medium with an internal heat source, employing the Lord-Shulman
thermoelastic theory.

Conventional theory fails to give the accuracy for low-temperature scenarios and finite speed of wave
propagation which disturb to reach the equilibrium condition. Generally, it pursues the local elastic effect, which
is effectively used for primary interactions on the macroscopic scale of the material, regardless of the size effect.
Eriengen'® introduced a new theory that includes the size effect and non-locality. Islam et al.'” investigated the
thermoelastic and electromagnetic effects for a thin circular semiconductor, considering this structural size and
Eringen’s non-local elastic theory (ENET). This theory of non-locality addresses the long-range interactions
between the particles of the material. The non local Lord-Shulman(NLLS) theory creates a comprehensive model
that effectively captures both nonlocal mechanical effects and realistic thermal wave propagation. This unified
approach is particularly beneficial for analyzing the thermomechanical behavior of materials where small-scale
effects and finite thermal propagation speeds are crucial for a nano-scale composite material structures. The
nonlocal dual phase lag theory (NLDPL) is an advanced framework in heat conduction that integrates nonlocal
elasticity concepts with the dual phase lag (DPL) heat conduction model. This theory addresses the limitations
in classical heat conduction models, particularly at the micro and nano-scales, by considering both spatial
nonlocality and temporal phase lags in heat flux and temperature gradient responses. Elaziz et al.’ analyzed
the propagation of plane waves in a nonlocal semiconductor nanostructure thermoelastic solid incorporating a
fractional derivative, under the influence of a ramp-type heat source. Othman et al.?! investigated the impact of
temperature-dependent parameters and initial stress on semiconductor materials within the framework of the
dual-phase lag (DPL) model. Tzou?? has introduced a fascinating theory of dual-phase-lag heat equations that
includes two phase-lag parameters related to the temperature gradient and the heat-flux vector. The NLDPL
theory has been used to study thermoelastic damping in micro and nano-scale structures, such as nano-
beams and nano-plates. By considering size-dependent effects, this theory provides valuable insights into the
mechanisms of energy dissipation that are crucial for designing micro-electro-mechanical systems (MEMS)
resonators. Dali et al.?3 examined a coupled thermoelastic model incorporating the interactions of thermal,
mechanical, and energy fields in a three-dimensional medium.

In this paper, we study the generalized thermoelasticity theory of non-local heat conduction considering
the effects of a heat source and electromagnetic field components in a three-dimensional rectangular
semiconducting medium. The fundamental governing equations are formulated in the three-dimensional thick
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plate within the framework of the non-local thermoelastic theory. We have also derived physical quantities such
as temperature distribution, carrier density, stress and displacement components using the normal mode analysis
and eigenvalue approach methodology. Several two and three-dimensional graphs show the analytical results
for three semiconductors such as silicon(Si), germanium(Ge) and gallium arsenide(GaAs) by using MATLAB
2021a programming language. The corresponding discussions are depicted systematically. The results reveal
a significant impact for comparing the three theories, applied external heat source, electromagnetic field, and
thermoelastic coupling parameter. Also, compares the physical quantities based on different values of material
constants for three different semiconductors. This study presents a nonlocal magneto-thermoelastic model based
on an isotropic and homogeneous three-dimensional rectangular semiconducting medium, ensuring that both
thermal and mechanical boundary conditions are satisfied. The problem is investigated within the framework
of nonlocal thermoelasticity theory under three models (NLCDC, NLLS, and NLDPL) in the presence of an
external heat source and magnetic field.

Basic equations for theoretical model
We consider a generalized, homogeneous, and isotropic thermoelastic rectangular semiconductor in the
presence of the initial magnetic field Hy directed along the z axis, along with an applied external heat source Q.
The physical field variables are defined in terms of the Cartesian coordinates z, y, and z, as well as time ¢.

As discussed in Islam et al.['] and Todorovic?* %, the coupled plasma equation and equation of motion for a
homogeneous and isotropic semiconductor are given as:

2 2 2

%]ZZDE(8+8+8)N—ZZ+H1(9—9O)7 ey

where N(x, y, z, t) represents the carrier density, D is the carrier diffusion coefficient. Here, § and 6y denote
the absolute temperature and reference temperature of the material, respectively. The term w1 ( = %;)
represents the thermal activation coupling parameter. Additionally, Vo and 7 refer to the carrier concentration
with reference temperature 6y and the photo-generated carrier lifetime, respectively.

The equation of motion for an isotropic semiconductor medium with an electromagnetic field is given by
pui = pui g+ (A + p)uji; — b — 6N + Fi. )

The components of the Lorentz force is given by F; = o (J x H);, where H is the magnetic field vector and
J is the electric current density. The mass density is represented by p. The parameters A and p refer to Lame’s
constants, while & = (3 + 2p)ap is known as the thermoelasticity constant. Here, cvg represents the coefficient
of linear thermal expansion. Additionally, §,, denotes the difference between the conduction and valence bands.

As in Islam et al.'? and Das et al.?>, the non-local heat transportation equation with the presence of the heat
source is given as

19} E, . 0 0 00 0 _
K (1 +7’95) 0, + TN = (1 + (AQk)@ +7'q§) [Pcea +04T0§(uk,k) Q. 3)

In this context, x denotes the thermal conductivity. The parameters 79 and 7, denote the phase lags of the

temperature gradient and heat flux, respectively. The symbol A, signifies the non-local parameter. Additionally,

L, refers to the energy bandgap, while C. indicates the specific heat. Lastly, Q represents an external heat source.
The constitutive stress components are as follows:

O3 = Q;Aeij + ()\e — ab — (SnN)(Sij, (4)

where 0;; and e;; represent the component of the stress and strain tensor, e = (g—;ﬁ + %Z + %) is the cubical

dilatation.
In the presence of an electromagnetic field, the medium must follow Maxwell’s equations as in Baltz?® as-

curlh=J+ eog—f,div h=0,E=—po(a x H),curl E = f,u()%,B = uoH,D = ¢E. (5)

In this context, (o and €o represent the magnetic and electric permeability respectively. The vector h indicates
the induced magnetic field component, while E signifies the induced electric field component expressed as E =
(E1, B, 0).

In this works, the nonlocal heat transportation Eq. (3) presents three distinct theories as discussed in Das et
al.?:

(i) Non-local classical dynamical coupled (NLCDC) theory: this theory is characterised by 79 = 7, = 0 and
Ag > 0.

(ii) Non-local Lord and Shulman (NLLS) theory: it is defined by 79 = 0, 7y > 0, and Ay > 0.
(iii) (iii) Non-local dual phase lag (NLDPL) theory: the conditions are 7, > 79 > 0 and Aq > 0.

Validation of our model compared to other models

(a) Neglecting the chemical concentration (C) and the presence of external heat source (Q) :
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For an isotropic, homogeneous, and perfectly thermoelastic thin semiconductor, the theoretical frame-
work proposed in this article aligns with the approach presented by Islam et al.'’. In this context, no exter-
nal body forces are considered, and all thermal and mechanical interactions are assumed to depend solely
on the radial distance.

(b) Neglecting the heat source () = 0) and the carrier density(N = 0):

If we focus on the problem of the generalized magnetothermoelastic problem with non-local theory and
in the absence of an external heat source(Q) and carrier intensity(N) for the isotropic and homogeneous
elastic material, then the theory proposed in this article is identically similar with Das et al.?>.

(c) Neglecting the heat source (QQ = 0) and displacement (w = 0):

If we consider a two-dimensional generalized magnetothermoelastic problem with non-local theory and
in the absence of an external heat source for the semiconductor silicon only, this proposed theory is similar

with Sardar et al.?’.

Formulation of the problem
We consider a rectangular thick semiconductor plate which is isotropic, homogeneous, and exhibits magneto-
thermoelastic behaviour. The plate occupies the region: R={(x,5,2): 0 <z < h;0 <y < ;0 < z < d } witha
magnetic field as shown in Fig. 1a. The total magnetic field, denoted as H consists of an initial uniform magnetic
field Ho and a perturbation h. The initial magnetic field Ho=(0, 0, Ho) is applied in the direction of the z-axis
in the cartesian coordinate system.

Therefore, from Eq. (5), we have the expression of Lorentz forces such as

&*u v 9w 9%u
= woHo Gz + g0+ guas) ~ Mo Ho Gy (©)
% 9%u &*w 9%v
2 2
_ 7
F MOHO(ByQ + 0xdy ﬁyé‘z) €0 OHO ot2’ @
F3=0. (8)

The equation of the dimensionless variable is given as

(x*’y*’z*) = Cono(x’ y’ Z)’ (u*’v*’w*) = COnO(u?v?w)7 (t*77—6*77—;) = ano(t’ Te’Tq)’
* * 1 (&3 * 6 (e (9)
Ao = conodg, 05 = —= 04,0 = 20, : e
i 070 Aa;> Tig pcd i pcd ()\ +2u N.Q = p2cecotno?

Using Egs. (6), (7), (8), and dimensionless Eq. (9), the basic Eqs. (1)-(4) can be written as

ON O*’N  0°N  O°N
2 = (8962 + 9 t 352 ) —qN + €30, (10)
8%u 8 U 0%v 0w 0%u  0%u 00 ON
2 _ n2 2 _ v v e 27 _ 27
oo = Poges + (B0 —1) <8w6y * 8m8z) + (a 2t 3 ) h g ()
0% 8 v 0%u 0%w v 0% 00 ON
2 _ a2 2 Jv 27 _ 27
@02 /BO (50 1) (8x8y + 6y82> + <8w2 + 8,22) p dy p (12
O*w O*w Pu v Pw | OPw 20 ON
2 _ a2 2 0w 0w\ 00 0N
FEdr R ) (axaz * 8y8z> * <8x2 * ay2> o P W
0 2%0 9% 0% 0 0 0 0
(1+ eat) 8x2+@+8 = 1+Aq1%+qua +)\q5£+7'qa
(14)

30+ 82u+82v+82w — Q| —eN
ot "~ \ otor T ooy T otaz 2

The constitutive dimensionless equations of the stress components are as follows-

ou v ow
Uzz—ax+<1 52)( +(9Z>_9_N7 (15)
ov ou  Ow
Uyy—%+<1—ﬁ)(8x+&)—9—N, (16)
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ow 2 Oou = Ov
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7 0z + < ,6’2) (ax 8y> (17
Oy = o (L OV (18)

g2\ oy x )’

g2\ oz x )’

1 (0v Ow
Oyz = ? (Z + y) . (20)
€ 2772 2 C2 " ¢ a

where, af = (PRI ) 5 = (M) 67 = £ = (M) of = (M) 0 = B0 = S 00,

H%Z)Ezgnozf a2 = D;no = DE5012’H027' €3 = DEICC;g:fo?a )

In this context, the parameters are defined as follows: €1 is the thermo-elastic coupling parameter that depends
on thermal expansion q; € is the thermo-energy coupling parameter derived from the energy band gap of the
semiconductor. Lastly, €3 represents the thermoelectric coupling parameter which is based on the coefficient of
electronic deformation(ED). These parameters are essential for understanding the different physical interactions
in materials under various circumstances.

€2 =

Solution procedure: normal mode analysis
To get the physical field variables analytically, we now apply the normal mode analysis which is defined as
follows-

E(w,y, 2,1) = £ (w)e” T, 1)

where &(z,y,2,t) = [N,u,v,w,0,04], £ (z)=[N",u",v",w",0%,0], s is the angular frequency,
t = +/—1, a and b are the wave numbers in the directions of y and z axis respectively.
Using Eq. (21), the non-dimensional basic Eqs. (10)-(14) can be expressed in the form of a vector matrix

differential equation as follows:

DV = AV + f. (22)

u v w L L
where, D=L, V=[N w v w ¢ 4¥ dv dv duw %]T,A:[L; L;z},f:[o 0000

0000 01011]T, Ly, is null matrix, L2 is identity matrix of order 5 x 5, the mathematical expressions
for La1, L2z, and c1011 are given an Appendix.
We now apply the eigenvalue approach methodology to solve the vector matrix differential Eq. (22). The
characteristic equation of the coefficient matrix A is as follows-

AX =X, (23)

where X = [X;];—(1(1)10) is the eigenvectors corresponding to the eigenvalues A = A; for j = 1(1)10. These
eigenvalues are obtained by solving the characteristic Eq. (23) using MATLAB R2021a. The computation involves
the built-in functions of MATLAB to determine the eigenvalues and their associated eigenvectors.

As the corresponding theory is discussed in Das et al.?® and considering the regularity condition, the general
solution of the differential Eq. (22) for a rectangular plate is

10
V= Zijj' (24)
j=1
where,
y; = Ajei" 4 eMi® /OO Gje Mi%dx. (25)
and Gj = (B™'f) where B=(X;), j=1(1)10. (26)

where A;’s are the arbitrary constants.
Thus, the corresponding values of the physical field variables can be written as -

10

) G,
(Nyu, v, w, 0)= Z(wy‘l,wﬂ,l‘j&1’;‘4»$j5)(14jew -<7) (27)
j=1 Aj
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Using this solution, Egs. (15-20) give the expression of stress components which are given by

10
(Cww, Oyy, Ozzy Ony, Ouzy Oyz) = Z(le,sz,jo,R4j,R5j, Rej)Aj — di. (28)

Jj=1

The arbitrary constants A;’s (j=1(1)10) are to be determined from the prescribed boundary conditions. The
explicit expressions of R;; (¢ = 1(1)6) and di (k = 1(1)6) are given in the Appendix.

Initial and boundary conditions

To determine the arbitrary constants A ;, we now examine the initial and boundary conditions for the rectangular
plate with height £ as illustrated in Fig. 1a. The thick rectangular plate of semiconducting medium is subjected
to: Case-I - a known magnitude of load and carrier intensity gradient at the top surface, Case-II - an exponential
order increase in mechanical load and temperature with known magnitude of carrier intensity gradient at the
top surface.

Initial conditions
0(z,y, 2,t) = 60(1(,921,.2,15) =0, N(z,y,2,t) = Be(zéz,z,t) =0, (u, v, w)(2,y, 2,t) = B(u,u,u;(%gas,y,z,t)7

oij(2,y, 2z, t) = 22EVED — g ar4 = 0.0.

Boundary conditions
Case-1

The top and bottom surfaces of the plate are subjected to the mechanical load as:

At x=0 (bottom surface)

ez =0, 02y =0, 0. =0, 6 =0, DE% = (1 N.

Atz = h (Top surface)

Oz =P, Ogy =0, 04 =0, 6 =0, DE% = (1 N.

where p and (; are constant.

The normal stress component o, is considered as zero at the bottom surface of the plate, while the top
surface is subjected to a uniform normal mechanical load of magnitude p. The shear stress components oy
and 0 are assumed to vanish on both the bottom and top surfaces. The thermal condition § = 0 specifies that
these surfaces are maintained at a constant reference tem;)erature, thereby simulating an environment without
additional thermal excitation. The carrier condition D %Y = (; N corresponds to the surface recombination
of charge carriers at the bottom and top surfaces.

Case-II

At x=0 (bottom surface)

Oz =0, 0oy =0, 0, =0, 0 =0, Dp¥ = N.

At x = h (top surface)

Ozz = P1 exp(st + i(ay + bz)), 0oy =0, 022 =0, 0 =6y exp(st +i(ay + bz)), Dp% = (1N.

where P is constant. Bottom surface of the plate is subjected to traction-free, while the top surface is subjected
to a uniform normal mechanical and thermal load which varies exponentially. The shear stress components o
and o, are assumed to vanish at the top surfaces. The carrier condition D E% = (1N corresponds to the
surface recombination of charge carriers at the bottom and top surfaces.

The arbitrary constants A; (j=1(1)10) have been calculated by using the matrix inversion method from the
two types of boundary conditions mentioned above. The closed form of the analytical solution of the problem is
completely obtained according to the unique solution of these arbitrary constants, which are used for numerical
results and discussions.

Numerical results and discussions

We consider the thermoelastic problem of the three-dimensional rectangular plate with the presence of an
external heat source and an electromagnetic field under the three theories of NLCDC, NLLS, and NLDPL.
An efficient computer programming language (MATLAB R2021a) is used to study the numerical analysis and
the corresponding graphical representations. As discussed by Islam et al.!” and Alshehri et al.?, the material
constants of silicon (Si), germanium (Ge) and gallium arsenide (GaAs) are used for the numerical computations.
The values of the material constants are provided in Table 1.

The corresponding numerical values of the associated constants are given by:
L o =4rx 1077, Ho=2 5 =1.0,P =001, ¢1=10,a=12b=13,2=0.5,

47

€0 = T36r

angular frequency(s)=2.5 and time(#)=0.2.

Significant impact of the three theories

Figures 2, 3, 4 and 5 depict the variation of the normal stress(c.z), shearing stress(c.y), and the temperature
distribution () versus space variable(x) in silicon material. The effect of the non-local classical dynamical
coupled (NLCDC) theory (19 = 0.0, 7, = 0.0, Aq;, = 0.012, Ay, = 0.015, Aq; = 0.017), non-local Lord and
Shulman(NLLS) theory (79 = 0.0, 7, = 0.4, Aq; = 0.012, Ay, = 0.015, A\g; = 0.017), and non-local dual
phase lag (NLDPL) theory (19 = 0.2, 74 = 0.4, Ay, = 0.012, Ay, = 0.015, A\g; = 0.017) are discussed for the
thick rectangular plate of the semiconductor medium.
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Silicon (Si) | Germanium (Ge) | Gallium Arsenide (GaAs) | Units
A |3.64x10" |0.48 x10'? 11.9 x 10! Nm™2
po | 546 x10'° | 053 x10'? 534 x 1011 Nm~?2
p | 233x10% |53x103 5317 x10° Kgm™®
Cr | 695 322 330 JKg 'Kt
ag | 414x107% |57 x107° 1.78 x10~6 K1
dn |-9x1073" | .6 x10731 -8 x10731 m>
Dp |25%x1073 |19-2 5x 1073 m2s~1
Egy | 111 0.72 1.42 ev
k1 | 150 60 46 Wm™tK™!
r |5x107° |1.4x10°¢ 6.1 x 1076 s
300 300 300 K

Table 1. The values of the material constants for Silicon (Si), Germanium (Ge) and Gallium Arsenide (GaAs).

—NLCDC

Fig. 2. Case-I: The variation of the normal stress (o) versus the space variable (x) under three theories
NLCDC, NLLS, and NLDPL.
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Fig. 3. Case-I: The variation of the shearing stress (04, ) concerning the space variable (x) under three theories
NLCDC, NLLS, and NLDPL.
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Fig. 4. Case-I: The temperature distribution () versus space variable (x) is analysed under three theories:
NLCDC, NLLS, and NLDPL.

Fig. 5. Case-II: The normal stress component (o, ) versus space variable (z) is analysed under three theories:
NLCDC, NLLS, and NLDPL.

Figure 2 illustrates that the variation of the normal stress(c.) versus the space variable x according to three
different theories: NLCDC, NLLS, and NLDPL. For the NLCDC theory, the variations of the stress distributions
are all smooth in nature. The wave of the three theories converges at the peak on the top surface of the plate.
The variation of the stress component (0..) could be due to different factors such as applied loads, material
behaviour, or geometric constraints.

Figure 3 illustrates the variations of the shearing stress component (0.y) with the space variable () under
three theories: NLCDC, NLLS, and NLDPL. The characteristics of the shearing stress (o) in NLLS theory
differ from those in the NLCDC and NLDPL theories. The structural size effect due to the non-local theory
causes a significant change in the shearing stress. These types of characteristics appear to predict delayed effects
in stress response, which could be due to phase-lagging and coupled behaviour in the shearing stress.

In Fig. 4, the temperature distribution (0) as a function of the space variable (x) is presented for three theories:
NLCDC, NLLS, and NLDPL. The behaviour of € is more pronounced in the nonlocal generalized thermoelastic
theory compared to the other two theories. The temperature distribution is at a minimum on both surfaces
(bottom and top), confirming the prescribed boundary conditions. The middle portion of the plate experiences
the highest temperature. The resulting curves are smooth and symmetrical, indicating a well-behaved thermal
distribution.

Figure 5 beautifully illustrates the normal stress component (04.) as it relates to the space variable (x) across
three different theories: NLCDC, NLLS, and NLDPL. It’s particularly noteworthy that this stress component
reaches its minimum value at z = 0.7. The NLCDC and NLDPL models exhibit almost identical physical
behaviour concerning normal stress (0..). Overall, the generalised theory for fixed values of the physical
parameters presents even more significant results. Importantly, the physical disturbance occurs in the middle
section of the plate, which confirms the boundary conditions at + = 0 and « = 1. The concave downward shape
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Fig. 6. Case-I: The variation of the normal stress component (0. ) versus space variable(x) for three fixed
values of the heat source (Q).
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Fig. 7. Case-I: The variation of the shearing stress component (o, ) versus space variable(x) for the fixed
values of the heat source (Q).

of all the curves suggests that both compression and tension behaviour are most pronounced in the middle
portion.

Figures 2, 3, 4 and 5 illustrate the significant effects of the relaxation time parameters and the phase-lagging
parameter in the two theories, NLLS and NLDPL, respectively, compared to the classical theory. Stress components
and temperature distributions are characterized by a wave-type formulation in photo-thermoelasticity. Carrier
concentration and free carrier movement in silicon (Si) are analyzed through these figures.

Significant impact of the external heat source (Q)

Figures 6, 7, 8 and 9 represent the variations of the normal stress component (o), shearing stress components
(0zy, 02z), and temperature distribution (6) with the space variable (x) for three distinct values of an external
heat source (Q) of the semiconductor material silicon(Si). We now consider the three fixed values of the nonlocal
parameters(\g; = 0.012, Ay, = 0.015, and Ay, = 0.017), the temperature gradient (79 = 0.2) and the heat
flux(r, = 0.4).

Figure 6 illustrates the variations of the normal stress component (0,;) with the space variable (x) for
three distinct values of the heat source (Q = 0.0, 5.0, 10.0). The characteristics of 04, for @ = 0.0 gradually
increase with an increase of x. The graphs of oz, for the heat sources (Q = 5.0, 10.0) show a very significant
characteristic compared to the graph without an external heat source. As Q increases, the stress o, develops a
more significant concave behaviour, showing increased tensile and compressive effects within the domain. It is
illustrated that the internal resistance decreases with increasing heat source. The magnitude of Q increase stress
gradients, making the system more susceptible to higher tensile or compressive stresses in the middle portion
of the plate.
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Fig. 8. Case-I: The variation of the normal stress component (o, ) versus space variable(x) for the heat source

(Q.

Fig. 9. Case-II: The normal stress component (o) versus space variable (x) for the heat source (Q).

In Fig. 7, the variation of the shearing stress (0.y) with the space variable (x) for three distinct values of the
heat source (@ = 0.0, 5.0,10.0). The characteristics of the shearing stress do not significantly impact on the
plate at @ = 0.0. The shearing stress (o4 ) varies with the increase of the external heat source (Q). The thermal
effect influences the stress field. This effect also leads to more pronounced mechanical and electronic effects in
semiconductor materials. The shearing stress (0zy) is crucial in Micro-Electro-Mechanical Systems(MEMS)
devices, where mechanical deformation affects the electronic deformation(ED). The increasing Q could represent
thermal expansion, piezoelectric effects, or external mechanical forces acting on the semiconductor.

Figure 8 represents the variation of the normal stress component (o, ) with the space variable (x). It includes
multiple curves corresponding to different values of the heat source @ = 0.0,5.0, and 10.0. Therefore, the
mechanical load may also be present without thermal influences. The properties of the normal stress (o) for
@ = 10.0 are significantly effective in this plate. The characteristics of this normal stress (o) are more crucial
for strain engineering, piezoelectric effects, and thermal stress analysis in semiconductor devices. The minimum
magnitude becomes more negative as Q increases, showing increased compressive stress in the central region.

Figure 9 describes the variation of the normal stress component(coz.) with the space variable (x) for three
different values of the heat source (QQ = 0.0, 5.0, and 10.0). The behaviour of o, is significantly affected in the
middle portion of this plate. The applied heat source(Q) enhances compressive stress in the thick plate of the
semiconductor. All the curves exhibit a parabolic shape in nature. This stress component vanishes at both the
surfaces(top and bottom) and attains the minimum at the middle of the plate.

The temperature can modify the energy range between the conduction and valence bands of the semiconductor
crystal. That may cause a continuous decrease of surface resistivity along with more modifications of the energy
level for the respective energy of the indirect band gap. Carrier mobility can be estimated by increasing the
effect of temperature. So, the corresponding values of the external heat source (Q) play a significant role in
transforming a semiconductor or an intrinsic semiconductor to a conductor.
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Fig. 10. Case-I: The variation of the normal stress component (0. ) versus the space variable (x) for the
magnetic field (Ho).
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Fig. 11. Case-I: The distribution of shearing stress (o) versus space variable (x) for magnetic field (Ho).

Significant impact of the applied magnetic field (Hy)
Figures 10, 11, 12 and 13 describe the normal stress component (0zz), shearing stress components
(0zy,02z), and temperature distribution (f) with the space variable(x) under three various values of the
magnetic field (Ho) for semiconductor material silicon(Si). Here, we consider the fixed values of the nonlocal
parameters(\g; = 0.012, Ay, = 0.015, and Ay = 0.017), the temperature gradient (79 = 0.2), the heat
flux(7q = 0.4), and the heat source(Q = 5.0).

Figure 10 illustrates the normal stress comEonent (o) asa function of the space variable (x ) under three
different values of the magnetic field: Hy = ~— and 10 . The behaviour of 04, for Ho = 3 is notably

distinct compared to the other two graphs. ngher values of magnetic fields result in greater stress Varlatlons,
likely as a result of the enhanced Lorentz forces acting on the material. The increasing effect of the magnetic field
suggests that magneto-mechanical coupling plays a crucial role in stress distribution.

Figure 11 illustrates the shearing stress com_Ponent (0x2) as a function of the space variable (ac)7 for three
different values of the magnetic field: Ho = —ﬁ, and 10 . The behavior of 0, for Hy = =— shows a

significant 1mpact compared to the other two variations. The characterlstlcs of 0. are most pronounced for the
values of Hy = and 2% in the middle portion of the plate. The observed reduction in o as Hy increases
indicates that the applled magnetlc field has a stabilizing effect on the shearing stress. This figure demonstrates
that the applied magnetic field has a significant influence on the shearing stress oz..

Figure 12 depict the shearlng stress component(azy) with the space variable (x) for three different values of

the magnetic field (Ho 477 , M ,and 10 ) The graphs of 0, are a smooth parabola for the values of the

magnetic fleld Ho = and 10 , where shearlng stress reaches the maximum at the center and decreases

Scientific Reports |

(2025) 15:40120

| https://doi.org/10.1038/s41598-025-23984-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1200

---------------------------- Y
T T T e H() 10" /47
1000 - L T == H=10" 4z
S e S| H=10"
800+ e Tl
600 - vl RSN 4
o < e N \'\
bk /l e N AN
400- /0 SN
200 /1 W
i
4 W\
0
_200 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 12. Case-1I: The shearing stress component (o4, ) versus space variable (x) for three distinct values of
magnetic field (Ho).
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Fig. 13. Case-II: The normal stress component(o ) versus space variable (x) for fixed values of magnetic field
(Ho).

7
toward the edges. The characteristic of o, for Ho = 2 is relatively negligible compared to the others. The

increase in shearing stress with Ho indicates that the material may exhibit magnetorheological properties,
where the applied magnetic fields enhance its shear resistance. The shearing stress 0., indicate that magneto-
mechanical interactions play a significant role in this system.

Figure 13 illustrates the n(l)ggnal1 Osltfess com}laonent(azz) with space variable (z) for three different values

of the magnetic field: Ho = A an

pronounced values of positive and negative stress. This behaviour is important for applications involving
magneto-thermoelastic materials, stress-controlled actuators, and structural components that are subjected to
magnetic forces. The electro-magnetic field induces additional Lorentz forces that enhance the normal stress
component which also leads to greater compressive and tensile effects within the material.

The free carrier concentration in a semiconductor acquires higher energy from the applied electric field,
which also produces a magnetic field. This energetic carrier can be promoted to a higher energy level such as the
conduction band. This may happen because of the impact of ionisation on a semiconductor in the presence of
high electric and magnetic fields.

4
and X2—. The behaviors of o.. show a greater variation with more

Comparison of the significant impact for three semiconductors

Figures 14, 15 and 16 present a comparison of the significant behavior of three materials silicon (Si),
germanium (Ge), and gallium arsenide (GaAs) focusing on the shearing and normal stress components
(0wy,Oyy, Oxz, 02 ). Based on the fixed values for the temperature gradient (79 = 0.2), the heat flux (7, = 0.4),
the non-local parameters (A\g; = 0.012, Ay, = 0.015, A\g; = 0.017), and the external heat source (Q = 5.0),
the corresponding discussions are depicted.
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Fig. 14. Case-I: The variation of the shearing stress (0) with the space variable (x) in three

(Si), Germanium (Ge), and Gallium Arsenide (GaAs).
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Fig. 15. Case-1I: The graphical representation of the shearing stress(o.-) as a function of the space variable x
consists of three materials: Silicon (Si), Germanium (Ge), and Gallium Arsenide (GaAs).

20

-60 — Silicon (Si)
- - Germanium (Ge)
-80
=-== Gallium Arsenide (GaAs)
~100 I I I 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Fig. 16. Case-1I: The variation of the normal stress(o ) with the space variable z is analysed for three
materials: Silicon (Si), Germanium (Ge), and Gallium Arsenide (GaAs).
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Figure 14 illustrates that the shearing stress (04 ) with the space variable (x) for three different semiconductor
materials: silicon (Si), germanium (Ge) and gallium arsenide (GaAs). The shearing stress (o) exhibits a smooth
oscillatory pattern and reaches the maximum value at the bottom surface of the semiconductor. Germanium
displays the highest magnitude of shearing stress, while gallium arsenide shows the lowest. Shearing stress can
induce strain effects that influence the electronic band structure, subsequently affecting carrier mobility in
semiconductor devices.

Figure 15 illustrates the representation of the shearing stress(o..) with the space variable (z) for three
different semiconductor materials. The magnitude of the shearing stress o is higher for silicon as compared
than for the other two materials. In contrast, gallium arsenide shows a lower absolute value of .. than both
silicon and germanium. Germanium demonstrates intermediate shearing stress characteristics, lower than
silicon but higher than gallium arsenide. All curves are smooth, symmetric and parabolic in shape, which is
more indicative of the shearing stress distributions under uniform loading conditions. Silicon’s superior shear
stress resistance makes it particularly suitable for applications where mechanical stability is essential, such as in
microelectromechanical systems (MEMS).

Figure 16 illustrates the variation of the normal stress component (o) as a function of the space variable
(z) for three different semiconductor materials. The basic characteristics of the graphs for o indicate the
compressive nature. The magnitude of o.. for germanium exhibits an intermediate compressive stress which
is lower than that of silicon but higher than that of gallium arsenide. The significant properties in the stress
variation offer valuable insights for engineers, enabling them to evaluate the mechanical reliability of these
semiconductor materials under operational loads.

The characteristics of the carrier intensity (N) significantly depend on the density of the changed carrier,
which is extremely influenced by the temperature gradient, fluctuations in temperature, and the diffusion of
carriers in semiconductors. In addition to these factors, internal stresses and corresponding surface resistivity
are more important for different semiconductors. Lower values of stress and corresponding resistivity yield
an increase in diffused carrier concentration, which is also characterized by the behavior of conduction in
semiconductors.

Significant impact of the thermoelastic coupling parameter (e1)

Figures 17, 18 and 19 illustrate the variation of the normal stress component (0..) and the shear stress
components (0¢z,0yz, 0zy) With the space variable (). This analysis is performed for three fixed values of
the thermoelastic coupling parameter (e; = 0.001, 0.005, and 0.009) in silicon(Si) semiconductor material.
Additionally, we have maintained fixed values for the temperature gradient (79 = 0.2), the heat flux (7, = 0.6),
the non-local parameters (Aq, = 0.12, Ag, = 0.15, A\¢; = 0.17), and the heat source (@ = 5.0).

Figure 17 describes the normal stress component (0., ) with the space variable (x) for three distinct values
of thermoelastic coupling parameter (e; = 0.001, 0.005, and 0.009). For the highest value of 1 = 0.009, the
0ez becomes slightly negative for a small region of the semiconductor, which may indicate stress reversal due
to significant thermoelastic interactions. The value of o, decreases as €; increases, which indicates that the
stronger thermoelastic effects tend to reduce the stress levels. The reduction in stress magnitude with increasing
€1 suggests that materials with strong thermoelastic coupling may be more resistant to thermal stress-induced
failure.

Figure 18 illustrates the shearing stress component(o,.) with the space variable « for different values of
the thermoelastic coupling parameter (e; = 0.001,0.005, and 0.009). The increasing behaviour of . for
€1 = 0.005 and €; = 0.009 indicates that a stronger thermoelastic coupling enhances the shearing stress in the
material. The shearing stresses can be significant in materials subjected to combined thermal and mechanical
loading for higher thermoelastic coupling €;.

Fig. 17. Case-II: The normal stress component(oz5 ) with respect to the space variable (x) for three different
thermoelastic coupling parameter(ey ).
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Fig. 18. Case-1I: The variation of the shearing stress component (0, ) with the space variable(x) for three
values of the thermoelastic coupling parameter(e1).
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Fig. 19. Case-I: The variation of the shearing stress component (o) with respect to the space variable (x) for
three different thermoelastic coupling parameter(ey ).

Figure 19 illustrates the shearing stress component(o.y) along the space variable () for distinct values of
the thermoelastic coupling parameter e; = 0.001, 0.005, and 0.009. As the value of €; increases, the graphs of
0wy shift upward, indicating greater shear stress effects due to the enhanced thermal coupling. Absolute surface
resistivity vanishes at the two surfaces of the thick plate.

The coupling of plasma and the non-local thermoelastic plane waves is studied simultaneously, which
also provides the finite speed of wave propagation and satisfies the basic criterion of the generalised theory
of thermoelasticity. This comparison, along with the graphical representation, holds great importance in
photothermoelasticity.

Significant impacts of three-dimensional distributions for stresses and temperature

Figures 20, 21, 22 and 23 illustrate the variation of normal stress(oy,), the shear stress components
(0wy,0x=), and temperature () with the space variables = and y. This analysis takes into account the influence
of the electromagnetic field and the external heat source (Q). The behavior of the stress components and the
temperature distribution is examined for fixed values of the temperature gradient (7¢ = 0.2), the heat flux
(7q¢ = 0.4), the non-local parameters (A\g; = 0.012, Ag, = 0.015, Aq; = 0.017), and the external heat source
(@ = 5.0) in the silicon(Si) semiconductor material.

Figure 20 describes the variation of the normal stress component (o, ) versus the space variables x and y.
The absolute value of oy, increases with the space variables x and y increasing simultaneously, and it reaches
maximum values at z = 0.99 and y = 0.6. The normal stress component (o) exhibits a smooth variation
in the domain, with regions with positive and negative stress values. The stress component (o) has a more
significant effect in some regions. The graph illustrates a peak (yellow region) indicating the maximum stress
value and a trough (blue region) representing the minimum stress value.
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Fig. 20. Case-I: The variation of the normal stress component (o) with the space variables x and y.
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Fig. 21. Case-I: The shearing stress component(c.y) with the space variables x and y.

Figure 21 illustrates the variation of the shearing stress component(c.y) with the space variables x and y.
The characteristics of the shearing stress component (0.y) attain maximum and minimum values due to the
applied mechanical load. The central transition region shows where the stress changes from positive to negative
values, likely due to the symmetry of the applied forces. The distribution of the shearing stress component (0«y)
is responsible for structural analysis which is essential for machine design.

Figure 22 illustrates the temperature distribution (#) with the space variables x and y. This three-dimensional
plot effectively depicts the temperature field within a thermoelastic system. The temperature distribution
indicates non-uniform heat propagation, with significant temperature variations in the central region and near-
zero values at the boundaries. The temperature appears to be zero at the edges, suggesting the presence of fixed
boundary conditions or thermal equilibrium at those points. This graph indicates that heat conduction is not
uniform, being influenced by differences in boundary conditions, material properties, or external sources.

Figure 23 illustrates how the shearing stress component (o) varies with the space variables x and y. The
shearing stress component o experiences a gradual increase and decrease in the domain, influenced by the
applied loads and the properties of the material. The maximum values are concentrated in the central regions,
indicating a localised stress concentration resulting from external forces or internal material deformation. The
smooth curvature of the surface suggests a continuous variation of shearing stress throughout the domain.
Understanding the shearing stress distribution helps in analysing elasticity, plasticity, and fracture mechanics,
which is essential for designing strong and durable structures.

Figures 20, 21, 22 and 23 illustrate that the significant impact of stress and temperature with the space
variables x and y is studied for the fixed values of the physical field variables. These graphical representations
could be focused on research depending upon the experimental measurement and validate the non-local theory
in the design of semiconductor devices.
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Fig. 22. Case-I: The temperature distribution () with the space variables x and y.
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Fig. 23. Case-II: The variation of the shearing stress component (o) with the space variables x and y.

Conclusion

This study presents a nonlocal magneto-thermoelastic model based on an isotropic and homogeneous three-
dimensional rectangular semiconductor medium, ensuring that both thermal and mechanical boundary
conditions are satisfied. The problem is investigated within the framework of nonlocal thermoelasticity theory
under three models (NLCDC, NLLS, and NLDPL) in the presence of an external heat source and magnetic field.
Solutions are derived through normal mode analysis and the eigenvalue approach to examine the variations of
the physical field variables. The analytical results are presented graphically using the material constants of three
different semiconductors( Si, Ge, and GaAs), and a comparison of the material properties is illustrated. Based on
our analysis and the corresponding numerical results, we can draw several conclusions:
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(1) The variations of the stress components and temperature distribution for the NLCDC, NLLS, and NLDPL
theories significantly affect the resistivity of the semiconductors.

(2) The distributions of the normal and shearing stress components with the different values of an external
heat source help to process semiconductor chips that involve heat treatment.

(3) The magnetic fields play an essential role in influencing the stress distributions of electromechanical sys-
tems for semiconducting materials. This analysis and results are particularly valuable for the design of
magnetically controlled actuators, structural components, and smart materials that require precise stress
management capabilities.

(4) The comparative study of the properties of three important semiconductor materials: silicon (Si), germa-
nium (Ge), and gallium arsenide (GaAs) plays a significant role in the semiconductor industry, and silicon
is particularly crucial due to its unique properties and widespread uses.

(5) The significant influence of the thermoelastic coupling parameter (e1) on the upper portion of the rectan-
gular semiconductor plate helps us to study the behavior of the ionized impurity or the mobility of doping
scattering.

(6) The present three-dimensional models are essential for effective thermal management and structural de-
sign, ensuring material stability and preventing failures in engineering applications.

(7) As discussed in Mostefai'?, the energy band gap (E,) is a function of temperature, rather than being con-
sidered constant. Therefore, these semiconductors are characterised by controlling the temperature as per
Eq. (27) and the corresponding figures.

(8) Asitis prescribed in Table 1 that the energy band gaps of silicon(Si), germanium (Ge), and gallium arse-
nide (GaAs) are 1.11 eV, 0.72 eV, and 1.42 eV, respectively, at 300k. It is shown that the energy band gap
and the corresponding doping concentration are also temperature dependent. This article presents the
dependence of internal surface resistivity for different semiconductors. This is another fundamental prop-
erty for the semiconductors which is considered as the geometrical dimensions along with the interatomic
spaces that affect the vibrations of the free atoms. This property also helps the free electrons along with
the doping atoms bound to overlap the respective energy band. It has great importance for many modern
electronic devices.

(9) This study also predicts the comparative characteristics of three semiconductors Si, Ge, and GaAs. On the
basis of this analysis, the type of semiconductor can be chosen as the principal advantage of electronic
devices.

(10) The analytical closed-form solutions and the corresponding numerical results with discussions have been
presented for this model. The electromagnetic field components and an external heat source significantly
influence the thermoelastic behaviour and wave propagation in semiconductors. In addition to all the
results and discussions drawn in this article, it is more important to implement practical experiments to
verify these types of behaviour and properties in the operational form of the different types of modern
electronic devices.

The numerical simulations are presented in three-dimensional geometries; therefore, the semiconductor is
considered very thin compared to other dimensions, the model can be restricted to a two-dimensional analysis
and validating it experimentally further its applicability and accuracy accordingly in realistic engineering
contexts. The results obtained both numerically and graphically demonstrate that photothermal effects
significantly impact various phenomena with numerous applications in the engineering field. This includes areas
such as semiconductors, chemical reactions during photothermal processes, modern aeronautics, astronautics,
advanced chemical engineering (such as chemical and mechanical planarization), and nuclear reactors. Overall,
this work contributes a unified theoretical formulation of photo-thermoelasticity for a more advanced framework
to design in renewable energy applications.

Data availability
All data generated or discussed in this article are included in this study. The software used in this article is MAT-
LAB(R2021a).
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