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Reliable prediction of drug solubility in supercritical carbon dioxide (scCO,) is crucial for the efficient
design of pharmaceutical processes, including particle engineering and supercritical fluid-based
extraction. Given that experimental determination of drug solubility in scCO, is costly and time-
consuming, this study employs machine learning models to predict drug solubility in scCO,, offering
the advantage over thermodynamic models and empirical correlations of being able to predict the
solubility of drugs beyond the model’s training range. In this work, authors use CatBoost, XGBoost,
LightGBM, and RF models to predict the solubility of a set of drugs (Sixty-eight) in scCO,. Statistical
errors and graphical analyses showed that the XGBoost model performed better than other models
and had high reliability for predicting solubility. Among the evaluated models, XGBoost delivered the
most accurate predictions, achieving a root mean square error (RMSE) of just 0.0605 and an R2 value of
0.9984. Notably, 97.68% of the data points fell within the model’s applicability domain, highlighting
its strong predictive reliability. These outcomes underscore the capability of the XGBoost algorithm to
serve as a robust and efficient approach for estimating solubility.
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Supercritical carbon dioxide (scCO,) has emerged as a key player in green chemistry due to its unique
properties, such as zero surface tension, low viscosity, high diffusivity, and tunable solubilization through
adjustments in temperature, pressure, or cosolvent addition". Its mild critical temperature (304.1 K) and
pressure (7.4 MPa) make it an attractive and sustainable solvent across various industries, from dyeing and
extraction to chromatography and cleaning®°. In addition to being non-toxic and recyclable, scCO, enables
efficient separation processes and the dissolution of a wide range of solutes, although its low polarity sometimes
requires cosolvent enhancement”?®.

In the pharmaceutical sector, scCO, has attracted attention as a green alternative to organic solvents,
providing an effective medium for controlling drug solubility, facilitating particle formation, and enabling
efficient supercritical fluid processing®!?. Applications include drug extraction, purification, crystal formation,
and advanced drug delivery systems (DDSs) such as RESS, SAS, and PGSS methods. These technologies have the
potential to reduce drug doses and administration frequency, enhance patient compliance, and support cleaner,
safer production processes making scCO; a valuable tool for next-generation pharmaceuticals. Understanding
the solubility of drugs in scCO, is essential because solubility directly affects the efficiency of supercritical
processes, the stability and performance of DDSs, and the feasibility of using scCO, as a solvent, antisolvent,
or solute medium!!'~!3. Given that many current and pipeline drugs are poorly soluble (BCS class II and IV),
enhancing their solubility in scCO, is critical for efficient particle formation, improved processability, controlled
release profiles, and stable formulations, all of which are key priorities in pharmaceutical innovation!*°.
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While experimental determination of drug solubility in scCO, provides vital data for process design, it is
often costly, time-consuming, and sometimes impractical under diverse conditions of temperature and pressure.
To address these challenges, researchers have developed various simulation models, including correlation
models, thermodynamic models, and equations of state (EoSs), which allow for more rapid, cost-effective, and
flexible prediction of drug solubility'®-**. Thermodynamic models, EoS approaches, and empirical correlations
have long been used to predict drug solubility in scCO,, but they come with notable limitations. These models
often rely on simplifying assumptions and idealizations that can compromise accuracy, especially when applied
to complex or structurally diverse compounds. Empirical correlations, while simpler to apply, are typically
system-specific and struggle to generalize across different datasets. Moreover, many of these traditional models
require detailed knowledge of system parameters and involve computationally intensive, iterative calculations,
making them less practical for large-scale applications. In contrast, machine learning models can directly learn
complex, nonlinear relationships from data without relying on predefined physical equations. This allows them
to achieve higher predictive accuracy and better generalization across a wide range of drug-solvent systems.
Machine learning approaches enable significantly faster predictions compared to traditional experimental or
simulation-based methods. While experimental solubility measurements in scCO, can take hours to days per
condition, trained ML models can generate predictions in seconds to minutes for thousands of drug solvent
condition combinations, depending on dataset size and model complexity. This rapid turnaround, combined
with flexibility in handling diverse and heterogeneous datasets and the ability to include critical drug properties
as input features, makes ML a powerful tool for efficient solubility estimation and process optimization.

Abdallah El Hadj et al. introduced a hybrid modeling strategy that integrates artificial neural networks
(ANN) with particle swarm optimization (PSO) to estimate the solubility of solid drugs in scCO,. Their ANN-
PSO model demonstrated superior predictive capability compared to traditional density-based models and
thermodynamic equations of state?®. Similarly, Baghban et al. applied a least squares support vector machine
(LSSVM) approach to forecast the logarithm of the solubility of 33 pharmaceutical compounds in scCO,, utilizing
key input variables such as temperature, pressure, CO, density, molecular weight, and melting point. Employing
a radial basis function kernel, their LSSVM model achieved outstanding results with an average absolute relative
deviation (AARD) of 5.61% and a coefficient of determination (R?) of 0.9975, outperforming eight established
empirical correlations®. Sodeifian et al. examined the solubility behavior of six drugs, including anti-HIV,
anti-inflammatory, and anti-cancer agents, using four different modeling paradigms: cubic equations of state
(SRK and modified-Pazuki), semi-empirical models (such as those proposed by Chrastil, Mendez-Santiago-
Teja, Sparks et al., and Bian et al.), the regular solution theory with Flory-Huggins interaction parameters,
and artificial neural networks. Their findings revealed that the ANN model exhibited the highest accuracy
across all metrics (AARD, R?, F-value), outperforming the other approaches in reproducing the experimental
solubility values in arithmetic scale?®. In another study, Euldji et al. developed a quantitative structure-property
relationship (QSPR) model enhanced with artificial neural networks to estimate drug solubility in scCOs,.
The study compiled a comprehensive dataset consisting of 3971 experimental data points from 148 drug-like
compounds. Thirteen features comprising eleven molecular descriptors alongside temperature and pressure
were used as inputs. The ANN model, structured as 13-10-1 and trained via Bayesian regularization (trainbr)
with a log-sigmoid activation function, achieved strong predictive performance with AARD = 3.77%, RMSE
= 0.5162, and a correlation coefficient r = 0.9761%7. Furthermore, Euldji et al. also conducted a comparative
assessment of seven meta-heuristic optimization algorithms for tuning the hyperparameters of a hybrid QSPR-
Support Vector Regression (SVR) framework. Based on a dataset of 168 drug compounds and 4490 experimental
data points, the study found that the hybrid HPSOGWO-SVR model delivered the most accurate solubility
predictions, achieving an impressively low AARD of 0.706%, as validated through both statistical indices and
graphical analysis?®. Makarov et al. investigated the prediction of drug-like compound solubility in scCO, using
machine learning (ML) approaches and compared them to a theoretical method based on classical density
functional theory (cDFT). Two ML models based on the CatBoost algorithm were developed: one using alvaDesc
descriptors and another using CDK descriptors plus drug melting points. The CatBoost-alvaDesc model showed
strong predictive performance on 187 drugs, achieving an AARD of 1.8% and RMSE of 0.12 log units®.

In this work, we predicted the solubility of 68 different drugs in scCO,, using newly generated experimental
data obtained by the authors and literature, and applied four advanced machine learning models: CatBoost,
XGBoost, LightGBM, and Random Forest. Unlike previous studies that primarily relied on molecular descriptors
or metaheuristic optimization techniques, our approach integrates critical drug-specific properties including
critical temperature (Tc), critical pressure (Pc), acentric factor (w), molecular weight (MW) and melting point
(Tm) alongside commonly used state variables such as temperature (T), pressure (P), and density (p). This
comprehensive set of input parameters allowed us to capture more nuanced relationships influencing solubility.
The workflow involved systematic data preprocessing, hyperparameter tuning using mean square error (MSE)
minimization, and performance evaluation through 10-fold cross-validation to ensure model robustness.
Furthermore, we employed detailed statistical and graphical error analyses, complemented by outlier detection
using William’s plot, to rigorously define the applicability domain of the developed XGBoost model. Overall, this
study not only advances predictive modeling for drug solubility in scCO, but also provides a practical tool for
experimentalists. The developed model is predictive within the range of solubilities and conditions considered in
this work, enabling more reliable design and optimization of supercritical fluid processes, and represents a clear
improvement over earlier approaches.

Data collection

In this research, a total of 1726 experimental data points detailing the solubility of a set of drugs (Sixty-eight)
in scCO, were compiled from previously published studies. Table 1 lists the names of the drugs used in this
study, the number of data points for each, and the sources from which the data were collected Fig. 1 also shows
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Drug name Number of data points | Reference

1 | Chlorpromazine 45 0
2 | Lamotrigine 36 3t
3 | Capecitabine 35 32
4 | Aprepitant 32 3
5 | Favipiravir 28 34
6 | Ketoconazole 28 3
7 | Ketotifen fumarate 28 36
8 | Sertraline hydrochloride 28 37
9 | Alendronate 28 38
10 | Amantadine 28 3
11 | Amiodarone hydrochloride 28 40
12 | Sitagliptin phosphate 28 4
13 | Fludrocortisone acetate 28 2
14 | Gemifloxacin 28 s
15 | lenalidomide 28 a“
16 | Metoprolol 28 4
17 | Montelukast 28 4
18 | Tramadol hydrochloride 28 a7
19 | Clozapine 27 3t
20 | Repaglinide 24 8
21 | Oxcarbazepine 24 o
22 | Imatinib mesylate 24 0
23 | Loratadine 24 51
24 | Methadone hydrochloride 24 2
25 | Regorafenib monohydrate 24 53
26 | Gefitinib hydrochloride 24 v
27 | Ceftriaxone sodium 24 4
28 | Niclosamide piperazine 24 16
29 | 5-fluorouracil 24 55
30 | Gemcitabine 24 6
31 | Oxycodone hydrochloride 24 18
32 | Metformin 24 57
33 | Esomeprazole 24 58
34 | Dapagliflozin propanediol monohydrate 24 19
35 | Sorafenib tosylate 24 »
36 | Empagliflozin 24 0
37 | Triamcinolone acetonide 24 ol
38 | Codeine phosphate 24 62
39 | Buprenorphine hydrochloride 24 03
40 | Nilotinib hydrochloride monohydrate 24 o4
41 | Fexofenadine hydrochloride 24 65
42 | Hydroxychloroquine sulfate 24 66
43 | Ibrutinib 24 7
44 | Riluzole 24 68
45 | Palbociclib 24 0
46 | Rivaroxaban 24 7
47 | Crizotinib 24 7
48 | Prazosin hydrochloride 24 7
49 | Pazopanib hydrochloride 24 7
50 | Azathioprine 24 74
51 | Metoclopramide hydrochloride 24 52
52 | Teriflunomide 24 7
53 | Pholcodine 24 76
54 | Lansoprazole 24 7
55 | Sodium Valproate 24 78
56 | Triamterene (2,4,7-Triamino-6-phenylpteridine) | 24 7
Continued
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57 | Tamsulosin 24 80
58 | Minoxidil 24 81
59 | Amlodipine Besylate 24 82
60 | Galantamine 24 83
61 | Quetiapine hemifumarate 24 84
62 | Sulfabenzamide 24 85
63 | Clemastine fumarate 24 86
64 | Dasatinib monohydrate 24 87
65 | Sunitinib malate 24 88
66 | Letrozole 20 89
67 | Chlorothiazide 20 %0
68 | Dexamethasone 15 o1

Table 1. Names of drugs used in this study, number of data points for each drug, and sources.
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Fig. 1. Histogram plot demonstrating the distribution of the gathered database.

the distribution of the input and output features of the collected database. According to these figures, it can be
seen that the amassed measurements cover comprehensive operational conditions. Table 2 provides a detailed
statistical summary of the dataset, including parameters such as minimum, maximum, mean, median, skewness,

and kurtosis.
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Input Output
Statistical parameters | T (K) | P (bar) | Tc (K) | Pc (bar) | Tm (K) | p (kg/m®) |@ | MW (g/mol) |y X 10*
Minimum 308.0 100.0 485.25 | 10.02 364.0 234.0 0.20 | 129.16 0.0007
Maximum 348.2 | 410.0 1789.25 | 66.82 698.65 | 976.43 2.09 | 681.77 13.016
Mean 323.81 | 204.83 | 1085.43 | 23.78 483.27 | 754.25 0.85 | 387.19 0.677
Median 328.0 |210.0 1000.24 | 19.79 475.80 | 783.0 0.76 | 397.4 0.14
Skewness 0.06 0.33 0.70 1.65 0.68 -1.25 0.89 0.01 3.65
Kurtosis -1.18 | -0.44 0.03 | 2.64 1.27 1.36 0.64 | —-0.60 14.79

Table 2. Summary description of the performed database.

Statistical assessment of dataset
In this work, we used the input parameters T, P, Tc, Pc, p, w, MW and Tm to predict the solubility of drugs in
scCO.,.

2

Models development

Random forest (RF)

Random Forest (RF) is an influential ensemble-based machine learning technique developed by Leo Breiman
in 2001°%. It operates by constructing a large collection of decision trees during training and combining their
outputs to improve predictive accuracy. For regression tasks, RF computes the average of predictions from
all trees, while for classification, it selects the most frequent class label. Two central mechanisms underpin its
effectiveness: bootstrap sampling where different subsets of the data are randomly drawn with replacement to
train each tree, and randomized feature selection, in which only a random subset of features is considered at each
split. These strategies help reduce model variance, enhance generalization, and mitigate overfitting, particularly
when dealing with high-dimensional or complex datasets.

In regression settings, each tree yields a numeric prediction, and the RF aggregates these outputs by
averaging. The trees are typically built using the CART (Classification and Regression Trees) methodology, with
optimization often based on minimizing the mean squared error®>. One of RF’s advantages is that it functions
effectively without the need for scaling or normalizing the input features, making it highly accessible and practical.
Additionally, RF can estimate feature importance by analyzing the increase in prediction error when individual
features are permuted, using out-of-bag samples for unbiased assessment. However, despite its strengths, RF
can face limitations such as reduced performance with noisy datasets, sensitivity to class imbalance, and high
computational costs when dealing with many large trees®*%>.

Extreme gradient boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is a high-performance ensemble learning algorithm that extends the
gradient boosting technique with several enhancements aimed at increasing both accuracy and efficiency®.
It constructs decision trees in sequence, where each new tree is trained to minimize the errors made by the
previous ones. Unlike standard gradient boosting, XGBoost incorporates a second-order approximation of the
loss function, utilizing both gradients and Hessians to improve the precision of model updates®”. This second-
order optimization allows the model to better capture complex patterns and nonlinear relationships in the
data, making it especially effective for structured datasets. XGBoost stands out due to its scalability, ability to
manage missing values natively, and high performance across diverse machine learning applications. The model
employs a greedy search strategy to determine optimal splits in each tree and aggregates many shallow decision
trees, specifically CARTs (Classification and Regression Trees), to form a strong predictive model. Because
its hyperparameters (such as learning rate, regularization strength, and tree depth) interact with one another,
careful tuning is critical to achieving reliable results without excessive computation. While XGBoost is renowned
for its accuracy and robustness, its reliance on numerous decision trees may hinder interpretability, making the
internal decision-making process less transparent than simpler models®’~%°.

Categorical boosting (CatBoost)

CatBoost (Categorical Boosting) is a cutting-edge gradient boosting algorithm developed to natively handle
categorical variables with high accuracy and minimal preprocessing'®. Unlike traditional models that require
techniques such as one-hot encoding to transform categorical data, CatBoost converts these features using
target-based statistics while employing a special strategy called ordered boosting to prevent target leakage. This
approach ensures that the model uses only past information when computing these statistics, which safeguards
the training process against data leakage and helps produce more generalizable results. Built on the gradient
boosting principle, CatBoost trains an ensemble of decision trees sequentially, where each new tree corrects the
errors of the previous ones. Its use of symmetric trees, combined with optimized depth control and learning rate
settings, allows it to strike a balance between flexibility and regularization!°!.

What makes CatBoost particularly advantageous is its ability to deliver high predictive power on datasets
with mixed feature types, including high-cardinality categorical variables and sparse data. It is designed to
work effectively with minimal data preprocessing and can accept raw data in various formats. Moreover, its
architecture is engineered to mitigate overfitting through mechanisms like depth regulation and refined boosting
techniques!?2193,
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Light gradient boosting machine (LightGBM)

LightGBM (Lightweight Gradient Boosting Machine), introduced by Microsoft in 2017, is a highly efficient
gradient boosting framework designed to improve training speed, reduce memory usage, and enhance
prediction accuracy'% Unlike traditional GBDT methods such as XGBoost, which rely on pre-sorted algorithms,
LightGBM employs a histogram-based algorithm that bins continuous values into discrete intervals, significantly
reducing computational complexity and memory requirements. A key innovation of LightGBM is its use of a
leaf-wise tree growth strategy, where the algorithm splits the leaf with the highest potential to reduce error, as
opposed to growing trees level by level. To control overfitting, LightGBM imposes a maximum depth constraint
on trees. Additionally, LightGBM supports distributed training, enabling scalability for large datasets, and it
accommodates various objective functions, including those for regression, classification, and ranking. Two core
techniques further set LightGBM apart: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB). GOSS prioritizes data points with large gradient values, which are more informative for learning,
while randomly sampling from the remainder, thus reducing the volume of training data without sacrificing
model accuracy. EFB addresses high-dimensional sparse datasets by combining mutually exclusive features
those unlikely to be non-zero at the same time into a single bundled feature, thus reducing dimensionality and
accelerating computation. LightGBM’s innovations not only lead to faster training and lower memory overhead,
but also maintain or even improve model accuracy compared to traditional boosting methods!%4-1%7.

Predictive analytics

Fine-tuning the hyperparameters of each model is essential for achieving high predictive accuracy. Effective
hyperparameter optimization enables each model to perform optimally on the given dataset. In this study, we
utilize the Mean Squared Error (MSE) as the objective function to guide the hyperparameter tuning process. By
minimizing the MSE, we determine the most suitable set of hyperparameters for each model.

Statistical error evaluation

The models’ accuracy was assessed by comparing the predicted drug solubility in scCO, (Yprea) with the
corresponding experimental values ( Yexp). To comprehensively evaluate model performance, several statistical
error analyses were conducted, as detailed in the following sections:

Mean Square Error (MSE)
1 n
MSE: Ez(yi,pred 7yi,ea:p)2 (1)
i=1
Mean Absolute Error (MAE)
1 n
MAE = — i, pred — Yi, ex
nz;w,p d = Yi, exp| (2)
i=

Standard Deviation (SD)

Zn (yq‘,, exp—Yi, p'r'ed) 2

i=1 Vi, exp (3)

SD =
n—1

Coefficient of Determination (R?)

n

R:=1-— i=1 (y% exp — Yi, pred)2

. e (4)
21:1 (:Ei,ezp — &4, emp)

Results and discussion
To evaluate the models’ ability to predict drug solubility in scCO,, both statistical indicators and graphical
assessments were employed. The outcomes are discussed in the subsequent subsections.

Table 3 summarizes the performance of four machine learning models (CatBoost, RF, LightGBM, and
XGBoost) in predicting drug solubility in supercritical CO,, based on several statistical parameters. Across both
training and test datasets, XGBoost and CatBoost consistently achieved the best results, with the lowest MSE
and MAE, as well as the highest R* For example, XGBoost showed an almost perfect fit in the training set
(MSE=1x107, R* = 0.99999), and it maintained strong generalization ability on the test set (R* = 0.99013),
outperforming the other models. CatBoost also delivered highly accurate predictions with test R*> = 0.98386 and
balanced performance between training and testing. In contrast, Light GBM showed relatively larger errors and
wider variability, indicating lower robustness under test conditions.

The inclusion of 95% confidence intervals (CIs) and p-values provides further insight into the reliability and
statistical significance of these results. Narrow CIs for XGBoost and CatBoost, particularly in MSE and MAE,
confirm that these models produce stable predictions with minimal variability across different subsets of the
data. On the other hand, LightGBM exhibited wider CIs, suggesting greater sensitivity to fluctuations in the
dataset. The extremely small p-values (close to zero in all cases, often < 1e-300) demonstrate that the observed
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Statistical parameters
Models MSE (95% CI) MAE (95% CI) SD (95% CI) R? (95% CI) p-value
Train | 0.00090+0.00013 | 0.02000+0.00117 | 1.13863+0.39048 | 0.99963+0.00009 | 0
CatBoost | Test | 0.02989+0.01353 | 0.08524+0.01714 | 1.33025+0.26560 | 0.98386+0.00743 | 1.8e-311
Total | 0.00671+0.00270 | 0.03308+0.00367 | 1.17913+0.30039 | 0.99708+0.00122 |0
Train | 0.00926+0.00328 | 0.03699+0.00471 | 0.57803+0.11110 | 0.99616+0.00101 |0
RF Test | 0.02960+0.01308 | 0.07505+0.01639 | 0.61579+0.11106 | 0.98401+0.00755 | 3.4e-311
Total | 0.01334+0.00382 | 0.04462+0.00481 | 0.58561+0.09896 | 0.99420+0.00149 |0
Train | 0.00321+0.00074 | 0.03427+0.00222 | 3.08629+0.84939 | 0.99867+0.00033 |0
LightGBM | Test | 0.04761+0.01991 | 0.12395+0.01978 | 3.64764+0.95239 | 0.97429+0.01290 |7.7e-276
Total |0.01211+0.00394 | 0.05225+0.00443 | 3.20557+0.73431 | 0.99473+0.00188 |0
Train | 0.01 x 107+ 0.000 | 0.00078+0.00004 | 0.05368+0.01383 | 0.99999+0.00000 | 0
XGBoost | Test | 0.01828+0.00776 | 0.06019+0.01257 | 0.63751+0.18568 | 0.99013+0.00349 | 0
Total | 0.00367+0.00169 | 0.01269+0.00270 | 0.28911+0.07995 | 0.99841:+0.00072 | 0

Table 3. Model accuracy evaluation using statistical indicators in the present study. Bold values indicate the
lowest error and highest accuracy

Model AARD

Train | 0.36512
CatBoost | Test | 0.65682
Total | 0.42360
Train | 0.21400
RF Test | 0.34119
Total | 0.23950
Train | 0.82083
LightGBM | Test | 1.57760
Total | 0.97254
Train | 0.01782
XGBoost | Test | 0.30635
Total | 0.07566

Table 4. Assessing the accuracy of models using AARD. Bold values indicate the lowest error and highest
accuracy

correlations between input variables and solubility are statistically significant and not due to random chance.
Together, these findings show that XGBoost, followed closely by CatBoost, offers the most accurate, consistent,
and statistically reliable predictions among the models evaluated.

Table 4 presents the average absolute relative deviation (AARD) for the four evaluated models, providing a
measure of their predictive accuracy across the training, test, and total datasets. The XGBoost model exhibited
the lowest AARD values (0.01782 for training, 0.30635 for test, and 0.07566 overall), indicating superior
accuracy compared to CatBoost, RE, and LightGBM. CatBoost and RF also performed reasonably well, while
LightGBM showed the highest deviations, particularly on the test set (AARD =1.5776), reflecting less reliable
predictions. It is important to note that the reported AARD values appear large due to the wide solubility range
in the dataset (0.0007 to 13.016), and the deviations generally decrease as the solubility increases, highlighting
improved predictive performance for compounds with higher solubility values.

Graphical error analysis

Graphical error analysis is a powerful tool for assessing model performance, especially when comparing the
predictive accuracy of multiple models. In this study, several graphical methods were utilized to visualize and
demonstrate the effectiveness of the developed models.

The cross plots provide a visual comparison between the predicted (Pred) and experimental (Exp) values,
using the 45° diagonal line as a benchmark for perfect prediction. The predictive power of a model is reflected in
how tightly its data points align with this reference line (45° diagonal line). As shown in Fig. 2, both CatBoost and
XGBoost display a strong correspondence between predicted and measured solubility values across the training
and testing sets. Only a few data points show noticeable deviation from the X =Y line. The dense concentration
of points along the 45° line for these two models underscores their excellent performance in capturing the
solubility patterns of the system, supporting the statistical findings reported in Table 3.

The error distribution plot provides a visual overview of the residual differences between predicted and
experimental values, plotted against the corresponding experimental data points. In this type of plot, a tighter
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Fig. 2. Cross-plots used to assess model predictions of drug solubility in scCO..

clustering of points near the horizontal axis (Y =0) indicates lower prediction errors and thus stronger model
performance. The x-axis represents the experimental measurements, while the y-axis shows the residuals. As
shown in Fig. 3, the XGBoost model exhibits the narrowest spread of error values across both the training and
test datasets, highlighting its superior predictive accuracy compared to the other models.

Figure 4 depicts the cumulative frequency versus residual error for each evaluated model. This graphical
representation shows the proportion of data points within defined error ranges, providing insight into the
predictive reliability of each model. A steeper incline in the cumulative curve indicates that a larger proportion
of predictions fall within a narrow error range, suggesting higher model precision. As shown, the XGBoost
model outperforms the others, with nearly 90% of its predicted values exhibiting residual errors below 0.05,
underscoring its high predictive consistency.

Figure 5 provides a comparative analysis of the prediction errors for the models assessed in this study. These
errors reflect the discrepancies between the predicted and experimental solubility values. As illustrated, the
XGBoost model demonstrates a narrower error range and superior accuracy in predicting solubility.

Group error plots are an effective method for evaluating the performance of models across a range of input
features. In Fig. 6, these plots are presented for all models in relation to key input parameters: Tc, Pc, p, w, MW,
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Tm, and the operational conditions of temperature and pressure. A visual comparison reveals that the XGBoost
model consistently produces smaller prediction errors, demonstrating its superior accuracy compared to the
other models.

Model trend analysis

Trend analysis provides a useful approach to explore how solubility responds to variations in input parameters.
In this study, the XGBoost model, identified as the most accurate among the developed models, was employed
to predict how solubility evolves with changes in density and temperature. Figure 7 illustrates the solubility
behavior of hydroxychloroquine sulfate (HCQS) in scCO, as a function of temperature and scCO, density. As
depicted, solubility rises with both increasing temperature and density trends that the XGBoost model accurately
captured. Moreover, the close alignment between the experimental measurements and the model’s predictions,
as seen in the figure, further validates the strong predictive capability of the XGBoost model.

External validation and generalization assessment of drug solubility predictions in scCO,

We collected gliclazide solubility data from Wang et al.!'®® and performed an external validation using gliclazide
as an independent drug, which was removed from the training dataset. The solubility was predicted at three
temperatures (308, 318, and 328 K) across a pressure range of 100-180 bar. The results showed that the XGBoost
model achieved the lowest MSE of 0.00022 and an MAE of 0.01282, demonstrating excellent accuracy in
capturing the solubility behavior of a completely unseen drug. These findings confirm that the proposed model is
highly generalizable, and its performance aligns with the objectives of one-drug-out cross-validation, validating
the robustness and practical applicability of our approach.

Sensitivity analysis

Figure 8 displays SHAP summary plots that clarify how each input variable influences the XGBoost model’s
estimation of drug solubility in scCO,. The plot on the right ranks features by their mean absolute SHAP values,
reflecting their overall contribution to the model’s predictions irrespective of whether the effect is positive or
negative. A higher mean SHAP value signifies a greater influence on the model’s output. The left-hand plot
offers a pointwise breakdown of SHAP values, mapping how variations in individual feature values impact
the predicted solubility. Feature values are color-coded, transitioning from green (low values) to purple (high
values), allowing for intuitive visualization of value-dependent effects.

Among all features analyzed, Tm, P, andPc stand out with the most substantial influence on solubility
predictions. The model identifies a strong positive relationship between pressure and solubility, aligning with
fundamental thermodynamic laws such as Henry’s law, which indicates that higher pressure generally increases
gas solubility in liquids. Likewise, higher melting points are associated with greater solubility estimates, likely
due to their role in modulating solid-state properties that affect dissolution behavior in supercritical media.

Other variables like Tc and the w also exhibit non-negligible effects. The acentric factor, which captures
molecular shape and polarity deviations from ideal behavior, plays a role in how well drug molecules interact
with scCO,. Conversely, MW and p appear to have a comparatively limited impact under the studied conditions,
implying their influence on solubility is either indirect or less significant in this modeling context. Notably, T
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Fig. 6. Error distribution by input features for all proposed models.

contributes positively to solubility, indicating that as temperature rises, so does the predicted solubility. This
trend is characteristic of scCO, systems in the most ranges, where higher temperatures enhance solute volatility
and diffusivity, often outweighing density-related effects.

In summary, the SHAP results offer clear, model-agnostic explanations of the feature contributions,
reinforcing the physical plausibility of the XGBoost model’s internal logic. The dominant features identified by
the model correspond well with established thermodynamic expectations, supporting its validity for solubility
prediction in supercritical CO, systems.

Determining outliers and applicability domain of a technique

The ‘Leverage Statistical Approach’ is a widely adopted and eflicient method for detecting potential anomalies
data points that significantly differ from the rest of the dataset and for determining the validity range of
established correlations. This technique generates a graph known as the “Williams Plot,” which is constructed
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by defining the Hat Matrix (H) and Standardized Residual (SR) (Fig. 9). The critical parameters required to
construct this plot are calculated using the following formulas!®!1;
» Hat matrix (H):

H=X(XTx)"'xT 5)

Here, X" represents the transpose of the matrix X, which is a (y x d) matrix. In this case, y refers to the number
of data points, and d refers to the number of input variables used by the model.
« Leverage limit (H*):
_3x (d+1)
Y

H*

« standardized residuals (SR):
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Ri = “

" /MSE(1— Hy) @
The variables z, and H,, represent the error and hat values associated with the i-th data point, respectively".
The region defined by 0 < H < H*and — 3 < SR < 3 indicates the valid domain where the model’s predictions are
statistically reliable (valid data region). As shown in Fig. 9, the majority of the data points (97.68%) fall within
this range, confirming the strong predictive performance of the XGBoost model. However, points falling outside
this domain, specifically in the areas where SR > 3 or SR < -3 and H is within the valid range, are classified as
suspicious and are flagged as bad leverage points, accounting for 1.68% of the data. Additionally, points that fall
within the range of H* < H and — 3 < SR < 3 are categorized as good high leverage points and represent 0.63%
of the data. Given that a significant portion of the data points are valid, it shows that the XGBoost model is very
reliable for predicting drug solubility in scCO,.As a complementary point in optimizing the parameters in the
related sections, adjustable parameters in EoSs or semi-empirical models may be obtained by different methods
including various algorithms like nonlinear regression methods [112-113].

Conclusions

In this study, we employed four machine learning models, CatBoost, XGBoost, LightGBM, and RE, to predict
the solubility of a diverse set of drugs in scCO,. Our dataset, compiled from 68 different drugs, included a total
of 1,726 data points. To develop the predictive models, we used key input variables such as T, P, Tc, Pc, p, w, MW,
and Tm.

Based on statistical error metrics and graphical analyses, the XGBoost model consistently outperformed
the other approaches, exhibiting the lowest prediction errors and highest accuracy in estimating solubility.
Residual error analysis across the full range of input parameters further confirmed that XGBoost maintained
superior performance regardless of temperature, pressure, or density ranges. Additionally, the model captured
expected physical trends such as the increase in solubility with rising density at constant temperature and the
enhancement of solubility with increasing temperature, reflecting its robustness and reliability.

SHAP analysis highlighted the Tm as the most influential factor among the input variables. Finally, the
application of the Leverage approach for outlier detection showed that the majority of the data points fell within
the defined applicability domain on the Williams plot, underscoring the reliability and generalizability of the
XGBoost model.
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