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Reliable prediction of drug solubility in supercritical carbon dioxide (scCO₂) is crucial for the efficient 
design of pharmaceutical processes, including particle engineering and supercritical fluid-based 
extraction. Given that experimental determination of drug solubility in scCO₂ is costly and time-
consuming, this study employs machine learning models to predict drug solubility in scCO₂, offering 
the advantage over thermodynamic models and empirical correlations of being able to predict the 
solubility of drugs beyond the model’s training range. In this work, authors use CatBoost, XGBoost, 
LightGBM, and RF models to predict the solubility of a set of drugs (Sixty-eight) in scCO2. Statistical 
errors and graphical analyses showed that the XGBoost model performed better than other models 
and had high reliability for predicting solubility. Among the evaluated models, XGBoost delivered the 
most accurate predictions, achieving a root mean square error (RMSE) of just 0.0605 and an R² value of 
0.9984. Notably, 97.68% of the data points fell within the model’s applicability domain, highlighting 
its strong predictive reliability. These outcomes underscore the capability of the XGBoost algorithm to 
serve as a robust and efficient approach for estimating solubility.

Keywords  Machine learning, Solubility, Drugs, ScCO₂

Supercritical carbon dioxide (scCO₂) has emerged as a key player in green chemistry due to its unique 
properties, such as zero surface tension, low viscosity, high diffusivity, and tunable solubilization through 
adjustments in temperature, pressure, or cosolvent addition1,2. Its mild critical temperature (304.1 K) and 
pressure (7.4 MPa) make it an attractive and sustainable solvent across various industries, from dyeing and 
extraction to chromatography and cleaning3–6. In addition to being non-toxic and recyclable, scCO₂ enables 
efficient separation processes and the dissolution of a wide range of solutes, although its low polarity sometimes 
requires cosolvent enhancement7,8.

In the pharmaceutical sector, scCO₂ has attracted attention as a green alternative to organic solvents, 
providing an effective medium for controlling drug solubility, facilitating particle formation, and enabling 
efficient supercritical fluid processing9,10. Applications include drug extraction, purification, crystal formation, 
and advanced drug delivery systems (DDSs) such as RESS, SAS, and PGSS methods. These technologies have the 
potential to reduce drug doses and administration frequency, enhance patient compliance, and support cleaner, 
safer production processes making scCO₂ a valuable tool for next-generation pharmaceuticals. Understanding 
the solubility of drugs in scCO₂ is essential because solubility directly affects the efficiency of supercritical 
processes, the stability and performance of DDSs, and the feasibility of using scCO₂ as a solvent, antisolvent, 
or solute medium11–13. Given that many current and pipeline drugs are poorly soluble (BCS class II and IV), 
enhancing their solubility in scCO₂ is critical for efficient particle formation, improved processability, controlled 
release profiles, and stable formulations, all of which are key priorities in pharmaceutical innovation14,15.
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While experimental determination of drug solubility in scCO₂ provides vital data for process design, it is 
often costly, time-consuming, and sometimes impractical under diverse conditions of temperature and pressure. 
To address these challenges, researchers have developed various simulation models, including correlation 
models, thermodynamic models, and equations of state (EoSs), which allow for more rapid, cost-effective, and 
flexible prediction of drug solubility16–23. Thermodynamic models, EoS approaches, and empirical correlations 
have long been used to predict drug solubility in scCO₂, but they come with notable limitations. These models 
often rely on simplifying assumptions and idealizations that can compromise accuracy, especially when applied 
to complex or structurally diverse compounds. Empirical correlations, while simpler to apply, are typically 
system-specific and struggle to generalize across different datasets. Moreover, many of these traditional models 
require detailed knowledge of system parameters and involve computationally intensive, iterative calculations, 
making them less practical for large-scale applications. In contrast, machine learning models can directly learn 
complex, nonlinear relationships from data without relying on predefined physical equations. This allows them 
to achieve higher predictive accuracy and better generalization across a wide range of drug-solvent systems. 
Machine learning approaches enable significantly faster predictions compared to traditional experimental or 
simulation-based methods. While experimental solubility measurements in scCO₂ can take hours to days per 
condition, trained ML models can generate predictions in seconds to minutes for thousands of drug solvent 
condition combinations, depending on dataset size and model complexity. This rapid turnaround, combined 
with flexibility in handling diverse and heterogeneous datasets and the ability to include critical drug properties 
as input features, makes ML a powerful tool for efficient solubility estimation and process optimization.

Abdallah El Hadj et al. introduced a hybrid modeling strategy that integrates artificial neural networks 
(ANN) with particle swarm optimization (PSO) to estimate the solubility of solid drugs in scCO₂. Their ANN–
PSO model demonstrated superior predictive capability compared to traditional density-based models and 
thermodynamic equations of state24. Similarly, Baghban et al. applied a least squares support vector machine 
(LSSVM) approach to forecast the logarithm of the solubility of 33 pharmaceutical compounds in scCO₂, utilizing 
key input variables such as temperature, pressure, CO₂ density, molecular weight, and melting point. Employing 
a radial basis function kernel, their LSSVM model achieved outstanding results with an average absolute relative 
deviation (AARD) of 5.61% and a coefficient of determination (R²) of 0.9975, outperforming eight established 
empirical correlations25. Sodeifian et al. examined the solubility behavior of six drugs, including anti-HIV, 
anti-inflammatory, and anti-cancer agents, using four different modeling paradigms: cubic equations of state 
(SRK and modified-Pazuki), semi-empirical models (such as those proposed by Chrastil, Mendez-Santiago–
Teja, Sparks et al., and Bian et al.), the regular solution theory with Flory–Huggins interaction parameters, 
and artificial neural networks. Their findings revealed that the ANN model exhibited the highest accuracy 
across all metrics (AARD, R², F-value), outperforming the other approaches in reproducing the experimental 
solubility values in arithmetic scale26. In another study, Euldji et al. developed a quantitative structure–property 
relationship (QSPR) model enhanced with artificial neural networks to estimate drug solubility in scCO₂. 
The study compiled a comprehensive dataset consisting of 3971 experimental data points from 148 drug-like 
compounds. Thirteen features comprising eleven molecular descriptors alongside temperature and pressure 
were used as inputs. The ANN model, structured as 13–10–1 and trained via Bayesian regularization (trainbr) 
with a log-sigmoid activation function, achieved strong predictive performance with AARD = 3.77%, RMSE 
= 0.5162, and a correlation coefficient r = 0.976127. Furthermore, Euldji et al. also conducted a comparative 
assessment of seven meta-heuristic optimization algorithms for tuning the hyperparameters of a hybrid QSPR–
Support Vector Regression (SVR) framework. Based on a dataset of 168 drug compounds and 4490 experimental 
data points, the study found that the hybrid HPSOGWO–SVR model delivered the most accurate solubility 
predictions, achieving an impressively low AARD of 0.706%, as validated through both statistical indices and 
graphical analysis28. Makarov et al. investigated the prediction of drug-like compound solubility in scCO₂ using 
machine learning (ML) approaches and compared them to a theoretical method based on classical density 
functional theory (cDFT). Two ML models based on the CatBoost algorithm were developed: one using alvaDesc 
descriptors and another using CDK descriptors plus drug melting points. The CatBoost-alvaDesc model showed 
strong predictive performance on 187 drugs, achieving an AARD of 1.8% and RMSE of 0.12 log units29.

In this work, we predicted the solubility of 68 different drugs in scCO₂, using newly generated experimental 
data obtained by the authors and literature, and applied four advanced machine learning models: CatBoost, 
XGBoost, LightGBM, and Random Forest. Unlike previous studies that primarily relied on molecular descriptors 
or metaheuristic optimization techniques, our approach integrates critical drug-specific properties including 
critical temperature (Tc), critical pressure (Pc), acentric factor (ω), molecular weight (MW) and melting point 
(Tm) alongside commonly used state variables such as temperature (T), pressure (P), and density (ρ). This 
comprehensive set of input parameters allowed us to capture more nuanced relationships influencing solubility. 
The workflow involved systematic data preprocessing, hyperparameter tuning using mean square error (MSE) 
minimization, and performance evaluation through 10-fold cross-validation to ensure model robustness. 
Furthermore, we employed detailed statistical and graphical error analyses, complemented by outlier detection 
using William’s plot, to rigorously define the applicability domain of the developed XGBoost model. Overall, this 
study not only advances predictive modeling for drug solubility in scCO₂ but also provides a practical tool for 
experimentalists. The developed model is predictive within the range of solubilities and conditions considered in 
this work, enabling more reliable design and optimization of supercritical fluid processes, and represents a clear 
improvement over earlier approaches.

Data collection
In this research, a total of 1726 experimental data points detailing the solubility of a set of drugs (Sixty-eight) 
in scCO2 were compiled from previously published studies. Table 1 lists the names of the drugs used in this 
study, the number of data points for each, and the sources from which the data were collected Fig. 1 also shows 
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Drug name Number of data points Reference

1 Chlorpromazine 45 30

2 Lamotrigine 36 31

3 Capecitabine 35 32

4 Aprepitant 32 33

5 Favipiravir 28 34

6 Ketoconazole 28 35

7 Ketotifen fumarate 28 36

8 Sertraline hydrochloride 28 37

9 Alendronate 28 38

10 Amantadine 28 39

11 Amiodarone hydrochloride 28 40

12 Sitagliptin phosphate 28 41

13 Fludrocortisone acetate 28 42

14 Gemifloxacin 28 43

15 lenalidomide 28 44

16 Metoprolol 28 45

17 Montelukast 28 46

18 Tramadol hydrochloride 28 47

19 Clozapine 27 31

20 Repaglinide 24 48

21 Oxcarbazepine 24 49

22 Imatinib mesylate 24 50

23 Loratadine 24 51

24 Methadone hydrochloride 24 52

25 Regorafenib monohydrate 24 53

26 Gefitinib hydrochloride 24 17

27 Ceftriaxone sodium 24 54

28 Niclosamide piperazine 24 16

29 5-fluorouracil 24 55

30 Gemcitabine 24 56

31 Oxycodone hydrochloride 24 18

32 Metformin 24 57

33 Esomeprazole 24 58

34 Dapagliflozin propanediol monohydrate 24 19

35 Sorafenib tosylate 24 59

36 Empagliflozin 24 60

37 Triamcinolone acetonide 24 61

38 Codeine phosphate 24 62

39 Buprenorphine hydrochloride 24 63

40 Nilotinib hydrochloride monohydrate 24 64

41 Fexofenadine hydrochloride 24 65

42 Hydroxychloroquine sulfate 24 66

43 Ibrutinib 24 67

44 Riluzole 24 68

45 Palbociclib 24 69

46 Rivaroxaban 24 70

47 Crizotinib 24 71

48 Prazosin hydrochloride 24 72

49 Pazopanib hydrochloride 24 73

50 Azathioprine 24 74

51 Metoclopramide hydrochloride 24 52

52 Teriflunomide 24 75

53 Pholcodine 24 76

54 Lansoprazole 24 77

55 Sodium Valproate 24 78

56 Triamterene (2,4,7-Triamino-6-phenylpteridine) 24 79

Continued

Scientific Reports |        (2025) 15:40287 3| https://doi.org/10.1038/s41598-025-24006-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the distribution of the input and output features of the collected database. According to these figures, it can be 
seen that the amassed measurements cover comprehensive operational conditions. Table 2 provides a detailed 
statistical summary of the dataset, including parameters such as minimum, maximum, mean, median, skewness, 
and kurtosis.

Fig. 1.  Histogram plot demonstrating the distribution of the gathered database.

 

Drug name Number of data points Reference

57 Tamsulosin 24 80

58 Minoxidil 24 81

59 Amlodipine Besylate 24 82

60 Galantamine 24 83

61 Quetiapine hemifumarate 24 84

62 Sulfabenzamide 24 85

63 Clemastine fumarate 24 86

64 Dasatinib monohydrate 24 87

65 Sunitinib malate 24 88

66 Letrozole 20 89

67 Chlorothiazide 20 90

68 Dexamethasone 15 91

Table 1.  Names of drugs used in this study, number of data points for each drug, and sources.
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Statistical assessment of dataset
In this work, we used the input parameters T, P, Tc, Pc, ρ, ω, MW and Tm to predict the solubility of drugs in 
scCO2.

Models development
Random forest (RF)
Random Forest (RF) is an influential ensemble-based machine learning technique developed by Leo Breiman 
in 200192. It operates by constructing a large collection of decision trees during training and combining their 
outputs to improve predictive accuracy. For regression tasks, RF computes the average of predictions from 
all trees, while for classification, it selects the most frequent class label. Two central mechanisms underpin its 
effectiveness: bootstrap sampling where different subsets of the data are randomly drawn with replacement to 
train each tree, and randomized feature selection, in which only a random subset of features is considered at each 
split. These strategies help reduce model variance, enhance generalization, and mitigate overfitting, particularly 
when dealing with high-dimensional or complex datasets.

In regression settings, each tree yields a numeric prediction, and the RF aggregates these outputs by 
averaging. The trees are typically built using the CART (Classification and Regression Trees) methodology, with 
optimization often based on minimizing the mean squared error93. One of RF’s advantages is that it functions 
effectively without the need for scaling or normalizing the input features, making it highly accessible and practical. 
Additionally, RF can estimate feature importance by analyzing the increase in prediction error when individual 
features are permuted, using out-of-bag samples for unbiased assessment. However, despite its strengths, RF 
can face limitations such as reduced performance with noisy datasets, sensitivity to class imbalance, and high 
computational costs when dealing with many large trees94,95.

Extreme gradient boosting (XGBoost)
Extreme Gradient Boosting (XGBoost) is a high-performance ensemble learning algorithm that extends the 
gradient boosting technique with several enhancements aimed at increasing both accuracy and efficiency96. 
It constructs decision trees in sequence, where each new tree is trained to minimize the errors made by the 
previous ones. Unlike standard gradient boosting, XGBoost incorporates a second-order approximation of the 
loss function, utilizing both gradients and Hessians to improve the precision of model updates97. This second-
order optimization allows the model to better capture complex patterns and nonlinear relationships in the 
data, making it especially effective for structured datasets. XGBoost stands out due to its scalability, ability to 
manage missing values natively, and high performance across diverse machine learning applications. The model 
employs a greedy search strategy to determine optimal splits in each tree and aggregates many shallow decision 
trees, specifically CARTs (Classification and Regression Trees), to form a strong predictive model. Because 
its hyperparameters (such as learning rate, regularization strength, and tree depth) interact with one another, 
careful tuning is critical to achieving reliable results without excessive computation. While XGBoost is renowned 
for its accuracy and robustness, its reliance on numerous decision trees may hinder interpretability, making the 
internal decision-making process less transparent than simpler models97–99.

Categorical boosting (CatBoost)
CatBoost (Categorical Boosting) is a cutting-edge gradient boosting algorithm developed to natively handle 
categorical variables with high accuracy and minimal preprocessing100. Unlike traditional models that require 
techniques such as one-hot encoding to transform categorical data, CatBoost converts these features using 
target-based statistics while employing a special strategy called ordered boosting to prevent target leakage. This 
approach ensures that the model uses only past information when computing these statistics, which safeguards 
the training process against data leakage and helps produce more generalizable results. Built on the gradient 
boosting principle, CatBoost trains an ensemble of decision trees sequentially, where each new tree corrects the 
errors of the previous ones. Its use of symmetric trees, combined with optimized depth control and learning rate 
settings, allows it to strike a balance between flexibility and regularization101.

What makes CatBoost particularly advantageous is its ability to deliver high predictive power on datasets 
with mixed feature types, including high-cardinality categorical variables and sparse data. It is designed to 
work effectively with minimal data preprocessing and can accept raw data in various formats. Moreover, its 
architecture is engineered to mitigate overfitting through mechanisms like depth regulation and refined boosting 
techniques102,103.

Statistical parameters

Input Output

T (K) P (bar) Tc (K) Pc (bar) Tm (K) ρ  (kg/m3) ω MW (g/mol) y × 104

 Minimum 308.0 100.0 485.25 10.02 364.0 234.0 0.20 129.16 0.0007

 Maximum 348.2 410.0 1789.25 66.82 698.65 976.43 2.09 681.77 13.016

 Mean 323.81 204.83 1085.43 23.78 483.27 754.25 0.85 387.19 0.677

 Median 328.0 210.0 1000.24 19.79 475.80 783.0 0.76 397.4 0.14

Skewness 0.06 0.33 0.70 1.65 0.68 −1.25 0.89 0.01 3.65

 Kurtosis −1.18 −0.44 0.03 2.64 1.27 1.36 0.64 −0.60 14.79

Table 2.  Summary description of the performed database.
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Light gradient boosting machine (LightGBM)
LightGBM (Lightweight Gradient Boosting Machine), introduced by Microsoft in 2017, is a highly efficient 
gradient boosting framework designed to improve training speed, reduce memory usage, and enhance 
prediction accuracy104.Unlike traditional GBDT methods such as XGBoost, which rely on pre-sorted algorithms, 
LightGBM employs a histogram-based algorithm that bins continuous values into discrete intervals, significantly 
reducing computational complexity and memory requirements. A key innovation of LightGBM is its use of a 
leaf-wise tree growth strategy, where the algorithm splits the leaf with the highest potential to reduce error, as 
opposed to growing trees level by level. To control overfitting, LightGBM imposes a maximum depth constraint 
on trees. Additionally, LightGBM supports distributed training, enabling scalability for large datasets, and it 
accommodates various objective functions, including those for regression, classification, and ranking. Two core 
techniques further set LightGBM apart: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature 
Bundling (EFB). GOSS prioritizes data points with large gradient values, which are more informative for learning, 
while randomly sampling from the remainder, thus reducing the volume of training data without sacrificing 
model accuracy. EFB addresses high-dimensional sparse datasets by combining mutually exclusive features 
those unlikely to be non-zero at the same time into a single bundled feature, thus reducing dimensionality and 
accelerating computation. LightGBM’s innovations not only lead to faster training and lower memory overhead, 
but also maintain or even improve model accuracy compared to traditional boosting methods104–107.

Predictive analytics
Fine-tuning the hyperparameters of each model is essential for achieving high predictive accuracy. Effective 
hyperparameter optimization enables each model to perform optimally on the given dataset. In this study, we 
utilize the Mean Squared Error (MSE) as the objective function to guide the hyperparameter tuning process. By 
minimizing the MSE, we determine the most suitable set of hyperparameters for each model.

Statistical error evaluation
The models’ accuracy was assessed by comparing the predicted drug solubility in scCO₂ ( ypred) with the 
corresponding experimental values ( yexp). To comprehensively evaluate model performance, several statistical 
error analyses were conducted, as detailed in the following sections:

Mean Square Error (MSE)

	
MSE = 1

n

n∑
i=1

(yi, pred − yi, exp)2� (1)

Mean Absolute Error (MAE)

	
MAE = 1

n

n∑
i=1

|yi, pred − yi, exp|� (2)

Standard Deviation (SD)

	
SD =

√√√√∑n

i=1
(yi, exp−yi, pred)

yi, exp

2

n − 1
� (3)

Coefficient of Determination (R2)

	

R2 = 1 −
∑n

i=1

(
yi, exp − yi, pred

)2

∑n

i=1

(
xi,exp − −

xi, exp

)2 � (4)

Results and discussion
To evaluate the models’ ability to predict drug solubility in scCO₂, both statistical indicators and graphical 
assessments were employed. The outcomes are discussed in the subsequent subsections.

Table  3 summarizes the performance of four machine learning models (CatBoost, RF, LightGBM, and 
XGBoost) in predicting drug solubility in supercritical CO₂, based on several statistical parameters. Across both 
training and test datasets, XGBoost and CatBoost consistently achieved the best results, with the lowest MSE 
and MAE, as well as the highest R². For example, XGBoost showed an almost perfect fit in the training set 
(MSE ≈ 1 × 10⁻⁴, R² = 0.99999), and it maintained strong generalization ability on the test set (R² = 0.99013), 
outperforming the other models. CatBoost also delivered highly accurate predictions with test R² = 0.98386 and 
balanced performance between training and testing. In contrast, LightGBM showed relatively larger errors and 
wider variability, indicating lower robustness under test conditions.

The inclusion of 95% confidence intervals (CIs) and p-values provides further insight into the reliability and 
statistical significance of these results. Narrow CIs for XGBoost and CatBoost, particularly in MSE and MAE, 
confirm that these models produce stable predictions with minimal variability across different subsets of the 
data. On the other hand, LightGBM exhibited wider CIs, suggesting greater sensitivity to fluctuations in the 
dataset. The extremely small p-values (close to zero in all cases, often < 1e-300) demonstrate that the observed 
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correlations between input variables and solubility are statistically significant and not due to random chance. 
Together, these findings show that XGBoost, followed closely by CatBoost, offers the most accurate, consistent, 
and statistically reliable predictions among the models evaluated.

Table 4 presents the average absolute relative deviation (AARD) for the four evaluated models, providing a 
measure of their predictive accuracy across the training, test, and total datasets. The XGBoost model exhibited 
the lowest AARD values (0.01782 for training, 0.30635 for test, and 0.07566 overall), indicating superior 
accuracy compared to CatBoost, RF, and LightGBM. CatBoost and RF also performed reasonably well, while 
LightGBM showed the highest deviations, particularly on the test set (AARD = 1.5776), reflecting less reliable 
predictions. It is important to note that the reported AARD values appear large due to the wide solubility range 
in the dataset (0.0007 to 13.016), and the deviations generally decrease as the solubility increases, highlighting 
improved predictive performance for compounds with higher solubility values.

Graphical error analysis
Graphical error analysis is a powerful tool for assessing model performance, especially when comparing the 
predictive accuracy of multiple models. In this study, several graphical methods were utilized to visualize and 
demonstrate the effectiveness of the developed models.

The cross plots provide a visual comparison between the predicted (Pred) and experimental (Exp) values, 
using the 45° diagonal line as a benchmark for perfect prediction. The predictive power of a model is reflected in 
how tightly its data points align with this reference line (45° diagonal line). As shown in Fig. 2, both CatBoost and 
XGBoost display a strong correspondence between predicted and measured solubility values across the training 
and testing sets. Only a few data points show noticeable deviation from the X = Y line. The dense concentration 
of points along the 45° line for these two models underscores their excellent performance in capturing the 
solubility patterns of the system, supporting the statistical findings reported in Table 3.

The error distribution plot provides a visual overview of the residual differences between predicted and 
experimental values, plotted against the corresponding experimental data points. In this type of plot, a tighter 

Model AARD

 CatBoost

Train 0.36512

Test 0.65682

Total 0.42360

 RF

Train 0.21400

Test 0.34119

Total 0.23950

 LightGBM

Train 0.82083

Test 1.57760

Total 0.97254

 XGBoost

Train 0.01782

Test 0.30635

Total 0.07566

Table 4.  Assessing the accuracy of models using AARD. Bold values indicate the lowest error and highest 
accuracy

 

Models

Statistical parameters

MSE (95% CI) MAE (95% CI) SD (95% CI) R² (95% CI) p-value

CatBoost

Train 0.00090 ± 0.00013 0.02000 ± 0.00117 1.13863 ± 0.39048 0.99963 ± 0.00009 0

Test 0.02989 ± 0.01353 0.08524 ± 0.01714 1.33025 ± 0.26560 0.98386 ± 0.00743 1.8e-311

Total 0.00671 ± 0.00270 0.03308 ± 0.00367 1.17913 ± 0.30039 0.99708 ± 0.00122 0

RF

Train 0.00926 ± 0.00328 0.03699 ± 0.00471 0.57803 ± 0.11110 0.99616 ± 0.00101 0

Test 0.02960 ± 0.01308 0.07505 ± 0.01639 0.61579 ± 0.11106 0.98401 ± 0.00755 3.4e-311

Total 0.01334 ± 0.00382 0.04462 ± 0.00481 0.58561 ± 0.09896 0.99420 ± 0.00149 0

LightGBM

Train 0.00321 ± 0.00074 0.03427 ± 0.00222 3.08629 ± 0.84939 0.99867 ± 0.00033 0

Test 0.04761 ± 0.01991 0.12395 ± 0.01978 3.64764 ± 0.95239 0.97429 ± 0.01290 7.7e-276

Total 0.01211 ± 0.00394 0.05225 ± 0.00443 3.20557 ± 0.73431 0.99473 ± 0.00188 0

XGBoost

Train 0.01 × 10−4± 0.000 0.00078 ± 0.00004 0.05368 ± 0.01383 0.99999 ± 0.00000 0

Test 0.01828 ± 0.00776 0.06019 ± 0.01257 0.63751 ± 0.18568 0.99013 ± 0.00349 0

Total 0.00367 ± 0.00169 0.01269 ± 0.00270 0.28911 ± 0.07995 0.99841 ± 0.00072 0

Table 3.  Model accuracy evaluation using statistical indicators in the present study. Bold values indicate the 
lowest error and highest accuracy

 

Scientific Reports |        (2025) 15:40287 7| https://doi.org/10.1038/s41598-025-24006-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


clustering of points near the horizontal axis (Y = 0) indicates lower prediction errors and thus stronger model 
performance. The x-axis represents the experimental measurements, while the y-axis shows the residuals. As 
shown in Fig. 3, the XGBoost model exhibits the narrowest spread of error values across both the training and 
test datasets, highlighting its superior predictive accuracy compared to the other models.

Figure 4 depicts the cumulative frequency versus residual error for each evaluated model. This graphical 
representation shows the proportion of data points within defined error ranges, providing insight into the 
predictive reliability of each model. A steeper incline in the cumulative curve indicates that a larger proportion 
of predictions fall within a narrow error range, suggesting higher model precision. As shown, the XGBoost 
model outperforms the others, with nearly 90% of its predicted values exhibiting residual errors below 0.05, 
underscoring its high predictive consistency.

Figure 5 provides a comparative analysis of the prediction errors for the models assessed in this study. These 
errors reflect the discrepancies between the predicted and experimental solubility values. As illustrated, the 
XGBoost model demonstrates a narrower error range and superior accuracy in predicting solubility.

Group error plots are an effective method for evaluating the performance of models across a range of input 
features. In Fig. 6, these plots are presented for all models in relation to key input parameters: Tc, Pc, ρ, ω, MW, 

Fig. 2.  Cross-plots used to assess model predictions of drug solubility in scCO₂.
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Fig. 4.  Comparison of cumulative residual frequencies among the developed models.

 

Fig. 3.  Residual error distribution plots for the models predicting drug solubility in scCO₂.
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Tm, and the operational conditions of temperature and pressure. A visual comparison reveals that the XGBoost 
model consistently produces smaller prediction errors, demonstrating its superior accuracy compared to the 
other models.

Model trend analysis
Trend analysis provides a useful approach to explore how solubility responds to variations in input parameters. 
In this study, the XGBoost model, identified as the most accurate among the developed models, was employed 
to predict how solubility evolves with changes in density and temperature. Figure  7 illustrates the solubility 
behavior of hydroxychloroquine sulfate (HCQS) in scCO₂ as a function of temperature and scCO₂ density. As 
depicted, solubility rises with both increasing temperature and density trends that the XGBoost model accurately 
captured. Moreover, the close alignment between the experimental measurements and the model’s predictions, 
as seen in the figure, further validates the strong predictive capability of the XGBoost model.

External validation and generalization assessment of drug solubility predictions in scCO₂
We collected gliclazide solubility data from Wang et al.108 and performed an external validation using gliclazide 
as an independent drug, which was removed from the training dataset. The solubility was predicted at three 
temperatures (308, 318, and 328 K) across a pressure range of 100–180 bar. The results showed that the XGBoost 
model achieved the lowest MSE of 0.00022 and an MAE of 0.01282, demonstrating excellent accuracy in 
capturing the solubility behavior of a completely unseen drug. These findings confirm that the proposed model is 
highly generalizable, and its performance aligns with the objectives of one-drug-out cross-validation, validating 
the robustness and practical applicability of our approach.

Sensitivity analysis
Figure 8 displays SHAP summary plots that clarify how each input variable influences the XGBoost model’s 
estimation of drug solubility in scCO2. The plot on the right ranks features by their mean absolute SHAP values, 
reflecting their overall contribution to the model’s predictions irrespective of whether the effect is positive or 
negative. A higher mean SHAP value signifies a greater influence on the model’s output. The left-hand plot 
offers a pointwise breakdown of SHAP values, mapping how variations in individual feature values impact 
the predicted solubility. Feature values are color-coded, transitioning from green (low values) to purple (high 
values), allowing for intuitive visualization of value-dependent effects.

Among all features analyzed, Tm, P, andPc stand out with the most substantial influence on solubility 
predictions. The model identifies a strong positive relationship between pressure and solubility, aligning with 
fundamental thermodynamic laws such as Henry’s law, which indicates that higher pressure generally increases 
gas solubility in liquids. Likewise, higher melting points are associated with greater solubility estimates, likely 
due to their role in modulating solid-state properties that affect dissolution behavior in supercritical media.

Other variables like Tc and the ω also exhibit non-negligible effects. The acentric factor, which captures 
molecular shape and polarity deviations from ideal behavior, plays a role in how well drug molecules interact 
with scCO₂. Conversely, MW and ρ appear to have a comparatively limited impact under the studied conditions, 
implying their influence on solubility is either indirect or less significant in this modeling context. Notably, T 

Fig. 5.  Evaluation of model error behavior in solubility prediction tasks.
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contributes positively to solubility, indicating that as temperature rises, so does the predicted solubility. This 
trend is characteristic of scCO₂ systems in the most ranges, where higher temperatures enhance solute volatility 
and diffusivity, often outweighing density-related effects.

In summary, the SHAP results offer clear, model-agnostic explanations of the feature contributions, 
reinforcing the physical plausibility of the XGBoost model’s internal logic. The dominant features identified by 
the model correspond well with established thermodynamic expectations, supporting its validity for solubility 
prediction in supercritical CO₂ systems.

Determining outliers and applicability domain of a technique
The ‘Leverage Statistical Approach’ is a widely adopted and efficient method for detecting potential anomalies 
data points that significantly differ from the rest of the dataset and for determining the validity range of 
established correlations. This technique generates a graph known as the “Williams Plot,” which is constructed 
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Fig. 6.  Error distribution by input features for all proposed models.
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by defining the Hat Matrix (H) and Standardized Residual (SR) (Fig. 9). The critical parameters required to 
construct this plot are calculated using the following formulas109,110:

• Hat matrix (H):

	 H = X
(
XT X

)−1
XT � (5)

Here, XT represents the transpose of the matrix X, which is a (y × d) matrix. In this case, y refers to the number 
of data points, and d refers to the number of input variables used by the model.

• Leverage limit (H*):

	
H∗ = 3 × (d + 1)

y
� (6)

• standardized residuals (SR):

Fig. 8.  Evaluation of the input parameters’ impact on solubility.
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Ri = zi√

MSE (1 − Hii) � (7)

The variables zi and Hii represent the error and hat values associated with the i-th data point, respectively111. 
The region defined by 0 < H < H* and − 3 < SR < 3 indicates the valid domain where the model’s predictions are 
statistically reliable (valid data region). As shown in Fig. 9, the majority of the data points (97.68%) fall within 
this range, confirming the strong predictive performance of the XGBoost model. However, points falling outside 
this domain, specifically in the areas where SR > 3 or SR < −3 and H is within the valid range, are classified as 
suspicious and are flagged as bad leverage points, accounting for 1.68% of the data. Additionally, points that fall 
within the range of H* < H and − 3 < SR < 3 are categorized as good high leverage points and represent 0.63% 
of the data. Given that a significant portion of the data points are valid, it shows that the XGBoost model is very 
reliable for predicting drug solubility in scCO₂.As a complementary point in optimizing the parameters in the 
related sections, adjustable parameters in EoSs or semi-empirical models may be obtained by different methods 
including various algorithms like nonlinear regression methods [112-113].

Conclusions
In this study, we employed four machine learning models, CatBoost, XGBoost, LightGBM, and RF, to predict 
the solubility of a diverse set of drugs in scCO₂. Our dataset, compiled from 68 different drugs, included a total 
of 1,726 data points. To develop the predictive models, we used key input variables such as T, P, Tc, Pc, ρ, ω, MW, 
and Tm.

Based on statistical error metrics and graphical analyses, the XGBoost model consistently outperformed 
the other approaches, exhibiting the lowest prediction errors and highest accuracy in estimating solubility. 
Residual error analysis across the full range of input parameters further confirmed that XGBoost maintained 
superior performance regardless of temperature, pressure, or density ranges. Additionally, the model captured 
expected physical trends such as the increase in solubility with rising density at constant temperature and the 
enhancement of solubility with increasing temperature, reflecting its robustness and reliability.

SHAP analysis highlighted the Tm as the most influential factor among the input variables. Finally, the 
application of the Leverage approach for outlier detection showed that the majority of the data points fell within 
the defined applicability domain on the Williams plot, underscoring the reliability and generalizability of the 
XGBoost model.
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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