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Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting 
sustainable development. To overcome the limitations of single-data-source methods in capturing 
human activities, this study proposes a novel approach for urban built-up area extraction, based 
on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and 
Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining 
POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment 
remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate 
vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features 
for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves 
a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. 
The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source 
fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable 
solution for high-precision urban mapping.

Keywords  Triangular threshold segmentation algorithm, Naive-Bayes classification model, Built-up area 
extraction Multidata Fusion

The Sustainable Development Goals (SDGs) emphasize the role of cities as key drivers of economic growth, 
contributing approximately 60% of global GDP1. Accurate identification of urban built-up areas is therefore 
essential for urbanization monitoring and sustainable development. However, existing extraction methods often 
rely on single data sources, which are prone to misclassification in complex urban environments. In recent years, 
advancements in Earth observation and big data technologies have enabled more sophisticated methods for 
tracking urbanization. High-resolution remote sensing imagery, nighttime light data, and multi-source datasets 
are increasingly used to assess urban atmospheric environments, land sustainability and socioeconomic impacts. 
These approaches play a pivotal role in supporting sustainable urban development.

The automatic identification and extraction of urban built-up areas from high-resolution optical imagery, 
nighttime light data, and other multi-source datasets have attracted considerable attention in urbanization 
monitoring, leading to notable progress. Numerous studies have shown that integrating optical, radar, and 
nighttime light imagery can substantially improve the delineation of built-up areas and support the mapping of 
complex urban structures2–5. In particular, the use of high-resolution remote sensing imagery for built-up area 
extraction has been extensively investigated.

Traditional optical index methods such as NDVI, MNDWI, and NDBI have long been used to delineate 
urban surfaces6–10. These indices are simple and effective in distinguishing vegetation, water, and impervious 
surfaces. However, they are limited by spectral confusion in transition zones (e.g., urban–rural fringes), resulting 
in misclassification and reduced reliability in complex environments11. Recent improvements, such as combining 
indices with temperature information10 or integrating NDVI with MNDWI and NDBI11, have achieved better 
performance, yet problems of noise and overlapping spectral signatures persist12.

In addition, nighttime light data has become an essential source for urban built-up area extraction. Early 
sensors such as DMSP-OLS provided valuable but coarse-resolution insights13,14, while the launch of NPP-
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VIIRS offered higher radiometric quality15–17. However, both suffered from oversaturation and light spillover 
around bright areas such as airports and roads18,19. To address this, numerous methods were developed, 
including regression-based calibration15, Sobel and watershed operators14, and multi-source fusion with land 
cover products13. More recently, the Luojia-1 satellite, with 100–130 m resolution, has provided a significant 
improvement in monitoring urban structures17,18. Studies have demonstrated its effectiveness in analyzing 
multi-center urban patterns in the Greater Bay Area17 and reducing blooming effects in complex cityscapes18. 
Nonetheless, even with Luojia-1, light overflow and resampling errors remain key challenges19.

Crowd-sourced POI (Point of Interest) data have also proven to be a significant resource for urban built-up 
area extraction. POI data, which captures the descriptive attributes of urban entities, have been widely used to 
analyze urban built-up areas. Zhou19 and Yu and Ai20 applied kernel density analysis on various POI distribution 
patterns to identify urban built-up areas, effectively overcoming challenges related to facility point distribution 
in urban network spaces. These studies also explored the distribution characteristics, image factors, and service 
functions of POI infrastructure in urban areas. However, due to the limited spatial density of POI data from 
public sources, it remains challenging to fully capture the spatial distribution characteristics of a city based 
solely on its spatial location. Liu et al.21 highlighted the high spatial correlation between POI data and nighttime 
light. By constructing an index relationship for data fusion, they improved the accuracy of urban built-up area 
extraction22. He et al.23 utilized wavelet transformation to describe urban boundaries and interconnections 
between cities, using nightlight data, POI, and Tencent migration data to precisely delineate urban boundaries. 
Additionally, Li et al.24 proposed a comprehensive index combining nighttime light data and POI to assess the 
accuracy of urban built-up area information. This method enhanced the extraction process by accounting for the 
connectivity of urban structures, offering a more thorough analysis of urban built-up areas.

Machine learning methods such as Support Vector Machines (SVM) and Random Forest (RF) have also been 
widely applied in built-up area extraction. These algorithms can handle high-dimensional features and have 
achieved solid performance in urban classification tasks12,16,26. For example, SVM has been used to integrate 
multisource data including DMSP-OLS, Landsat, and GlobeLand3012, while RF has been shown effective in 
handling Sentinel-2 imagery and complex urban infrastructure22. Despite their robustness, these methods 
often require careful parameter tuning and may face challenges when dealing with heterogeneous and highly 
imbalanced urban datasets25.

Deep learning approaches such as CNN, U-Net, and their variants have recently achieved remarkable 
success in building and impervious surface extraction6–9,25–27. Transfer learning with Sentinel-26, improved 
U-Net architectures7,8, and emerging Transformer-based models25,27 have all delivered high accuracies in 
urban mapping. However, these approaches require large annotated datasets and substantial computational 
resources, which constrain their scalability for regional or national studies. Moreover, the “black-box” nature 
of deep networks limits their interpretability, which is critical for applications in land management and policy 
support4,26.

In summary, previous studies have made notable progress using optical indices6–12, NTL data13–19, POI 
datasets19–24, and deep learning methods6–9,25–27. Yet, the integration of these heterogeneous data sources 
remains a central challenge, particularly in cities with complex land cover and diverse socioeconomic activity.

To address these challenges, this study proposes a multi-source fusion method that combines Landsat 8-derived 
indices (NDVI, MNDWI, NDBI), Luojia-1 nighttime light data, and POI datasets. A new POI-Adjusted Luojia-1 
Urban Index (PALUI) is constructed to mitigate light spillover and better represent population-driven urban 
morphology. Furthermore, the Naive Bayes classifier is employed for its computational efficiency, robustness 
to heterogeneous features, and interpretability, offering a lightweight alternative to resource-intensive deep 
learning models7,8,26. This design balances accuracy and efficiency, making the approach suitable for large-scale 
urban monitoring and practical applications in land management.

The remainder of this paper is organized as follows. Section 2 introduces the study area and datasets. Section 3 
presents the methodology, including the construction of the PALUI index, the triangle threshold segmentation, 
and the Naive Bayes classifier. Section 4 reports and discusses the experimental results. Finally, Sect. 5 concludes 
the study with a summary of key findings, broader implications, and directions for future research.

Materials
Study area
Nanchang, the capital of Jiangxi Province, is a key city in the urban agglomeration along the middle reaches 
of the Yangtze River and serves as a central hub of the Yangtze River Economic Belt. The city consists of six 
districts and three counties. With rapid development, Nanchang is accelerating the construction of rail transit 
and expressway networks, which has led to significant expansion in its built-up area. According to the Nanchang 
Government, the city’s urbanization rate is projected to reach 78.92% by 2022. Therefore, accurate and effective 
extraction of Nanchang’s land use data is crucial for the city’s development in urban culture, economy, and 
transportation. The study area for this research is Nanchang City, as shown in Fig. 1.

Dataset
The data used in this study include Nanchang’s administrative boundaries, Landsat 8 imagery, POI data, and 
CLCD, as shown in Table 1. All data are open-source and acquired from public platforms, with access URLs 
provided in Table  1. Landsat 8 is equipped with two sensors: the Operational Land Imager (OLI) and the 
Thermal Infrared Sensor (TIRS). The OLI provides global land image coverage with a spatial resolution of 30 m 
in the visible, near-infrared, and short-infrared bands, while the TIRS offers a spatial resolution of 100 m for the 
thermal infrared band and a 15 m for the panchromatic band. POI data represent urban entities as geolocated 
spatial points, each containing location and attribute information that describe various functional areas within 
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the city. In this study, we used 178,090 POI data points generated in Nanchang City in July 2022, obtained via 
the AutoNavi API interface.

Luojia-01 is a satellite that captures nighttime light brightness values with a spatial resolution of 130 m. To 
account for temporary light sources, such as firelight and lake reflections, three sets of scene data were selected 
for radiation calibration, atmospheric correction, and mean synthesis to ensure reliability. These data were 
resampled to a 30 m spatial resolution for further processing. CLCD28 is land cover data published by Wuhan 
University, with a spatial resolution of 30 m, covering land cover information from 1990 to 2022.

Methods
The flowchart of the methodology used in this paper is shown in Fig. 2, which consists of five main steps: datasets 
preparation, index construction, threshold segmentation, model training, and classification prediction. Data 
preprocessing is performed using Google Earth Engine (GEE) to streamline the process. As shown in Fig. 2, 
the NDVI, MNDWI, and NDBI remote sensing indices are constructed, along with the POI and nighttime light 
data to generate the POI-Adjusted Luojia-1 Urban Index (PALUI), which is used to describe the population 
distribution in urban built-up areas. The triangle threshold algorithm is then applied to segment the constructed 
remote sensing indices, enabling the identification of various ground object distributions. Finally, the SVM, 
Random Forest, and Naive Bayes classifiers are employed for classification prediction.

Remote sensing index calculation
Calculation of NDVI, NDVI and NDBI index
To extract the built-up areas, the surface target index was calculated for analysis. Based on the spectral 
characteristics of vegetation, water bodies, buildings, and other features in the study area, the following indices 
were used: the Normalized Difference Vegetation Index (NDVI)29, the Modified Normalized Difference Water 
Index (MNDWI)30, and the Normalized Difference Built-up Index (NDBI)31. The formulas for these indices are 
as follows:

Data Name Spatial Resolution(m) Data source

Administrative / Geographic Information Public Service Platform ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​t​i​a​n​d​i​t​u​.​g​o​v​.​c​n​/​​​​​)​​

Landsat 8 30 USGS (https://www.usgs.gov/)

POI / Amap (https://www.amap.com/)

Luojia-01 130 Gaofen Hubei Center (https://grid.cpeos.org.cn/)

CLCD dataset 30 Zenodo(https://zenodo.org/records/8176941)

Table 1.  Introduction of Dataset.

 

Fig. 1.  Study Area.

 

Scientific Reports |        (2025) 15:40175 3| https://doi.org/10.1038/s41598-025-23986-w

www.nature.com/scientificreports/

https://www.tianditu.gov.cn/
https://www.usgs.gov/
https://www.amap.com/
https://grid.cpeos.org.cn/
https://zenodo.org/records/8176941
http://www.nature.com/scientificreports


	
NDV I = ρNIR − ρRed

ρNIR + ρRed
� (1)

	
MNDW I = ρGreen − ρMIR

ρGreen + ρMIR
� (2)

	
NDBI = ρSW IR − ρNIR

ρSW IR + ρNIR
� (3)

NDVI could react with plant coverage and growth conditions, MNDWI aims to extract urban water body 
information, and NDBI could react with built-up area. The above formula represents the near-infrared band, 
ρRedrepresents the infrared band, ρGreenrepresents the green band, ρMIRrepresents the mid-infrared band 
and ρSW IR represents the shortwave infrared band.

PLUI index calculation
Relying solely on spectral indices such as NDVI, MNDWI, and NDBI for urban built-up area extraction fails 
to account for the influence of population distribution. In contrast, Point of Interest (POI) data, accessible 
through Location-Based Services (LBS) platforms like AutoNavi, provide direct insights into human activity 
patterns by mapping the density and diversity of urban facilities. Studies have shown that POI spatial aggregation 
strongly correlates with population distribution32,33, enabling the identification of built-up areas beyond spectral 
signatures. In parallel, nighttime light (NTL) data serves as an additional and independent source of information 
on anthropogenic intensity and spatial extent. NTL observations capture urban activity patterns in regions where 
structural boundaries are indistinct34,35. Compared to spectral indices, NTL data are less affected by atmospheric 
conditions and provide stable, continuous coverage across large spatial extents36,37. By integrating POI and 
NTL data, the robustness and reliability of urban built-up area delineation can be substantially improved. 
The complementary nature of POI and NTL allows for a more comprehensive representation of urbanization 
processes, overcoming the limitations of single data source and enabling more accurate identification of built-up 
areas across diverse and complex built-up areas.

To establish the connection between POI points and Luojia-01 data, this paper constructs the PALUI index. 
T﻿he calculation formula for the PALUI index is as follows:

	 P ALUIi =
√

DNi×P OIi� (4)

Fig. 2.  Flow chart of the methodology used in this paper.
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Here, DNi represents the pixel value of the Luojia-01 nighttime light data for the i-th pixel, and the P OIi 
represents the POI kernel density value of the i-th pixel. The PALUI index indicates the index value constructed 
from the relationship between POI kernel density and Luojia-01 nighttime light data.

The kernel density estimation (KDE) is a spatial density analysis method that calculates the spatial smoothness 
of univariate sample point groups, the kernel density estimation method is described as follows38.

Suppose x1、 x2…xn are sample values, p (x) is the density value at a certain point, expressed as shown in 
Eq. (4).

	
p (x) = 1

Nh

N∑
k=1

K
(

x − xk

h

)
� (5)

Here, K (x) is called kernel function, in this paper, the K (x) is expressed as shown in Eq. (5).

	
K (x) = 1√

2π
e−x2/2� (6)

In Eq. (5), N is the number of samples, x − xk  represents the distance between the estimation point x and the 
sample point xk , h is called bandwidth, and it is a smoothing parameter.

For accuracy comparison, in the proposed method, we resample the Luojia-01 nighttime light data to the 
30 m spatial resolution.

Triangular threshold algorithm
The triangular threshold algorithms are commonly used for image processing and segmentation39. It divides an 
image into two regions: foreground and background. The objective is to find an optimal threshold that effectively 
separates these two regions. The basic concept of the triangular threshold algorithm involves plotting the pixel 
gray values in a histogram and drawing a straight line across the histogram to form a triangle40, as shown in 
Fig. 3. The peak of the triangle represents the point (maxid, max), and the rightmost point of the line is (255, 0). 
The equation from the peak point to the line L on the right can be expressed byAx + By + C = 0. The distance 
from the corresponding point in the curve to the line L is:

	
d =

∣∣∣∣
Ax0 + By0 + C√

A2 + B2

∣∣∣∣� (7)

The above formula(x0, y0) represents the coordinates of the midpoint of the curve. When the d value is the 
largest, it is the best threshold.

The triangular threshold method demonstrates high efficiency in handling bimodal image distributions, 
particularly under conditions of low noise and pronounced contrast between foreground and background, 
enabling rapid and accurate segmentation. In contrast, the Riddler–Calvard and Otsu methods are generally 
more suitable for complex backgrounds and gray-level distributions, but they involve higher computational 
complexity and exhibit greater sensitivity to noise1. Previous studies have shown that the histograms of 
NDVI and MNDWI in experimental regions often display clear bimodal characteristics2,3, which facilitate the 
straightforward separation of vegetation from non-vegetation areas and water bodies from non-water bodies. 

Fig. 3.  Triangular Threshold Algorithm.
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Consequently, these indices are well-suited to the triangular threshold approach. By comparison, the NDBI 
emphasizes the extraction of urbanized areas using red and shortwave infrared (SWIR) bands4. However, the 
spectral contrast among urban areas, buildings, and other land-cover types is generally less distinct than that 
between water and non-water or vegetation and non-vegetation, and thus NDBI histograms may not exhibit 
pronounced bimodality, limiting the applicability of the triangular threshold method in such cases.

Naive-Bayes classification model
The Naive-Bayes classification model is based on Bayes’ theorem and the assumption of independent feature 
conditions. The maximum posterior probability output is obtained after solving using Bayes’ theorem for a given 
input41. Its specific algorithm flow is as follows:

Given a set of training datasets T = {(x1, y1), (x2, y2), . . . , (xn, yn)}, in xi = (x(1)
i , x

(2)
i , . . . , x

(j)
i ), x(j)

i  is 
the j feature of the i-th sample, ajl is the l value that the j-th feature, j = 1,2,…, n; l = 1, 2, …,yi ∈ {c1, c2, . . . , ck}; 
The final output result is the classification of instances x.

(1) Calculate the prior probability and its conditional probability

	
P (Y = ck) =

N∑
i=1

I(yi = ck)

N
, k = 1, 2, . . . , K

� (8)

	

P (X(j) = ajl | Y = ck) =

N∑
i=1

I(x(j)
i = ajl, yi = ck)

N∑
i=1

I(yi = ck)
� (9)

j = 1, 2, . . . , n, l = 1, 2, . . . , Sj , k = 1, 2, . . . , K  
(2) For a given instance xi = (x(1)

i , x
(2)
i , . . . , x

(n)
i )T  

	
P (Y = ck)

n∏
j=1

P (X(j) = x(j) | Y = ck), k = 1, 2, . . . , K � (10)

(3) Determine the category of x,

	
y = arg max

ck

P (Y = ck)
n∏

j=1

P (X(j) = x(j) | Y = ck)� (11)

In this study, the Naive Bayes classification model was selected as the classifier primarily due to its efficiency 
and stability in urban remote sensing classification. Previous studies have shown that Naive Bayes classification 
model can achieve accuracy comparable to SVM in high-resolution object-based image classification1, and in 
certain urban texture image tasks it even outperforms SVM while offering higher computational efficiency2. 
Therefore, Naive Bayes classification model provides a balance between accuracy and reduced model complexity, 
making it a suitable classification method for this study.

Experimental results
Result analysis based on triangle threshold segmentation method
To verify the accuracy of the triangle threshold segmentation algorithm, the Otsu algorithm42 and Riddler-
Calvard algorithm42 were used to evaluate the segmentation results of the three indices. The CLCD dataset 
originally consisted of 9 categories. Taking into account the geographical location, climate conditions, and built-
up areas of Nanchang City, these categories were reclassified into three types: water bodies, built-up areas, and 
forests12,17. The results are shown in Table 2.

The triangle threshold algorithm demonstrates better segmentation results for NDVI and MNDWI values, as 
shown in Table 2. However, for NDBI values, the segmentation accuracy differs by 0.02 compared to the Riddler-
Calvard algorithm. This discrepancy arises from the difficulty of distinguishing built-up areas from non-built-up 
areas using the NDBI, where the boundaries are often unclear, resulting in lower segmentation accuracy.

Subfigures a, b, and c in Fig. 4 illustrate the segmentation results for NDVI. Compared to the other two 
algorithms, the triangle threshold algorithm more effectively distinguishes the boundary distribution of forests 
and buildings in the area marked by the black circle. This indicates that the algorithm performs better in identifying 

NDVI MNDWI NDBI

Triangle Threshold 0.92286 0.84930 0.64274

Riddler-Calvard 0.87281 0.64901 0.66275

OSTU 0.87687 0.83906 0.63839

Table 2.  Threshold segmentation algorithm accuracy.
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small vegetation patches within urban environments when extracting built-up areas. The segmentation results 
are more differentiated in areas with significant contrasts between built-up and non-built-up regions.

Subfigures d, e, and f in Fig. 4 show the segmentation results for MNDWI. In the area marked by the black 
circle, the triangle threshold algorithm provides a more detailed segmentation of water bodies within the city 
compared to the other two algorithms. It is particularly effective in identifying long, narrow water bodies in 
urban areas.

Subfigures g, h, and i in Fig. 4 present the segmentation results for NDBI. The Riddler-Calvard algorithm 
outperforms the triangle threshold algorithm in identifying built-up areas and distinguishing non-built-up 
regions from the surrounding built-up areas. Compared to the NDVI, the discrimination of built-up and non-
built-up areas is less clear in NDBI. This is due to the fact that, as cities evolve into rural areas, the number of 
buildings decreases and land use transitions from urban to agricultural land. During this transition, the spectral 
characteristics of ground objects remain relatively unchanged, leading to poor segmentation results when using 
the triangular threshold algorithm for NDBI.

Evaluation of PALUI index results
The aggregation of POI points can reflect the population distribution in built-up areas, and kernel density analysis 
is used to measure the aggregation of these points. The results of kernel density analysis vary with different 
search radio. A larger search radius produces smoother results, making the description of point aggregation 
more reliable43. The movement range of urban residents is typically centered around residential areas, with a 
300 m radius representing the typical range. For urban residents, a 500 m search radius is considered reasonable. 
As the scope of activities expands and the research area increases, the kernel density search radius should be 
adjusted accordingly.

In this study, we use a stepwise range from 300 m to 2000 m for kernel density analysis. As the search radius 
increases, points with higher local kernel density values gradually merge, and the smoothness of the generated 

Fig. 4.  Comparison of Segmentation Results.
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contours improves. The kernel density of POI points in the experimental area was analyzed with search radii of 
800 m, 1200 m, and 1600 m. The results are shown in Fig. 5.

When the search radius is 600 m (Fig. 5a), the aggregation of points in the city is clearly visible, with detailed 
descriptions of aggregation in Honggutan District and Qingshan Lake District. However, aggregation in Jinxian 
County and Anyi County is insufficiently represented. When the search radius is increased to 1200 m (Fig. 5b), 
the POI points in the core area of Nanchang City become more concentrated, and the results are smoother. 
Additionally, the urban distribution in Jinxian County and Anyi County is more clearly defined. Further 
increasing the search radius to 1600 m (Fig. 5c) enhances the smoothness of the core area, allowing for a more 
accurate representation of POI aggregation in both the core area of Nanchang City and in Jinxian County and 
Anyi County.

Different kernel density search radii produce different results, but the PALUI index effectively reflects the 
distribution of people in various regions through kernel density values. In the context of the urban scale of the 
experimental area, a search radius for 1600 m for kernel density analysis yield optimal results. The results are 
then normalized for further analysis, as shown in Fig. 5.

Nighttime light data has the advantage of clearly defining urban development boundaries through pixel 
brightness values. After preprocessing, pixel brightness in the built-up areas of Nanchang City is higher, and the 
core area is clearly outlined. However, brighter pixel values are also observed at the airport in the northern part 
of the city. Relying solely on pixel values from nighttime light data makes it difficult to capture the transition 
between built-up and non-built-up areas. To address this, kernel density analysis is used in combination with 
nighttime light data to construct the PALUI index for built-up areas.

As shown in Fig. 5d, by constructing and normalizing the PALUI index to mitigate the influence of stronger 
light sources, sporadic light sources around roads are effectively removed. The boundary of the city is now more 

Fig. 5.  Nuclear Density Analysis Result.
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clearly defined. The index values in the core areas of Honggutan District, Qingshan Lake District, East Lake 
District, West Lake District, and Qingyun Pu District are close to 1, indicating a high concentration of built-up 
areas.

Analysis of built-up area extraction results based on the Naive-Bayes classification model
To assess the classification accuracy of the Naive-Bayes model, we introduce precision, recall, and F1-score as 
evaluation metrics44. The calculation formulas are as follows:

	
Precision = T P

T P + F P
� (12)

	
Recall = T P

T P + F N
� (13)

	
F1 = 2 ∗ P recision ∗ Recall

P recision + Recall
� (14)

 

In formula (12) and (13), TP represents the correctly predicted positive examples, FP represents the incorrectly 
predicted positive examples, and FN represents the incorrectly predicted negative examples. At the same time, 
we also adopted the Kappa coefficient, the Kappa coefficient (k) is used to measure the agreement between 
classification results and reference data, defined as:

	
k = p0 − pe

1 − pe
� (15)

where p0​ represents the observed agreement, calculated as the ratio of the sum of diagonal elements in the 
confusion matrix to the total number of samples, and pe denotes the expected agreement by chance, obtained 
from the product of row and column marginals of the confusion matrix. A higher k value indicates stronger 
agreement beyond chance, with k = 1 representing perfect concordance and k = 0 reflecting purely random 
consistency.

The constructed remote sensing indices are then fed into the Naive Bayes41, SVM12, Random Forest26, 
U-Net9, and YOLO V1145 models. These models are trained using remote sensing indices, and the results are 
shown in Table 3.

As shown in Table  3, the Naive Bayes classifier achieved strong performance in classifying non-built-up 
areas (F1 = 0.86) and built-up areas (F1 = 0.82), with slightly lower accuracy in water body detection (F1 = 0.80). 
Importantly, it also obtained the highest Kappa coefficient (0.82), indicating the strongest overall agreement 
with the reference data. Random Forest presented relatively balanced performance across all categories, with F1 
scores ranging from 0.75 to 0.84 and a Kappa value of 0.77. SVM attained the highest precision for non-built-up 
areas (0.92) but with lower recall (0.75), whereas the opposite pattern was observed for built-up areas; its Kappa 
coefficient (0.78) further confirms its stable but not optimal performance. The U-Net model excelled in water 
body recognition (F1 = 0.96), and the lowest Kappa value (0.73). YOLOv11 exhibited comparatively weaker 
performance, with F1 scores below 0.74 for all categories, but its overall agreement was moderate (Kappa = 0.75).
Compared to other models, YOLOv11 tends to misclassify complex scenes into a single category under such 
conditions, which reflects its relatively limited adaptability in semantic segmentation tasks. This limitation may 
stem from its network architecture, which is primarily optimized for bounding box regression rather than fine-

Classifiers Categories Precision Recall F1-score Kappa

Naive-Bayes

Non-built-up area 0.83 0.9 0.86

0.82Water body 0.85 0.77 0.80

Built-up area 0.89 0.76 0.82

RandomForest

Non-built-up area 0.82 0.87 0.84

0.77Water body 0.80 0.72 0.76

Built-up area 0.78 0.72 0.75

SVM

Non-built-up area 0.92 0.75 0.83

0.78Water body 0.85 0.77 0.81

Built-up area 0.66 0.89 0.76

Unet

Non-built-up area 0.77 0.82 0.79

0.73Water body 0.96 0.97 0.96

Built-up area 0.78 0.74 0.76

YOLOV11

Non-built-up area 0.72 0.65 0.68

0.75Water body 0.74 0.74 0.74

Built-up area 0.69 0.71 0.70

Table 3.  Precision classification Result.
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grained modeling of pixel-level semantic information45. As a result, the model demonstrates reduced capability 
in accurately delineating complex object boundaries in high-variability geospatial contexts.

In Fig. 6, the red areas represent built-up areas, the blue areas represent water bodies, and the yellow areas 
represent non-built-up areas.

In Sample 1, the red-circled region corresponds to an inner-city water body. The Naive Bayes classifier 
delineates the water body in a manner that is broadly consistent with the reference satellite image, suggesting a 
relatively robust ability to separate water features from built-up areas. By contrast, both the U-Net and YOLOv11 
models misclassify portions of the surrounding area as built-up regions, indicating a tendency for these deep 
learning methods to overgeneralize non-water areas in heterogeneous urban–water boundaries. This highlights 
the challenge of accurately distinguishing mixed pixels and transitional zones between aquatic and urban 
environments.

In Sample 2, the red-circled region highlights a park area containing both water bodies and vegetation. The 
SVM and Random Forest classifiers exhibit noticeable errors in delineating the surrounding built-up areas, where 
portions of vegetation and bare soil are misclassified as built-up areas. In contrast, the Naive Bayes classifier 
and the U-Net model generate results that are more consistent with the reference imagery, demonstrating a 
comparatively higher capacity to preserve the spatial integrity of non-built-up classes adjacent to urban features. 
This difference suggests that traditional machine learning methods are more prone to pixel confusion in 
heterogeneous urban–green space interfaces, whereas Naive Bayes and deep learning models achieve relatively 
better discrimination.

In Sample 3, the red-circled region corresponds to an urban park. Compared with the other classifiers, the 
Naive Bayes method more accurately delineates the built-up areas surrounding the park while retaining a clearer 
boundary between built-up areas and green spaces. This enables a more detailed depiction of the park’s spatial 
extent within the urban fabric, highlighting the ability of Naive Bayes to reduce pixel confusion at the interface 
between vegetation and built-up areas.

In Sample 4, the Naive Bayes classifier again outperforms the other methods in delineating built-up areas 
and produces more detailed results. Nevertheless, certain misclassifications are observed, including the 
erroneous labeling of riverbanks and river centers as built-up regions. Moreover, tidal flats formed by erosion are 
frequently misclassified as urban areas, mainly because the pixel signatures of wet mud and exposed sediments 
closely resemble those of bare land and built-up areas. These findings underscore the persistent challenge of 
distinguishing hydrologically dynamic landscapes from urban features using pixel-based information alone.

Conclusions
Using POI data, Luojia-01 nighttime light data, and Landsat 8 data, this paper focuses on Nanchang City as a 
case study. We employ the triangle threshold segmentation, kernel density analysis, PALUI index, and Naive 
Bayes classifier to identify built-up areas. Additionally, the Random Forest algorithm and SVM were used for 
verification and comparison. Based on the experiments, the following conclusions were drawn:

	(1)	 The PALUI index effectively describes the distribution of people and built-up areas within the city. By lev-
eraging POI and nighttime light data, our method offers a more accurate representation of population and 
built-up area distribution. The optimal search radius of 1600 m yields the most detailed and precise results, 
and the use of kernel density analysis to construct the PALUI index improves the clarity of urban boundary 
delineation, advancing urban segmentation techniques.

Fig. 6.  Classification Results with different methods.
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	(2)	 The triangular threshold algorithm demonstrates superior segmentation results for NDVI and MNDWI, 
particularly in identifying internal water bodies and complex urban areas. However, the algorithm’s per-
formance for NDBI segmentation is limited due to the inherent challenges posed by urban evolution. This 
highlights a gap in existing methods, which our approach addresses by incorporating additional data sourc-
es.

	(3)	 In classifying ground objects, the Naive Bayes classifier outperforms traditional methods such as SVM and 
Random Forest, achieving an F1 score of 0.82 for built-up areas. The U-Net model excels in identifying 
water bodies, with an F1 score of 0.96. YOLOV11’s F1 score for water body recognition is 0.74. YOLOV11 
model has the advantage of target detection rather than semantic segmentation, so its effect is not very good 
compared with Unet models. While the core urban area is accurately identified, challenges remain, such as 
the misidentification of tidal flats as built-up areas. This highlights an opportunity for further improvement 
in classification accuracy, an area where our method offers potential for refinement.

Although this study has made some progress in urban built-up area extraction, there are still challenges. Due to 
data limitations, this study selected only a single region as the experimental area. A dense distribution of water 
systems characterizes the chosen region and represents a typical waterfront city. Therefore, future research should 
consider incorporating diverse types of urban regions (e.g., mountainous cities, plain cities, and waterfront 
cities) further to validate the generalizability and applicability of the proposed method. In addition, the spatial 
resolution of the nighttime light data used in this study was enhanced through resampling, which may inevitably 
result in a certain degree of accuracy loss. To improve the reliability of the results and the robustness of the 
method validation, future work will employ nighttime light data with higher spatial resolution (e.g., SDGSAT-1) 
for further testing. Moreover, future studies will focus on improving classification accuracy, particularly in 
complex regions, by incorporating long-term temporal series, leveraging higher-resolution remote sensing data, 
and integrating advanced deep learning techniques to optimize the feature extraction process.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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