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This study analyzes the (2 + 1)-dimensional Boussinesq equation, a fundamental model in coastal 
and ocean engineering for describing the propagation of long waves in shallow water. Understanding 
the nonlinear wave structures of this equation is essential for predicting energy localization, wave 
stability, and extreme events such as rogue waves. To this end, the Hirota bilinear method is employed 
to derive explicit N-soliton solutions, explicitly classifying them into bright and dark types according to 
parameter criteria. Breather solutions in different planes are constructed using the complex conjugate 
approach, while the long-wave limit method is applied to obtain first- and second-order lump waves, 
representing rationally localized structures. Furthermore, four hybrid solutions combining solitons, 
lumps, and breathers are developed, and their interaction dynamics (e.g. soliton–soliton and soliton–
lump collisions) are systematically analyzed. The interactions are shown to be elastic, and all structures 
retain their identities after collision. A novel contribution of this work is the use of a bidirectional 
scatter plot technique to compare the behaviors of these solutions across parameter ranges, providing 
a unified framework for identifying conditions under which different solutions exhibit similar dynamics. 
The results demonstrate several practical insights: for example, lump solutions preserve their 
localization over time, modeling stable energy concentrations, while soliton–breather interactions 
capture oscillatory instabilities relevant for predicting extreme wave events. These contributions 
extend beyond previous studies by offering both a systematic taxonomy of nonlinear wave structures 
and a diagnostic tool for engineers to evaluate wave interactions under varying oceanic conditions.
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Abbreviations
NLEE	� Nonlinear evolution equation
NLM	� Nonlinear model
PDE	� Partial differential equation
NLSE	� Nonlinear Schrödinger equation
CCA	� Complex conjugate approach
LWL	� Long-wave limit
IMETFS	� Improved modified extended tanh-function scheme
GERFM	� Generalized exponential rational function method
HMGI	� Higher-order modified Gerdjikov–Ivanov

A NLEE is a mathematical and physical model that characterizes temporal evolution in nonlinear systems 
and remains a key area of interest in nonlinear science. These models are essential in tackling problems in 
various domains such as image processing1, neuroscience2, fluid dynamics3, and data science4, among others. 
A key area of research in mathematics, physics, and other disciplines is the development of exact solutions for 
NLEEs. Achieving these exact solutions aids in the exploration of nonlinear phenomena in nature and provides 
a scientific explanation for these phenomena. Over time, various scientific and efficient methods have been 
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introduced to derive these exact solutions, including bilinear5, unified solver approach6, LWL7, generalized 
Kudryashov8, modified F-expansion9, Darboux transform10, trial function11, and ϕ6 model expansion12.

The soliton, breather, and lump solutions13 represent distinct types of exact solutions that hold significant 
research value in various domains, including Bose–Einstein condensates14, marine physics15, among others. 
The interaction of these exact solutions leads to a more intricate solution structure, illustrating the complex 
movement patterns observed in natural systems. In recent years, the study of interaction phenomena has gained 
increasing attention from researchers as a significant topic in NLEEs. Solitons serve as a fundamental and ideal 
framework for exploring various nonlinear localized waves, offering a valuable approach to studying nonlinear 
wave interactions due to their inherent particle-like behavior during propagation. In an integral system, solitons 
with different velocities retain their original shape and velocity after interaction, with their fundamental physical 
properties remaining unchanged. In the literature, multi-wave solitons are rarely explored, making them a hot 
research topic due to their ability to reveal more complex wave behaviors16. Beyond solitons, breather solutions 
to NLEEs serve as intriguing examples for exploring nonlinear wave interactions due to their distinctive self-
oscillatory characteristics and complex synchronization behaviors. Given these properties, phase-sensitive 
breather interactions have garnered significant attention in recent studies17.

Lump waves, introduced by Petviashvili18, are characterized as specific types of rational function for NLEEs 
and exhibit spatial localization in all directions. These types of characterized solutions for NLEEs, as discussed 
above, remain relatively scarce in the literature. There is a significant need to explore additional solutions to 
uncover the yet unknown behaviors of NLMs. Motivated by this, the focus is on deriving new and novel multi-
wave solitons, as well as lump, breather, and interaction solutions for the (2+1)-dimensional Boussinesq equation 
introduced by Wazwaz19.

	
Htt − Hxx − δ1(H2)xx − δ2Hxxxx + δ2

3

4 Hyy + δ3Hyt = 0.� (1)

Here, δ1, δ2, and δ3 are nonzero parameters, where the coefficients δ1, and δ2 are associated with the vertical 
extent of the fluid and the characteristic speed of extended waves in shallow water. The Boussinesq equation was 
originally proposed by Boussinesq in 1871 to model the transmission of extended waves in shallow water20. Over 
time, various extensions of this equation have been developed by different researchers. More recently, Wazwaz 
introduced several forms of the Boussinesq equation in different dimensions. In this study, the focus is on its 
analysis in (2 + 1) dimensions. Equation (1) describes the propagation of gravity waves across the water surface, 
particularly focusing on the head-on interaction of oblique waves. Equation (1) has gained significant attention 
in various fields due to its consideration of nonlinearities and dispersion. Its applications include:

•	 It is used in models related to tsunami waves and other hydrodynamic phenomena.
•	 It is explored in studies involving free-surface dynamics.
•	 It is used to model magnetoacoustic waves in plasmas containing iron ions.
•	 It is applied in the study of wave propagation through elastic rods.

Literature review
Various researchers have applied different techniques to analyze the various forms of the Boussinesq equation 
across multiple dimensions. Wazwaz and Kaur19 investigated Eq.  (1) by examining its complete integrability 
via the Painlevé test. They derived multiple soliton solutions using a simplified Hirota’s method. Additionally, 
the exponential expansion method was applied, leading to soliton solutions with complex spatial structures. In 
Ref21., Zhao studied the fractional (3 + 1)-dimensional Boussinesq equation, extracting its soliton solutions and 
analyzing its chaotic behavior. The chaotic characteristics were confirmed through the evolution trends over 
time and the calculation of Lyapunov exponents. The polynomial method was also employed to derive various 
solutions, including trigonometric, Jacobi elliptic, and other forms. Silambarasan and Nisar22 analyzed the 
Eq. (1) and used the Jacobi elliptic function approach to obtain doubly periodic solutions. They demonstrated 
the degeneration of these solutions into non-topological solitons. Khalid et al.23 explored the (2 + 1) dimensional 
Boussinesq equation, employing the extended G-expansion method to derive soliton solutions.

Research gap
Despite significant progress in understanding the soliton dynamics within the Boussinesq equation, there is 
still a notable gap in exploring alternative solutions in this area. A survey of previous research on Eq. (1) reveals 
that the Hirota bilinear method has not yet been employed to derive multi-solitons. Furthermore, 1st and 2nd 
order breather waves, along with lump waves, derived using the LWL method, remain unexplored in the existing 
literature. Moreover, there has been no research conducted on interaction solutions that combine solitons, 
breather, and lump waves. Although considerable effort has been directed at examining solitary waves under 
various conditions, no research has examined the intersection or overlap among the two solutions. Investigating 
this interaction and similarity could offer valuable insight into the system by pinpointing the conditions under 
which two distinct solutions behave identically, an aspect that serves as the central focus of this research.

Motivation and key contributions
The motivation of this study stems from two factors: (i) the increasing importance of investigating nonlinear 
wave models such as the Boussinesq-type equations that admit a wide range of localized structures, and (ii) 
the limitations of existing analytical schemes that are typically restricted to single soliton solutions. Recent 
contributions have applied several improved analytical techniques, such as the improved modified extended 
tanh-function method24, the extended mapping approach25, and the Exp-function based schemes26. Likewise, 
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studies employing generalized mapping and related algebraic approaches have been successfully used to 
construct single-soliton profiles in fractional and higher-dimensional models, including the fractional Klein–
Fock–Gordon equation27, stochastic NLSE28 and the Nizhnik-Novikov-Veselov equation29. These works confirm 
the utility of such methods, but demonstrate that they are primarily tailored for single-soliton solutions.

In contrast, the Hirota bilinear approach adopted in this paper provides a systematic framework to derive 
not only one-soliton but also general multi-soliton solutions in closed form. This advantage makes it particularly 
suitable for investigating higher-order nonlinear wave dynamics. Building upon this framework, we further 
apply the LWL technique to generate first- and second-order lump solutions and the CCA to extract breather 
solutions. Moreover, we extend the analysis to hybrid interactions involving solitons, lumps, and breathers, which 
are rarely addressed in the above-mentioned schemes. Finally, the overlapping behavior of distinct solutions is 
systematically explored through a bidirectional scatter-plot (data mapping) approach, providing an additional 
diagnostic for identifying regions of similarity in solution structures.

The key contributions of this work are summarized as follows:

•	 Derivation of multi-soliton solutions (1-, 2-, 3-, and 4-soliton cases) using the Hirota bilinear method, where-
as earlier approaches such as the improved tanh-function, Sardar sub-equation, and Exp-function methods 
are generally limited to single soliton construction.

•	 Construction of first- and second-order lump solutions through the LWL approach, which is more efficient 
than direct algebraic techniques for higher-order rational solutions.

•	 Extraction of breather solutions (first and second orders) by the CCA, which have not been previously report-
ed for this equation.

•	 Exploration of hybrid interaction solutions, considering two different scenarios:

	– Case 1: N = 3
	– For N = 3, two kinds of interaction solutions are constructed:

* (i) 1-soliton with a 1st-order lump,
* (ii) 1-soliton with a 1st-order breather.

	– Case 2: N = 4
	– For N = 4, two types of interaction solutions are obtained:

* (i) 2-soliton with a 1st-order lump,
* (ii) 2-soliton with a 1st-order breather.

•	 Introduction of a bidirectional scatter-plot (data mapping) framework to examine overlapping behaviors be-
tween different solution classes.

Taken together, these contributions extend the scope of existing methods by providing a unified study that 
incorporates multi-solitons, lumps, breathers, their hybrid interactions, and overlapping behaviors for the 
specific Boussinesq-type equation introduced in Ref19.. This not only distinguishes our work from earlier studies, 
but also establishes a comprehensive analytical and comparative framework for future research.

Layout of the paper
The remainder of this manuscript is structured as follows. Sections "Overview of the hirota bilinear method" 
and "N-Soliton Solutions of Eq. (1)" introduce the Hirota bilinear method and N-soliton solutions. Section 
"Breather solutions of Eq. (1)" investigates the first- and second-order breather waves of Eq. (1). Section "Lump 
solutions of Eq. (1)" is devoted to lump wave solutions, while Sect. "Interaction dynamics of Eq. (1)" explores 
four distinct interaction patterns. In Sect. "Physical interpretation of results", the physical interpretations of the 
obtained results are discussed. Section "Analysis of solution overlaps" highlights the overlaps among different 
solutions through the bidirectional scatter plot method. Section "Comparative study with existing literature" 
provides a comparison between the present study and the existing literature. Section "Conclusion" concludes the 
paper, while Sect. "Future work" outlines potential future research directions. The overall layout of the paper is 
illustrated in Fig. 1.

Overview of the hirota bilinear method
The Hirota bilinear method is a direct and systematic technique to obtain exact multi-soliton solutions of NLEEs. 
The central idea is to transform the original PDE into a bilinear form through an appropriate dependent variable 
transformation, after which perturbation expansions can be systematically applied to generate soliton solutions. 
Its key steps are as follows:

Step 1: Suppose a NLEE is given in the form

	 G(H, Ht, Hx, Hy, Hxx, . . . ) = 0.� (2)

Through a dependent variable transformation

	 H(x, y, t) = K(lnΥ)xx,� (3)

where K represents a nonzero real constant. Equation (3) is converted into a bilinear form
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	 Q
(
Dx,Dy,Dt, . . .

)
Υ.Υ = 0,� (4)

where Q is a polynomial in the Hirota bilinear operators Dx,Dy,Dt, . . . . Here, Υ = Υ(x, y, t) is a real-valued 
function, and D refers to Hirota’s bilinear operator, which is defined as

	
Dx(Υ.Z) =

(
∂

∂x
− ∂

∂x′

)
Υ(x)Z(x′)|x′=x.� (5)

It can also be described as

	
Dp

xDq
yDr

t (Υ.Z) =
(

∂

∂x
− ∂

∂x′

)p
(

∂

∂y
− ∂

∂y′

)q (
∂

∂t
− ∂

∂t′

)r

Υ(x)Z(x′)|x′=x,y′=y,t′=t. � (6)

In this case, p, q, and r are nonnegative integers. The function Υ is chosen to be a perturbation expansion.
Step 2: To construct soliton solutions, a perturbative expansion of the form

	 Υ = 1 + εΥ1 + ε2Υ2 + · · ·� (7)

is introduced, where ε is a small parameter.
• For the one-soliton case, at the lowest order, we take

	 Υ = 1 + eζ1 , ζ1 = β1x + γ1y − ω1t + ζ01,� (8)

which leads to the dispersion relation between β1, γ1 and ω1.
• For the two-soliton case, the form is chosen as

	 Υ = 1 + eζ1 + eζ2 + η12eζ1+ζ2 ,� (9)

Fig. 1.  Layout of the paper showing the structure and flow of the study.
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where η12 is a constant determined by substituting into the bilinear equation.
• For the three-soliton case, the construction becomes

	
Υ = 1 +

3∑
i=1

eζi +
∑
i<j

ηijeζi+ζj + κ123eζ1+ζ2+ζ3 .� (10)

• In general, the N-soliton solution can be written as

	
Υ = ΥN(x, y, t) =

∑
α1,α2,...,αN∈{0,1}

exp

(
N∑

i=0

αiζi +
N∑

1≤i<j

αiαjηij

)
,� (11)

where ζi = βix + γiy − ωit + ζ0
i . Here, αi ∈ {0, 1} are binary parameters, and the summation is carried out 

over all possible 2N combinations of (α1, α2, . . . , αN). This compact notation is widely used in the bilinear 
method to represent the exponential structure of the N-soliton solution. The coefficients ζi denote the linear 
phase variables, while ηij  account for pairwise interactions between solitons. The key steps of the proposed 
method are illustrated in Fig. 2.

N-soliton solutions of Eq. (1)
In this part, the N-soliton solutions of Eq. (1) will be extracted using the Hirota bilinear technique13. The bilinear 
form corresponding to Eq. (1) is given by

	

(
D2

t − D2
x − δ2D4

x + δ2
3

4 D2
y + δ3DyDt

)
Υ.Υ = 0.� (12)

Here, Υ = Υ(x, y, t) is a real-valued function, and D refers to Hirota’s bilinear operator, which is defined in 
Eq. (5). The function Υ is chosen to be a perturbation expansion, which is written as

	
Υ = 1 +

∞∑
N=1

εNΥN(x, y, t).� (13)

By substituting Eq. (13) in Eq. (12), the resulting system can be obtained for various powers of ε. 

Fig. 2.  Flowchart of the Hirota bilinear method for constructing N-soliton solutions.
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	 O(ε0) : B(1.1) = 0, � (14a)

	 O(ε1) : B(1.Υ1 + Υ1.1) = 0, � (14b)

	 O(ε2) : B(1.Υ2 + Υ1.Υ1 + Υ2.1) = 0, � (14c)

	 O(ε3) : B(1.Υ3 + Υ1.Υ2 + Υ2.Υ1 + Υ3.1) = 0, � (14d)

	 O(ε4) : B(1.Υ4 + Υ1.Υ3 + Υ2.Υ2 + Υ3.Υ1 + Υ4.1) = 0, � (14e)

	
O(εk) : B

(
k∑

l=0

Θl.Θk−l

)
= 0,

(
Υ0 = 1

)
. � (14f)

 Here B =
(
D2

t − D2
x − δ2D4

x + δ2
3
4 D2

y + δ3DyDt

)
. The N soliton solutions of Eq. (1) will be derived using 

the bilinear method. To find these solutions, define the function Υ as: To derive the multi-soliton solutions, the 
following ansatz is employed:

	 Υi = eζi , ζi = βix + γiy − ωit + ζ0
i .� (15)

The parameters βi, γi, ζ0
i  are arbitrary, while ωi represents the wave velocity. By substituting Eq.  (15) in 

Eq. (14b), the value of ωi can be determined as

	
ωi =

δ3γi + 2βi

√
1 + δ2β2

i

2 , i = 1, 2, ...,N.� (16)

Thus, the dispersion variable ζi can be written as

	
ζi = βix + γiy −

δ3γi + 2βi

√
1 + δ2β2

i

2 t + ζ0
i .� (17)

1-soliton solution
In this subsection, the goal is to obtain the 1-wave soliton solutions. For the case where N = 1, Eq.  (13) is 
simplified as follows:

	

Υ1 = eζ1 ,

ζ1 = β1x + γ1y −
δ3γ1 + 2β1

√
1 + δ2β2

1

2 t + ζ0
1 .

� (18)

The phase constant ζ0
1  includes ε, allowing the soliton solution for Eq. (12) shown in Fig. 3.

	 Υ = 1 + Υ1 = 1 + eβ1x+γ1y−
δ3γ1+2β1

√
1+δ2β2

1
2 t.� (19)

Substitution of Eq. (3) and the auxiliary function from Eq. (19) into Eq. (1) yields the expression for K:

	
K = 6δ2β2

1

δ1
.� (20)

Substituting Eq. (20) in Eq. (3) yields the 1-wave soliton H1s of Eq. (1).

	
H1s (x, y, t) = 6δ2β2

1

δ1
sech 2

(
β1x + γ1y −

(
β1

√
1 + δ2β2

1 + δ3γ1

2

)
t

)
.� (21)

Equation (21) represents the 1-soliton solution of the considered model. For δ1 > 0, this solution corresponds to 
a bright soliton, characterized by a localized positive peak on a zero background. In contrast, for δ1 < 0, Eq. (21) 
yields a dark soliton, characterized by a localized dip on a finite background.

2-soliton solution
This section focuses on deriving two-wave solutions. For N = 2, Eq. (13) is simplified by truncating and adding 
the term Υ2 = η12eζ1+ζ2 , where η12 is a coupling constant to be determined.
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Υ1 = eζ1 + eζ2 ,

Υ2 = η12eζ1+ζ2 ,

ζi = βix + γiy −
δ3γi + 2βi

√
1 + δ2β2

i

2 t + ζ0
i , i = 1, 2.

� (22)

From Eq. (14c), the following form can be derived:

	

(
2Υ2,tt − 2γΥ2,xxxx + 1

2α2Υ2,yy + 2αΥ2,yt − 2Υ2,xx

)
+

(
2Υ1Υ1,tt − 2Υ2

1,t − 2γΥ1Υ1,xxxx + 8γΥ1,xxxΥ1,x

− 6γΥ2
1,xx + 1

2α2Υ1Υ1,yy + 2αΥ1Υ1,yt − 2αΥ1,tΥ1,y − 2Υ1Υ1,xx + 2Υ2
1,x − 1

2α2Υ2
1,y

)
= 0.

� (23)

The coupling constant η12 is determined by applying Eqs. (22) and (23):

	
η12 =

√
δ2 β2

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 − 3 β1β2 + 2 β2
2)

− 1√
δ2 β2

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 + 3 β1β2 + 2 β2
2)

− 1
.� (24)

Since ε can be absorbed into ζ0
i  (i = 1, 2), the corresponding solution for Eq. (12) is given by

	 Υ = 1 + Υ1 + Υ2 = 1 + eζ1 + eζ2 + η12eζ1+ζ2 .� (25)

Substituting Eq. (25) together with Eq. (20) in Eq. (3) yields the 2-wave soliton H2s for Eq. (1).

	

H2s (x, y, t) = 6δ2

δ1
×

(
β2

1eζ1 + β2
2eζ2 + η12(β1 + β2)2eζ1+ζ2

1 + eζ1 + eζ2 + η12eζ1+ζ2
−

(
β1eζ1 + β2eζ2 + η12 (β1 + β2) eζ1+ζ2

)2

(1 + eζ1 + eζ2 + η12eζ1+ζ2 )2

)
.

� (26)

Fig. 3.  Visualization of the 1-bright and dark soliton solutions in the (x, y)-plane.

 

Scientific Reports |        2025 15:40242 7| https://doi.org/10.1038/s41598-025-24067-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Given that

	
(
1 + eζ1 + eζ2 + η12eζ1+ζ2

)
̸= 0.

Here ζ1, ζ2, and η12 are defined in Eqs. (22) and (24). The solution (26) is displayed in Fig. 4. Equation (26) 
represents the 2-soliton solution of the considered model. The nature of this solution depends on the sign of the 
parameter δ1. For δ1 > 0, the solution corresponds to a bright 2-soliton, and for δ1 < 0, the solution represents 
a dark 2-soliton.

3-soliton solution
This section focuses on deriving three wave solutions. For N = 3, Eq. (13) is simplified by truncating and adding 
the term Υ3 = κ123eζ1+ζ2+ζ3 , where κ123 represents coupling constants that have yet to be determined.

	

Υ1 = eζ1 + eζ2 + eζ3 ,

Υ2 = η12eζ1+ζ2 + η13eζ1+ζ3 + η23eζ2+ζ3 ,

Υ3 = κ123eζ1+ζ2+ζ3 ,

ζi = βix + γiy −
δ3γi + 2βi

√
1 + δ2β2

i

2 t + ζ0
i , i = 1, 2, 3.

� (27)

The coupling constants ηij  are defined as follows:

Fig. 4.  Visualization of the 2-bright and dark soliton solutions in the (x, y)-plane.
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η12 =

√
δ2 β2

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 − 3 β1β2 + 2 β2
2)

− 1√
δ2 β2

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 + 3 β1β2 + 2 β2
2)

− 1
,

η13 =

√
δ2 β3

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 − 3 β1β3 + 2 β3
2)

− 1√
δ2 β3

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 + 3 β1β3 + 2 β3
2)

− 1
,

η23 =

√
δ2 β3

2 + 1
√

δ2 β2
2 + 1 − δ2

(
2 β2

2 − 3 β2β3 + 2 β3
2)

− 1√
δ2 β3

2 + 1
√

δ2 β2
2 + 1 − δ2

(
2 β2

2 + 3 β2β3 + 2 β3
2)

− 1
.

� (28)

From Eq. (14d), the value of κ123 can be determined as follows:

	 κ123 = η12η13η23.� (29)

Since ε can be absorbed into ζ0
i  (i = 1, 2, 3), the corresponding solution for Eq. (12) is given by

	

Υ = 1 + Υ1 + Υ2 + Υ3,

= 1 + eζ1 + eζ2 + eζ3 + η12eζ1+ζ2 + η13eζ1+ζ3 + η23eζ2+ζ3 + κ123eζ1+ζ2+ζ3 .
� (30)

Inserting Eq. (30) together with Eq. (20) in Eq. (3) yields the 3-wave soliton H3s of Eq. (1).

	
H3s(x, y, t) = 6δ2

δ1

(
Γ
Ω − χ2

Ω2

)
,� (31)

where

	

Γ = β2
1eζ1 + β2

2eζ2 + β2
3eζ3 + η12(β1 + β2)2eζ1+ζ2 + η13(β1 + β3)2eζ1+ζ3 +

η23(β2 + β3)2eζ2+ζ3 + κ123(β1 + β2 + β3)2eζ1+ζ2+ζ3 ,

χ = β1eζ1 + β2eζ2 + β3eζ3 + (β1 + β2)η12eζ1+ζ2 + (β1 + β3)η13eζ1+ζ3 +
(β2 + β3)η23eζ2+ζ3 + (β1 + β2 + β3)κ123eζ1+ζ2+ζ3 ,

Ω = 1 + eζ1 + eζ2 + eζ3 + η12eζ1+ζ2 + η13eζ1+ζ3 + η23eζ2+ζ3 +
κ123eζ1+ζ2+ζ3 .

� (32)

Here η12, η13, η23, and κ123 are defined in Eqs. (28) and (29). The solution (31) is displayed in Fig. 5. Equation (31) 
represents the 3-soliton solution of the considered model. The nature of this solution depends on the sign of the 
parameter δ1. For δ1 > 0, the solution corresponds to a bright 3-soliton, and for δ1 < 0, the solution represents 
a dark 3-soliton.

4-soliton solution
This section focuses on deriving four-wave solutions. For N = 4, Eq. (13) is simplified by truncating and adding 
the term Υ4 = ρ1234eζ1+ζ2+ζ3+ζ4 , where ρ1234 represents coupling constants that have yet to be determined.

	

Υ1 = eζ1 + eζ2 + eζ3 + eζ4 ,

Υ2 = η12eζ1+ζ2 + η13eζ1+ζ3 + η14eζ1+ζ4 + η23eζ2+ζ3 + η24eζ2+ζ4 + η34eζ3+ζ4 ,

Υ3 = κ123eζ1+ζ2+ζ3 + κ124eζ1+ζ2+ζ4 + κ134eζ1+ζ3+ζ4 + κ234eζ2+ζ3+ζ4 ,

Υ4 = ρ1234eζ1+ζ2+ζ3+ζ4 ,

ζi = βix + γiy −
δ3γi + 2βi

√
1 + δ2β2

i

2 t + ζ0
i , i = 1, 2, 3, 4.

� (33)

The coupling constants ηij  are defined as follows:
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η12 =

√
δ2 β2

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 − 3 β1β2 + 2 β2
2)

− 1√
δ2 β2

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 + 3 β1β2 + 2 β2
2)

− 1
,

η13 =

√
δ2 β3

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 − 3 β1β3 + 2 β3
2)

− 1√
δ2 β3

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 + 3 β1β3 + 2 β3
2)

− 1
,

η14 =

√
δ2 β4

2 + 1
√

δ2 β1
2 + 1 − δ2

(
2 β1

2 − 3 β1β4 + 2 β4
2)

− 1√
δ2 β3

2 + 1
√

δ2 β1
2 + 1 − δ4

(
2 β1

2 + 3 β1β4 + 2 β4
2)

− 1
,

η23 =

√
δ2 β3

2 + 1
√

δ2 β2
2 + 1 − δ2

(
2 β2

2 − 3 β2β3 + 2 β3
2)

− 1√
δ2 β3

2 + 1
√

δ2 β2
2 + 1 − δ2

(
2 β2

2 + 3 β2β3 + 2 β3
2)

− 1
,

η24 =

√
δ2 β4

2 + 1
√

δ2 β2
2 + 1 − δ2

(
2 β2

2 − 3 β2β4 + 2 β4
2)

− 1√
δ2 β4

2 + 1
√

δ2 β2
2 + 1 − δ2

(
2 β2

2 + 3 β2β4 + 2 β4
2)

− 1
,

η34 =

√
δ2 β4

2 + 1
√

δ2 β3
2 + 1 − δ2

(
2 β3

2 − 3 β3β4 + 2 β4
2)

− 1√
δ2 β4

2 + 1
√

δ2 β3
2 + 1 − δ2

(
2 β3

2 + 3 β3β4 + 2 β4
2)

− 1
.

� (34)

Here, κijk  are determined in the same manner as in the 3-soliton case:

	

κ123 = η12η13η23, κ124 = η12η14η24,

κ134 = η13η14η34, κ234 = η23η24η34.
� (35)

From Eq. (14e), the value of ρ1234 can be extracted as follows:

	 ρ1234 = η12η13η14η23η24η34.� (36)

Since ε can be absorbed into ζ0
i  (i = 1, 2, 3, 4), the corresponding solution for Eq. (12) is given by

Fig. 5.  Visualization of the 3-bright and dark soliton solutions in the (x, y)-plane.
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Υ = 1 + Υ1 + Υ2 + Υ3 + Υ4,

= 1 + eζ1 + eζ2 + eζ3 + eζ4 + η12eζ1+ζ2 + η13eζ1+ζ3 + η14eζ1+ζ4 + η23eζ2+ζ3 +
η24eζ2+ζ4 + η34eζ3+ζ4 + κ123eζ1+ζ2+ζ3 + κ124eζ1+ζ2+ζ4 + κ134eζ1+ζ3+ζ4 +
κ234eζ2+ζ3+ζ4 + ρ1234eζ1+ζ2+ζ3+ζ4 .

� (37)

Inserting Eq. (37) together with Eq. (20) in Eq. (3) yields the 4-wave soliton H4s of Eq. (1).

	
H4s(x, y, t) = 6δ2

δ1

(
M
F − Π2

F2

)
,� (38)

where

	

M = β2
1eζ1 + β2

2eζ2 + β2
3eζ3 + β2

4eζ4 + η12(β1 + β2)2eζ1+ζ2 + η13(β1 + β3)2eβ1+β3 + η14(β1 + β4)2eζ1+ζ4

+ η23(β2 + β3)2eζ2+ζ3 + η24(β2 + β4)2eζ2+ζ4 + η34(β3 + β4)2eζ3+ζ4 + κ123(β1 + β2 + β3)2eζ1+ζ2+ζ3 +
κ124(β1 + β2 + β4)2eζ1+ζ2+ζ4 + κ134(β1 + β3 + β4)2eζ1+ζ3+ζ4 + κ234(β2 + β3 + β4)2eζ2+ζ3+ζ4

+ ρ1234(β1 + β2 + β3 + β4)2eζ1+ζ2+ζ3+ζ4 ,

Π = β1eζ1 + β2eζ2 + β3eζ3 + β4eζ4 + η12(β1 + β2)eζ1+ζ2 + η13(β1 + β3)eζ1+ζ3 + η14(β1 + β4)eζ1+ζ4

+ η23(β2 + β3)eζ2+ζ3 + η24(β2 + β4)eζ2+ζ4 + η34(β3 + β4)eζ3+ζ4 + κ123(β1 + β2 + β3)eζ1+ζ2+ζ3 +,

κ124(β1 + β2 + β4)eζ1+ζ2+ζ4 + κ134(β1 + β3 + β4)eζ1+ζ3+ζ4 + κ234(β2 + β3 + β4)eζ2+ζ3+ζ4

+ ρ1234(β1 + β2 + β3 + β4)eζ1+ζ2+ζ3+ζ4 ,

F = 1 + eζ1 + eζ2 + eζ3 + eζ4 + η12eζ1+ζ2 + η13eζ1+ζ3 + η14eζ1+ζ4 + η23eζ2+ζ3 + η24eζ2+ζ4 +
η34eζ3+ζ4 + κ123eζ1+ζ2+ζ3 + κ124eζ1+ζ2+ζ4 + κ134eζ1+ζ3+ζ4 + κ234eζ2+ζ3+ζ4 +
ρ1234eζ1+ζ2+ζ3+ζ4 .

� (39)

Here ηik , 1 ≤ i < k ≤ 4, κ123, κ124, κ134, κ234, and ρ1234 are defined in Eqs. (34)–(36). The solution (38) is 
displayed in Fig. 6. Equation (38) represents the 4-soliton solution of the considered model. The nature of this 
solution depends on the sign of the parameter δ1. For δ1 > 0, the solution corresponds to a bright 4-soliton, and 
for δ1 < 0, the solution represents a dark 4-soliton.

Breather solutions of Eq. (1)
In this section, the CCA is utilized to derive breather solutions from N-solitons of Eq. (1) in different planes. The 
mth-breather solution is obtained by applying this approach to the parameters in Eq. (11).

	 N = 2m, β2i = β∗
2i−1, γ2i = γ∗

2i−1,� (40)

where m ∈ N, i = 1, 2, ...,N. Different forms of the breather waves emerge by assigning specific values to 
explicit expressions.

1st-order breather waves
To obtain the 1st-order breather solution, the following values are assigned:

	 N = 2, β2 = β∗
1 , γ2 = γ∗

1 .� (41)

By inserting the given values into Eq. (25), Υ is obtained as

	
Υ = 1 + eζ1 + eζ∗

1 +

√
δ2 β∗

1
2 + 1

√
δ2 β1

2 + 1 − δ2
(
2 β1

2 − 3 β1β∗
1 + 2 β∗

1
2)

− 1√
δ2 β∗

1
2 + 1

√
δ2 β1

2 + 1 − δ2
(
2 β1

2 + 3 β1β∗
1 + 2β∗

1
2)

− 1
eζ1 eζ∗

1 .� (42)

Here, ζ∗
1  represents the complex conjugate of ζ1, which is defined in Eq. (22). A detailed examination of the 

obtained solution reveals two distinct breather patterns, categorized according to their visual features.

•	 The first-order t-periodic bright breather solution is derived using the parameter values: β1 = 0.1 − I , 
β2 = 0.1 + I , γ1 = 0.5 − I , γ2 = 0.5 + I , δ1 = δ2 = δ3 = 1, N = 2, and ζ0

1 = ζ0
2 = 0. For δ1 = −1, a 

dark breather solution emerges. This solution shows oscillatory behavior along the t-axis within the (y, t)
-plane, while staying spatially confined in the y-axis (Fig. 7a).

•	 The first-order x-periodic bright breather solution is derived using the parameter values: β1 = 0.1 − I , 
β2 = 0.1 + I , γ1 = 0.5 − I , γ2 = 0.5 + I , δ1 = δ2 = δ3 = 1, N = 2, and ζ0

1 = ζ0
2 = 0. For δ1 = −1, a 

dark breather solution emerges. This solution shows oscillatory behavior along the x-axis within the (x, y)
-plane, while staying spatially confined along the y-axis (see Fig. 7b).
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2nd-order breather waves
For N = 4, appropriate parameter selection leads to the derivation of second-order breather solutions. Higher-
dimensional breather solutions are expected to display more intricate and impactful dynamic behaviors. The 
2nd-order breathers are obtained by setting the parameters as follows:

	 N = 4, β2 = β∗
1 , β4 = β∗

3 , γ2 = γ∗
1 , γ4 = γ∗

3 .� (43)

•	 The 2nd-order y-bright and dark breather solutions, obtained with the parameters 
N = 4, β1 = 0.1 − I, β2 = 0.1 + I, γ1 = −I, γ2 = I, β3 = 0.2 − I, β4 = 0.2 + I, γ3 = −2I, γ4 = 2I, ζ0

1 = ζ0
2 = ζ0

3 = ζ0
4 = 0, 

form two parallel rows with a periodicity of 2π along the y-axis while remaining localized along the x-axis in 
the (x, y)-plane (see Fig. 8).

Lump solutions of Eq. (1)
This section examines the lump solutions of Eq. (1), a key type of rational solution. Their behavior is analyzed 
alongside visual representations.

1st-order lump waves
For N = 2 and ζ0

1 = ζ0
2 = Iπ, Υ2 is given by

	 Υ2 = 1 − eζ1 − eζ2 + η12eζ1+ζ2 .� (44)

Firstly, set the parameters as

	 N = 2, γ1 = σ1β1, γ2 = σ2β2,

in Eq. (11) and taking the limit βi → 0, (i = 1, 2), the expression for Υ in Eq. (11) transforms into:

	 Υ2 = χ1χ2 + η12,� (45)

Fig. 6.  Visualization of the 4-bright and dark soliton solutions in the (x, y)-plane.
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where

	




χi = x + σiy − δ3σi+2
√

1+δ2β2
i

2 t + χ0
i , (i = 1, 2)

η12 =
√

δ2 β22+1
√

δ2 β12+1−δ2 (2 β1
2−3 β1β2+2 β2

2)−1√
δ2 β22+1

√
δ2 β12+1−δ2 (2 β12+3 β1β2+2 β22)−1

.

By specifying the parameters as

	 β1 = 0.2 − 1.5I, β2 = 0.2 + 1.5I, σ1 = I, σ2 = −I, δ1 = δ2 = δ3 = 1,� (46)

Fig. 7.  Representation of first-order breather solutions in different planes.
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and integrating Eqs. (45) and (46), the first order lump solution of Eq. (1) is obtained as

	
H1−Lump = 12.2 xt − 4.5 yt + 12.9 y2 − 2.5 t2 + 650.8 − 12.9 x2

(−0.9 xt − 0.36 yt + 1.04 y2 + 0.26 t2 + 52 + 1.04 x2)2 .� (47)

The first-order lump solution given in Eq. (47) is examined in the (x, y)-plane at different time values. Figure 
9a–c display the bright lump profiles at t = 0, t = 2 and t = 4, respectively, while Fig. 9d–f illustrate the 
corresponding dark lump profiles at the same time levels. At the initial time t = 0, the bright lump exhibits 
a sharp localized peak centered on the (x,  y)-plane, whereas the dark lump shows a well-defined localized 
depression over a constant background. As time progresses to t = 2, both bright and dark lumps maintain their 
spatial localization, with their centers slightly shifted in the plane due to the temporal dependence in Eq. (47). 

Fig. 9.  Visualization of first-order lump solutions in the (x, y) plane at different time levels.

 

Fig. 8.  Visualization of second-order breather solutions in different planes.
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At t = 4, bright and dark structures continue to persist without diffusion, demonstrating the robustness of the 
lump solutions.

The lump profiles evolve with respect to time; however, their localization remains confined to the spatial 
(x, y)-plane. The temporal parameter governs only the dynamical movement of the structures, while the rational 
localization characteristic is preserved in both spatial directions. The persistence of these bright and dark 
lump waves across different time levels reflects their temporal stability and confirms their behavior as spatially 
localized solutions over a constant background (see Fig. 9).

2nd-order lump waves
For the 2-lump solution, the parameters are set as follows:

	 N = 4, γ1 = σ1β1, γ2 = σ2β2, γ3 = σ3β3, γ4 = σ4β4, χ0
i = −1, 1 ≤ i ≤ 4,

then Υ4 is given as

	

Υ4 = χ1χ2χ3χ4 + η12χ3χ4 + η13χ2χ4 + η14χ2χ3 + η23χ1χ4 + η24χ1χ3

η34χ1χ2 + η12η34 + η13η24 + η14η23,
� (48)

where χi and ηij  are defined in Eq. (45). By specifying the parameters as

	

β1 = 0.1 − 2I, β2 = 0.1 + 2I, σ1 = 1.5I, σ2 = −1.5I,

β3 = 1.5 − 1.2I, β4 = 1.5 + 2I, σ3 = I, σ4 = −I,
� (49)

and integrating Eqs. (49) and (48), the 2nd-order lump solution is obtained. Figure 10 illustrates the evolution 
of second-order lump solutions in the (x, y)-plane at different time levels t = 0, 2, and 4. The plots show that 
the two lump waves move asymptotically and undergo an elastic collision. At t = 0, the lumps are initially 
close, forming a butterfly-shaped structure. As time increases, the waves interact and then gradually separate, 
preserving their shapes, which highlights the elastic nature of the collision.

Fig. 10.  Visualization of second-order lump solutions in the (x, y) plane at different time levels.
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Interaction dynamics of Eq. (1)
This section examines four distinct hybrid solutions using the LWL method. Through CCA, interaction 
solutions are derived that incorporate soliton, breather, and lump waves. MATLAB is utilized to create visual 
representations, facilitating a detailed analysis of their dynamic properties.

Interaction solutions when N = 3
A combination of 1-soliton and 1-lump
For N = 3, set ζ0

1 = ζ0
2 = ζ0

3 = Iπ in Eq. (30) and taking βi → 0, (i = 1, 2); then Υ3 can be obtained as

	
Υ3 = χ1χ2 + η12 +

(
χ1χ2 + η13χ2 + η23χ1 + η13η23 + η12

)
exp(ζ3),� (50)

where

	




χi = x + σiy − δ3σi+2
√

1+δ2β2
i

2 t + χ0
i , (i = 1, 2, 3)

ηij =
√

δ2 β22+1
√

δ2 β12+1−δ2 (2 β1
2−3 β1β2+2 β2

2)−1√
δ2 β22+1

√
δ2 β12+1−δ2 (2 β12+3 β1β2+2 β22)−1

, (1 ≤ i < j ≤ 3).
� (51)

Equation (50) is substituted in Eq. (3), followed by the assignment of parameters as

	

β1 = 0.1 − 1.5I, β2 = 0.1 + 1.5I, σ1 = −I, σ2 = I, β3 = 0.9,

σ3 = 0.1, δ1 = 1.2, δ2 = δ3 = 1.
� (52)

As a result, a hybrid solution in both bright and dark forms is obtained, composed of a 1 soliton and a 1-lump 
for Eq. (1). From Fig. 11, it is observed that these solutions gradually move toward each other over time. At 
t = 0 (Fig. 11b and e), the center of the 1st-order lump wave coincides with the soliton. Following their collision, 
both structures maintain their forms but undergo positional shifts. Specifically, at t = 10 (Fig. 11a and d), the 
soliton is positioned on the right, whereas at t = −10, it appears on the left (Fig.  11c and f). Despite these 

Fig. 11.  Visualization of the hybrid solution comprising one lump and one soliton in the (x, y) plane at 
different time levels.
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positional changes, their forms remain unchanged, confirming that the hybrid solution undergoes an elastic 
collision.

A combination of 1-soliton and 1-breather
Similarly, by setting particular values for the parameters in Eq. (30) as outlined below:

	

β1 = 1, β2 = 0.1 − I, β3 = 0.1 + I, γ1 = 1.2, γ2 = 0.5 − I,

γ3 = 0.5 + I, δ1 = δ2 = 1, δ3 = 0.2.
� (53)

Insert the function Υ3 into the Eq. (3), an interaction solution, in both bright and dark forms, consisting of the 
1st-order breather and 1-wave soliton, is derived. Initially, at t = 0 (Fig. 12b and e), both solutions overlap at the 
origin. As time progresses, the soliton shifts position, while maintaining its shape. At t = 10 (Fig. 12a and d), 
the soliton is positioned on the right side and at t = −10 (Fig. 12c and f), it moves to the left side. Despite these 
positional changes, the shape of the soliton remains unchanged, confirming the elastic nature of the interaction.

Interaction solutions when N = 4
A combination of 2-soliton and 1-lump
For N = 4, we assign ζ0

1 = ζ0
2 = ζ0

3 = ζ0
4 = Iπ in Eq. (37) and let βi → 0, (i = 1, 2, 3, 4). Consequently, Υ4 

can be written as

	

Υ4 =
(

χ1χ2 + η13χ2 + η23χ1 + η13η23 + η12

)
eζ3 +

(
χ1χ2 + η14χ2 + η24χ1 + η14η24 + η12

)
eζ4

+
(

χ1χ2 + η13χ2 + η14χ2 + η23χ1 + η24χ1 + η14η23 + η13η24 + η13η23 + η14η24 + η12

)
eζ3+ζ4+η34

+ χ1χ2 + η12,

� (54)

where

Fig. 12.  Visualization of the hybrid solution comprising one breather and one soliton in the (x, y) plane at 
different time levels.
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


χi = x + σiy − δ3σi+2
√

1+δ2β2
i

2 t + χ0
i , (i = 1, 2, 3, 4)

ηij =
√

δ2 β22+1
√

δ2 β12+1−δ2 (2 β1
2−3 β1β2+2 β2

2)−1√
δ2 β22+1

√
δ2 β12+1−δ2 (2 β12+3 β1β2+2 β22)−1

, (1 ≤ i < j ≤ 4.
� (55)

Inserting Eq. (55) in Eq. (3) and define the parameters as follows:

	

β1 = 0.1 − 2I, β2 = 0.1 + 2I, σ1 = −I, σ2 = I, β3 = 0.9,

β4 = −1, σ3 = 1, σ4 = −1, δ1 = δ2 = δ3 = −1.
� (56)

This results in a hybrid solution in both dark and bright forms, composed of a first-order lump and a 2-soliton 
for Eq. (1). The interplay of these solutions in the (x, y) plane demonstrates a full collision at t = 0, where the 
lump and solitons fully overlap, creating a pronounced peak (Fig. 13b and e). As time advances, at t = 10, the 
soliton starts to move away from the lump in the positional direction, although they continue to interact (Fig. 
13a and d). By t = −10 (Fig. 13c and f), the solitons and lump have separated further, the soliton now moving 
in the negative direction, yet their interaction and shape remain unchanged.

A combination of 2-soliton and 1-breather
In the same way, by assigning particular parametric values in Eq. (37) as

	

β1 = 0.5 − 1.9I, β2 = 0.5 + 1.9I, β3 = 3, β4 = −3.1, γ1 = −I,

γ2 = I, γ3 = 3, γ4 = 4, δ1 = δ2 = δ3 = 1.
� (57)

By substituting the function Υ4 in Eq. (3), an interaction solution, composed of a 1-breather and 2-soliton, is 
obtained in both bright and dark forms. As shown in Fig. 14, the 1-breather and 2-soliton solutions gradually 
approach each other over time. At t = 0 (Fig. 14b and e), the center of the 1-breather coincides with the soliton. 
Following their interaction, at t = 4 and t = −4, both solutions maintain their forms but shift positions in the 
positive and negative directions with equal amplitudes. These shifts are illustrated in (Fig. 14a and d) for t = 4 
and (Fig. 14c and f) for t = −4, confirming that the collision is elastic. Table 1 presents various wave solutions 
along with their corresponding interaction dynamics.

Fig. 13.  Visualization of the hybrid solution comprising one lump and two soliton in the (x, y) plane at 
different time levels.
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Physical interpretation of results
In this section, we provide a comprehensive physical interpretation of the obtained solutions, highlighting their 
qualitative behaviors, interaction properties, and physical importance. The results are discussed sequentially 
according to the employed analytical techniques: Hirota bilinear method, CCA, the LWL method, and their 
hybrid interactions. Figures 3 to 14 are explicitly referenced to illustrate the key dynamics.

Hirota bilinear method
Using the Hirota bilinear technique, N-soliton solutions of Eq. (1) were constructed.

N-wave soliton Interaction dynamics and wave solutions

2-wave soliton 1st-order lump

4-wave soliton 2nd-order lump

2P-soliton P-order lump

2-wave soliton 1st-order breather

4-wave soliton 2nd-order breather

2P-wave soliton P-order breather

3-wave soliton 1-wave soliton + 1st-order lump

4-wave soliton 2-wave soliton + 1st-order lump

2P+R-soliton P-wave soliton + R-order lump

3-wave soliton 1-wave soliton + 1st-order breather

4-wave soliton 2-wave soliton + 1st-order breather +

2P+R-wave soliton P-wave soliton + R-order breather

Table 1.  Different wave solutions and their interactions.

 

Fig. 14.  Visualization of the hybrid solution comprising one breather and two soliton in the (x, y) plane at 
different time levels.
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First-order soliton (Eq. 21). This is a classical exponential solution of sech 2 type, localized in space. For 
δ1 > 0, Eq. (21) gives a bright soliton with a localized positive peak on a zero background. For δ1 < 0, it yields 
a dark soliton, that is, a localized dip on a finite background. The bright and dark cases are shown in Fig. 3a–d, 
respectively.

Two-soliton solution  (Eq. 26). This solution describes the nonlinear superposition of two exponential solitons. 
Depending on δ1, these can be bright–bright, or dark–dark interactions. The collision remains elastic and the 
solitons recover their original shapes after interaction (Fig. 4).

Higher-order solitons. The three-soliton solution (constructed via Eq. 31) and four-soliton solution (Eq. 38) 
are likewise exponential solutions of type sech . Figures 5 and 6 show that even under complex multi-soliton 
interactions, the collisions are elastic: solitons emerge unchanged apart from phase shifts.

Breather solutions
Applying the CCA, breather solutions are derived. Unlike solitary waves, breathers are periodic in time or space, 
combining exponential envelopes with oscillatory modulation.

First-order breather This solution represents an exponential soliton pair under conjugate parameters, 
producing a localized oscillatory structure. Depending on δ1, it manifests as a bright breather (pulses on a zero 
background) or a dark breather (localized dips on a finite background). The periodic time and space breathers 
are shown in Fig. 7a,b.

Second-order breather Built from higher-order exponential terms, these exhibit two oscillatory rows in 
parallel (Fig. 8). Such solutions model recurrent energy localization, which is relevant for describing rogue waves 
and periodic plasma oscillations.

Lump solutions
Applying the LWL reduction leads to rationally localized lump solutions.

First-order lump (Eq. 47). Unlike exponential solitons, this is a rationally decaying solution localized in both 
x and y. It may appear as a bright lump (positive peak) or dark lump (negative depression), depending on the 
numerator sign in Eq. (47). Figure 9a–c (bright) and d–f (dark) show the time evolution at t = 0, 2, 4.

Second-order lump Derived by extending Eq.  (47), this solution exhibits two interacting lumps. At t = 0, 
they form a butterfly-like pattern, then undergo an elastic collision, preserving their structure after separation 
(Fig. 10).

Hybrid interactions
Finally, mixed solutions demonstrate the coexistence of different nonlinear excitations.

•	 Soliton–lump hybrid. An exponential soliton collides with a rational lump, retaining both structures post-in-
teraction (Fig. 11).

•	 Soliton–breather hybrid. The soliton undergoes a positional shift while the breather maintains its oscillation, 
as in Fig. 12.

•	 Two-soliton–one-lump hybrid. Shown in Fig. 13, two exponential solitons interact with a rational lump, all 
emerging elastically.

•	 Two-soliton–one-breather hybrid. Presented in Fig. 14, two exponential solitons and one breather collide elas-
tically, with phase shifts but preserved shapes.

Key insights
The results obtained can be summarized as follows: 

	1.	 Bright/dark solitons  (Eqs. (21), (26), (31), (38)). Exponential sech 2-type solutions, bright for δ1 > 0 and 
dark for δ1 < 0, with elastic interactions.

	2.	 Breathers (Eq. 42) and higher-order forms). Oscillatory exponential solutions, periodic in t or x, manifesting 
as bright or dark breathers depending on δ1.

	3.	 Lumps (Eq. 47). Rationally localized solutions with algebraic decay; bright or dark, depending on the numer-
ator sign. Elastic interactions are observed in higher-order lumps.

	4.	 Hybrids. Mixed exponential–rational or exponential–oscillatory structures, all demonstrating elastic colli-
sions with preserved identities.

These classifications agree with established soliton taxonomy in nonlinear wave theory30,31, strengthening the 
physical context of our results. In general, the results reveal that Eq. (1) admits a wide spectrum of nonlinear 
wave phenomena, each with distinct physical signatures. The ability to obtain soliton, breather, lump, and hybrid 
solutions underlines the versatility of the system in modeling nonlinear dispersive media.

Analysis of solution overlaps
This part presents a detailed comparative analysis of the behaviors of different wave solutions using data points, 
highlighting their interactions and overlapping features. The purpose is to identify regions in which otherwise 
distinct solutions exhibit common characteristics, as well as regions in which they diverge.

Two types of solution are considered for this analysis: the Soliton and the Lump. Each solution depends on 
a specific set of parameters and is evaluated within the designated ranges of the spatial variables (x, y) and the 
temporal variable t. By systematically varying these coordinates, a collection of data points is generated for each 
case. The scatter plots then provide a bidirectional comparison, where two solutions are plotted simultaneously 
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with distinct colors. Points in common or overlapping regions indicate that the solutions share similar behavior 
under specific parameter settings, while separated clusters indicate differences.

•	 Solution 1 (bright soliton):

	
H1s = 6ex+y

(1 + ex+y)2 ,� (58)

 with parameters β1 = γ1 = δ1 = δ2 = 1, δ3 = 0.2, and t = 2.

•	 Solution 2 (dark soliton):

	
H1s = − 6ex+y

(1 + ex+y)2 ,� (59)

 with parameters β1 = γ1 = δ1 = 1, δ2 = −1, δ3 = 0.2, and t = 2.

•	 Solution 3 (1-Lump):

	
H1−Lump = −62.9x2 + 62.93y2 + 190.19

(2.29x2 + 2.29y2 + 6.92)2 ,� (60)

 with parameters β1 = 0.2 − 1.5I , β2 = 0.2 + 1.5I , σ1 = I , σ2 = −I , δ1 = δ2 = δ3 = 1, and t = 1.
Spatial variables are varied within the ranges x ∈ [−5, 5] and y ∈ [−3, 3], while t is fixed according to the 
solution under study. By evaluating these solutions at discrete values of x, y, data points are generated, which are 
then compared pairwise in the scatter plots.

The analysis is summarized in Fig. 15, which uses a bidirectional scatter plot technique.

•	 Figure 15a: Solution 3 (blue) in Eq. (60) is compared with a second-order Lump (red). Both solutions are 
evaluated in the (x, y)-plane. For different combinations of x and y, data points are generated that map the 
behavior of each lump. The results indicate that while the two solutions are distinct, they exhibit strong simi-
larity in the mid-function value range (approximately [0.5, 1.5]), where their data points overlap. This overlap 
suggests that first- and second-order lumps can produce similar localized structures under specific parameter 
ranges, while diverging outside this region.

•	 Figure 15b: Solution 1 (red) in Eq. (58) is compared to Solution 2 (blue) in Eq. (58). Solution 1 represents a 
bright soliton, while solution 2 represents a dark soliton. The scatter plot reveals that these two solutions be-
have as mirror images: the bright soliton has a peak above the baseline, whereas the dark soliton has a trough 
below it. The overlap occurs only at the origin, confirming that, while their global behaviors are opposite, they 
retain a localized similarity. This observation highlights the dual nature of soliton solutions where opposite 
profiles can share a common reference point.

•	 Figure 15c: Solution 1 (red, bright soliton) in Eq. (58) is compared to Solution 3 (blue, 1-Lump) in Eq. (60). 
Here, both the soliton solution and the lump solution are evaluated in the (x,  y)-plane. The scatter plot 
demonstrates that although the two types of solution are structurally different, they exhibit partial overlap in 
the range [0, 1.5]. This indicates that soliton-type and lump-type solutions can momentarily align in behavior 
within certain parameter intervals before diverging into their distinct functional forms.

•	 Figure 15d: Solution 3 (first-order Lump) is further compared with its bright and dark variants. The scat-
ter plot shows that the bright and dark lumps are symmetric counterparts, much like in the soliton case in 
Fig. 15b. Their overlap occurs primarily near the origin, where their function values converge. Away from this 
region, the two lump profiles move in opposite directions, reflecting the bright and dark structures. This lo-
calized similarity and global divergence illustrate how lump solutions can bifurcate depending on parameter 
signs, producing contrasting behaviors that remain correlated at specific points.

Across all subplots, it is observed that the solutions tend to cluster in the middle function value range and near 
the origin, suggesting that distinct solution types (soliton vs lump, bright vs. dark, first-order vs. higher-order) 
can share common behaviors in limited regions. As the parameter values or coordinate ranges increase, the 
solutions begin to diverge, thereby highlighting the transition from correlated to distinct solution behaviors 
depending on the chosen parameter set.

Comparative study with existing literature
We now compare our results with the work of Wazwaz and Kaur19, who first introduced this form of the 
Boussinesq equation and examined its soliton structures. While their study focused on integrability and multi-
soliton derivations, our work extends the analysis by considering additional solution types and their interactions. 
The main distinctions are summarized in Table 2.

It should be noted that although various forms of the Boussinesq equation have been studied, the specific 
form introduced in Ref19. has not previously been investigated in terms of lump, breather, hybrid, or overlap 
analyses. The present work extends the earlier study by constructing higher-order lumps, breather solutions, and 
hybrid interactions through the bilinear Hirota framework, and by introducing a bidirectional data-mapping 
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Aspect Wazwaz & Kaur19 Current work

Equation Introduced this form of the Boussinesq equation and studied 
its integrability. Considered the same equation for further analytical exploration.

Integrability Verified using the Painlevé test. Built on established integrability to construct wider solution families.

Multi-solitons Derived via simplified Hirota approach. Derived via bilinear Hirota approach with explicit forms.

Breathers Not reported. First- and second-order breathers obtained.

Lumps Not presented for this equation. First- and second-order lumps constructed.

Hybrid interactions Not discussed. Hybrid solutions (soliton–lump, soliton–breather) analyzed.

Overlap analysis Not addressed. Overlapping behaviors studied through bidirectional data mapping.

Visualization No graphical representation of solutions was provided. Extensive visualizations, including 2D and 3D plots of soliton, lump, 
breather, and hybrid interactions.

Table 2.  Comparison between Wazwaz & Kaur19 and the present work.

 

Fig. 15.  Overlapping of solution behaviors.
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approach to examine overlapping behaviors. These results complement the findings of Ref19. and provide a 
broader understanding of the solution structures of this equation.

Comparative analysis with recent methods
In addition to the comparison with Wazwaz and Kaur19, our work is also compared to other recent contributions 
in the field. The summary is provided in Table 3.

Conclusion
This study has explored novel wave solutions and analyzed the complex dynamics of the (2 + 1)-dimensional 
Boussinesq equation. By employing the Hirota bilinear approach, explicit N-soliton solutions were derived, 
as demonstrated in Figs. 3–6. Using the CCA, higher-order bright and dark breather waves were constructed, 
including first-order t-periodic and x-periodic breathers (Fig. 7) and second-order breathers exhibiting more 
intricate dynamics (Fig. 8).

Lump wave solutions were further obtained through the LWL approach applied to N-solitons. Both first- and 
second-order lumps were explicitly constructed (Figs. 9 and 10), revealing elastic collision phenomena where 
localized structures interact without loss of identity, though temporarily redistributing energy. For N > 2, the 
combined use of the LWL method and CCA produced four hybrid classes of solutions, incorporating solitons, 
lumps, and breathers (Figs. 11 and 14). These hybrid solutions enrich the dynamical spectrum of the model. A 
complete overview of the solutions is summarized in Table 1.

In addition, a comparative analysis of the soliton and lump waves was performed using a bidirectional scatter 
plot technique, which enabled quantitative evaluation of similarities across different solution types (Fig. 15). This 
approach provided a new perspective on nonlinear wave interactions and enhanced the classification of distinct 
solution behaviors. The methodologies presented here are sufficiently general to be applied to other nonlinear 
systems, offering a framework for identifying and interpreting complex wave phenomena in higher-dimensional 
models.

Future work
Several directions can be pursued to extend this research. First, data-driven approaches such as the bilinear 
neural network framework could be applied to the Boussinesq equation for constructing multi-soliton solutions 
with enhanced predictive capability. Second, alternative analytical tools, including the generalized logistic 
approach and the auxiliary equation method, may be explored to uncover additional classes of exact solutions. 
Third, dynamical systems techniques such as bifurcation and chaos analysis could provide deeper insights into 
stability, transition, and energy transfer mechanisms.

Moreover, recent studies have begun to address stochastic effects in nonlinear wave models using the IMETFS. 
For instance, investigations on a (3+1)-dimensional NLSE with cubic–quintic nonlinearity demonstrated how 
multiplicative noise influences the formation of stochastic solitons of various types, including bright, dark, and 
singular structures, along with periodic and elliptic solutions35. In another related work, the same analytical 
framework was applied to a HMGI equation under stochastic perturbations, leading to the construction of 
diverse exact solutions with direct implications for nonlinear optical wave propagation36. Incorporating such 
stochastic perspectives and higher-order perturbation terms into the present methodology could provide a more 
realistic description of soliton dynamics in physical systems.

Finally, extending the methodology to coupled ocean–atmosphere models or validating lump and breather 
dynamics against experimental or numerical ocean wave data would significantly strengthen the engineering 
relevance of these findings.

Data availability
All data that support the findings of this study are included within the article.

Received: 20 August 2025; Accepted: 10 October 2025

Reference Key features Advantages/disadvantages

Hussein et 
al.32

Applied IMETFS to a new (2+1)-D Ito integro-differential equation; 
produced bright, dark, singular, periodic, and elliptic wave solutions.

Advantage: Efficient, simple to implement, wide variety of solutions. Disadvantage: 
Focused only on specific Ito-type PDE; does not cover hybrid or lump interactions.

Murad et 
al.33

Used the GERFM for dual-mode fractional NLSE; constructed bright, dark, 
mixed, and singular optical solitons; analyzed fractional-order effects.

Advantage: Captures fractional-order dynamics; suitable for nonlinear optics. 
Disadvantage: Restricted to NLSE-type models; no rational (lump) or hybrid solutions.

Hussein et 
al.34

Applied IMETF method to longitudinal wave equation in magneto-electro-
elastic annular bar; derived singular, bright, dark, rational, and periodic wave 
solutions.

Advantage: Novel application to smart materials; diverse solution classes. 
Disadvantage: Limited to single wave structures; lacks multi-soliton and hybrid 
analysis.

Present 
work

Hirota Bilinear Method + CCA + LWL applied to (2+1)-D Boussinesq 
equation; derived solitons, breathers, lumps, and hybrid solutions with 
overlap analysis.

Advantage: Unified framework; broader taxonomy (multi-soliton, lump, breather, 
hybrid); elastic interactions; visual and physical interpretation. Disadvantage: More 
algebraically complex than direct schemes.

Table 3.  Comparison of the present method with recent approaches in the literature.
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