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This article explores the three-dimensional thermoelastic problem in a homogeneous, isotropic 
rectangular plate subjected to an external heat source and an electromagnetic field under three 
theories: nonlocal classical coupled dynamical theory (NLCDC), nonlocal Lord-Shulman theory (NLLS), 
and nonlocal dual phase-lag theory (NLDPL). Normal mode analysis is applied to the governing 
equations and employs the eigenvalue approach methodology to obtain an analytical closed-form 
solution. Comparative numerical differentiations are performed for three different semiconductors: 
Silicon (Si), Germanium (Ge), and Gallium Arsenide (GaAs). The results are presented graphically in 
both two-dimensional and three-dimensional formats based on fixed physical parameters of the three 
semiconductors. The results reveal the significant effects of the comparisons across the three theories, 
the heat source, electromagnetic field, and thermoelastic coupling parameter, which are influenced 
by the non-local theory with ultra-short thermoelastic response. Different values of energy band gap 
(Eg) for the three semiconductors (Si, Ge, and GaAs) produce more pronounced characteristics for the 
variations in thermoelastic properties.
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In modern electronic theory and photothermoelasticity, both the effect of thermoelasticity and magnetoelasticity 
is required. The interactions between thermal, mechanical, and optical effect can be countered to get a more 
accurate performance. Semiconductors and intrinsic semiconductors have a wide range of applications in 
modern electronics devices. This technology is based on the analysis of all the significant properties of Si, Ge, 
GaN, GaAs and InP which are used mainly in high-frequency optoelectronic devices. The small amount of 
impurities or dopants, such as phosphorus (P), antimony (Sb), arsenic (As), etc., causes it to be a conductor, and 
different types of dopants make it n-type or p-type conductors. This type of semiconductor is extensively used 
in diodes, integrated circuits (ICs) and many modern electronic gadgets. In the presence of an electromagnetic 
field, the Lorentz force plays a significant role in interacting between the electromagnetic field, strain, stress 
components, and temperature distribution in an electromagnetothermoelastic medium. This type of interactions 
have many applications such as tectonic plate theory in geophysics, plasma physics, theory of wave propagation 
in thermal and electrical engineering field. Different types of energy bands of the semiconductor are illustrated in 
Fig. 1b. The energy band theory mainly describes the characteristics of semiconductors and insulators. Mustafi1 
investigated that the energy band gap (Eg) depends on the temperature, the density of the dopant and the carrier 
density of the semiconductors or intrinsic semiconductors. Recently, Kumar et al.2 investigated the behaviour 
of photothermal waves in a semiconducting medium using the dual phase lag (DPL) thermoelasticity theory 
with nonlocal effects. Ahmed et al.3 proposed a novel nonlocal mathematical model for thermo-photo-elasticity 
to address the limitations of classical theories in understanding the interactions between thermal, mechanical, 
and photoelastic deformations in semiconductors like silicon and germanium. Zenkour4 developed a system of 
four coupled thermoelastic differential equations incorporating a photothermal process. The study presented 
the refined multiphase-lag (RPL) theory to describe the thermoelastic photothermal response of a half-space 
semiconducting medium. Othman et al.5 investigated the coupled two-dimensional magneto-thermoelastic 
problem of a thermally perfect conducting half-space solid in the presence of a moving internal heat source. 
Mahdy et al.6 studied the one-dimensional deformation of a semiconducting elastic medium subjected to a 
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strong magnetic field with Hall current. The study also accounted for the effect of micro-temperature when a 
laser beam was applied to the outer surface of the medium. Alqahtani7 introduces the analytical solution for 
thermal, elastic, and plasma waves generated by focused laser beams in semiconductor materials. Salah et al.8 
studied the effects of magnetic fields and initial stress on a rotating semiconductor medium with ramp-type 
heating subjected to specific boundary conditions.

Traditionally, the theory of elasticity states the mathematical expression to determine the stress and strain 
of the medium. Biot9 introduced the classical coupled thermoelasticity(CCTE) theory which is based on the 
conventional Fourier’s law of heat conduction under a high temperature environment. Later, generalized 
thermoelastic theories: Lord and Shulman (LS)10 theory, Green-Lindsay (GL)11 theory, and Green-Naghdi12–14 
theory modified the basic paradoxes of conventional theory. Basically, the dissipative theory of energy proposed 
by Green-Nagdi12,13 predicts a more appropriate model of mechanical and thermal situations where precision 
and optimal performance are required. High energy gradient machine, laser heating tools, nuclear reactor, etc. 
where the heat propagation with finite speed and energy dissipation is more crucial. Othman et al.15 studied 
generalized thermoelasticity using the Lord–Shulman theory with one relaxation time to examine photothermal 
wave behavior in a semiconducting medium. Lotfy et al.16 investigated the basic characteristics of plane wave 
propagation in the presence of an electromagnetic field that addresses the problem of two temperatures for a 
semi infinite two-dimensional semiconducting medium. Othman et al.17 investigated the influence of gravity in 
a homogeneous, isotropic semiconducting medium with an internal heat source, employing the Lord–Shulman 
thermoelastic theory.

Conventional theory fails to give the accuracy for low-temperature scenarios and finite speed of wave 
propagation which disturb to reach the equilibrium condition. Generally, it pursues the local elastic effect, which 
is effectively used for primary interactions on the macroscopic scale of the material, regardless of the size effect. 
Eriengen18 introduced a new theory that includes the size effect and non-locality. Islam et al.19 investigated the 
thermoelastic and electromagnetic effects for a thin circular semiconductor, considering this structural size and 
Eringen’s non-local elastic theory (ENET). This theory of non-locality addresses the long-range interactions 
between the particles of the material. The non local Lord-Shulman(NLLS) theory creates a comprehensive model 
that effectively captures both nonlocal mechanical effects and realistic thermal wave propagation. This unified 
approach is particularly beneficial for analyzing the thermomechanical behavior of materials where small-scale 
effects and finite thermal propagation speeds are crucial for a nano-scale composite material structures. The 
nonlocal dual phase lag theory (NLDPL) is an advanced framework in heat conduction that integrates nonlocal 
elasticity concepts with the dual phase lag (DPL) heat conduction model. This theory addresses the limitations 
in classical heat conduction models, particularly at the micro and nano-scales, by considering both spatial 
nonlocality and temporal phase lags in heat flux and temperature gradient responses. Elaziz et al.20 analyzed 
the propagation of plane waves in a nonlocal semiconductor nanostructure thermoelastic solid incorporating a 
fractional derivative, under the influence of a ramp-type heat source. Othman et al.21 investigated the impact of 
temperature-dependent parameters and initial stress on semiconductor materials within the framework of the 
dual-phase lag (DPL) model. Tzou22 has introduced a fascinating theory of dual-phase-lag heat equations that 
includes two phase-lag parameters related to the temperature gradient and the heat-flux vector. The NLDPL 
theory has been used to study thermoelastic damping in micro and nano-scale structures, such as nano-
beams and nano-plates. By considering size-dependent effects, this theory provides valuable insights into the 
mechanisms of energy dissipation that are crucial for designing micro-electro-mechanical systems (MEMS) 
resonators. Dali et al.23 examined a coupled thermoelastic model incorporating the interactions of thermal, 
mechanical, and energy fields in a three-dimensional medium.

In this paper, we study the generalized thermoelasticity theory of non-local heat conduction considering 
the effects of a heat source and electromagnetic field components in a three-dimensional rectangular 
semiconducting medium. The fundamental governing equations are formulated in the three-dimensional thick 

Fig. 1.  (a) Schematic representation of an isotropic and homogeneous thermoelastic semiconductor with finite 
height (x = h) in the presence of an external heat source (Q) and magnetic field (H0). (b) Typical energy 
band diagram of a crystalline semiconductor. Specifically, Eg  plays a crucial role in characterising the intrinsic 
semiconductors into conductors by decreasing the electrical resistance.
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plate within the framework of the non-local thermoelastic theory. We have also derived physical quantities such 
as temperature distribution, carrier density, stress and displacement components using the normal mode analysis 
and eigenvalue approach methodology. Several two and three-dimensional graphs show the analytical results 
for three semiconductors such as silicon(Si), germanium(Ge) and gallium arsenide(GaAs) by using MATLAB 
2021a programming language. The corresponding discussions are depicted systematically. The results reveal 
a significant impact for comparing the three theories, applied external heat source, electromagnetic field, and 
thermoelastic coupling parameter. Also, compares the physical quantities based on different values of material 
constants for three different semiconductors. This study presents a nonlocal magneto-thermoelastic model based 
on an isotropic and homogeneous three-dimensional rectangular semiconducting medium, ensuring that both 
thermal and mechanical boundary conditions are satisfied. The problem is investigated within the framework 
of nonlocal thermoelasticity theory under three models (NLCDC, NLLS, and NLDPL) in the presence of an 
external heat source and magnetic field.

Basic equations for theoretical model
We consider a generalized, homogeneous, and isotropic thermoelastic rectangular semiconductor in the 
presence of the initial magnetic field H0 directed along the z axis, along with an applied external heat source Q. 
The physical field variables are defined in terms of the Cartesian coordinates x, y, and z, as well as time t.

As discussed in Islam et al.[19] and Todorovic24 19, the coupled plasma equation and equation of motion for a 
homogeneous and isotropic semiconductor are given as:

	

∂N

∂t
= DE

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
N − N

τ
+ κ1(θ − θ0),� (1)

where N(x, y, z, t) represents the carrier density, DE  is the carrier diffusion coefficient. Here, θ and θ0 denote 
the absolute temperature and reference temperature of the material, respectively. The term κ1 ( = ∂N0

∂θ
θ
τ

) 
represents the thermal activation coupling parameter. Additionally, N0 and τ  refer to the carrier concentration 
with reference temperature θ0 and the photo-generated carrier lifetime, respectively.

The equation of motion for an isotropic semiconductor medium with an electromagnetic field is given by

	 ρüi = µui,jj + (λ + µ)uj,ij − αθ,i − δnN,i + Fi.� (2)

The components of the Lorentz force is given by Fi = µ0(J × H)i, where H is the magnetic field vector and 
J is the electric current density. The mass density is represented by ρ. The parameters λ and µ refer to Lame’s 
constants, while α = (3λ + 2µ)αθ  is known as the thermoelasticity constant. Here, αθ  represents the coefficient 
of linear thermal expansion. Additionally, δn denotes the difference between the conduction and valence bands.

As in Islam et al.19 and Das et al.25, the non-local heat transportation equation with the presence of the heat 
source is given as

	
κ

(
1 + τθ

∂

∂t

)
θ,ii + Eg

τ
N =

(
1 + (λqk ) ∂

∂xk
+ τq

∂

∂t

) [
ρCe

∂θ

∂t
+ αT0

∂

∂t
(uk,k) − Q

]
.� (3)

In this context, κ denotes the thermal conductivity. The parameters τθ  and τq  denote the phase lags of the 
temperature gradient and heat flux, respectively. The symbol λqk  signifies the non-local parameter. Additionally, 
Eg  refers to the energy bandgap, while Ce indicates the specific heat. Lastly, Q represents an external heat source.

The constitutive stress components are as follows:

	 σij = 2µeij + (λe − αθ − δnN)δij ,� (4)

where σij  and eij  represent the component of the stress and strain tensor, e = ( ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

) is the cubical 
dilatation.

In the presence of an electromagnetic field, the medium must follow Maxwell’s equations as in Baltz26 as-

	
curl h = J + ϵ0

∂E
∂t

, div h = 0, E = −µ0(u̇ × H), curl E = −µ0
∂h
∂t

, B = µ0H, D = ϵ0E.� (5)

In this context, µ0 and ϵ0 represent the magnetic and electric permeability respectively. The vector h indicates 
the induced magnetic field component, while E signifies the induced electric field component expressed as E = 
(E1, E2, 0).

In this works, the nonlocal heat transportation Eq. (3) presents three distinct theories as discussed in Das et 
al.27:

	 (i)	 Non-local classical dynamical coupled (NLCDC) theory: this theory is characterised by τθ = τq = 0 and 
λq > 0.

	(ii)	 Non-local Lord and Shulman (NLLS) theory: it is defined by τθ = 0, τq > 0, and λq > 0.
	(iii)	 (iii) Non-local dual phase lag (NLDPL) theory: the conditions are τq ≥ τθ > 0 and λq > 0.

Validation of our model compared to other models

	(a)	 Neglecting the chemical concentration (C) and the presence of external heat source (Q) :
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For an isotropic, homogeneous, and perfectly thermoelastic thin semiconductor, the theoretical frame-
work proposed in this article aligns with the approach presented by Islam et al.19. In this context, no exter-
nal body forces are considered, and all thermal and mechanical interactions are assumed to depend solely 
on the radial distance.

	(b)	 Neglecting the heat source (Q = 0) and the carrier density(N = 0):

If we focus on the problem of the generalized magnetothermoelastic problem with non-local theory and 
in the absence of an external heat source(Q) and carrier intensity(N) for the isotropic and homogeneous 
elastic material, then the theory proposed in this article is identically similar with Das et al.25.

	(c)	 Neglecting the heat source (Q = 0) and displacement (w = 0):

If we consider a two-dimensional generalized magnetothermoelastic problem with non-local theory and 
in the absence of an external heat source for the semiconductor silicon only, this proposed theory is similar 
with Sardar et al.27.

Formulation of the problem
We consider a rectangular thick semiconductor plate which is isotropic, homogeneous, and exhibits magneto-
thermoelastic behaviour. The plate occupies the region: R={(x, y, z): 0 ≤ x ≤ h; 0 ≤ y ≤ c; 0 ≤ z ≤ d } with a 
magnetic field as shown in Fig. 1a. The total magnetic field, denoted as H consists of an initial uniform magnetic 
field H0 and a perturbation h. The initial magnetic field H0=(0, 0, H0) is applied in the direction of the z-axis 
in the cartesian coordinate system.

Therefore, from Eq. (5), we have the expression of Lorentz forces such as

	
F1 = µ0H2

0 (∂2u

∂x2 + ∂2v

∂x∂y
+ ∂2w

∂x∂z
) − ϵ0µ2

0H2
0

∂2u

∂t2 , � (6)

	
F2 = µ0H2

0 (∂2v

∂y2 + ∂2u

∂x∂y
+ ∂2w

∂y∂z
) − ϵ0µ2

0H2
0

∂2v

∂t2 , � (7)

	 F3 = 0. � (8)

The equation of the dimensionless variable is given as

	

(x∗, y∗, z∗) = c0η0(x, y, z), (u∗, v∗, w∗) = c0η0(u, v, w), (t∗, τ∗
θ , τ∗

q ) = c2
0η0(t, τθ, τq),

λ∗
qi

= c0η0λqi , σ∗
ij = 1

ρc2
0

σij , θ∗ = α

ρc2
0

θ, N∗ = δn

(λ + 2µ
N, Q∗ = α

ρ2cec04η02 Q.
� (9)

Using Eqs. (6), (7), (8), and dimensionless Eq. (9), the basic Eqs. (1)–(4) can be written as

	
q2

∂N

∂t
=

(
∂2N

∂x2 + ∂2N

∂y2 + ∂2N

∂z2

)
− q1N + ϵ3θ, � (10)

	
α2

0
∂2u

∂t2 = β2
0

∂2u

∂x2 +
(
β2

0 − 1
) (

∂2v

∂x∂y
+ ∂2w

∂x∂z

)
+

(
∂2u

∂y2 + ∂2u

∂z2

)
− β2 ∂θ

∂x
− β2 ∂N

∂x
, � (11)

	
α2

0
∂2v

∂t2 = β2
0

∂2v

∂y2 +
(
β2

0 − 1
) (

∂2u

∂x∂y
+ ∂2w

∂y∂z

)
+

(
∂2v

∂x2 + ∂2v

∂z2

)
− β2 ∂θ

∂y
− β2 ∂N

∂y
, � (12)

	
β2 ∂2w

∂t2 = β2 ∂2w

∂z2 +
(
β2 − 1

) (
∂2u

∂x∂z
+ ∂2v

∂y∂z

)
+

(
∂2w

∂x2 + ∂2w

∂y2

)
− β2 ∂θ

∂z
− β2 ∂N

∂z
, � (13)

	

(
1 + τθ

∂

∂t

) (
∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2

)
=

(
1 + λq1

∂

∂x
+ λq2

∂

∂y
+ λq3

∂

∂z
+ τq

∂

∂t

)

[
∂θ

∂t
+ ϵ1

(
∂2u

∂t∂x
+ ∂2v

∂t∂y
+ ∂2w

∂t∂z

)
− Q

]
− ϵ2N.

� (14)

The constitutive dimensionless equations of the stress components are as follows-

	
σxx = ∂u

∂x
+

(
1 − 2

β2

) (
∂v

∂y
+ ∂w

∂z

)
− θ − N, � (15)

	
σyy = ∂v

∂y
+

(
1 − 2

β2

) (
∂u

∂x
+ ∂w

∂z

)
− θ − N, � (16)
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σzz = ∂w

∂z
+

(
1 − 2

β2

) (
∂u

∂x
+ ∂v

∂y

)
− θ − N, � (17)

	
σxy = 1

β2

(
∂u

∂y
+ ∂v

∂x

)
, � (18)

	
σxz = 1

β2

(
∂u

∂z
+ ∂w

∂x

)
, � (19)

	
σyz = 1

β2

(
∂v

∂z
+ ∂w

∂y

)
. � (20)

where, α2
0 = ( ρ+ϵ0µ2

0H2
0

µ
)c2

0,β2
0 = ( λ+2µ+µ0H2

0
µ

),β2 = ρc2
0

µ
= ( λ+2µ

µ
),c2

0 = ( λ+2µ
ρ

),η0 = ρce
κ

,ϵ1 = α2θ0
ρ2cec2

0
,

ϵ2 = αEg

κδnc02η02τ
,q2 = 1

DEη0
, q1 = 1

DEc02η02τ
,ϵ3 = k1δn

DEc02η02α
.

In this context, the parameters are defined as follows: ϵ1 is the thermo-elastic coupling parameter that depends 
on thermal expansion α, ϵ2 is the thermo-energy coupling parameter derived from the energy band gap of the 
semiconductor. Lastly, ϵ3 represents the thermoelectric coupling parameter which is based on the coefficient of 
electronic deformation(ED). These parameters are essential for understanding the different physical interactions 
in materials under various circumstances.

Solution procedure: normal mode analysis
To get the physical field variables analytically, we now apply the normal mode analysis which is defined as 
follows-

	 ξ(x, y, z, t) = ξ∗(x)est+i(ay+bz),� (21)

where ξ(x, y, z, t) = [N, u, v, w, θ, σij ], ξ∗(x) = [N∗, u∗, v∗, w∗, θ∗, σ∗
ij ], s is the angular frequency, 

i =
√

−1, a and b are the wave numbers in the directions of y and z axis respectively.
Using Eq. (21), the non-dimensional basic Eqs. (10)–(14) can be expressed in the form of a vector matrix 

differential equation as follows:

	 DV = AV + f.� (22)

where, D = d
dx , V=[N u v w θ dN

dx
du
dx

dv
dx

dw
dx

dθ
dx

]T , A = 
[

L11 L12
L21 L22

]
, f =[0 0 0 0 0

0 0 0 0 C1011]T , L11 is null matrix, L12 is identity matrix of order 5 × 5, the mathematical expressions 
for L21, L22, and c1011 are given an Appendix.

We now apply the eigenvalue approach methodology to solve the vector matrix differential Eq. (22). The 
characteristic equation of the coefficient matrix A is as follows-

	 AX = λX,� (23)

where X = [Xj ]j=(1(1)10) is the eigenvectors corresponding to the eigenvalues λ = λj  for j = 1(1)10. These 
eigenvalues are obtained by solving the characteristic Eq. (23) using MATLAB R2021a. The computation involves 
the built-in functions of MATLAB to determine the eigenvalues and their associated eigenvectors.

As the corresponding theory is discussed in Das et al.28 and considering the regularity condition, the general 
solution of the differential Eq. (22) for a rectangular plate is

	
V =

10∑
j=1

Xjyj .� (24)

where,

	
yj = Ajeλj x + eλj x

ˆ ∞

−∞
Gje−λj xdx. � (25)

	 and Gj = (B−1f) where B = (Xj), j = 1(1)10. � (26)

where Aj ’s are the arbitrary constants.
Thus, the corresponding values of the physical field variables can be written as -

	
(N, u, v, w, θ ) =

10∑
j=1

(xj1, xj2, xj3, xj4, xj5)(Ajeλj x − Gj

λj
).� (27)
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Using this solution, Eqs. (15–20) give the expression of stress components which are given by

	
(σxx, σyy, σzz, σxy, σxz, σyz) =

10∑
j=1

(R1j , R2j , R3j , R4j , R5j , R6j)Aj − dk.� (28)

The arbitrary constants Aj ’s (j=1(1)10) are to be determined from the prescribed boundary conditions. The 
explicit expressions of Rij(i = 1(1)6) and dk(k = 1(1)6) are given in the Appendix.

Initial and boundary conditions
To determine the arbitrary constants Aj , we now examine the initial and boundary conditions for the rectangular 
plate with height h as illustrated in Fig. 1a. The thick rectangular plate of semiconducting medium is subjected 
to: Case-I - a known magnitude of load and carrier intensity gradient at the top surface, Case-II - an exponential 
order increase in mechanical load and temperature with known magnitude of carrier intensity gradient at the 
top surface.

Initial conditions
θ(x, y, z, t) = ∂θ(x,y,z,t)

∂t
= 0, N(x, y, z, t) = ∂θ(x,y,z,t)

∂t
= 0, (u, v, w)(x, y, z, t) = ∂(u,v,w)(x,y,z,t)

∂t
,

σij(x, y, z, t) = ∂σij (x,y,z,t)
∂t

= 0 at t = 0.0.

Boundary conditions
Case-I

The top and bottom surfaces of the plate are subjected to the mechanical load as:
At x=0 (bottom surface)
σxx = 0, σxy = 0, σxz = 0, θ = 0, DE

dN
dx

= ζ1N.

At x = h (Top surface)
σxx = p, σxy = 0, σxz = 0, θ = 0, DE

dN
dx

= ζ1N.

where p and ζ1 are constant.
The normal stress component σxx is considered as zero at the bottom surface of the plate, while the top 

surface is subjected to a uniform normal mechanical load of magnitude p. The shear stress components σxy  
and σxz  are assumed to vanish on both the bottom and top surfaces. The thermal condition θ = 0 specifies that 
these surfaces are maintained at a constant reference temperature, thereby simulating an environment without 
additional thermal excitation. The carrier condition DE

dN
dx

= ζ1N  corresponds to the surface recombination 
of charge carriers at the bottom and top surfaces.
Case-II

At x=0 (bottom surface)
σxx = 0, σxy = 0, σxz = 0, θ = 0, DE

dN
dx

= ζ1N.

At x = h (top surface)
σxx = P1 exp(st + i(ay + bz)), σxy = 0, σxz = 0, θ = θ0 exp(st + i(ay + bz)), DE

dN
dx

= ζ1N.

where P1 is constant. Bottom surface of the plate is subjected to traction-free, while the top surface is subjected 
to a uniform normal mechanical and thermal load which varies exponentially. The shear stress components σxy  
and σxz  are assumed to vanish at the top surfaces. The carrier condition DE

dN
dx

= ζ1N  corresponds to the 
surface recombination of charge carriers at the bottom and top surfaces.

The arbitrary constants Aj  (j=1(1)10) have been calculated by using the matrix inversion method from the 
two types of boundary conditions mentioned above. The closed form of the analytical solution of the problem is 
completely obtained according to the unique solution of these arbitrary constants, which are used for numerical 
results and discussions.

Numerical results and discussions
We consider the thermoelastic problem of the three-dimensional rectangular plate with the presence of an 
external heat source and an electromagnetic field under the three theories of NLCDC, NLLS, and NLDPL. 
An efficient computer programming language (MATLAB R2021a) is used to study the numerical analysis and 
the corresponding graphical representations. As discussed by Islam et al.19 and Alshehri et al.29, the material 
constants of silicon (Si), germanium (Ge) and gallium arsenide (GaAs) are used for the numerical computations. 
The values of the material constants are provided in Table 1.

The corresponding numerical values of the associated constants are given by:
ϵ0 = 10−9

36π , µ0 = 4π × 10−7, H0 = 107

4π , p = 1.0, P1 = 0.01, ζ1 = 1.0, a = 1.2, b = 1.3, z = 0.5, 
angular frequency(s)=2.5 and time(t)=0.2.

Significant impact of the three theories
Figures 2, 3, 4 and  5 depict the variation of the normal stress(σxx), shearing stress(σxy), and the temperature 
distribution (θ) versus space variable(x) in silicon material. The effect of the non-local classical dynamical 
coupled (NLCDC) theory (τθ = 0.0, τq = 0.0, λq1 = 0.012, λq2 = 0.015, λq3 = 0.017), non-local Lord and 
Shulman(NLLS) theory (τθ = 0.0, τq = 0.4, λq1 = 0.012, λq2 = 0.015, λq3 = 0.017), and non-local dual 
phase lag (NLDPL) theory (τθ = 0.2, τq = 0.4, λq1 = 0.012, λq2 = 0.015, λq3 = 0.017) are discussed for the 
thick rectangular plate of the semiconductor medium.
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Fig. 3.  Case-I: The variation of the shearing stress (σxy) concerning the space variable (x) under three theories 
NLCDC, NLLS, and NLDPL.
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Fig. 2.  Case-I: The variation of the normal stress (σxx) versus the space variable (x) under three theories 
NLCDC, NLLS, and NLDPL.

 

Silicon (Si) Germanium (Ge) Gallium Arsenide (GaAs) Units

λ 3.64 ×1010 0.48 ×1011 11.9 ×1011
Nm−2

µ 5.46 ×1010 0.53 ×1011 5.34 ×1011
Nm−2

ρ 2.33 ×103 5.3 ×103 5.317 ×103 Kgm−3

CE 695 322 330 JKg−1K−1

αθ 4.14 ×10−6 5.7 ×10−6 1.78 ×10−6
K−1

dn -9 ×10−31 -6 ×10−31 -8 ×10−31
m3

DE 2.5 ×10−3 10−2 5 × 10−3
m2s−1

Eg 1.11 0.72 1.42 eV

κ1 150 60 46 W m−1K−1

τ 5 × 10−5 1.4 × 10−6 6.1 × 10−6 s

θ 300 300 300 K

Table 1.  The values of the material constants for Silicon (Si), Germanium (Ge) and Gallium Arsenide (GaAs).
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Figure 2 illustrates that the variation of the normal stress(σxx) versus the space variable x according to three 
different theories: NLCDC, NLLS, and NLDPL. For the NLCDC theory, the variations of the stress distributions 
are all smooth in nature. The wave of the three theories converges at the peak on the top surface of the plate. 
The variation of the stress component (σxx) could be due to different factors such as applied loads, material 
behaviour, or geometric constraints.

Figure 3 illustrates the variations of the shearing stress component (σxy) with the space variable (x) under 
three theories: NLCDC, NLLS, and NLDPL. The characteristics of the shearing stress (σxy) in NLLS theory 
differ from those in the NLCDC and NLDPL theories. The structural size effect due to the non-local theory 
causes a significant change in the shearing stress. These types of characteristics appear to predict delayed effects 
in stress response, which could be due to phase-lagging and coupled behaviour in the shearing stress.

In Fig. 4, the temperature distribution (θ) as a function of the space variable (x) is presented for three theories: 
NLCDC, NLLS, and NLDPL. The behaviour of θ is more pronounced in the nonlocal generalized thermoelastic 
theory compared to the other two theories. The temperature distribution is at a minimum on both surfaces 
(bottom and top), confirming the prescribed boundary conditions. The middle portion of the plate experiences 
the highest temperature. The resulting curves are smooth and symmetrical, indicating a well-behaved thermal 
distribution.

Figure 5 beautifully illustrates the normal stress component (σxx) as it relates to the space variable (x) across 
three different theories: NLCDC, NLLS, and NLDPL. It’s particularly noteworthy that this stress component 
reaches its minimum value at x = 0.7. The NLCDC and NLDPL models exhibit almost identical physical 
behaviour concerning normal stress (σxx). Overall, the generalised theory for fixed values of the physical 
parameters presents even more significant results. Importantly, the physical disturbance occurs in the middle 
section of the plate, which confirms the boundary conditions at x = 0 and x = 1. The concave downward shape 
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Fig. 5.  Case-II: The normal stress component (σxx) versus space variable (x) is analysed under three theories: 
NLCDC, NLLS, and NLDPL.
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Fig. 4.  Case-I: The temperature distribution (θ) versus space variable (x) is analysed under three theories: 
NLCDC, NLLS, and NLDPL.
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of all the curves suggests that both compression and tension behaviour are most pronounced in the middle 
portion.

Figures 2, 3, 4 and  5 illustrate the significant effects of the relaxation time parameters and the phase-lagging 
parameter in the two theories, NLLS and NLDPL, respectively, compared to the classical theory. Stress components 
and temperature distributions are characterized by a wave-type formulation in photo-thermoelasticity. Carrier 
concentration and free carrier movement in silicon (Si) are analyzed through these figures.

Significant impact of the external heat source (Q)
Figures 6, 7, 8 and  9 represent the variations of the normal stress component (σxx), shearing stress components 
(σxy, σxz), and temperature distribution (θ) with the space variable (x) for three distinct values of an external 
heat source (Q) of the semiconductor material silicon(Si). We now consider the three fixed values of the nonlocal 
parameters(λq1 = 0.012, λq2 = 0.015, and λq3 = 0.017), the temperature gradient (τθ = 0.2) and the heat 
flux(τq = 0.4).

Figure  6 illustrates the variations of the normal stress component (σxx) with the space variable (x) for 
three distinct values of the heat source (Q = 0.0, 5.0, 10.0). The characteristics of σxx for Q = 0.0 gradually 
increase with an increase of x. The graphs of σxx for the heat sources (Q = 5.0, 10.0) show a very significant 
characteristic compared to the graph without an external heat source. As Q increases, the stress σxx develops a 
more significant concave behaviour, showing increased tensile and compressive effects within the domain. It is 
illustrated that the internal resistance decreases with increasing heat source. The magnitude of Q increase stress 
gradients, making the system more susceptible to higher tensile or compressive stresses in the middle portion 
of the plate.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

-6

-4

-2

0

2

4

6

xy

10-3

  Q=0.0

  Q=5.0

  Q=10.0

Fig. 7.  Case-I: The variation of the shearing stress component (σxy) versus space variable(x) for the fixed 
values of the heat source (Q).
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Fig. 6.  Case-I: The variation of the normal stress component (σxx) versus space variable(x) for three fixed 
values of the heat source (Q).
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In Fig. 7, the variation of the shearing stress (σxy) with the space variable (x) for three distinct values of the 
heat source (Q = 0.0, 5.0, 10.0). The characteristics of the shearing stress do not significantly impact on the 
plate at Q = 0.0. The shearing stress (σxy) varies with the increase of the external heat source (Q). The thermal 
effect influences the stress field. This effect also leads to more pronounced mechanical and electronic effects in 
semiconductor materials. The shearing stress (σxy) is crucial in Micro-Electro-Mechanical Systems(MEMS) 
devices, where mechanical deformation affects the electronic deformation(ED). The increasing Q could represent 
thermal expansion, piezoelectric effects, or external mechanical forces acting on the semiconductor.

Figure 8 represents the variation of the normal stress component (σyy) with the space variable (x). It includes 
multiple curves corresponding to different values of the heat source Q = 0.0, 5.0, and 10.0. Therefore, the 
mechanical load may also be present without thermal influences. The properties of the normal stress (σyy) for 
Q = 10.0 are significantly effective in this plate. The characteristics of this normal stress (σyy) are more crucial 
for strain engineering, piezoelectric effects, and thermal stress analysis in semiconductor devices. The minimum 
magnitude becomes more negative as Q increases, showing increased compressive stress in the central region.

Figure 9 describes the variation of the normal stress component(σxx) with the space variable (x) for three 
different values of the heat source (Q = 0.0, 5.0, and 10.0). The behaviour of σxx is significantly affected in the 
middle portion of this plate. The applied heat source(Q) enhances compressive stress in the thick plate of the 
semiconductor. All the curves exhibit a parabolic shape in nature. This stress component vanishes at both the 
surfaces(top and bottom) and attains the minimum at the middle of the plate.

The temperature can modify the energy range between the conduction and valence bands of the semiconductor 
crystal. That may cause a continuous decrease of surface resistivity along with more modifications of the energy 
level for the respective energy of the indirect band gap. Carrier mobility can be estimated by increasing the 
effect of temperature. So, the corresponding values of the external heat source (Q) play a significant role in 
transforming a semiconductor or an intrinsic semiconductor to a conductor.
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Fig. 9.  Case-II: The normal stress component(σxx) versus space variable (x) for the heat source (Q).
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Fig. 8.  Case-I: The variation of the normal stress component (σyy) versus space variable(x) for the heat source 
(Q).
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Significant impact of the applied magnetic field (H0)
Figures 10, 11, 12 and  13 describe the normal stress component (σxx), shearing stress components 
(σxy, σxz), and temperature distribution (θ) with the space variable(x) under three various values of the 
magnetic field (H0) for semiconductor material silicon(Si). Here, we consider the fixed values of the nonlocal 
parameters(λq1 = 0.012, λq2 = 0.015, and λq3 = 0.017), the temperature gradient (τθ = 0.2), the heat 
flux(τq = 0.4), and the heat source(Q = 5.0).

Figure 10 illustrates the normal stress component (σxx) as a function of the space variable (x) under three 
different values of the magnetic field: H0 = 107

4π , 1011

4π  and 1014

4π . The behaviour of σxx for H0 = 107

4π  is notably 
distinct compared to the other two graphs. Higher values of magnetic fields result in greater stress variations, 
likely as a result of the enhanced Lorentz forces acting on the material. The increasing effect of the magnetic field 
suggests that magneto-mechanical coupling plays a crucial role in stress distribution.

Figure 11 illustrates the shearing stress component (σxz) as a function of the space variable (x) for three 
different values of the magnetic field: H0 = 107

4π , 1011

4π  and 1016

4π . The behavior of σxz  for H0 = 107

4π  shows a 
significant impact compared to the other two variations. The characteristics of σxz  are most pronounced for the 
values of H0 = 1011

4π  and 1016

4π  in the middle portion of the plate. The observed reduction in σxz  as H0 increases 
indicates that the applied magnetic field has a stabilizing effect on the shearing stress. This figure demonstrates 
that the applied magnetic field has a significant influence on the shearing stress σxz .

Figure 12 depict the shearing stress component(σxy) with the space variable (x) for three different values of 
the magnetic field (H0 = 107

4π
, 1011

4π , and 1014

4π ). The graphs of σxy  are a smooth parabola for the values of the 

magnetic field H0 = 1011

4π  and 1014

4π , where shearing stress reaches the maximum at the center and decreases 
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Fig. 11.  Case-I: The distribution of shearing stress (σxz) versus space variable (x) for magnetic field (H0).
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Fig. 10.  Case-I: The variation of the normal stress component (σxx) versus the space variable (x) for the 
magnetic field (H0).
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toward the edges. The characteristic of σxy  for H0 = 107

4π  is relatively negligible compared to the others. The 
increase in shearing stress with H0 indicates that the material may exhibit magnetorheological properties, 
where the applied magnetic fields enhance its shear resistance. The shearing stress σxy  indicate that magneto-
mechanical interactions play a significant role in this system.

Figure  13 illustrates the normal stress component(σzz) with space variable (x) for three different values 
of the magnetic field: H0 = 107

4π , 1011

4π  and 1014

4π . The behaviors of σzz  show a greater variation with more 
pronounced values of positive and negative stress. This behaviour is important for applications involving 
magneto-thermoelastic materials, stress-controlled actuators, and structural components that are subjected to 
magnetic forces. The electro-magnetic field induces additional Lorentz forces that enhance the normal stress 
component which also leads to greater compressive and tensile effects within the material.

The free carrier concentration in a semiconductor acquires higher energy from the applied electric field, 
which also produces a magnetic field. This energetic carrier can be promoted to a higher energy level such as the 
conduction band. This may happen because of the impact of ionisation on a semiconductor in the presence of 
high electric and magnetic fields.

 Comparison of the significant impact for three semiconductors
Figures 14, 15 and  16 present a comparison of the significant behavior of three materials silicon (Si), 
germanium (Ge), and gallium arsenide (GaAs) focusing on the shearing and normal stress components 
(σxy, σyy, σxz, σzz). Based on the fixed values for the temperature gradient (τθ = 0.2), the heat flux (τq = 0.4), 
the non-local parameters (λq1 = 0.012, λq2 = 0.015, λq3 = 0.017), and the external heat source (Q = 5.0), 
the corresponding discussions are depicted.
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Fig. 13.  Case-II: The normal stress component(σzz) versus space variable (x) for fixed values of magnetic field 
(H0).
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Fig. 12.  Case-II: The shearing stress component(σxy) versus space variable (x) for three distinct values of 
magnetic field (H0).
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Fig. 16.  Case-II: The variation of the normal stress(σzz) with the space variable x is analysed for three 
materials: Silicon (Si), Germanium (Ge), and Gallium Arsenide (GaAs).
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Fig. 15.  Case-II: The graphical representation of the shearing stress(σxz) as a function of the space variable x 
consists of three materials: Silicon (Si), Germanium (Ge), and Gallium Arsenide (GaAs).
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Fig. 14.  Case-I: The variation of the shearing stress (σxy) with the space variable (x) in three materials Silicon 
(Si), Germanium (Ge), and Gallium Arsenide (GaAs).
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Figure 14 illustrates that the shearing stress (σxy) with the space variable (x) for three different semiconductor 
materials: silicon (Si), germanium (Ge) and gallium arsenide (GaAs). The shearing stress (σxy) exhibits a smooth 
oscillatory pattern and reaches the maximum value at the bottom surface of the semiconductor. Germanium 
displays the highest magnitude of shearing stress, while gallium arsenide shows the lowest. Shearing stress can 
induce strain effects that influence the electronic band structure, subsequently affecting carrier mobility in 
semiconductor devices.

Figure  15 illustrates the representation of the shearing stress(σxz) with the space variable (x) for three 
different semiconductor materials. The magnitude of the shearing stress σxz  is higher for silicon as compared 
than for the other two materials. In contrast, gallium arsenide shows a lower absolute value of σxz  than both 
silicon and germanium. Germanium demonstrates intermediate shearing stress characteristics, lower than 
silicon but higher than gallium arsenide. All curves are smooth, symmetric and parabolic in shape, which is 
more indicative of the shearing stress distributions under uniform loading conditions. Silicon’s superior shear 
stress resistance makes it particularly suitable for applications where mechanical stability is essential, such as in 
microelectromechanical systems (MEMS).

Figure 16 illustrates the variation of the normal stress component (σzz) as a function of the space variable 
(x) for three different semiconductor materials. The basic characteristics of the graphs for σzz  indicate the 
compressive nature. The magnitude of σzz  for germanium exhibits an intermediate compressive stress which 
is lower than that of silicon but higher than that of gallium arsenide. The significant properties in the stress 
variation offer valuable insights for engineers, enabling them to evaluate the mechanical reliability of these 
semiconductor materials under operational loads.

The characteristics of the carrier intensity (N) significantly depend on the density of the changed carrier, 
which is extremely influenced by the temperature gradient, fluctuations in temperature, and the diffusion of 
carriers in semiconductors. In addition to these factors, internal stresses and corresponding surface resistivity 
are more important for different semiconductors. Lower values of stress and corresponding resistivity yield 
an increase in diffused carrier concentration, which is also characterized by the behavior of conduction in 
semiconductors.

Significant impact of the thermoelastic coupling parameter (ϵ1)
Figures 17, 18 and  19 illustrate the variation of the normal stress component (σxx) and the shear stress 
components (σxz, σyz, σxy) with the space variable (x). This analysis is performed for three fixed values of 
the thermoelastic coupling parameter (ϵ1 = 0.001, 0.005, and 0.009) in silicon(Si) semiconductor material. 
Additionally, we have maintained fixed values for the temperature gradient (τθ = 0.2), the heat flux (τq = 0.6), 
the non-local parameters (λq1 = 0.12, λq2 = 0.15, λq3 = 0.17), and the heat source (Q = 5.0).

Figure 17 describes the normal stress component (σxx) with the space variable (x) for three distinct values 
of thermoelastic coupling parameter (ϵ1 = 0.001, 0.005, and 0.009). For the highest value of ϵ1 = 0.009, the 
σxx becomes slightly negative for a small region of the semiconductor, which may indicate stress reversal due 
to significant thermoelastic interactions. The value of σxx decreases as ϵ1 increases, which indicates that the 
stronger thermoelastic effects tend to reduce the stress levels. The reduction in stress magnitude with increasing 
ϵ1 suggests that materials with strong thermoelastic coupling may be more resistant to thermal stress-induced 
failure.

Figure  18 illustrates the shearing stress component(σxz) with the space variable x for different values of 
the thermoelastic coupling parameter (ϵ1 = 0.001, 0.005, and 0.009). The increasing behaviour of σxz  for 
ϵ1 = 0.005 and ϵ1 = 0.009 indicates that a stronger thermoelastic coupling enhances the shearing stress in the 
material. The shearing stresses can be significant in materials subjected to combined thermal and mechanical 
loading for higher thermoelastic coupling ϵ1.
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Fig. 17.  Case-II: The normal stress component(σxx) with respect to the space variable (x) for three different 
thermoelastic coupling parameter(ϵ1).
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Figure 19 illustrates the shearing stress component(σxy) along the space variable (x) for distinct values of 
the thermoelastic coupling parameter ϵ1 = 0.001, 0.005, and 0.009. As the value of ϵ1 increases, the graphs of 
σxy  shift upward, indicating greater shear stress effects due to the enhanced thermal coupling. Absolute surface 
resistivity vanishes at the two surfaces of the thick plate.

The coupling of plasma and the non-local thermoelastic plane waves is studied simultaneously, which 
also provides the finite speed of wave propagation and satisfies the basic criterion of the generalised theory 
of thermoelasticity. This comparison, along with the graphical representation, holds great importance in 
photothermoelasticity.

Significant impacts of three-dimensional distributions for stresses and temperature
Figures 20, 21, 22 and 23 illustrate the variation of normal stress(σyy), the shear stress components 
(σxy, σxz), and temperature(θ) with the space variables x and y. This analysis takes into account the influence 
of the electromagnetic field and the external heat source (Q). The behavior of the stress components and the 
temperature distribution is examined for fixed values of the temperature gradient (τθ = 0.2), the heat flux 
(τq = 0.4), the non-local parameters (λq1 = 0.012, λq2 = 0.015, λq3 = 0.017), and the external heat source 
(Q = 5.0) in the silicon(Si) semiconductor material.

Figure 20 describes the variation of the normal stress component (σyy) versus the space variables x and y. 
The absolute value of σyy  increases with the space variables x and y increasing simultaneously, and it reaches 
maximum values at x = 0.99 and y = 0.6. The normal stress component (σyy) exhibits a smooth variation 
in the domain, with regions with positive and negative stress values. The stress component (σyy) has a more 
significant effect in some regions. The graph illustrates a peak (yellow region) indicating the maximum stress 
value and a trough (blue region) representing the minimum stress value.
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Fig. 19.  Case-I: The variation of the shearing stress component (σxy) with respect to the space variable (x) for 
three different thermoelastic coupling parameter(ϵ1).
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Fig. 18.  Case-II: The variation of the shearing stress component (σxz) with the space variable(x) for three 
values of the thermoelastic coupling parameter(ϵ1).
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Figure 21 illustrates the variation of the shearing stress component(σxy) with the space variables x and y. 
The characteristics of the shearing stress component (σxy) attain maximum and minimum values due to the 
applied mechanical load. The central transition region shows where the stress changes from positive to negative 
values, likely due to the symmetry of the applied forces. The distribution of the shearing stress component (σxy) 
is responsible for structural analysis which is essential for machine design.

Figure 22 illustrates the temperature distribution (θ) with the space variables x and y. This three-dimensional 
plot effectively depicts the temperature field within a thermoelastic system. The temperature distribution 
indicates non-uniform heat propagation, with significant temperature variations in the central region and near-
zero values at the boundaries. The temperature appears to be zero at the edges, suggesting the presence of fixed 
boundary conditions or thermal equilibrium at those points. This graph indicates that heat conduction is not 
uniform, being influenced by differences in boundary conditions, material properties, or external sources.

Figure 23 illustrates how the shearing stress component (σxz) varies with the space variables x and y. The 
shearing stress component σxz  experiences a gradual increase and decrease in the domain, influenced by the 
applied loads and the properties of the material. The maximum values are concentrated in the central regions, 
indicating a localised stress concentration resulting from external forces or internal material deformation. The 
smooth curvature of the surface suggests a continuous variation of shearing stress throughout the domain. 
Understanding the shearing stress distribution helps in analysing elasticity, plasticity, and fracture mechanics, 
which is essential for designing strong and durable structures.

Figures 20, 21, 22 and 23 illustrate that the significant impact of stress and temperature with the space 
variables x and y is studied for the fixed values of the physical field variables. These graphical representations 
could be focused on research depending upon the experimental measurement and validate the non-local theory 
in the design of semiconductor devices.

Fig. 21.  Case-I: The shearing stress component(σxy) with the space variables x and y.

 

Fig. 20.  Case-I: The variation of the normal stress component (σyy) with the space variables x and y.
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Conclusion
This study presents a nonlocal magneto-thermoelastic model based on an isotropic and homogeneous three-
dimensional rectangular semiconductor medium, ensuring that both thermal and mechanical boundary 
conditions are satisfied. The problem is investigated within the framework of nonlocal thermoelasticity theory 
under three models (NLCDC, NLLS, and NLDPL) in the presence of an external heat source and magnetic field. 
Solutions are derived through normal mode analysis and the eigenvalue approach to examine the variations of 
the physical field variables. The analytical results are presented graphically using the material constants of three 
different semiconductors( Si, Ge, and GaAs), and a comparison of the material properties is illustrated. Based on 
our analysis and the corresponding numerical results, we can draw several conclusions:

Fig. 23.  Case-II: The variation of the shearing stress component (σxz) with the space variables x and y.

 

Fig. 22.  Case-I: The temperature distribution (θ) with the space variables x and y.
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	 (1)	 The variations of the stress components and temperature distribution for the NLCDC, NLLS, and NLDPL 
theories significantly affect the resistivity of the semiconductors.

	 (2)	 The distributions of the normal and shearing stress components with the different values of an external 
heat source help to process semiconductor chips that involve heat treatment.

	 (3)	 The magnetic fields play an essential role in influencing the stress distributions of electromechanical sys-
tems for semiconducting materials. This analysis and results are particularly valuable for the design of 
magnetically controlled actuators, structural components, and smart materials that require precise stress 
management capabilities.

	 (4)	 The comparative study of the properties of three important semiconductor materials: silicon (Si), germa-
nium (Ge), and gallium arsenide (GaAs) plays a significant role in the semiconductor industry, and silicon 
is particularly crucial due to its unique properties and widespread uses.

	 (5)	 The significant influence of the thermoelastic coupling parameter (ϵ1) on the upper portion of the rectan-
gular semiconductor plate helps us to study the behavior of the ionized impurity or the mobility of doping 
scattering.

	 (6)	 The present three-dimensional models are essential for effective thermal management and structural de-
sign, ensuring material stability and preventing failures in engineering applications.

	 (7)	 As discussed in Mostefai14, the energy band gap (Eg) is a function of temperature, rather than being con-
sidered constant. Therefore, these semiconductors are characterised by controlling the temperature as per 
Eq. (27) and the corresponding figures.

	 (8)	 As it is prescribed in Table 1 that the energy band gaps of silicon(Si), germanium (Ge), and gallium arse-
nide (GaAs) are 1.11 eV, 0.72 eV, and 1.42 eV, respectively, at 300k. It is shown that the energy band gap 
and the corresponding doping concentration are also temperature dependent. This article presents the 
dependence of internal surface resistivity for different semiconductors. This is another fundamental prop-
erty for the semiconductors which is considered as the geometrical dimensions along with the interatomic 
spaces that affect the vibrations of the free atoms. This property also helps the free electrons along with 
the doping atoms bound to overlap the respective energy band. It has great importance for many modern 
electronic devices.

	 (9)	 This study also predicts the comparative characteristics of three semiconductors Si, Ge, and GaAs. On the 
basis of this analysis, the type of semiconductor can be chosen as the principal advantage of electronic 
devices.

	(10)	 The analytical closed-form solutions and the corresponding numerical results with discussions have been 
presented for this model. The electromagnetic field components and an external heat source significantly 
influence the thermoelastic behaviour and wave propagation in semiconductors. In addition to all the 
results and discussions drawn in this article, it is more important to implement practical experiments to 
verify these types of behaviour and properties in the operational form of the different types of modern 
electronic devices.

The numerical simulations are presented in three-dimensional geometries; therefore, the semiconductor is 
considered very thin compared to other dimensions, the model can be restricted to a two-dimensional analysis 
and validating it experimentally further its applicability and accuracy accordingly in realistic engineering 
contexts. The results obtained both numerically and graphically demonstrate that photothermal effects 
significantly impact various phenomena with numerous applications in the engineering field. This includes areas 
such as semiconductors, chemical reactions during photothermal processes, modern aeronautics, astronautics, 
advanced chemical engineering (such as chemical and mechanical planarization), and nuclear reactors. Overall, 
this work contributes a unified theoretical formulation of photo-thermoelasticity for a more advanced framework 
to design in renewable energy applications.

Data availability
All data generated or discussed in this article are included in this study. The software used in this article is MAT-
LAB(R2021a).
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