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Comparative analysis of lump,
breather, and interaction solutions
using a bidirectional data mapping
approach

Syeda Sarwat Kazmi'**! & Muhammad Bilal Riaz*?2

This study analyzes the (2 + 1)-dimensional Boussinesq equation, a fundamental model in coastal
and ocean engineering for describing the propagation of long waves in shallow water. Understanding
the nonlinear wave structures of this equation is essential for predicting energy localization, wave
stability, and extreme events such as rogue waves. To this end, the Hirota bilinear method is employed
to derive explicit N-soliton solutions, explicitly classifying them into bright and dark types according to
parameter criteria. Breather solutions in different planes are constructed using the complex conjugate
approach, while the long-wave limit method is applied to obtain first- and second-order lump waves,
representing rationally localized structures. Furthermore, four hybrid solutions combining solitons,
lumps, and breathers are developed, and their interaction dynamics (e.g. soliton-soliton and soliton—
lump collisions) are systematically analyzed. The interactions are shown to be elastic, and all structures
retain their identities after collision. A novel contribution of this work is the use of a bidirectional
scatter plot technique to compare the behaviors of these solutions across parameter ranges, providing
a unified framework for identifying conditions under which different solutions exhibit similar dynamics.
The results demonstrate several practical insights: for example, lump solutions preserve their
localization over time, modeling stable energy concentrations, while soliton-breather interactions
capture oscillatory instabilities relevant for predicting extreme wave events. These contributions
extend beyond previous studies by offering both a systematic taxonomy of nonlinear wave structures
and a diagnostic tool for engineers to evaluate wave interactions under varying oceanic conditions.

Keywo rds N-soliton solutions, Hirota bilinear method, Breather waves, Long wave limit method, Lump
waves, Hybrid solutions, Overlapping of solutions

Abbreviations

NLEE Nonlinear evolution equation
NLM Nonlinear model

PDE Partial differential equation
NLSE Nonlinear Schrodinger equation
CCA Complex conjugate approach
LWL Long-wave limit

IMETFS  Improved modified extended tanh-function scheme
GERFM  Generalized exponential rational function method
HMGI Higher-order modified Gerdjikov-Ivanov

A NLEE is a mathematical and physical model that characterizes temporal evolution in nonlinear systems
and remains a key area of interest in nonlinear science. These models are essential in tackling problems in
various domains such as image processingl, neuroscience?, fluid dynamics3, and data science?, among others.
A key area of research in mathematics, physics, and other disciplines is the development of exact solutions for
NLEEs. Achieving these exact solutions aids in the exploration of nonlinear phenomena in nature and provides
a scientific explanation for these phenomena. Over time, various scientific and efficient methods have been
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introduced to derive these exact solutions, including bilinear®, unified solver apgaroach(’, LWL7, generalized
Kudryashov®, modified F-expansion’®, Darboux transform'?, trial function'!, and ¢” model expansion'2.

The soliton, breather, and lump solutions'? represent distinct types of exact solutions that hold significant
research value in various domains, including Bose-Einstein condensates'?, marine physics!®>, among others.
The interaction of these exact solutions leads to a more intricate solution structure, illustrating the complex
movement patterns observed in natural systems. In recent years, the study of interaction phenomena has gained
increasing attention from researchers as a significant topic in NLEEs. Solitons serve as a fundamental and ideal
framework for exploring various nonlinear localized waves, offering a valuable approach to studying nonlinear
wave interactions due to their inherent particle-like behavior during propagation. In an integral system, solitons
with different velocities retain their original shape and velocity after interaction, with their fundamental physical
properties remaining unchanged. In the literature, multi-wave solitons are rarely explored, making them a hot
research topic due to their ability to reveal more complex wave behaviors'®. Beyond solitons, breather solutions
to NLEE:s serve as intriguing examples for exploring nonlinear wave interactions due to their distinctive self-
oscillatory characteristics and complex synchronization behaviors. Given these properties, phase-sensitive
breather interactions have garnered significant attention in recent studies'”.

Lump waves, introduced by Petviashvili'8, are characterized as specific types of rational function for NLEEs
and exhibit spatial localization in all directions. These types of characterized solutions for NLEEs, as discussed
above, remain relatively scarce in the literature. There is a significant need to explore additional solutions to
uncover the yet unknown behaviors of NLMs. Motivated by this, the focus is on deriving new and novel multi-
wave solitons, as well as lump, breather, and interaction solutions for the (2+1)-dimensional Boussinesq equation

introduced by Wazwaz.

3%

Htt - 'Hlx — 61(H2)1x - 52Hxa:acac + 4

Hyy + d3Hye = 0. (1)

Here, 91, 62, and J3 are nonzero parameters, where the coefficients 1, and d2 are associated with the vertical
extent of the fluid and the characteristic speed of extended waves in shallow water. The Boussinesq equation was
originally proposed by Boussinesq in 1871 to model the transmission of extended waves in shallow water?’. Over
time, various extensions of this equation have been developed by different researchers. More recently, Wazwaz
introduced several forms of the Boussinesq equation in different dimensions. In this study, the focus is on its
analysis in (2 + 1) dimensions. Equation (1) describes the propagation of gravity waves across the water surface,
particularly focusing on the head-on interaction of oblique waves. Equation (1) has gained significant attention
in various fields due to its consideration of nonlinearities and dispersion. Its applications include:

o Itis used in models related to tsunami waves and other hydrodynamic phenomena.
o It is explored in studies involving free-surface dynamics.

« Itis used to model magnetoacoustic waves in plasmas containing iron ions.

o Itisapplied in the study of wave propagation through elastic rods.

Literature review

Various researchers have applied different techniques to analyze the various forms of the Boussinesq equation
across multiple dimensions. Wazwaz and Kaur!® investigated Eq. (1) by examining its complete integrability
via the Painlevé test. They derived multiple soliton solutions using a simplified Hirota’s method. Additionally,
the exponential expansion method was applied, leading to soliton solutions with complex spatial structures. In
Ref?!., Zhao studied the fractional (3 + 1)-dimensional Boussinesq equation, extracting its soliton solutions and
analyzing its chaotic behavior. The chaotic characteristics were confirmed through the evolution trends over
time and the calculation of Lyapunov exponents. The polynomial method was also employed to derive various
solutions, including trigonometric, Jacobi elliptic, and other forms. Silambarasan and Nisar?? analyzed the
Eq. (1) and used the Jacobi elliptic function approach to obtain doubly periodic solutions. They demonstrated
the degeneration of these solutions into non-topological solitons. Khalid et al.> explored the (2 + 1) dimensional
Boussinesq equation, employing the extended G-expansion method to derive soliton solutions.

Research gap

Despite significant progress in understanding the soliton dynamics within the Boussinesq equation, there is
still a notable gap in exploring alternative solutions in this area. A survey of previous research on Eq. (1) reveals
that the Hirota bilinear method has not yet been employed to derive multi-solitons. Furthermore, 1st and 2nd
order breather waves, along with lump waves, derived using the LWL method, remain unexplored in the existing
literature. Moreover, there has been no research conducted on interaction solutions that combine solitons,
breather, and lump waves. Although considerable effort has been directed at examining solitary waves under
various conditions, no research has examined the intersection or overlap among the two solutions. Investigating
this interaction and similarity could offer valuable insight into the system by pinpointing the conditions under
which two distinct solutions behave identically, an aspect that serves as the central focus of this research.

Motivation and key contributions

The motivation of this study stems from two factors: (i) the increasing importance of investigating nonlinear
wave models such as the Boussinesq-type equations that admit a wide range of localized structures, and (ii)
the limitations of existing analytical schemes that are typically restricted to single soliton solutions. Recent
contributions have applied several improved analytical techniques, such as the improved modified extended
tanh-function method?*, the extended mapping approach?, and the Exp-function based schemes?. Likewise,
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studies employing generalized mapping and related algebraic approaches have been successfully used to
construct single-soliton profiles in fractional and higher-dimensional models, including the fractional Klein-
Fock-Gordon equation?’, stochastic NLSE?® and the Nizhnik-Novikov-Veselov equation?. These works confirm
the utility of such methods, but demonstrate that they are primarily tailored for single-soliton solutions.

In contrast, the Hirota bilinear approach adopted in this paper provides a systematic framework to derive
not only one-soliton but also general multi-soliton solutions in closed form. This advantage makes it particularly
suitable for investigating higher-order nonlinear wave dynamics. Building upon this framework, we further
apply the LWL technique to generate first- and second-order lump solutions and the CCA to extract breather
solutions. Moreover, we extend the analysis to hybrid interactions involving solitons, lumps, and breathers, which
are rarely addressed in the above-mentioned schemes. Finally, the overlapping behavior of distinct solutions is
systematically explored through a bidirectional scatter-plot (data mapping) approach, providing an additional
diagnostic for identifying regions of similarity in solution structures.

The key contributions of this work are summarized as follows:

« Derivation of multi-soliton solutions (1-, 2-, 3-, and 4-soliton cases) using the Hirota bilinear method, where-
as earlier approaches such as the improved tanh-function, Sardar sub-equation, and Exp-function methods
are generally limited to single soliton construction.

« Construction of first- and second-order lump solutions through the LWL approach, which is more efficient
than direct algebraic techniques for higher-order rational solutions.

o Extraction of breather solutions (first and second orders) by the CCA, which have not been previously report-
ed for this equation.

« Exploration of hybrid interaction solutions, considering two different scenarios:

- Case:N=3
- For N = 3, two kinds of interaction solutions are constructed:

* (i) 1-soliton with a 1st-order lump,
* (ii) 1-soliton with a 1st-order breather.

Case2: N =14
- For N = 4, two types of interaction solutions are obtained:

* (i) 2-soliton with a 1st-order lump,
* (ii) 2-soliton with a Ist-order breather.

« Introduction of a bidirectional scatter-plot (data mapping) framework to examine overlapping behaviors be-
tween different solution classes.

Taken together, these contributions extend the scope of existing methods by providing a unified study that
incorporates multi-solitons, lumps, breathers, their hybrid interactions, and overlapping behaviors for the
specific Boussinesq-type equation introduced in Ref'’.. This not only distinguishes our work from earlier studies,
but also establishes a comprehensive analytical and comparative framework for future research.

Layout of the paper

The remainder of this manuscript is structured as follows. Sections "Overview of the hirota bilinear method"
and "N-Soliton Solutions of Eq. (1)" introduce the Hirota bilinear method and N-soliton solutions. Section
"Breather solutions of Eq. (1)" investigates the first- and second-order breather waves of Eq. (1). Section "Lump
solutions of Eq. (1)" is devoted to lump wave solutions, while Sect. "Interaction dynamics of Eq. (1)" explores
four distinct interaction patterns. In Sect. "Physical interpretation of results", the physical interpretations of the
obtained results are discussed. Section "Analysis of solution overlaps" highlights the overlaps among different
solutions through the bidirectional scatter plot method. Section "Comparative study with existing literature"
provides a comparison between the present study and the existing literature. Section "Conclusion" concludes the
paper, while Sect. "Future work" outlines potential future research directions. The overall layout of the paper is
illustrated in Fig. 1.

Overview of the hirota bilinear method
The Hirota bilinear method is a direct and systematic technique to obtain exact multi-soliton solutions of NLEEs.
The central idea is to transform the original PDE into a bilinear form through an appropriate dependent variable
transformation, after which perturbation expansions can be systematically applied to generate soliton solutions.
Its key steps are as follows:

Step 1: Suppose a NLEE is given in the form

G(H, He, Mo, Hy, Haw,...) = 0. @)

Through a dependent variable transformation

H(z,y,t) = K(nT)sa, 3)

where K represents a nonzero real constant. Equation (3) is converted into a bilinear form
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Fig. 1. Layout of the paper showing the structure and flow of the study.

Q(Dz, Dy, Dy,... )T T =0,

where Q is a polynomial in the Hirota bilinear operators D, D, Dy, . .
function, and D refers to Hirota’s bilinear operator, which is defined as

D, (Y.7) = (3 9

—_ %) (@) Z(2) s

It can also be described as

0 0

LA T IV, B, B
P _ (9 9 c _ < =~z _ 2 Nor o,
DEDID;(Y.Z) = ( o ax,) ( 35 8y’> ( 5 8t,) Y(2)Z (2" )|t m gt my 1=t

In this case, p, g, and r are nonnegative integers. The function Y is chosen to be a perturbation expansion.

Step 2: To construct soliton solutions, a perturbative expansion of the form

T:1—|—5T1—|—52T2—|—---

is introduced, where ¢ is a small parameter.
o For the one-soliton case, at the lowest order, we take

YT =1+4¢, ¢1 = prz + 71y — wit + Cor,

which leads to the dispersion relation between /1, 1 and ws.
e For the two-soliton case, the form is chosen as

YT=1+ &St + e%2 +7712€C1+C2’

(4)

.. Here, Y = Y(z,y,t) is a real-valued

(5)
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where 712 is a constant determined by substituting into the bilinear equation.
o For the three-soliton case, the construction becomes

3
T=1+ ZeCi + ZnijGCiJer 4 kpogeSttéatis (10)

i=1 i<j

o In general, the N-soliton solution can be written as

N N
T = Tn(z,y,t) = Z exp (Z oG + Z Oéiajnz‘j> ) (11)
=0

ay,az,...,an€{0,1} 1<i<y

where ¢; = Bix + viy — wit + €. Here, o; € {0, 1} are binary parameters, and the summation is carried out
over all possible 2" combinations of (a1, @, ..., ax). This compact notation is widely used in the bilinear
method to represent the exponential structure of the N-soliton solution. The coeflicients (; denote the linear
phase variables, while 7;; account for pairwise interactions between solitons. The key steps of the proposed
method are illustrated in Fig. 2.

N-soliton solutions of Eq. (1)
In this part, the N-soliton solutions of Eq. (1) will be extracted using the Hirota bilinear technique!?. The bilinear
form corresponding to Eq. (1) is given by

%

(D?—Di—62m+ i

D3 + 531@911),5) T.T =0. (12)

Here, Y = Y(x,y,t) is a real-valued function, and D refers to Hirota’s bilinear operator, which is defined in
Eq. (5). The function T is chosen to be a perturbation expansion, which is written as

T=1+Y " Tulw,y.1). (13)
N=1

By substituting Eq. (13) in Eq. (12), the resulting system can be obtained for various powers of €.

NLEE
N N
G J{:J{xp ’ p-’u.xxn ) = 0
fv= exp Zaifﬁ' z a;a;1;; ¢ i )
i=0 1<i<j
ael0.1} Cole-Hopf transformation
Extracting N-Solitons H(xy,H)=KIn(f),,

Bilinear Form

§i=Bix+yiy—w;t

Dispersion Variable

4 Inserting

N
filx,y,t)= el f=1+ Z gfi(x,y,t) Perturbation
i=1 expansion

Fig. 2. Flowchart of the Hirota bilinear method for constructing N-soliton solutions.
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0(e%) : B(1.1) =0, (14a)

O(e") : B(1.Y1 + Y1.1) = 0, (14b)

0(?) : B(1.Y2 + Y1.0T1 + Y2.1) = 0, (14c)

O(?) : B(1.Y3+ Y1. T2 + Yo X1 + Y3.1) = 0, (14d)
O(") : B(1.Ya + 1.3 + Yo To + 3.1 + Y41) =0, (14e)

k
0(") : B (Z e,.@kl> =0, (To=1). (14f)
=0

2
Here B = | D? — D2 — 5,D2 + %Di + 63Dy, |. The N soliton solutions of Eq. (1) will be derived using

the bilinear method. To find these solutions, define the function Y as: To derive the multi-soliton solutions, the
following ansatz is employed:

T :€<i, G :/Bix—F%y—wit—FQ@. (15)

The parameters [3;, i, ¢ are arbitrary, while w; represents the wave velocity. By substituting Eq. (15) in
Eq. (14b), the value of w; can be determined as

) ) 2
o 037i + 2Bi+/1 + 023; i=1,2, N (16)

Wi B s

Thus, the dispersion variable (; can be written as

. . 2
63')’2+2ﬁ1\/1+52/6¢ t-i—C? (17)

2

Gi = Biz +viy —

1-soliton solution
In this subsection, the goal is to obtain the 1-wave soliton solutions. For the case where N = 1, Eq. (13) is
simplified as follows:

1, :eCl’

8371 + 2814/ 1 + 6282 (18)

5 t4 ¢,

G =iz +my—

'The phase constant ¢ includes ¢, allowing the soliton solution for Eq. (12) shown in Fig. 3.

5 /116582
To14 Tl - eﬂlir’Yly* 0371+2B12 146287 t‘ (19)

Substitution of Eq. (3) and the auxiliary function from Eq. (19) into Eq. (1) yields the expression for K:
65237

K= . 20
5, (20)
Substituting Eq. (20) in Eq. (3) yields the 1-wave soliton H1s of Eq. (1).
66267 )
Has (2,y,1) = ;ﬂl sech” (Blr +my - (51 L+ 6283 + =28 ) t) : (21)
1

Equation (21) represents the 1-soliton solution of the considered model. For §; > 0, this solution corresponds to
a bright soliton, characterized by a localized positive peak on a zero background. In contrast, for §1 < 0, Eq. (21)
yields a dark soliton, characterized by a localized dip on a finite background.

2-soliton solution
This section focuses on deriving two-wave solutions. For N = 2, Eq. (13) is simplified by truncating and adding
the term Yo = n126c1+(2, where 712 is a coupling constant to be determined.
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Fig. 3. Visualization of the 1-bright and dark soliton solutions in the (x, y)-plane.

T, = &St +6C2,

+
Y, = 7712641 C27

837 + 2Bi4/1 + 8232

t4+¢), i=1,2.

Gi = Bir +viy —

From Eq. (14c), the following form can be derived:

1
(m,n — 29T 2 20w + gazrm + 20Tyt — m,m) + (zrm,tt =273, — 29 1 1 wwe + 87 1,000 V1,0

2

1 1 -
— 69T, + 5a2T1T1,yy +2a 1 1yt — 20 1, V1 — 271 10 + 2705, — QQZT%’y) =0.

The coupling constant 72 is determined by applying Egs. (22) and (23):

\/62[5’22+1\/52512+1*52 (2512 *3,31,32+2/5'22) -1

Mz =

\/52ﬂ22+1\/52512+1—52 (25124-351,324—2522) -1

Since e can be absorbed into ¢ (i = 1, 2), the corresponding solution for Eq. (12) is given by

T=14+7T1+7T2 = 1+6<1 _|_e<2 +7712€<1+C2-

Substituting Eq. (25) together with Eq. (20) in Eq. (3) yields the 2-wave soliton H2s for Eq. (1).

66
HQS (%Z/at) = 572><
1

,B%CCI +,836C2 _;'_,,712(/314_52)2641-&-42 B
1+ et 4 b2 4 7]12€<1+<2

(516C1 + 2652 + M1 (B1 + B2) eCH'CZ)2
(14 e +eb2 + 7]12eC1+C2)2 '

4 -0.2
-0.4
-0.6
-0.8

A

1
-1.2
¢ -1.4
) y

(22)

(23)
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Given that
(1 +e€1 + eCz + 7712941-4{2) 7& 0.

Here (1, (2, and 112 are defined in Eqs. (22) and (24). The solution (26) is displayed in Fig. 4. Equation (26)
represents the 2-soliton solution of the considered model. The nature of this solution depends on the sign of the

parameter d1. For d1 > 0, the solution corresponds to a bright 2-soliton, and for 61 < 0, the solution represents
a dark 2-soliton.

3-soliton solution

This section focuses on deriving three wave solutions. For N = 3, Eq. (13) is simplified by truncating and adding
the term Y3 = k1231 T2 7% where 123 represents coupling constants that have yet to be determined.

Y, :eCl —|—6<2 +6<3,

T2:n12eC1+(2 +n13e(1+43 +7723€C2+637

;= H1236C1+§2+<3, (27)
837 + 2B/ 1 + 8257 )
G = Biw + iy — — 22 t+¢, i=1,2,3.
The coupling constants 7;; are defined as follows:
0
0.5
4
15
~ 2
N
* 2.5

257

S

H(x)

0.5

(c) (d)

Fig. 4. Visualization of the 2-bright and dark soliton solutions in the (x, y)-plane.
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V0B 102817+ 1—0a (2817 —3B1B2 +28:°) — 1
Ve 5+ =6 (2512 3618 +26:2) — 1
V0252 + 1382 B2 + 1= 82 (2512 — 35183 +265%) — 1
- 5 ) -1
2)71

2)_1

712

M3

(

_ (
\/52[5’32+1\/52512+1* 2 (2512+3,31ﬂ3+2,33
\/52532+1\/52ﬁ22+1*52 (2522*3,32ﬁ3+2/33

V02 5% + 11/02 B2% + 1 — 82 (2322 + 38285 +2 s

723 =

From Eq. (14d), the value of K123 can be determined as follows:

K123 = 1127137)23- (29)

Since & can be absorbed into ¢2 (i = 1,2, 3), the corresponding solution for Eq. (12) is given by
T=14+7T1+4+7YT2+ T3,

(30)
=1+ 51 + €52 + %3 + ,,7126C1+C2 + 77136C1+C3 + 7723€C2+C3 + 51236C1+C2+C3.

Inserting Eq. (30) together with Eq. (20) in Eq. (3) yields the 3-wave soliton 3, of Eq. (1).
602 (T X2
7‘[35(137?/715) = K (Q @ ) (31)

where

[ = Bie + B3e? + B3e® + muz(Br + B2)2 T2 + nu3(B1 + B3) e T3+
123 (B2 + B5)2€ 2T + Kiag(B1 + B2 + B3) e T2,

X = Brett + Bae? + B3e + (B + B2)m2e T2 + (B1 + B3)mset TP+
(B2 + Bs)n2se®> ™t + (B1 + Ba + B3 ) ki1age T2,

Q=1+ + €52 + e%3 + ,,712641+C2 + 7713€C1+C3 + 7}236C2+<3—|—
Cit¢a+Cs

(32)

K123€

Here n12,M13, 123, and K123 are defined in Egs. (28) and (29). The solution (31) is displayed in Fig. 5. Equation (31)
represents the 3-soliton solution of the considered model. The nature of this solution depends on the sign of the
parameter 61. For d1 > 0, the solution corresponds to a bright 3-soliton, and for 61 < 0, the solution represents
a dark 3-soliton.

4-soliton solution
This section focuses on deriving four-wave solutions. For N = 4, Eq. (13) is simplified by truncating and adding
the term T4 = p1234e°1 TS24 where pi234 represents coupling constants that have yet to be determined.

lee(l _,’_642 —I—e<3 +e<4,
T2:n126€1+é2 +7713€C1+C3 +77146<1+C4 +17236C2+C3 +7]246€2+C4 +7734€C3+<4,

Y5 = H1236C1+C2+C3 + R1246C1+<2+C4 + H1346C1+C3+C4 + ﬁ234842+C3+C47

C1+¢2+¢3+Ca
b

037i + 2B8i+/1 + 6282

2

T4 = piosse

G = Biz +viy — t+¢), i=1,2,3,4.

The coupling constants 7);; are defined as follows:
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Fig. 5. Visualization of the 3-bright and dark soliton solutions in the (x, y)-plane.
_ \/62[322 + 1\/52512 +1-42 (2512 —3p102 +2/5'22) -1
T 5282 1 In/02 57 11— b2 (2817 4 8Pufa 1 2627) 1
B \/52532 + 1\/52512 +1—902 (2512 —3p153 +2532) -1
e V02 Bs® + 1082 B2 + 1 — 62 (281° +3P1fs +285%) — 1
B V02 B2+ 102 512 +1— 6 (28 =3B1Bs+2B4%) — 1
I 5B 1 102 57 11— 0s (2607 1 3/1fa 1+ 2627) 1 o
B \/52532 + 1\/52522 +1—062 (2522 — 3 (203 +2/332) -1
52 B + 1/02 527 £ 1— 0 (262° 1 3fas + 2657) — 1
_ \/52542 + 1\/52522 +1—202 (2522 — 3 P24 +2ﬁ42) -1
e \/52542 + 1\/52522 +1-42 (2522 + 3 P24 +2/342) -1
V6B +10/02 8% +1— 05 (285 —3B3Ba+284°) — 1
5 B + 102 55” £ 1— 0 (205" 1 3fsfa + 2627) — 1
Here, k;;1 are determined in the same manner as in the 3-soliton case:
K123 = M2M137M23, K124 = Ni2714724, (35)
K134 = M37147M34, K234 = 1237)24734.
From Eq. (14e), the value of p1234 can be extracted as follows:
P1234 = N1271131147)237)247)34- (36)

Since € can be absorbed into ¢ (i = 1, 2, 3,4), the corresponding solution for Eq. (12) is given by

Scientific Reports | 2025 15:40242 | https://doi.org/10.1038/s41598-025-24067-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

T=14+7T1+ Yo+ T3+ Ty,
:1+6C1 +e€2 +e<3 +e(4 +17126(1+<2 +7]136€1+<3 +77146C1+C4 +n236C2+(3+

37
7724€C2+C4 + n34eC3+C4 + H1236C1+C2+Cs + ﬁ124eé1+C2+C4 + K134€C1+C3+C4+ (37)
5234642+C3+C4 + p1234eC1+42+43+C4.
Inserting Eq. (37) together with Eq. (20) in Eq. (3) yields the 4-wave soliton H4. of Eq. (1).
662 (M TI?
Has(x,y,t) = — | = — = |, 38

where

M = B2e5 4 B2 4 2655 1 B2e5% 4 mua(Br + B2) 212 s (B1 + B3) 2 P2 - mua(By + Ba)2eli G
+ 123 (B2 + B3)22T3 £ 1pos (B + Ba)?e 2T 34 (B3 + 81)%€S T 4 Kia3(B1 + B + B3) e T2 4

k12a(B1 + Ba + Ba)2eTETN k130 (B1 + Ba + Ba) e TN 4 ko5a (B + B3 + Ba)’e2 T

+ pr2sa(Br + Bz + Bs + Ba) et TRt

I1 = Bre® + B2e® + B3e®® + faet +n12(B1 + B2)e T + mis(Br + B3)et T + nua(B1 + Ba)e T4

+ 723(B2 + B3)e T+ mpa(Ba + Ba)e T + naa(Bs + Ba)eP T + Kiaa(B1 + B2 + Ba)ett T4 (39)
K124(B1 + B2 + 54)641+42+<4 + K134(f1 + B3 + B4)€CI+CB+C4 + Ko3a(Be + Bs + B4)e<2+<3+<4

+ p1234(Br + Bz + B3 + Ba)eSt T2 Tes Tt

F o146t 468 4683 4 e 4 mupeSiTe 4 pugeSites oy eG4 oo CetSs 4 oCatea

7]346<3+C4 + H123641+42+C3 + H124e€1+42+C4 + H134e€1+53+C4 + H234BCQ+C3+C4+

p1234€<1 +C¢2+¢3+C4 .

Here nix, 1 <14 < k <4, K123, K124, K134, K234, and p1234 are defined in Eqs. (34)-(36). The solution (38) is
displayed in Fig. 6. Equation (38) represents the 4-soliton solution of the considered model. The nature of this
solution depends on the sign of the parameter 61. For 61 > 0, the solution corresponds to a bright 4-soliton, and
for 61 < 0, the solution represents a dark 4-soliton.

Breather solutions of Eq. (1)
In this section, the CCA is utilized to derive breather solutions from N-solitons of Eq. (1) in different planes. The
mth-breather solution is obtained by applying this approach to the parameters in Eq. (11).

N = 2m7 BQ'L = ﬁgi—b Y2i = 75’2—17 (40)

where m € N,i =1,2,...,N. Different forms of the breather waves emerge by assigning specific values to
explicit expressions.

1st-order breather waves
To obtain the 1st-order breather solution, the following values are assigned:

N:27 ﬂQZﬁI7 ’72:7;‘ (41)

By inserting the given values into Eq. (25), Y is obtained as

Vo0 B+ 1V0 B2 + 160 (2812 =311 +261%) —1 .
e’ e .

(42)
VBT +1V0 517 +1 -8 (26° + 35157 +2817) -1

T=1+e" 46 +

Here, (7 represents the complex conjugate of (1, which is defined in Eq. (22). A detailed examination of the
obtained solution reveals two distinct breather patterns, categorized according to their visual features.

o The first-order t-periodic bright breather solution is derived using the parameter values: S1 = 0.1 — I,
Bo=01+IL4=05—-1,v%=05+108=0=063=1,N=2and ¥ =¢8 =0.For 6, = —1, a
dark breather solution emerges. This solution shows oscillatory behavior along the ¢-axis within the (y,t)
-plane, while staying spatially confined in the y-axis (Fig. 7a).

o The first-order z-periodic bright breather solution is derived using the parameter values: 81 = 0.1 — I,
Bo=01+IL 4 =05-1,v%=05+18=0=06=1,N=2and ) =¢ =0.Foré =—1,a
dark breather solution emerges. This solution shows oscillatory behavior along the z-axis within the (z, y)
-plane, while staying spatially confined along the y-axis (see Fig. 7b).

Scientific Reports | 2025 15:40242 | https://doi.org/10.1038/s41598-025-24067-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

H(x,y)

=
. 5
5 RS
2
1
0
{ —y=1 NSNS <N/ 77
A -y =4 X | \ / MK
| _ 1 \—f \ “\ f X
y=6 N VAN
L4 WA
\
, 2 |
i e 1
i & |
i 7 ‘x
i
I —y=1 |
; L
! 4 —y=4
y=6

-25

s
I”
oy J L
L 1N i N\\
/N o\
/I ¥ !
0 e Lt N Saa??’
5 10 5

20

.
=]

\ -~
\\w \\‘ -5
N,
5 10 15 20

J
0 25 20 45 40 5 0 5 0 15 20
X X

(c) (d)

Fig. 6. Visualization of the 4-bright and dark soliton solutions in the (x, y)-plane.

2nd-order breather waves

For N = 4, appropriate parameter selection leads to the derivation of second-order breather solutions. Higher-
dimensional breather solutions are expected to display more intricate and impactful dynamic behaviors. The
2nd-order breathers are obtained by setting the parameters as follows:

N=4, Bo=p7, Ba=p35 r=7, MT=7. (43)

o The 2nd-order y-bright and dark breather solutions, obtained with the parameters
N=4,8=01-18=01+I,m=-L7%=1,8=02-18=02+Iy=-2[v=2{=3=00=¢¢=0
form two parallel rows with a periodicity of 27 along the y-axis while remaining localized along the x-axis in
the (x, y)-plane (see Fig. 8).

Lump solutions of Eq. (1)
This section examines the lump solutions of Eq. (1), a key type of rational solution. Their behavior is analyzed

alongside visual representations.

1st-order lump waves
ForN=2and (? = ¢J = I, Yo is given by

To=1-— €St — 2 + 7]126C1+<2. (44)
Firstly, set the parameters as
N=2, ym=01p1, 72 =028,
in Eq. (11) and taking the limit 8; — 0, (¢ = 1, 2), the expression for Y in Eq. (11) transforms into:

T2 = x1Xx2 + M2, (45)
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Fig. 7. Representation of first-order breather solutions in different planes.

where

S30;+2+/14+8282 .
Xi:x+giy_Mt+X?7 (i=1,2)

/62 822414/63 812+1—82 (2812 -3 B1B2+2 B2 ) -1

hz = \/52 ﬁ22+1\/52 B124+1-62 (2 512+3[3152+2[322)*1'

By specifying the parameters as
51:0.2—1.51, /82:02-1—15[, 0'1:I7 0'2:—1, (51:62:53:1, (46)
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Fig. 9. Visualization of first-order lump solutions in the (x, y) plane at different time levels.

and integrating Eqs. (45) and (46), the first order lump solution of Eq. (1) is obtained as

Hl—Lump =

12.22t — 4.5yt +12.99% — 2.5¢% 4+ 650.8 — 12.9 z°

(—0.9xt — 0.36 yt + 1.0492 4+ 0.26 2 4+ 52 4+ 1.0422)>

S &b oA b b A

(47)

The first-order lump solution given in Eq. (47) is examined in the (x, y)-plane at different time values. Figure
9a-c display the bright lump profiles at ¢ = 0, ¢t = 2 and t = 4, respectively, while Fig. 9df illustrate the
corresponding dark lump profiles at the same time levels. At the initial time ¢ = 0, the bright lump exhibits
a sharp localized peak centered on the (x, y)-plane, whereas the dark lump shows a well-defined localized
depression over a constant background. As time progresses to ¢ = 2, both bright and dark lumps maintain their
spatial localization, with their centers slightly shifted in the plane due to the temporal dependence in Eq. (47).
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At t = 4, bright and dark structures continue to persist without diffusion, demonstrating the robustness of the
lump solutions.

The lump profiles evolve with respect to time; however, their localization remains confined to the spatial
(x, y)-plane. The temporal parameter governs only the dynamical movement of the structures, while the rational
localization characteristic is preserved in both spatial directions. The persistence of these bright and dark
lump waves across different time levels reflects their temporal stability and confirms their behavior as spatially
localized solutions over a constant background (see Fig. 9).

2nd-order lump waves
For the 2-lump solution, the parameters are set as follows:

N=4, m=01p1, r=02P2, v3=030s ya=o0abs, xi=-11<i<4,
then Y4 is given as

T4 = x1x2X3X4a + M2X3X4 + M3X2X4 + N1aX2X3 + M23X1X4 + M24X1X3

48
MN34X1X2 + M12M34 + M13724 + M14723, (48)

where x; and 7);; are defined in Eq. (45). By specifying the parameters as
B1=01-2I, p2=01+2I, o1 =151, o02=—-1.5I, (49)

B3:1.5—1.2I7 ﬂ4215+217 0’3217 0'4:—]7

and integrating Egs. (49) and (48), the 2nd-order lump solution is obtained. Figure 10 illustrates the evolution
of second-order lump solutions in the (x, y)-plane at different time levels ¢ = 0, 2, and 4. The plots show that
the two lump waves move asymptotically and undergo an elastic collision. At ¢ = 0, the lumps are initially
close, forming a butterfly-shaped structure. As time increases, the waves interact and then gradually separate,
preserving their shapes, which highlights the elastic nature of the collision.

Fig. 10. Visualization of second-order lump solutions in the (x, y) plane at different time levels.
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Interaction dynamics of Eq. (1)

This section examines four distinct hybrid solutions using the LWL method. Through CCA, interaction
solutions are derived that incorporate soliton, breather, and lump waves. MATLAB is utilized to create visual
representations, facilitating a detailed analysis of their dynamic properties.

Interaction solutions when N = 3

A combination of 1-soliton and 1-lump
For N = 3,set () = (3 = ¢§ = It in Eq. (30) and taking 3; — 0, (i = 1,2); then Y3 can be obtained as

Tz =xi1x2 + M2+ <X1X2 + misxe + M23Xx1 + Mi3n2s + 7712) exp((3), (50)

where

oi+24/ 2
Xi =T+ 0wy — wt+xg, (i=1,2,3)
m = V62 B22+1/82 8124162 (2812 =3 B1 B2 +2 822 ) —1 (1<i<j<3). (51)

N V62 B22+11/82 p12+1-62 (281243 B1B2+2 /322)—1’

Equation (50) is substituted in Eq. (3), followed by the assignment of parameters as

B1=01-15I, Bo=01+15I, oy=—I, oy=1, B3=0.9,

o3 =01, 6 =12, 8§ =26=1. (52)

As a result, a hybrid solution in both bright and dark forms is obtained, composed of a 1 soliton and a 1-lump
for Eq. (1). From Fig. 11, it is observed that these solutions gradually move toward each other over time. At
t = 0 (Fig. 11b and e), the center of the 1st-order lump wave coincides with the soliton. Following their collision,
both structures maintain their forms but undergo positional shifts. Specifically, at t = 10 (Fig. 11a and d), the
soliton is positioned on the right, whereas at ¢ = —10, it appears on the left (Fig. 11c and f). Despite these

FL(x,y)

Fig. 11. Visualization of the hybrid solution comprising one lump and one soliton in the (x, y) plane at
different time levels.
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positional changes, their forms remain unchanged, confirming that the hybrid solution undergoes an elastic
collision.

A combination of 1-soliton and 1-breather
Similarly, by setting particular values for the parameters in Eq. (30) as outlined below:

br=1, B2=01—-1, B3=01+1, v =12, ~v2=05-1,

’}/3:0.54-],(51 = Js =1, 03 = 0.2. (53)
Insert the function Y3 into the Eq. (3), an interaction solution, in both bright and dark forms, consisting of the
Ist-order breather and 1-wave soliton, is derived. Initially, at ¢ = 0 (Fig. 12b and e), both solutions overlap at the
origin. As time progresses, the soliton shifts position, while maintaining its shape. At t = 10 (Fig. 12a and d),
the soliton is positioned on the right side and at ¢ = —10 (Fig. 12c and f), it moves to the left side. Despite these
positional changes, the shape of the soliton remains unchanged, confirming the elastic nature of the interaction.

Interaction solutions when N = 4

A combination of 2-soliton and 1- lump

For N = 4, we assign ({ = ¢J = ¢§ = ¢§ = I'm in Eq. (37) and let 8; — 0, (i = 1,2, 3,4). Consequently, T4
can be written as

Ts= <X1X2 + mzx2 + M23Xx1 + Man2s + 7712) e 4 <X1X2 + Miaxz + N2ax1 + Mian2a + 7712> et

(54)

C3+Ca+n34

+ <X1X2 + Misx2 + Maxe + M23X1 + N2aX1 + N14an23 + N13N24 + N13N23 + N1aN24 + 7712> e

+ X1X2 + N2,

where

21
i 05
h
0
20
25
05 05
0
0
» 05
u
g 1 15
45 1

Fig. 12. Visualization of the hybrid solution comprising one breather and one soliton in the (x, y) plane at
different time levels.
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oit+2,/ 2
Xizw‘*‘Uiy—wt‘i‘X?» (221127374)
/02 B22+414/62 1241082 (2817 -3 B1B2+2 27 )1 (55)

— 1<i<j<4.
V62 B22+11/52 12 +1-62 (2 81243 f1B2+2 522)—1 (Isi<js

Nij

Inserting Eq. (55) in Eq. (3) and define the parameters as follows:

f1=01-2I, [2=01+2I, o1=-I, o2=1, p3=0.9,

ﬂ4:—1, 0’3:1, 0'4:—1, 61 :52 :53:—1. (56)
This results in a hybrid solution in both dark and bright forms, composed of a first-order lump and a 2-soliton
for Eq. (1). The interplay of these solutions in the (z,y) plane demonstrates a full collision at ¢ = 0, where the
lump and solitons fully overlap, creating a pronounced peak (Fig. 13b and e). As time advances, at ¢ = 10, the
soliton starts to move away from the lump in the positional direction, although they continue to interact (Fig.
13a and d). By t = —10 (Fig. 13c and f), the solitons and lump have separated further, the soliton now moving
in the negative direction, yet their interaction and shape remain unchanged.

A combination of 2-soliton and 1-breather
In the same way, by assigning particular parametric values in Eq. (37) as
,81 =0.5— 19]7 ﬂz =0.5 + 19[, 53 = 3, ﬁ4 = —3.1, Y1 = —17

vo=1I, y3=3, ya=4, 6 =6 =20=1. (57)

By substituting the function T4 in Eq. (3), an interaction solution, composed of a 1-breather and 2-soliton, is
obtained in both bright and dark forms. As shown in Fig. 14, the 1-breather and 2-soliton solutions gradually
approach each other over time. At ¢ = 0 (Fig. 14b and e), the center of the 1-breather coincides with the soliton.
Following their interaction, at ¢ = 4 and ¢t = —4, both solutions maintain their forms but shift positions in the
positive and negative directions with equal amplitudes. These shifts are illustrated in (Fig. 14a and d) for t = 4
and (Fig. 14c and f) for ¢ = —4, confirming that the collision is elastic. Table 1 presents various wave solutions
along with their corresponding interaction dynamics.

0 > > 10 ~_ / 0 o S $
-20\/ ) y 0 '4 e 0
y X

4 4

Fig. 13. Visualization of the hybrid solution comprising one lump and two soliton in the (x, y) plane at
different time levels.
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Fig. 14. Visualization of the hybrid solution comprising one breather and two soliton in the (x, y) plane at
different time levels.

N-wave soliton

Interaction dynamics and wave solutions

2-wave soliton

Ist-order lump

4-wave soliton

2nd-order lump

2P-soliton

P-order lump

2-wave soliton

1st-order breather

4-wave soliton

2nd-order breather

2IP-wave soliton

P-order breather

3-wave soliton

1-wave soliton + 1st-order lump

4-wave soliton

2-wave soliton + 1st-order lump

2P+R-soliton

P-wave soliton + R-order lump

3-wave soliton

1-wave soliton + 1st-order breather

4-wave soliton

2-wave soliton + 1st-order breather +

2P+R-wave soliton

P-wave soliton + R-order breather

Table 1. Different wave solutions and their interactions.

Physical interpretation of results

In this section, we provide a comprehensive physical interpretation of the obtained solutions, highlighting their
qualitative behaviors, interaction properties, and physical importance. The results are discussed sequentially
according to the employed analytical techniques: Hirota bilinear method, CCA, the LWL method, and their
hybrid interactions. Figures 3 to 14 are explicitly referenced to illustrate the key dynamics.

Hirota bilinear method
Using the Hirota bilinear technique, N-soliton solutions of Eq. (1) were constructed.
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First-order soliton (Eq. 21). This is a classical exponential solution of sech? type, localized in space. For
61 > 0, Eq. (21) gives a bright soliton with a localized positive peak on a zero background. For 61 < 0, it yields
a dark soliton, that is, a localized dip on a finite background. The bright and dark cases are shown in Fig. 3a-d,
respectively.

Two-soliton solution (Eq.26). This solution describes the nonlinear superposition of two exponential solitons.
Depending on §;, these can be bright-bright, or dark-dark interactions. The collision remains elastic and the
solitons recover their original shapes after interaction (Fig. 4).

Higher-order solitons. The three-soliton solution (constructed via Eq. 31) and four-soliton solution (Eq. 38)
are likewise exponential solutions of type gech - Figures 5 and 6 show that even under complex multi-soliton
interactions, the collisions are elastic: solitons emerge unchanged apart from phase shifts.

Breather solutions
Applying the CCA, breather solutions are derived. Unlike solitary waves, breathers are periodic in time or space,
combining exponential envelopes with oscillatory modulation.

First-order breather This solution represents an exponential soliton pair under conjugate parameters,
producing a localized oscillatory structure. Depending on §y, it manifests as a bright breather (pulses on a zero
background) or a dark breather (localized dips on a finite background). The periodic time and space breathers
are shown in Fig. 7a,b.

Second-order breather Built from higher-order exponential terms, these exhibit two oscillatory rows in
parallel (Fig. 8). Such solutions model recurrent energy localization, which is relevant for describing rogue waves
and periodic plasma oscillations.

Lump solutions
Applying the LWL reduction leads to rationally localized lump solutions.
First-order lump (Eq. 47). Unlike exponential solitons, this is a rationally decaying solution localized in both
x and y. It may appear as a bright lump (positive peak) or dark lump (negative depression), depending on the
numerator sign in Eq. (47). Figure 9a-c (bright) and d-f (dark) show the time evolution att = 0, 2, 4.
Second-order lump Derived by extending Eq. (47), this solution exhibits two interacting lumps. At ¢ — (,
they form a butterfly-like pattern, then undergo an elastic collision, preserving their structure after separation
(Fig. 10).

Hybrid interactions
Finally, mixed solutions demonstrate the coexistence of different nonlinear excitations.

o Soliton-lump hybrid. An exponential soliton collides with a rational lump, retaining both structures post-in-
teraction (Fig. 11).

o Soliton-breather hybrid. The soliton undergoes a positional shift while the breather maintains its oscillation,
as in Fig. 12.

o Two-soliton-one-lump hybrid. Shown in Fig. 13, two exponential solitons interact with a rational lump, all
emerging elastically.

o Two-soliton-one-breather hybrid. Presented in Fig. 14, two exponential solitons and one breather collide elas-
tically, with phase shifts but preserved shapes.

Key insights
The results obtained can be summarized as follows:

1. Bright/dark solitons (Egs. (21), (26), (31), (38)). Exponential sechz-type solutions, bright for 6; > 0 and
dark for 61 < 0, with elastic interactions.

2. Breathers (Eq. 42) and higher-order forms). Oscillatory exponential solutions, periodic in ¢ or x, manifesting
as bright or dark breathers depending on 6.

3. Lumps (Eq.47). Rationally localized solutions with algebraic decay; bright or dark, depending on the numer-
ator sign. Elastic interactions are observed in higher-order lumps.

4. Hpybrids. Mixed exponential-rational or exponential-oscillatory structures, all demonstrating elastic colli-
sions with preserved identities.

These classifications agree with established soliton taxonomy in nonlinear wave theory®*3!, strengthening the

physical context of our results. In general, the results reveal that Eq. (1) admits a wide spectrum of nonlinear
wave phenomena, each with distinct physical signatures. The ability to obtain soliton, breather, lump, and hybrid
solutions underlines the versatility of the system in modeling nonlinear dispersive media.

Analysis of solution overlaps
This part presents a detailed comparative analysis of the behaviors of different wave solutions using data points,
highlighting their interactions and overlapping features. The purpose is to identify regions in which otherwise
distinct solutions exhibit common characteristics, as well as regions in which they diverge.

Two types of solution are considered for this analysis: the Soliton and the Lump. Each solution depends on
a specific set of parameters and is evaluated within the designated ranges of the spatial variables (z,y) and the
temporal variable ¢. By systematically varying these coordinates, a collection of data points is generated for each
case. The scatter plots then provide a bidirectional comparison, where two solutions are plotted simultaneously

Scientific Reports |

202515:40242 | https://doi.org/10.1038/s41598-025-24067-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

with distinct colors. Points in common or overlapping regions indicate that the solutions share similar behavior
under specific parameter settings, while separated clusters indicate differences.

o Solution 1 (bright soliton):

6€I+y
s — >y 58
o= g (58)
with parameters f1 =v1 = 61 = d2 = 1,03 = 0.2, and t = 2.
o Solution 2 (dark soliton):
6e® Y
s = —77 59
Hi 1+ eotv)2 (59)
with parameters f1 =v1 =61 = 1,02 = —1,03 = 0.2, and t = 2.
o Solution 3 (1-Lump):
—62.92% 4 62.93y> + 190.19
HlfLump = vt s (60)

(2.2922 4+ 2.2992 + 6.92)2

with parameters f1 = 0.2 — 1.51, 82 =02+ 151,01 =1,00 = —1,§1 =02 =63 = 1,andt = 1.
Spatial variables are varied within the ranges = € [—5,5] and y € [—3, 3], while ¢ is fixed according to the
solution under study. By evaluating these solutions at discrete values of x, y, data points are generated, which are
then compared pairwise in the scatter plots.

The analysis is summarized in Fig. 15, which uses a bidirectional scatter plot technique.

o Figure 15a: Solution 3 (blue) in Eq. (60) is compared with a second-order Lump (red). Both solutions are
evaluated in the (x, y)-plane. For different combinations of x and y, data points are generated that map the
behavior of each lump. The results indicate that while the two solutions are distinct, they exhibit strong simi-
larity in the mid-function value range (approximately [0.5, 1.5]), where their data points overlap. This overlap
suggests that first- and second-order lumps can produce similar localized structures under specific parameter
ranges, while diverging outside this region.

o Figure 15b: Solution 1 (red) in Eq. (58) is compared to Solution 2 (blue) in Eq. (58). Solution 1 represents a
bright soliton, while solution 2 represents a dark soliton. The scatter plot reveals that these two solutions be-
have as mirror images: the bright soliton has a peak above the baseline, whereas the dark soliton has a trough
below it. The overlap occurs only at the origin, confirming that, while their global behaviors are opposite, they
retain a localized similarity. This observation highlights the dual nature of soliton solutions where opposite
profiles can share a common reference point.

« Figure 15c: Solution 1 (red, bright soliton) in Eq. (58) is compared to Solution 3 (blue, 1-Lump) in Eq. (60).
Here, both the soliton solution and the lump solution are evaluated in the (x, y)-plane. The scatter plot
demonstrates that although the two types of solution are structurally different, they exhibit partial overlap in
the range [0, 1.5]. This indicates that soliton-type and lump-type solutions can momentarily align in behavior
within certain parameter intervals before diverging into their distinct functional forms.

o Figure 15d: Solution 3 (first-order Lump) is further compared with its bright and dark variants. The scat-
ter plot shows that the bright and dark lumps are symmetric counterparts, much like in the soliton case in
Fig. 15b. Their overlap occurs primarily near the origin, where their function values converge. Away from this
region, the two lump profiles move in opposite directions, reflecting the bright and dark structures. This lo-
calized similarity and global divergence illustrate how lump solutions can bifurcate depending on parameter
signs, producing contrasting behaviors that remain correlated at specific points.

Across all subplots, it is observed that the solutions tend to cluster in the middle function value range and near
the origin, suggesting that distinct solution types (soliton vs lump, bright vs. dark, first-order vs. higher-order)
can share common behaviors in limited regions. As the parameter values or coordinate ranges increase, the
solutions begin to diverge, thereby highlighting the transition from correlated to distinct solution behaviors
depending on the chosen parameter set.

Comparative study with existing literature

We now compare our results with the work of Wazwaz and Kaur!®, who first introduced this form of the
Boussinesq equation and examined its soliton structures. While their study focused on integrability and multi-
soliton derivations, our work extends the analysis by considering additional solution types and their interactions.
The main distinctions are summarized in Table 2.

It should be noted that although various forms of the Boussinesq equation have been studied, the specific
form introduced in Ref'®. has not previously been investigated in terms of lump, breather, hybrid, or overlap
analyses. The present work extends the earlier study by constructing higher-order lumps, breather solutions, and
hybrid interactions through the bilinear Hirota framework, and by introducing a bidirectional data-mapping
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Fig. 15. Overlapping of solution behaviors.
Aspect Wazwaz & Kaur!® Current work
Equation ilgtir::i Zﬁzglﬁi;s form of the Boussinesq equation and studied Considered the same equation for further analytical exploration.
Integrability Verified using the Painlevé test. Built on established integrability to construct wider solution families.

Multi-solitons

Derived via simplified Hirota approach.

Derived via bilinear Hirota approach with explicit forms.

Breathers Not reported. First- and second-order breathers obtained.

Lumps Not presented for this equation. First- and second-order lumps constructed.

Hybrid interactions | Not discussed. Hybrid solutions (soliton-lump, soliton-breather) analyzed.
Overlap analysis Not addressed. Overlapping behaviors studied through bidirectional data mapping.

Visualization

No graphical representation of solutions was provided.

Extensive visualizations, including 2D and 3D plots of soliton, lump,
breather, and hybrid interactions.

Table 2. Comparison between Wazwaz & Kaur'® and the present work.
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Reference | Key features Advantages/disadvantages
Hussein et | Applied IMETES to a new (2+1)-D Ito integro-differential equation; Advantage: Efficient, simple to implement, wide variety of solutions. Disadvantage:
al.? produced bright, dark, singular, periodic, and elliptic wave solutions. Focused only on specific Ito-type PDE; does not cover hybrid or lump interactions.
Murad et | Used the GERFM for dual-mode fractional NLSE; constructed bright, dark, | Advantage: Captures fractional-order dynamics; suitable for nonlinear optics.
al® mixed, and singular optical solitons; analyzed fractional-order effects. Disadvantage: Restricted to NLSE-type models; no rational (lump) or hybrid solutions.
Hussein et Applied IMETF method to longitudinal wave equation in magneto-electro- | Advantage: Novel application to smart materials; diverse solution classes.
al? elastic annular bar; derived singular, bright, dark, rational, and periodic wave | Disadvantage: Limited to single wave structures; lacks multi-soliton and hybrid

’ solutions. analysis.
Present Hirota Bilinear Method + CCA + LWL applied to (2+1)-D Boussinesq Advantage: Unified framework; broader taxonomy (multi-soliton, lump, breather,
work equation; derived solitons, breathers, lumps, and hybrid solutions with hybrid); elastic interactions; visual and physical interpretation. Disadvantage: More

overlap analysis. algebraically complex than direct schemes.

Table 3. Comparison of the present method with recent approaches in the literature.

approach to examine overlapping behaviors. These results complement the findings of Ref!®. and provide a
broader understanding of the solution structures of this equation.

Comparative analysis with recent methods
In addition to the comparison with Wazwaz and Kaur!?, our work is also compared to other recent contributions
in the field. The summary is provided in Table 3.

Conclusion

This study has explored novel wave solutions and analyzed the complex dynamics of the (2 + 1)-dimensional
Boussinesq equation. By employing the Hirota bilinear approach, explicit N-soliton solutions were derived,
as demonstrated in Figs. 3-6. Using the CCA, higher-order bright and dark breather waves were constructed,
including first-order ¢-periodic and x-periodic breathers (Fig. 7) and second-order breathers exhibiting more

intricate dynamics (Fig. 8).

Lump wave solutions were further obtained through the LWL approach applied to N-solitons. Both first- and
second-order lumps were explicitly constructed (Figs. 9 and 10), revealing elastic collision phenomena where
localized structures interact without loss of identity, though temporarily redistributing energy. For N > 2, the
combined use of the LWL method and CCA produced four hybrid classes of solutions, incorporating solitons,
lumps, and breathers (Figs. 11 and 14). These hybrid solutions enrich the dynamical spectrum of the model. A
complete overview of the solutions is summarized in Table 1.

In addition, a comparative analysis of the soliton and lump waves was performed using a bidirectional scatter
plot technique, which enabled quantitative evaluation of similarities across different solution types (Fig. 15). This
approach provided a new perspective on nonlinear wave interactions and enhanced the classification of distinct
solution behaviors. The methodologies presented here are sufficiently general to be applied to other nonlinear
systems, offering a framework for identifying and interpreting complex wave phenomena in higher-dimensional

models.

Future work

Several directions can be pursued to extend this research. First, data-driven approaches such as the bilinear
neural network framework could be applied to the Boussinesq equation for constructing multi-soliton solutions
with enhanced predictive capability. Second, alternative analytical tools, including the generalized logistic
approach and the auxiliary equation method, may be explored to uncover additional classes of exact solutions.
Third, dynamical systems techniques such as bifurcation and chaos analysis could provide deeper insights into
stability, transition, and energy transfer mechanisms.

Moreover, recent studies have begun to address stochastic effects in nonlinear wave models using the IMETES.
For instance, investigations on a (3+1)-dimensional NLSE with cubic-quintic nonlinearity demonstrated how
multiplicative noise influences the formation of stochastic solitons of various types, including bright, dark, and
singular structures, along with periodic and elliptic solutions®. In another related work, the same analytical
framework was applied to a HMGI equation under stochastic perturbations, leading to the construction of
diverse exact solutions with direct implications for nonlinear optical wave propagation®. Incorporating such
stochastic perspectives and higher-order perturbation terms into the present methodology could provide a more
realistic description of soliton dynamics in physical systems.

Finally, extending the methodology to coupled ocean-atmosphere models or validating lump and breather
dynamics against experimental or numerical ocean wave data would significantly strengthen the engineering

relevance of these findings.

Data availability

All data that support the findings of this study are included within the article.
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