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Carbohydrate-protein supplementation often improves endurance performance. However, 
effectiveness varies significantly among individuals due to unique personal characteristics. This study 
aimed to develop a predictive machine learning framework for personalized supplementation, with a 
core methodological novelty in applying a Wasserstein Generative Adversarial Network with Gradient 
Penalty (WGAN-GP) to address the critical issue of data scarcity. Based on 231 rowing trials, the 
framework utilized 46 input features covering baseline characteristics and dietary intakes. Rowing 
distance was the performance outcome. The machine learning pipeline first utilized a hybrid feature 
selection method (correlation analysis, model-based importance, and domain knowledge). Following 
a comparative evaluation, WGAN-GP was utilized for data augmentation. Finally, several regression 
models (XGBoost, SVR, and MLP) were trained to predict rowing performance. The top-performing 
model was used to construct a personalized supplement recommendation framework. Feature 
selection identified 21 key indicators from 46 initial inputs. The XGBoost model, enhanced with WGAN-
GP data augmentation, demonstrated the most robust performance, achieving a strong predictive 
accuracy (R² = 0.53) coupled with high stability. Body weight, explosive power, and nutritional inputs 
were key performance predictors. This study demonstrates that a data-augmented machine learning 
approach can effectively model individual responses to supplementation. The developed framework 
provides a data-driven pathway for creating personalized nutritional strategies to optimize athletic 
performance.
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Nutritional supplementation is a cornerstone of optimizing endurance athletic performance1–3. The efficacy of 
these supplements, particularly carbohydrate-protein combinations, is not uniform4–6. An athlete’s response is 
governed by a complex interplay of individual physiological, anthropometric, and lifestyle characteristics7,8. 
Therefore, developing a predictive framework that integrates these diverse personal indicators to determine 
optimal supplement dosages is crucial.

Extensive research demonstrates benefits of combined carbohydrate-protein supplements (CPS). CPS can 
enhance endurance performance and improve recovery markers compared to carbohydrate-only (CHO) options 
or placebo (PLA)4,9. These findings largely stem from traditional randomized controlled trials (RCTs). Such 
RCTs typically investigate a few fixed-dose or fixed-ratio supplement protocols, for example, the evaluation of 
a 4:1 CHO to protein (PRO) ratio10. This research paradigm seeks to determine group-average effects, aiming 
for a universally applicable recommendation. Consequently, resulting recommendations often embody a “one-
size-fits-all” approach. While crucial for establishing general guidance, this methodology inherently masks 
individual variability in response to supplementation.

Current supplement guidelines are predominantly based on group-average effects11–13. This established 
methodology, however, inadequately addresses pronounced inter-individual variability in responses to 
supplementation14–16. Individuals possess diverse physiological, metabolic, anthropometric, and lifestyle profiles, 
leading to distinct reactions to identical supplement regimens15,17,18. Consequently, a universal recommendation 
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might be optimal for some individuals but suboptimal or even detrimental for others, potentially causing adverse 
effects such as gastrointestinal discomfort. Treating such distinct responses as statistical noise, rather than as 
crucial individual signals, is a fundamental limitation of prevailing strategies. Therefore, a paradigm shift towards 
personalized nutrition is essential15,18–20. Research focus should evolve from seeking a single optimal solution 
for populations to creating frameworks that predict and satisfy individual athlete needs. Modern computational 
methods, particularly machine learning (ML), offer robust tools for this advancement. ML algorithms can 
identify intricate, non-linear patterns within complex, high-dimensional datasets21,22. By integrating numerous 
personal indicators, these models can forecast performance outcomes under specific supplement strategies14, 
enabling the development of truly predictive and individualized recommendations.

Therefore, the primary aim of this study was to develop and evaluate a ML framework for generating 
personalized CPS recommendations. While foundational studies have demonstrated the feasibility of using ML 
for this purpose14, their predictive power is often constrained by the limited sample sizes common in sports 
science research23. The central methodological contribution of this work is the systematic validation of an 
advanced data augmentation technique—the Wasserstein Generative Adversarial Network with Gradient Penalty 
(WGAN-GP)—to address this critical data scarcity problem. This generative approach is embedded within a 
rigorous analytical pipeline that begins with hybrid feature selection to isolate the most salient predictors. This 
process ensures the subsequent data augmentation is applied to a high-quality, relevant feature set, thereby 
enhancing the potential for improved model generalization.

The remainder of this paper is organized as follows. Section 2 provides a review of the literature on ML in 
sports nutrition, feature selection, and data augmentation. Section 3 details the full methodology, including data 
acquisition, the multi-stage ML pipeline, and the personalized recommendation framework. Section 4 presents 
the key experimental results, including the outcomes of feature selection and the final model performance 
evaluations. Finally, Sect. 5 discusses the implications of the findings, acknowledges the study’s limitations, and 
offers concluding remarks.

Literature review
ML for personalized sports nutrition
The paradigm in nutrition is shifting from population-level guidelines to personalized strategies24,25. ML is a 
primary driver of this transition. ML algorithms can model complex, non-linear relationships within high-
dimensional data, reflecting the intricate interplay of factors that governs an individual’s response to nutrition24. 
This capability is essential for moving beyond group-average effects and developing truly individualized 
nutritional interventions22,25,26.

ML applications in sports science are expanding rapidly. Researchers employ predictive models to forecast 
athletic performance, optimize training protocols, and mitigate injury risk27. For instance, neural networks have 
been used to predict badminton shot accuracy from biomechanical and eye-tracking data28, and regression 
models can quantify performance in virtual reality training environments29. Specific to nutrition, Wang et 
al. developed a model to generate personalized CPS recommendations by integrating 45 distinct individual 
indicators14. These studies demonstrate the feasibility of using ML to translate multifaceted athlete data into 
actionable insights.

Despite this progress, significant methodological challenges persist. Many predictive models in sports are 
developed on limited datasets and feature sets, which can impair their generalizability27. Furthermore, AI-
generated recommendations, such as for exercise prescription, often lack the necessary specificity and adaptation 
for high-performance contexts30. Critical underlying issues frequently overlooked are the systematic selection of 
the most salient predictive features and robust strategies to address data scarcity. Addressing these two challenges 
is fundamental to building reliable and effective personalized nutrition frameworks.

Feature selection in performance prediction
Feature selection is a critical step in developing predictive models from high-dimensional sports science data. 
The process aims to identify the most informative subset of predictors from a larger pool of initial variables31. 
Effective feature selection mitigates the risk of model overfitting, enhances the interpretability of model 
outcomes, reduces computational costs, and helps overcome the “curse of dimensionality” associated with 
complex datasets32.

Feature selection techniques are broadly categorized into three families: filter, wrapper, and embedded 
methods. Filter methods assess feature relevance using statistical measures independent of any learning 
algorithm; they are computationally fast but may overlook feature interactions32,33. Wrapper methods evaluate 
feature subsets using the performance of a specific predictive model. This approach can yield higher accuracy but 
is computationally intensive and risks selecting features that are overfitted to the chosen model34,35. Embedded 
methods integrate the feature selection process directly into the model training phase, offering a balance between 
the performance of wrappers and the efficiency of filters.

To overcome the limitations of individual approaches, hybrid frameworks have become a common 
strategy36,37. These methods typically combine the computational efficiency of a filter stage with the performance-
oriented evaluation of a wrapper or embedded stage36,37. This tiered approach can effectively remove irrelevant 
or redundant variables early, allowing a more sophisticated analysis on a reduced set of candidate features36,38. 
Furthermore, advanced ensemble and hybrid frameworks can formally incorporate domain expertise alongside 
statistical criteria, improving the stability and practical relevance of the final feature subset31,39.

Data augmentation for tabular sports science data
ML applications in sports science are often constrained by limited data availability. The high costs, logistical 
challenges, and time-intensive nature of conducting human trials restrict sample sizes, particularly in 
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physiological intervention studies40. This data scarcity can prevent the effective application of complex, data-
hungry models and may impair the generalization performance of any predictive model developed41.

Data augmentation, a process of generating synthetic data to expand a training set, offers a viable solution 
to this problem23,42. Simpler augmentation strategies are often used as a baseline. These include Random Noise 
Injection, which creates new samples by adding small, random perturbations to the features of existing data 
points43,44. Another common approach is Mixup, a technique that generates virtual examples by taking linear 
interpolations of feature vectors and their corresponding labels from pairs of samples45. Such methods are 
computationally efficient and can be effective for basic regularization.

However, these simpler techniques have fundamental limitations. Methods based on simple interpolation 
or noise may fail to capture the complex, non-linear correlations inherent in biomedical data, and in some 
scientific applications, can even generate physically implausible data instances40,46. This necessitates more 
sophisticated approaches. Deep generative models, such as Generative Adversarial Networks (GANs), represent 
a more advanced solution. Instead of merely perturbing or mixing existing points, GANs learn the underlying 
probability distribution of the entire dataset, enabling them to generate novel, high-fidelity samples that better 
preserve the original data’s complex structure41,47.

While powerful, standard GANs can be difficult to train. They may suffer from issues like mode collapse 
and training instability. The WGAN-GP was developed specifically to address these challenges. By using the 
Wasserstein distance as a loss function and incorporating a gradient penalty, WGAN-GP promotes stable 
training and enhances the quality of the generated synthetic data, making it particularly suitable for complex 
tabular datasets48,49. It is important to distinguish these generative and regression-focused augmentation 
methods from other techniques. For instance, the well-known Synthetic Minority Over-sampling Technique 
also uses interpolation but was primarily designed to address class imbalance in classification problems, not for 
augmenting data in regression contexts.

Methods
Data acquisition and dataset composition
The dataset for this study was compiled from two distinct data collection phases. Ethical approval for all 
procedures was granted by the Ethics Committee of the Capital University of Physical Education and Sports 
(2022A57), and all participants provided written informed consent.

Initial data were sourced from a previously published study by Wang et al.14, involving 171 male participants 
with endurance rowing experience. In that foundational study, participants underwent a standardized 60-minute 
rowing ergometer test under one of eight randomized CPS conditions. These conditions featured CHO intakes 
from 0.50 to 1.20 g/kg/h, with a constant CHO-to-PRO ratio of 4:1. For each participant, 45 baseline indicators 
encompassing anthropometry, physiology, and lifestyle factors were recorded (Table 1), alongside total rowing 
distance. Full methodological details for this initial data acquisition are available in Wang et al.14. All methods 
were performed in accordance with the relevant guidelines and regulations.

  
Additional data were incorporated from a subsequent crossover validation study involving 12 male participants 

with endurance rowing experience, recruited using criteria identical to the initial phase. These participants each 
completed five trials of the same 60-minute rowing protocol under different nutritional strategies: PLA (no CHO 
or PRO), low-CHO (L-CHO; 0.80 g/kg/h CHO, 0 g/kg/h PRO), high-CHO (H-CHO; 1.00 g/kg/h CHO, 0 g/kg/h 
PRO), traditional CPS (T-CPS; 0.80 g/kg/h CHO, 0.20 g/kg/h PRO), and a personalized CPS (P-CPS). The P-CPS 
dosages (specific CHO and PRO g/kg/h) were determined for each of these 12 individuals using an initial ML 
model and enumeration method based on the aforementioned 171 datasets. For these 60 trials (12 participants 

Classification of indicators Specific indicators

Living habits Total cigarettes in last 30 days, Total alcohol units in last 30 days

Psychological status Intuitive Eating Scale-2 (IES-2)

Sleep quality Deep sleep, light sleep, rapid eye movement, Pittsburgh sleep quality index (PSQI)

Demographics Age

Anthropometry
Height, weight, Triceps skinfold, subscapular skinfold, suprailiac skinfold, abdominal skinfold, 
upper arm circumference, waist circumference, hip circumference, subgluteal thigh circumference, 
mid-thigh circumference, calf circumference, Body water percentage, body fat percentage

Physical activity levels Physical Activity Rating Scale-3 (PARS – 3)

Athletic ability Left- and right-hand grip strength, average vertical jump height before exercise

Blood parameters Blood glucose, blood lactate, hemoglobin (non-invasive test)

Central nervous system parameters DC Potential

Cardiovascular system parameters Resting heart rate, systolic blood pressure, diastolic blood pressure, Heart Rate Variability [HRV, 
(HF, LF, total power, SDNN, RMSSD, SDSD)]

Meal time Previous meal time

Beverage ingredients CHO, fat, sodium, magnesium, calcium

Sports performance Rowing distance

Table 1.  Summary of selected indicators across thirteen dimensions for personalized CPS recommendation 
model14.
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× 5 conditions), the same 45 baseline indicators (Table 1) were obtained, along with rowing distance and the 
explicitly defined PRO intake rates for each condition.

Data preprocessing
Following data acquisition, the data from both phases were consolidated and prepared for modeling. Specifically, 
the 171 records from the foundational study14 were combined with the 60 records generated from the subsequent 
crossover study (12 participants × 5 trial conditions), resulting in the final dataset of 231 records. Crucially, as 
both cohorts were recruited using identical criteria and drawn from the same population, the data from both 
acquisition phases are considered to be sampled from the same underlying population.

This dataset contained no missing values, providing a complete set of records for all subsequent analyses. Each 
record in this complete dataset was defined by 46 input features and one outcome variable (rowing distance). 
All 46 input features were numerical. These features encompassed direct physiological measurements (e.g., body 
weight), composite scores from validated scales (e.g., PSQI, PARS-3), and quantified behavioral data derived 
from questionnaires (e.g., total alcohol units consumed in the last 30 days). Although some behavioral inputs are 
derived from counts (e.g., number of days smoking), they represent quantities on a practical continuous scale 
and were thus appropriately treated as continuous variables in all subsequent analyses.

Feature scaling was not applied globally during preprocessing but was instead incorporated as an algorithm-
specific step within the modeling pipeline, as detailed in Sect. 3.6.

Overall study design and data partitioning
This study utilized a multi-stage ML framework, from initial data processing to final model validation (Fig. 1). 
The primary step involved stratifying this complete dataset into a development set (80%) and a final hold-out 
test set (20%). Stratification was performed based on the “Rowing distance” output variable, using four quartile-
based bins. The final hold-out test set was rigorously isolated throughout all model development phases to ensure 
an unbiased evaluation of the model’s generalization capabilities. This strict separation is a fundamental strategy 
to test for overfitting, as it provides a final, unbiased assessment of model performance on entirely unseen data.

Feature selection methodology
A primary objective of the modeling process was to mitigate the risk of overfitting, a notable concern given 
the dataset’s 231 trials relative to its 46 initial features. Therefore, to reduce model complexity and enhance 
generalization, this study employed a hybrid feature selection strategy. This approach integrates statistical 
analysis, model-based importance, and domain expertise to identify the most salient predictors. The multi-
stage process began with correlation analysis to manage multicollinearity, a foundational step for model 
stability. Subsequently, an embedded method using an XGBoost model assessed the predictive contribution of 
each feature, a technique capable of capturing complex, non-linear relationships. Finally, domain knowledge 
was applied to ensure the selected features were not only statistically significant but also physiologically and 
nutritionally relevant. This hybrid methodology was chosen to balance computational efficiency, predictive 
power, and practical interpretability, offering a more comprehensive evaluation than using a single filter or a 
computationally expensive wrapper method alone (as discussed in Sect. 2.2).

Correlation analysis
Inter-feature relationships within the development set were quantified using the Pearson correlation coefficient 
(r). The Pearson coefficient measures the linear correlation between two features, x and y. It is calculated as:

	
r =

∑
(xi − x̄) (yi − ȳ)√∑

(xi − x̄)2 ∑
(yi − ȳ)2 � (1)

A correlation matrix of all input features was computed. Feature pairs exhibiting an absolute Pearson correlation 
coefficient > 0.80 were identified as highly collinear. This analysis aimed to detect potential multicollinearity and 
feature redundancy.

Model-based feature importance assessment
An XGBoost regression model was employed to evaluate the predictive importance of each feature. Optimal 
hyperparameters for the XGBoost model were determined prior to importance assessment using a 5-fold CV 
procedure coupled with RandomizedSearchCV. Following HPO, the XGBoost model was trained on the entire 
development set. Feature importance scores were then extracted from this trained model.

Criteria for final feature subset selection
The final selection of the feature subset for subsequent modeling involved an integrated assessment. This 
assessment considered three sources of information: the correlation analysis results, the XGBoost-derived 
feature importance rankings, and established domain knowledge from exercise physiology and sports nutrition. 
Highly correlated features were reviewed; typically, one feature from a collinear pair was considered for removal, 
guided by its relative importance and theoretical relevance. Features with low importance scores were candidates 
for exclusion unless domain expertise strongly supported their retention.

Data augmentation strategies
To address potential model limitations arising from a small sample size, this study evaluated several data 
augmentation techniques. A comparative approach was adopted, exploring methods that represent different levels 
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of complexity and generative mechanisms. Random Noise Injection and Mixup were selected as computationally 
efficient baseline methods. They represent simple perturbation and interpolation strategies, respectively, and are 
commonly used for basic model regularization to improve model robustness and help prevent overfitting.

In contrast, WGAN-GP was chosen as an advanced generative model. Unlike the baseline methods, 
WGAN-GP is designed to learn the entire underlying distribution of the data, which can theoretically produce 
higher-fidelity synthetic samples that better preserve complex feature correlations. The WGAN-GP variant was 
specifically selected for its enhanced training stability and its ability to mitigate mode collapse, making it highly 
suitable for structured, non-image tabular data (as discussed in Sect. 2.3). While other interpolation methods 
like SMOTE exist, they are primarily designed to address class imbalance in classification tasks and were thus 
less appropriate for this regression context.

Fig. 1.  Overall study workflow diagram.
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To ensure training stability of the WGAN-GP, all input data fed to the generator and critic, including the 
target variable, were temporarily standardized. After the synthetic data were generated, they were immediately 
transformed back to their original scale. Therefore, the augmented dataset provided to the downstream predictive 
models was on the same raw scale as the original data. The WGAN-GP architecture consisted of a generator and 
a critic. Both were multi-layer perceptrons using Adam optimizers (learning rate: 0.00005, β1 = 0.50, β2 = 0.90). 
The generator utilized ReLU activations and mapped a 100-dimension latent vector to the feature space. The 
critic used LeakyReLU activations. The model was trained to minimize the Wasserstein distance. A gradient 
penalty (coefficient λgp = 10.00) ensured critic training stability. The critic was updated five times per generator 
update. Training occurred for 10,000 epochs with a batch size of 32. Input data were standardized before training.

Mixup created synthetic samples by linearly interpolating pairs of randomly selected existing samples and 
their corresponding target values. For a pair of samples (xi, yi) and (xj , yj), a new sample (x̃, ỹ) was generated:

	 x̃ = λxi + (1 − λ)xj � (2)

	 ỹ = λyi + (1 − λ)yj � (3)

The interpolation coefficient λ was drawn from a Beta distribution, Beta (α, α), with α = 0.20.
Random Noise Injection augmented data by adding Gaussian noise to the numerical features of randomly 

chosen existing samples. The noise added to each feature was sampled from a normal distribution with a mean 
of zero. The standard deviation of this noise was set to 5% of the original feature’s standard deviation.

For all augmentation methods, resulting numerical values were then clipped to a range slightly extended 
(1% of original range) from the original minimum and maximum of each feature, ensuring non-negativity for 
specific nutrients like CHO and PRO.

To enable a robust comparative evaluation, each of the three augmentation techniques was employed 
to generate a dataset of 2,000 synthetic samples from the original development set. Evaluation of data 
augmentation techniques involved comparing these newly generated datasets against the original data. This 
assessment included: Mann-Whitney U tests (MWU) of individual feature distributions (α = 0.05, Benjamini-
Hochberg FDR correction); comparison of correlation matrices to assess inter-feature correlation structure 
preservation; and visual inspection of feature distribution similarity using Kernel Density Estimate (KDE) 
plots. The augmentation method demonstrating the most favorable overall preservation of these statistical and 
distributional characteristics was chosen for subsequent application.

Predictive modeling pipeline
This section details the pipeline for developing and evaluating predictive models using the selected feature subset 
and the chosen optimal data augmentation strategy (Fig. 2).

Fig. 2.  Detailed predictive model development and validation pipeline.
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Predictive algorithms
Three distinct regression algorithms were employed: XGBoost, Support Vector Regression (SVR), and a multi-
layer perceptron (MLP) neural network. XGBoost was selected for its high efficiency and predictive accuracy with 
tabular data50,51. SVR was chosen for its effectiveness in high-dimensional spaces and its flexibility with different 
kernel functions52,53. The MLP was included for its ability to model complex non-linear relationships54,55.

As a tree-based ensemble method, XGBoost is insensitive to the scale of input features. Therefore, no feature 
scaling was applied when developing the XGBoost models. For the SVR models, a StandardScaler was integrated 
into the modeling pipeline using a scikit-learn Pipeline object. This step standardized the input features (X) only, 
while the target variable (Rowing distance) remained on its original scale. This process was applied consistently 
for models trained with and without augmented data. For the MLP models, both the input features (X) and the 
target variable (y) were independently standardized. Two separate StandardScaler instances were fitted on the 
training data for features and the target, respectively, before they were fed into the network. For predictions, the 
model’s output was transformed back to the original scale using the fitted scaler for the target variable.

Common model development framework (on development set)
A unified framework was established for the development and validation of all three regression models (XGBoost, 
SVR, MLP). This process, conducted entirely on the development set, involved two key stages to identify optimal 
hyperparameters and assess model stability.

•	 Stage 1: Augmentation for Hyperparameter Optimization (HPO). To create a robust dataset for HPO, the 
original development set was augmented by generating a synthetic dataset equal in size (a 1:1 augmentation 
ratio). HPO for each algorithm was then conducted on this combined dataset (original + synthetic), which 
effectively doubled the number of samples available for the tuning process.

•	 Stage 2: Dynamic Augmentation for Cross-Validation (CV). To evaluate model performance with the op-
timized hyperparameters, a 5-fold CV was performed on the original development set to ensure a robust 
evaluation of model generalization and minimize the risk of overfitting to any single data partition. Critically, 
within each fold, the training partition was dynamically augmented by generating synthetic samples equal in 
size to that partition (a 1:1 ratio). Each model was then trained on the combined data (original CV training 
partition + its synthetic counterpart) and validated on the untouched, original CV validation partition.

This multi-stage augmentation strategy systematically expanded the dataset to enhance model training and 
validation, with the specific sample sizes summarized in Table 2.

Performance within this CV framework was assessed using Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE), and the coefficient of determination (R2).

Hyperparameter optimization
To identify the optimal hyperparameters for each predictive algorithm (XGBoost, SVR, and MLP), a systematic 
hyperparameter optimization (HPO) process was conducted. This process was performed on the development 
set, which was augmented at a 1:1 ratio as described in Sect. 3.6.2.

For the XGBoost and SVR models, a Randomized Search Cross-Validation (RandomizedSearchCV) 
strategy was employed. This process was configured with 50 search iterations (n_iter = 50) and a 5-fold cross-
validation (cv = 5) scheme. For the MLP model, a similar random search was manually implemented over 25 
iterations, also utilizing a 5-fold CV framework for robust evaluation. Across all models, the negative mean 
absolute error (neg_mean_absolute_error) was used as the scoring metric to guide the search towards the best-
performing parameter set. The randomized search approach was chosen for its computational efficiency, as it 
allows for a broad exploration of the parameter space without the exhaustive cost of a grid search. The specific 
hyperparameters and their corresponding search spaces for each model are detailed in Table 3.

Final model training and evaluation
Following the development and validation phase, a definitive model for each algorithm was trained and 
subsequently evaluated on the independent hold-out test set. To facilitate a fair comparison, this process was 
conducted in parallel for models trained with and without data augmentation.

Final model training
Two sets of final models were trained using the optimized hyperparameters identified during HPO for each 
algorithm (XGBoost, SVR, and MLP).

Modeling stage Input data (Original samples) Generated synthetic samples Augmentation ratio (Synthetic: Original) Total training samples

HPO 184 (Full Development set) 184 1:01 368

5-Fold CV (per fold) ~ 147 (4/5 of development set) ~ 147 1:01 ~ 294

Final model training 184 (Full development set) 368 2:01 552

Table 2.  Summary of the data augmentation strategy and sample sizes at different modeling stages. The final 
hold-out test set, consisting of 47 samples, was kept separate and was not used in any augmentation or training 
stages.
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•	 Final Baseline Models (without augmentation): For each algorithm, a final baseline model was trained on the 
entire original development set (184 samples).

•	 Final Augmented Models: Concurrently, a second set of models was trained. The entire original development 
set was first augmented by generating a synthetic dataset equivalent to twice its size (a 2:1 augmentation ra-
tio). The final augmented models were then trained on the comprehensive combined dataset (552 samples).

For the SVR and MLP models, the algorithm-specific scaling protocols, as described in Sect. 3.6.1, were applied 
to this comprehensive training dataset.

Evaluation on the final hold-out test set
The generalization ability of all trained final models (both baseline and augmented) was assessed on the 
previously segregated final hold-out test set. This test set was not used in any preceding training, augmentation, 
or HPO stages. Performance on this hold-out set was quantified using MAE, RMSE, and R², providing the 
definitive, unbiased measure of each model’s predictive capability and allowing for a direct comparison of the 
impact of data augmentation.

Personalized supplement recommendation framework
Individualized supplement recommendations were generated using the trained predictive model. This 
process determined the optimal supplementation strategy (either CPS or CHO-only) and intake rates for each 
participant. The participant’s unique baseline indicators, as used in the predictive model, remained constant 
during this procedure.

The framework involved a two-stage evaluation (Fig. 3). In the first stage, optimal intake rates for a 4:1 CPS 
were determined. CHO intake was systematically varied from 0.50 to 1.20 g/kg/h. This range used 0.01 g/kg/h 
increments, creating 71 distinct levels. For each CHO level, PRO intake was set at a 4:1 ratio (PRO = CHO/4). 
Each CHO and PRO combination, along with the participant’s constant baseline indicators, was input into the 
predictive model. This yielded 71 performance predictions. The CHO and PRO intake rates corresponding to the 
maximum predicted performance (P1) defined the optimal 4:1 CPS regimen for that individual.

In the second stage, optimal intake rates for a CHO-only supplement were identified. CHO intake was again 
varied across the same 71 levels (0.50 to 1.20 g/kg/h). For these evaluations, PRO intake was consistently set to 
0 g/kg/h. The predictive model then generated another 71 performance predictions based on these CHO-only 
inputs and the participant’s baseline indicators. The CHO intake rate (with PRO = 0 g/kg/h) associated with the 
maximum predicted performance (P2) defined the optimal CHO-only regimen.

Finally, the personalized supplement recommendation was determined by comparing P1 and P2. If P1 was 
greater than or equal to P2, the optimal 4:1 CPS regimen was recommended. If P2 was greater than P1, the 
optimal CHO-only regimen was recommended. This approach ensured selection of the strategy predicted to 
yield the highest performance for each individual.

Model Hyperparameter Search space / Values

XGBoost

n_estimators [100, 200, 300, 400, 500]

max_depth [3, 5, 7, 9]

learning_rate [0.01, 0.05, 0.1, 0.15, 0.2]

subsample [0.7, 0.8, 0.9, 1.0]

colsample_bytree [0.7, 0.8, 0.9, 1.0]

gamma [0, 0.1, 0.2, 0.3]

reg_alpha [0, 0.01, 0.1, 0.5, 1.0]

reg_lambda [0.5, 1.0, 1.5, 2.0]

SVR

kernel [‘rbf ’, ‘linear’, ‘poly’]

C [0.1, 1, 10, 50, 100, 200, 500]

gamma [‘scale’, ‘auto’, 0.001, 0.005, 0.01, 0.05, 0.1]

epsilon [0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5]

degree [2, 3, 4]

MLP

hidden_dims [[32], [64], [32, 16], [64, 32], [128, 64], [128, 64, 32]]

learning_rate [0.0005, 0.001, 0.005]

batch_size [16, 32, 64]

dropout_rate [0.2, 0.3, 0.4, 0.5]

weight_decay [1e-5, 1e-4, 5e-4, 1e-3, 2e-3]

Table 3.  Hyperparameter search spaces for model optimization.
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Results
Feature selection
Feature selection refined the initial 46 input features. The correlation analysis identified 18 feature pairs with an 
absolute Pearson correlation coefficient greater than 0.80, indicating high collinearity (Table 4; Fig. 4). Feature 
importance rankings, derived from an XGBoost model, are presented in Fig. 5.

An integrated assessment of these correlations, feature importances, and domain knowledge resulted in the 
selection of a final subset of 21 features. The selected features were: PARS – 3, average vertical jump height before 
exercise, Total alcohol units in last 30 days, weight, CHO, Total cigarettes in last 30 days, Triceps skinfold, Left-
hand grip strength, subgluteal thigh circumference, hip circumference, Age, Previous meal time, light sleep, 
RMSSD, systolic blood pressure, waist circumference, hemoglobin, Body water percentage, blood lactate, PRO, 
and Blood glucose. The XGBoost model’s optimized hyperparameters and performance, pre- and post-feature 
selection, are presented in Table 5.

Evaluation of data augmentation methods
As can be seen in the Fig.  6, WGAN-GP distributions demonstrated the closest visual match to Original 
distributions across the majority of features. This alignment encompassed distributional shape, modality, 
and spread. For features with complex patterns, such as bimodal or highly skewed distributions, WGAN-GP 
also showed high concordance with Original distributions. Mixup distributions appeared consistently flatter 
and wider than Original distributions. NoiseInjection distributions exhibited variable similarity to Original 
distributions, with some deviations in shape or modal alignment.

The preservation of inter-feature correlation structures by different augmentation methods was visually 
evaluated (Fig. 7). The correlation matrix from the Mixup augmented dataset displayed a general attenuation 
of correlation magnitudes relative to the Original dataset; many correlations appeared noticeably weaker. In 
contrast, both the Noise Injection and WGAN-GP augmented datasets substantially preserved the overall 
patterns and strengths of the inter-feature correlations found in the Original dataset. The WGAN-GP augmented 
dataset, in particular, closely mirrored the nuanced correlation structure of the Original data.

Further quantitative comparisons using MWU tests assessed feature distributions from augmented (Mixup, 
NoiseInjection, WGAN-GP) against Original datasets. Following Benjamini-Hochberg FDR correction, all 

Fig. 3.  Personalized supplement recommendation framework flowchart.
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q-values for the 21 input features and the output variable exceeded 0.05 (Fig.  8), indicating no statistically 
significant differences.

Consequently, WGAN-GP was chosen as the data augmentation technique for this study due to its superior 
overall performance in preserving data characteristics.

Predictive modeling performance
The comprehensive performance evaluation of all predictive models, both with and without data augmentation, 
is presented in Table 6. On the original dataset, the MLP model yielded the highest predictive accuracy on the 
final hold-out test set (R2 = 0.57). However, its performance during development was less consistent, as indicated 
by a lower CV validation score (R2 = 0.33). In contrast, the baseline XGBoost model, while achieving a slightly 
lower test performance (R2 = 0.48), demonstrated superior stability during CV (R2 = 0.42).

Data augmentation with WGAN-GP substantially improved the XGBoost model’s generalization ability. The 
augmented XGBoost model became the top performer on the hold-out test set (R2 = 0.53, RMSE = 715.97 m). This 
model also maintained stable performance metrics during the development phase. The SVR models consistently 
registered the lowest predictive accuracy across all tested conditions. Consequently, the XGBoost model trained 
with augmented data was identified as the most effective and robust predictor of rowing performance.

The stability of this final augmented XGBoost model is visually confirmed by its MAE learning curves, which 
show consistent convergence across the 5 validation folds (Fig. 9). Conversely, the baseline MLP model displayed 
significant performance variance across the same CV process, suggesting training instability (Fig. 10).

The final predictive accuracy of the augmented XGBoost model on the hold-out test set is depicted in Fig. 11. 
The scatter plot shows a clear positive linear relationship between the model-predicted and actual rowing 
distances, with data points clustered around the line of identity.

Comprehensive performance visualizations for all model configurations are available in the Supplementary 
Materials. These materials contain the complete set of CV learning curves for each model, trained on both the 
original and augmented datasets. Scatter plots detailing the predictive performance of each model variant on the 
final hold-out test set are also provided.

Figure 12 illustrates the 20 most influential features according to this model. Weight was the most important 
feature, followed closely by average vertical jump height before exercise. Previous meal time, PRO, and CHO also 
ranked within the top five most important features. Among the top 20 features displayed, blood lactate and hip 
circumference registered the lowest importance scores.

Discussion
This study demonstrates the effective application of an integrated ML strategy for predicting endurance rowing 
performance. A multi-faceted feature selection process successfully distilled critical performance indicators 
from a broad initial set. Notably, data augmentation using WGAN-GP substantially enhanced the predictive 
accuracy of an optimized XGBoost model. These findings underscore the utility of advanced computational 
methods for addressing data limitations common in sports science. Furthermore, this approach establishes a 
robust foundation for developing data-driven, personalized athletic support strategies.

This research builds upon foundational exploratory work that established the initial feasibility of predicting 
rowing performance with a smaller datase56. The present study transitions from exploration to methodological 
validation by introducing several significant advancements. First, it implements a systematic, hybrid feature 

Feature 1 Feature 2 Correlation coefficient

Magnesium Calcium 1.00

PRO Fat 0.97

CHO Magnesium 0.95

CHO Calcium 0.95

Sodium Magnesium 0.92

Sodium Calcium 0.92

fat Sodium 0.90

CHO Sodium 0.90

Subgluteal thigh circumference Mid-thigh circumference 0.88

SDNN RMSSD 0.86

PRO Sodium 0.86

RMSSD SDSD 0.86

suprailiac skinfold Abdominal skinfold 0.86

HF RMSSD 0.85

LF Total power 0.85

HF Total power 0.84

Total power SDNN 0.82

Total power RMSSD 0.81

Table 4.  Highly correlated feature pairs.
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selection strategy, ensuring that subsequent modeling is founded on the most salient physiological and 
nutritional predictors. More critically, this study provides a comprehensive and comparative evaluation of 
data augmentation techniques, directly addressing the sample size limitations inherent in the prior work. 
By validating an WGAN-GP against simpler baseline methods, this research offers a validated solution to a 
persistent challenge in the field. Finally, all models were developed using a robust CV protocol and assessed with 
multiple metrics (R², RMSE, MAE), providing a more thorough and reliable assessment of generalization than 
the initial exploratory study.

This study highlights the efficacy of a hybrid feature selection strategy in refining complex sports science 
datasets. Such strategic dimensionality reduction streamlined the initial feature set. It also enhanced the 
predictive performance of the subsequent XGBoost model, a benefit consistent with research showing improved 
model outcomes with appropriately selected features57,58. The feature selection process also effectively managed 
multicollinearity by excluding redundant variables. This ensured a more parsimonious final model, improving 
interpretability and efficiency, a recognized benefit of careful feature selection58.

The selection of WGAN-GP as the data augmentation strategy underscores its capacity for high-fidelity 
tabular data synthesis in sports science. WGAN-GP models can effectively capture complex data distributions 
and inter-feature dependencies59,60. This capability likely explains its superior preservation of the original 
dataset’s characteristics, which was evident in the visual assessments via KDE plots and correlation matrices. 
While MWU indicated no statistically significant distributional shifts for any individual feature across the 
augmentation methods (all q > 0.05), these univariate statistics alone may not fully reflect overall data realism. 
The importance of comprehensive validation for synthetic data, extending beyond simple statistical tests, is well-
established61.

Therefore, WGAN-GP was chosen due to its superior performance in these more holistic qualitative 
assessments. Simpler methods like basic Mixup, which rely on linear interpolations45, might not adequately 
model the non-linear relationships often present in physiological data. This could lead to less representative 
synthetic samples. Similarly, while Noise Injection has shown utility in some contexts43,44, its effectiveness is 

Fig. 4.  Correlation matrix of input features.
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highly domain-dependent; inappropriately applied noise can even obscure important data patterns or mimic 
irrelevant phenomena62. The documented success of WGAN-GP in generating quality synthetic data that 
enhances predictive modeling in other complex domains further supported its selection for this study60,63.

The impact of WGAN-GP data augmentation on model generalization was algorithm-dependent. It yielded 
notable performance gains for the XGBoost and SVR models, suggesting that the synthetic data provided a 
richer feature space for these algorithms to learn from64,65. Conversely, the MLP model’s performance decreased 
after augmentation. This suggests that the baseline MLP may have overfitted to specific patterns in the small 

Category Parameter/Metric Before feature selection After feature selection

Hyperparameter tuning
Optimal CV score

(neg_MAE) -627.79 -555.41

Optimal hyperparameters

Subsample 1 0.9

reg_lambda 0.5 0.5

reg_alpha 0.5 1

n_estimators 200 500

max_depth 7 5

Learning_rate 0.1 0.05

Gamma 0.1 0.2

colsample_bytree 0.8 0.9

Average train performance

MAE 104.22 68.66

RMSE 122.10 90.90

R2 score 0.96 0.98

Average test performance

MAE 643.80 587.65

RMSE 810.90 742.98

R2 score 0.32 0.42

Table 5.  XGBoost model hyperparameters and performance before and after feature selection.

 

Fig. 5.  The top 20 feature importances of XGBoost.
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original dataset, and the augmented data, by introducing more variability, acted as a regularizer that prevented 
this overfitting but reduced its score on the specific hold-out test set. This highlights a critical finding: data 
augmentation does not universally guarantee improved performance and its effectiveness must be evaluated on 
a model-by-model basis.

The XGBoost algorithm, when combined with WGAN-GP augmentation, emerged as the most robust and 
well-rounded model in this study. XGBoost’s strong predictive capabilities and robustness are well-documented 
across various complex predictive tasks64,66,67. Its ensemble nature, which iteratively refines predictions by 
learning from the errors of preceding models68, may effectively harness the richer and more diverse data space 
provided by WGAN-GP. The successful application of GAN-enhanced XGBoost models in other domains 
further supports this synergy69. The final R² value of 0.53 achieved by this combination indicates that the model 

Fig. 6.  KDE plots of selected feature distributions. Original (red line), Mixup (green line), NoiseInjection 
(blue line), and WGAN-GP (purple line). Each subplot represents one feature, with values on the x-axis and 
probability density on the y-axis.
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accounts for a substantial portion of the variance in rowing distance. While not capturing all variability inherent 
in complex human athletic performance, this level of predictive accuracy offers practical value. It can guide 
personalized interventions and enhance the understanding of key performance determinants.

Despite the benefits of WGAN-GP augmentation on final test set generalization, a noticeable gap between 
CV training and validation performance persisted across all models. This suggests that some overfitting 
tendencies remained during the model development phase. Such challenges can arise when modeling complex 
physiological systems where true sample diversity may not be fully captured even by synthetic data expansion70, 
or where imbalanced representation of certain data characteristics exists71. While data augmentation addresses 
issues of data scarcity and can reduce overfitting70,72, the inherent complexity of predicting athletic performance 
may necessitate additional strategies. Future research could explore advanced regularization techniques73,74. 
Additionally, model architectures promoting sparsity and robustness may further mitigate overfitting and 
enhance generalizability.

The feature importance analysis from the final WGAN-GP augmented XGBoost model offers valuable 
insights into the key determinants of endurance rowing performance, guiding the personalization of supplement 
strategies. Body weight emerged as the most influential predictor. This aligns with extensive research highlighting 
the critical role of body mass and composition in athletic success75, as they directly impact factors like power-
to-weight ratio and energy availability76. The high ranking of average vertical jump height before exercise, an 
indicator of explosive power, also proved significant. This finding is consistent with studies demonstrating a 
relationship between vertical jump capabilities and rowing performance, suggesting that anaerobic power 
contributes to overall endurance capacity in rowers77. The importance of such power metrics is further supported 
by research on athletic development and training78.

Nutritional variables, including Previous meal time and the intake rates of CHO and PRO, were also identified 
as top-tier predictors. The significance of Previous meal time underscores the established principle of nutrient 
timing to optimize energy stores and physiological readiness for endurance activities1,79,80. The prominence of 
CHO and PRO intake rates directly reflects their fundamental roles in energy provision and muscle metabolism 
during sustained exercise81–83. The model’s sensitivity to these dietary inputs validates their central role in the 
personalized supplementation framework developed in this study. Notably, the increased prominence of these 
specific nutritional factors in the final model, compared to initial feature assessments on non-augmented data, 

Fig. 7.  Comparison of inter-feature correlation matrices. Red cells indicate positive correlations, blue cells 
indicate negative correlations, and the color intensity corresponds to the magnitude of the correlation 
coefficient.
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Fig. 8.  Statistical comparison of indicator distributions between augmented and original datasets via MWU. 
Each subplot compares an augmented dataset (Mixup, noise injection, or WGAN-GP) against the original 
dataset. Bars represent the original (uncorrected) p-values from MWU for each indicator. Bar colors indicate 
statistical significance after FDR correction: red for significant (q < 0.05), blue for not significant (q ≥ 0.05). The 
horizontal dashed line denotes the nominal alpha level of 0.05.

 

Scientific Reports |        (2025) 15:40181 15| https://doi.org/10.1038/s41598-025-23989-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


may suggest that data augmentation allowed the model to better discern the nuanced impacts of these variables 
on performance.

The WGAN-GP augmented XGBoost model provides the foundation for the personalized supplement 
recommendation framework. Its achieved R2 value of 0.53 explains a notable portion of rowing performance 
variance, enabling more individualized guidance compared to generic advice. This study thereby establishes 
a viable data-driven methodology for advancing personalization in sports nutrition. However, the substantial 
unexplained variance necessitates cautious application. Model-generated recommendations should be 
interpreted as probabilistic guidance rather than definitive prescriptions, pending further validation.

The study develops and validates a predictive framework but does not include a real-world test of its 
recommendations. This represents a crucial distinction between a model’s predictive accuracy and its practical 
efficacy. Furthermore, the model is built upon a dataset with specific limitations. While strategies were employed 
to mitigate overfitting, the modest sample size means this risk remains a potential concern. The exclusive 
reliance on male participants is another key limitation, restricting the generalizability of the findings to female 
athletes. These limitations define a clear path for future research. The foremost priority is to conduct prospective 
intervention studies to validate the real-world efficacy and safety of the personalized recommendations. Such 
studies should also incorporate female and mixed-gender cohorts, and further model refinement will depend on 
integrating richer data, such as longitudinal athlete monitoring.

Conclusion
This investigation aimed to develop and assess a ML system for personalized CPS to improve endurance rowing 
performance. Data were drawn from male with endurance rowing experience. These data included comprehensive 

Fig. 9.  MAE learning curves for the final XGBoost model during 5-fold CV on the WGAN-GP augmented 
development set.

 

Model Condition Key optimized hyperparameters

CV performance (on development set)
Final performance 
(on hold-out test set)

CV train 
MAE

CV 
train 
R2

CV valid 
MAE

CV valid 
RMSE

CV 
valid 
R2

Test 
MAE

Test 
RMSE

Test 
R2

XGBoost
Baseline n_estimators = 500,  max_depth = 5,  learning_rate = 0.05 68.66 0.98 587.65 742.96 0.42 642.40 751.26 0.48

Augmented n_estimators = 400, max_depth = 3, learning_rate = 0.05 276.98 0.84 614.90 759.11 0.39 632.05 715.97 0.53

SVR
Baseline kernel=’poly’,  C = 500, degree = 3 356.48 0.65 644.75 830.19 0.24 620.12 773.31 0.45

Augmented kernel=’rbf ’, C = 500, gamma=’auto’ 284.18 0.73 660.34 840.97 0.26 644.96 765.48 0.46

MLP
Baseline hidden_dims=[32, 16], learning_rate = 0.001, batch_

size = 16 434.94 0.71 638.54 785.69 0.33 556.96 686.76 0.57

Augmented hidden_dims=[128, 64], learning_rate = 0.005, batch_
size = 16 256.23 0.86 706.37 868.69 0.20 641.48 771.49 0.46

Table 6.  Comparison of model performance on the test set with and without data augmentation. Note: Bold 
values highlight the metrics of the best-performing model on the hold-out test set for each data condition 
(Baseline and Augmented).
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Fig. 11.  Correlation between actual and model-predicted rowing distance on the hold-out test set for the final 
XGBoost model.

 

Fig. 10.  Training and validation MAE per fold for the baseline MLP model.

 

Scientific Reports |        (2025) 15:40181 17| https://doi.org/10.1038/s41598-025-23989-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


baseline indicators, PRO intake rates, and rowing distance as the performance metric. A structured ML pipeline 
was implemented. This involved systematic feature selection, data augmentation, and the development of several 
regression models such as XGBoost, SVR, and MLP. These models predicted individual performance responses 
to varied CPS dosages, enabling tailored recommendations.

The XGBoost model, trained with WGAN-GP augmented data, was identified as the most effective overall 
predictor of rowing performance, delivering a strong combination of high predictive accuracy and superior 
model stability. This approach identified key predictors. These included body weight, explosive power, and 
nutritional inputs such as supplement intake rates and meal timing. The findings confirm that an integrated 
ML strategy can effectively predict endurance performance using individual athlete data. This data-driven 
methodology provides a robust foundation for developing personalized nutritional support in sports. Future 
research should prioritize prospective validation studies to assess the real-world impact of these personalized 
recommendations.

Data availability
The raw data for this study are not publicly available due to their use in ongoing research. However, the full code 
pipeline used for data processing, feature selection, data augmentation, model training, and analysis is publicly 
available in a GitHub repository. The repository includes numbered Jupyter Notebooks, a detailed README file 
with step-by-step instructions, and an environment configuration file for full reproducibility. The code can be 
accessed at: https:​​​//gith​ub.​com/Michael​100​6-dev/person​a​lized-nu​trition-rowing.
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