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Machine learning models
Incorporating genotype and
ancestry improve severe asthma
risk prediction
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This study proposes a novel machine learning (ML)-based stacking technique that integrates

Single Nucleotide Polymorphisms (SNPs) and inferred local ancestry (LA) to improve predictive
accuracy in clinical outcomes. Asthma, particularly severe asthma (SA) with poor response to

inhaled corticosteroids (ICS), serves as the case study to illustrate this approach. Using data from

the Biorepository and Integrative Genomics (BIG) Initiative, which includes whole-exome sequenced
data from a self-reported African American pediatric cohort (N=248), we develop an ML framework

to predict ICS response. After SNP data preprocessing and LA estimation, we employ stratified
10-fold cross-validation, creating base pipelines for SNP and LA data, which are then combined in
stacked pipelines to assess the effectiveness of integrating these distinct data types. The stacked SNP
pipeline yields an AUC of 0.693 + 0.066 and the stacked LA pipeline yields an AUC of 0.625 + 0.103.
The integration of LA with SNP data significantly improves predictive performance, boosting the
AUCt0 0.729 + 0.048 (paired t-test p-value = 0.005). Pipelines using LA data alone shows comparable
performance to those using SNP data alone. However, the most important contributing features are
distinct between LA and SNP data demonstrating that these data types capture distinct sources of
variation and could provide complementary insights. This study highlights the potential of stacking ML
pipelines, based on feature selection techniques and along with logistic regression and random forest
predictive models, to integrate SNP and LA data. Such holistic approach has the promise to improve
predictive performance of medication response in complex conditions like SA. This approach has
broader implications for advancing personalized medicine through the effective use of multifactorial
data.
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Machine learning (ML) has emerged as a transformative tool across various scientific disciplines, enabling the
analysis of complex datasets and the extraction of meaningful patterns'>. These computational advancements
are especially pertinent to genetics, where genetic variant data are high-dimensional and sparse and genotype-
phenotype relationships can be non-linear, even when sample sizes are relatively limited*®. Thus, ML algorithms
are increasingly being adopted in biomedical and genetics research®!?, notably for analyzing genetic variant data
to provide insights in accelerating drug discovery!'""'2, optimizing clinical decision-making®!?, and personalizing
treatment plans!*!>. In particular, a growing body of work applies ML pipelines to uncover associations between
genetic variants and disease risk®!°-18, demonstrating the potential of ML to capture subtle genotype-phenotype
relationships. Despite these advancements, the integration of heterogeneous data in these fields for understanding
the treatment outcomes remains underexplored!®-2!, Thus, this manuscript proposes a novel ML technique to
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leverage both genotype and ancestry data, emphasizing their potential in the genetic underpinnings of complex
diseases and treatment strategies.

In genetics research, ML pipelines can process thousands of genetic variants simultaneously selecting
the most relevant variants and learning from their genotypic pattern?>?*. Some ML techniques such as Least
Absolute Shrinkage and Selection Operator (Lasso) model and Elastic Net (EN) model are typically used for
dimensionality reduction, while other ML models such as logistic regression and Random Forests (RF), alon
with deep learning methods, have been effectively employed to predict disease risk and treatment outcomes>>42°.
Furthermore, ML techniques facilitate the creation of pipelines for multifactorial data types, allowing for
extensive analysis by integrating genotypic data with other factors of the disease such as sociodemography
and environmental exposuresZ6’27. For instance, ensemble methods, like stacking, combine multiple models to
enhance predictive accuracy and robustness, effectively integrating multifactorial data and reducing overfitting
in small datasets®>?. Such ensemble methods are particularly useful in understanding complex diseases and
their treatment outcomes.

Here, we focus on asthma, a chronic inflammatory disease marked by airway hyper-responsiveness and
variable airflow obstruction®, as our case study for multifactorial ML analysis due to its complex genetic
underpinnings®*2. Despite significant advancements in asthma management, asthma remains quite complex
and at times difficult to manage for clinicians due to its heterogeneity in clinical presentation and varied treatment
response among patients to mainstay therapies such as inhaled corticosteroids (ICS)**-*°. While the majority of
individuals with asthma benefit from ICS, approximately one-third experience little to no response®*-3® resulting
in severe asthma (SA). Thus, effectively managing asthma patients’ treatment outcomes requires a holistic
approach - one that relies on analyzing the genotype as well as the specific genetic constitution of ancestry of the
individual that may influence their response to treatment.

In this study, we leverage genotype biomarkers, specifically Single Nucleotide Polymorphisms (SNP),
the genetic makeup of an individual including the complete set of genes and genetic variations they possess.
Ancestry provides insights into SNP variations, such as differences in disease allele frequencies and linkage
disequilibrium (LD) patterns*~*!. Including ancestry pipelines can adjust the framework for the prevalence
of certain genetic variants associated with ICS response in specific ancestral groups*>*. We acknowledge that
genetic differences alone do not account for health disparities, as social drivers like socioeconomic status,
healthcare access, and environmental factors play an important role in health outcomes*!. However, in this
study, our goal is to develop a holistic framework centered on SNP data analysis and to highlight the potential of
extracting distinct signals from both genotype and ancestry for improving pipeline prediction performance, an
area that remains underexplored.

It is important to note that ancestry refers to an individual’s genetic lineage and geographic origins, derived
from biological and genetic markers?. It outlines the history of human populations and can be studied
scientifically to understand patterns of genetic variation, such as allele frequencies or evolutionary adaptations*.
Furthermore, the global ancestry measure reflects an individual’s overall genetic background, while the local
ancestry (LA)*~% measure identifies the specific ancestral origins of individual genome segments, offering more
detailed inheritance insights into specific parts of the genome. In contrast, race is a socially constructed concept
based on physical characteristics and is shaped by sociopolitical factors rather than biology. It is worth mentioning
that while race may correlate with certain genetic markers due to historical population structures, it is mainly
tied to social drivers such as discrimination, socioeconomic status, and environmental exposures, making it
more reflective of social experiences than genetics®. Ancestry can sometimes serve as a proxy for social and
environmental factors because individuals with shared ancestry often experience similar societal conditions**>!.
In our study, we consider race during patient selection to account for the social context influencing asthma
outcomes; however, we use LA as a feature to adjust for biological differences.

Hence, here we focus on SNPs along with LA to explore the biological predictors of ICS response, an
underexamined area in comparison to social factors, acknowledging that non-genomic data such as social
drivers of health to capture the broader context of risk factors is important but beyond this study’s scope. Our
study seeks to investigate and interpret the SNP variations within the context of ancestry providing deeper
insights into asthma management.

Past studies have shown the potential of ML techniques in predicting asthma severity and treatment outcomes
by integrating clinical®>**, environmental?”>4, and genetic biomarkers data®>**. Traditional techniques like RF
combined with Support Vector Machines (SVM) have been effective in asthma risk prediction®, and deep
learning methods like Convolutional Neural Networks (CNN)*” and time-sensitive, attentive neural network
model®® have excelled in SA exacerbation predictions. However, previous studies applying ML to genetic data
rarely consider ancestry resulting in ML models with confounding results. To the best of our knowledge, only
a few studies?®** included global ancestry in their analyses. Even then, global ancestry may not explain risk
at specific genomic positions™. Indeed, recent literature emphasize the importance of incorporating LA in
genomic studies?®*® and call for novel ML techniques that integrate various data factors for explainable risk
scores in clinical practice®%2,

To the best of our knowledge, this is the first study to propose stacked ML pipelines to integrate SNP and
LA features and to determine their respective and combined association effect for complex diseases such as
asthma. We develop base pipelines that include ML feature selection to identify key SNP and LA features and
train the respective predictive models. These pipelines are then stacked and integrated to assess the combined
predictive power of the distinct data types in distinguishing the ICS responders from non-responders. This
approach highlights the potential of ML to revolutionize asthma management by integrating SNP and LA data
for more personalized treatment strategies.
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Fig. 1. The definition of cases and controls with respect to their ICS response during the first 24 months from
their first asthma diagnosis.

Characteristics Overall Cases Controls
Patients, n(%) 248 (100) | 124 (50) 124 (50)
Female, n(%) 122 (100) | 61 (50) 61 (50)
Age (yr.) median (IQR) | 16 (13-18) | 16 (14-18) | 15 (12-18)

Table 1. Demographic information of the study population consisting of self-reported African-American
participants.

Methods

Data description

This study leverages datasets from the Biorepository and Integrative Genomics (BIG) Initiative, made possible
through the Genomic Information Commons (GIC) Consortium®. The BIG Initiative is a collaborative effort
by the University of Tennessee Health Science Center (UTHSC), Le Bonheur Children’s Hospital, and Regional
One Hospital, dedicated to collecting a comprehensive repository of Deoxyribonucleic Acid (DNA) samples. The
BIG Initiative, launched in October 2015, has enrolled over 31,000 participants from Tennessee, with a goal to
collect more samples from clinical partners statewide. The research protocol was approved by UTHSC Institutional
Review Board (IRB # 22-09164-NHSR) and all research was carried out in accordance with relevant guidelines and
regulations. Informed consent was obtained from all participants and/or their legal guardians, and all research was
carried out in accordance with the Declaration of Helsinki.

Our analysis focuses on a subset of this cohort, specifically 248 participants diagnosed with asthma, filtered
based on the following inclusion criteria - asthma diagnosis indicated by International Classification of Diseases
(ICD) codes (493.x or J45.x); self-reported African-American (AA); six years of age or older; prescribed ICS;
availability of genomics data, specifically whole exome sequencing (WES) data.

Participants are categorized into cases and controls (cases = controls = 124) based on their ICS response.
Specifically, cases are ICS non-responders and controls are ICS responders (see Fig. 1). As seen in the figure,
cases are patients who experienced emergency department (ED) or hospital visits due to asthma exacerbation in
the 24 months following their initial prescription of ICS. Controls are patients who, after being prescribed ICS,
did not require ED or hospital visits for asthma exacerbation. Note that to achieve a balanced dataset, we also
augment the controls by including patients with the exemption of ICD coded asthma diagnosis. In pediatrics,
ICS is exclusively used for moderate-to-severe asthma management®%, suggesting these additional controls
may have had asthma diagnoses prior to the coverage of our dataset.

Table 1 presents the demographic information of the study population. As seen in the table, 122 (50%) of the
participants are female, with cases having a slightly higher median age (16 years, IQR: 14-18) compared with
controls (15 years, IQR: 12-18).

Genotyping

All samples are sequenced on an Illumina NovaSeq 6000 system on S4 flow cells sequencer using 2 X 75 paired-
end sequencing. All samples are aligned by the Burrows-Wheeler Aligner (BWA) MEM to the GRCh38 assembly
of the human reference genome in an alt-aware manner. Duplicates are marked using Picard, and mapped reads
are sorted using sambamba. DeepVariant v0.10.0 with a custom exome model is used for variant calling, and the
GLnexus v1.2.6 tool is used for joint variant calling.
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Local ancestry inference

The LA data is first phased, a critical step for accurately determining the ancestral origins of genomic segments.
The SHAPEIT software® is used for phasing, aligning haplotypes by inferring the most likely sequence of genetic
variants along each chromosome. The phased data is run through RFMix v2 with AFR and EUR superpopulation
reference panels from the 1000 Genome Project®” for LA inference, simultaneously assigning ancestry to genomic
segments and inferring global ancestry based on the reference panels. The included AFR populations are GWD
(n=280), YRI (n=187) and MSL (n=128) and the EUR populations are CEU (n=184) and TSI (n=112). The
algorithm employs a RF model trained on reference populations to predict ancestry at each genomic segment,
providing high-resolution ancestry assignments.

Machine learning modeling

In this study, we develop three distinct pipelines to differentiate the cases from the controls using SNP data alone,
LA data alone, and their combination. Each pipeline incorporates ML modeling, its evaluation, and interpretation
to ensure robust and reliable results. Specifically, we apply ML feature selection techniques to select key SNP and
LA features and train separate predictive ML models for these distinct data types, resulting in the base pipelines for
our framework. Figure 2 presents the methodology for developing the base pipelines. This proposed methodology
comprises three key stages, namely, data preprocessing, ML modeling, and model evaluation. Next, the respective
pipelines for the SNP and LA data are stacked to assess the predictive signals for each data type. These stacked
pipelines are then integrated, allowing us to evaluate the combined predictive power of both SNP and LA data in
distinguishing ICS responders from non-responders.

SNP data preprocessing

To ensure comprehensive data filtering, domain specific preprocessing steps are undertaken using PLINK
software®®®. The Minor Allele Frequency (MAF) filtering step involves applying a minor allele frequency threshold
(MAF < 5%), which removes SNPs with low MAE Similarly, Hardy-Weinberg Equilibrium (HWE) filtering step
requires applying Hardy-Weinberg Equilibrium (alpha = 0.05). Finally, Linkage Disequilibrium (LD) pruning
(window size = 50 kb, step size =5, r2=02), performed using the PLINK software, selects a subset of SNPs that are
not highly correlated, reducing redundancy and multicollinearity in the dataset.

After this data preprocessing using PLINK, ordinal encoding is used to transform the categorical SNP
information into numerical format suitable for ML algorithms. SNP data, initially represented as °/ ‘0/0’,
‘0/1” or ‘1/0” and ‘1/1;, are encoded as 0, 1, 2, and 3 respectively. This transformation allows the ML models to
process the SNP data as numerical inputs, with a special emphasis on the prevalence of mutations. Missing SNPs
(approximately 2%), encoded as 0, are imputed using KNNImputer by taking the average of the five (n=5) closest
SNP values. With this final step, the dataset consists of only 1, 2, and 3 encoded SNP data values.

LA data preprocessing

For data resulting from RFMix v2%¢, the LA assignments (1 if AFR LA code and 0 otherwise) are averaged
across the two haplotypes for every individual, resulting in a single LA value for each genomic segment. This
provides a summary LA measure for each segment, reducing dimensionality and making the data amenable to

: SNP Data LA Data ;
f Data LD Pruning, Ordinal Phasing Averaging :
i Pre-processing HWE filtering, —| encoding and REMix v‘2 — haplotypes per

MAF imputation individual !

Hyperparameter
tuning and 10-fold
cross validation

PooML Modelling v X v
E Train on nine folds of Test on the remaining
! the data fold of the data

Model Performance metrics
Evaluation and SHAP analysis

Fig. 2. The overview of the methodology for developing the base pipelines—this methodology comprises
preprocessing, modeling, and evaluating respective ML models for SNP and LA data. SNP data undergoes LD
pruning, HWE filtering, and MAF thresholds, followed by ordinal encoding and imputation, while LA data is
processed with phasing and REMix v2, averaging haplotypes per individual. After preprocessing, nine out of
ten folds of the data are used for training and the remaining fold for testing, with hyperparameter tuning and
10-fold cross-validation. Final evaluation includes performance metrics and SHAP analysis to assess feature
importance and model interpretability.
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ML modeling. Consequently, the LA assignments for each segment are matched to all the SNPs located at the
segment and these SNPs are assigned the same LA code as its corresponding segment.

Stacking
The model training phase involves developing ML models that can accurately differentiate ICS responders from
non-responders based on SNP and LA data. To minimize overfitting and maximize generalizability, we tune,
train and evaluate our pipelines applying 10-fold cross-validation on the preprocessed data as shown in Fig. 2.
This procedure yields the base pipelines, which are then stacked into intermediate and final pipelines as depicted
in Fig. 3.

The first SNP data pipeline (P1snp) employs Lasso model, a linear model that uses L1 regularization to
select a sparse set of predictive features, as seen in Fig. 3. This method ensures that only the most linearly
relevant SNPs are included in the model. The second SNP data pipeline (P25 p) consists of Recursive Feature
Elimination (RFE) followed by RF model. In each fold, RFE iteratively removes the least important features
based on their importance scores derived from the RF model. The RF model, with its ensemble of decision trees,
captures complex, non-linear interactions among SNPs and is robust to overfitting.

Similarly, the first LA data pipeline (P11 .4) uses Lasso model to identify key SNP with LA signals linearly
associative with ICS response. The second LA data pipeline (P21 4) employs EN model followed by an RF model.
EN combines L1 and L2 regularization, balancing feature selection and regularization. This approach mitigates
the limitations of Lasso model, which may select only one of several correlated features. The selected features
are then used in an RF model. At the P1 stages, the priority is low-variance, high-interpretability linear feature
screening for downstream classification. In P2 stages, LA segments exhibit tract-level block correlation, so P21, 4
retains correlated groups while regularizing; SNPs are ultra—high-dimensional with complex interactions, so
P25 xp conducts redundancy pruning guided by the RF’s importance scores. For each pipeline, hyperparameter
tuning is done on each fold using cross-validation to select the optimal hyperparameters, ensuring that the
model balances complexity and predictive performance.

The next stage of the methodology involves integrating pipelines through a stacking approach, combining the
strengths of individual pipelines to enhance predictive performance while balancing their potential shortcomings.
Intermediate stacked pipelines, depicted in Fig. 3, are first created for SNP and LA data. The intermediate SNP
stacked pipeline (P3snp) combines the prediction probabilities of the two base SNP pipelines (Plsyp and
P25 p) with equal weighting. Similarly, the intermediate LA stacked pipeline (P31.4) combines the prediction
probabilities of the two base LA pipelines (P11 and P2y, 4) with equal weighting. When stacking probability
outputs, a decision threshold converts continuous probabilities into categorical labels; in our approach, the
probability threshold of 0.50 is used for both pipelines. This intermediate stacking approach enhances robustness
by leveraging the strengths of both models, capturing the linear and non-linear associations.

As seen in Fig. 3, the final stacked pipeline (P3snp—r4) are obtained by integrating the intermediate SNP
(P3snp)and LA (P3r4) stacked pipelines. Weighted probabilities of 0.68 and 0.32 are used for P3snyp and
P31 4 respectively and probability threshold at 0.52, determined through cross-validation tuning to optimize
performance. These weights and threshold are selected by evaluating candidate SNP/LA weight pairs and
thresholds within the same stratified 10-fold cross-validation and choosing the values that maximized average
predictive performance across folds. This final step aims to balance the contributions of SNP and LA data,
providing a more holistic pipeline that captured the multifactorial nature of ICS response and enhancing the
overall predictive performance of the proposed framework.
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Fig. 3. The overview of the proposed ML stacking framework—the framework stacks the base ML models and
develops intermediate pipelines P35~ p and P31 4 and consequently the final stacked pipeline P3snp—ra to
achieve improved prediction performance of the clinical outcome of interest through leveraging both SNP and
LA data.
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SNP base pipelines LA base pipelines
Metric Plsnp P2snp Plpa P21 A
AUC 0.678 £0.091 | 0.641 +£0.072 | 0.602 +0.103 | 0.605 + 0.108

Weighted precision | 0.647 + 0.062 | 0.643 + 0.071 | 0.591 +0.103 | 0.578 + 0.089

Weighted recall 0.642 +0.059 | 0.635 +0.066 | 0.586 +0.099 | 0.575 + 0.084
Weighted specificity | 0.638 +0.062 | 0.631 +0.064 | 0.589 + 0.100 | 0.573 + 0.088
Balanced accuracy | 0.640 + 0.060 | 0.633 +0.064 | 0.588 +0.100 | 0.574 + 0.086

Table 2. Comparison of performance metrics across the base pipelines. Values after the plus-minus sign
represent standard deviation (SD)

Metric P3snp P3ra P3snp-ra

AUC 0.693 £ 0.066 | 0.625 +0.103 | 0.729 + 0.048

Weighted precision | 0.652 + 0.047 | 0.578 +0.103 | 0.701 + 0.084
Weighted recall 0.642 +0.039 | 0.575 +0.099 | 0.691 +0.074
Weighted specificity | 0.638 +0.037 | 0.575 + 0.096 | 0.688 + 0.075
Balanced accuracy | 0.640 +0.039 | 0.575 +0.097 | 0.689 + 0.074

Table 3. Comparison of performance metrics across the stacked pipelines. Values after the plus-minus sign
represent SDs

Finally, we run SHapley Additive exPlanations (SHAP) on each fold of Plsnp, Plpa, P2snp,and P21a
to better interpret our results. For each base pipeline, the SHAP values are averaged across the folds and the loci
with non-zero SHAP values in eight or more folds are filtered to identify the most important loci from each
pipeline.

Results

In this section, we present the performance of the pipelines using 10 folds cross-validation ensuring robust
evaluation of our framework. In each fold, the testing set consisted of 25 patients and the rest of the data is used
for training. The performance of the pipelines is evaluated using the metrics - area under the receiver operating
characteristic curve (AUC), weighted precision, weighted recall, weighted specificity, and balanced accuracy -
averaged across 10 folds. We opt for weighted metrics evaluation to offer a holistic view of performance across
cases and controls as it averages the metrics of both classes equally. Consequently, a comparison between P1 and
P2 pipelines with their respective models assesses the power of stacking two different ML modeling for the same
feature. Additionally, contrasting P2 pipelines to P3 pipeline evaluates the predictive capability of integrating two
distinct feature types.

Table 2 presents the stable performance of the SNP pipelines, with P1syp and P2snp pipelines achieving
mean AUCs of 0.678 and 0.641 respectively. In contrast to SNP pipelines, the P14 and P2 4 pipelines achieves
slightly lower mean AUC:s of 0.602 and 0.605 respectively. Next, Table 3 presents the performance of the stacked
P3snp pipeline achieving an improved mean AUC of 0.693 in comparison to its base pipelines as presented
in Table 2. Similarly, the stacked P31 4 pipeline achieves an improved mean AUC of 0.625 in comparison to its
base pipelines as presented in Table 2. Thus, these results highlight the effectiveness of stacking in enhancing
predictive accuracy. Subsequently, Table 3 also presents the final P3snyp—r 4 pipeline, late-integrating SNP and
LA data, that achieves the highest performance with a mean AUC of 0.729, demonstrating the clear advantage of
combining multifactorial data types for improved predictive performance in asthma treatment.

Figure 4 shows that, in contrast to P3sn p, the final stacked pipeline, P3snp—r 4, which adds LA features
to SNP features by stacking P3snyp and P34, achieves the highest overall performance. While the curves
are constructed by averaging interpolated true positive rate and false positive rate across 10 folds and therefore
smoothen variability, the fold-wise AUC values capture improvements where P3sny p—r 4 outperforms P3snp.
This is reflected in Table 3 which shows P3snyp—_r 4 vields a mean AUC of 0.729 + 0.048 (paired t-test p-value
= 0.005), significantly enhancing predictive performance. The weighted precision, weighted recall, and weighted
specificity are also improved, achieving values of 0.701 + 0.084 (paired t-test p-value = 0.096), 0.691 + 0.074
(paired t-test p-value = 0.050), and 0.688 + 0.075 (paired t-test p-value = 0.044), respectively.

Finally, we run SHAP on the Plsnp, Plra, P2snp, and P2p 4 pipelines to better interpret our results.
Figure 5 illustrates the average SHAP values, presented as color intensity, for most important loci across
chromosomes for the SNP and LA pipelines. As seen in Fig. 5a and b, the higher SHAP values for the SNP
pipelines are on chromosomes 5, 11, and 17, highlighting important genomic regions contributing to the SNP
pipelines’ predictions. In contrast, Fig. 5c and d shows the brightest bars for the LA pipelines on chromosomes 3,
11, 13, and 22, indicating strong influence from these regions for LA pipelines’ predictions. The most important
loci with the highest average SHAP values (> 0.001) for the pipelines are listed in the Supplementary Tables
1-4. Note that the SNP pipelines have five loci (out of the 59 most important identified) in common and the
LA pipelines have 10 loci (out of the 64 most important identified) in common. Further analyzing the most
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Fig. 4. The AUC curves along with the respective SDs for the P3snp, P34 and P3snp—r4 pipelines,
constructed by averaging interpolated true positive rate and false positive rate across 10 folds for each model.

important loci reveals that the SNP and LA pipelines have non-overlapping most important loci, except one
locus on chromosome 11 (chrl1l_62401264_G_A) which is in the most important loci for Plsnyp, P2snp,and
P2r 4 pipelines.

Discussion

In this study, we leverage ML techniques to analyze SNP and LA data for predicting SA responses to ICS. Our
results show that combining linear models, such as Lasso model, with ensemble non-linear models such as
RF significantly enhances the predictive power of our pipelines. The linear model effectively captures simple,
additive relationships between variables, while the ensemble RF model is adept at detecting complex, non-linear
interactions. This complementary approach maximizes the strengths of each method, leading to a more robust and
accurate prediction of treatment response. Additionally, to the best of our knowledge, this study is the first to use
ML to integrate LA with genotype data, an underexplored approach in predicting treatment outcomes in complex
diseases. Therefore, this approach not only enhances predictive accuracy but also provides a new framework for
exploring the genotype and ancestral determinants of treatment response in other diseases.

Our results emphasize the three main contributions of this study. First, we develop models using SNP data
and identify the corresponding loci that effectively differentiate ICS responders from non-responders (Table 3,
Fig. 5a and b), thereby providing a foundation for personalized asthma treatment. Second, we uncover loci as LA
signals (Table 3, Fig. 5c and d) that similarly distinguish responders from non-responders, adding a multifaceted
dimension to personalized treatment strategies. Interestingly, our results show that pipelines using LA data
alone provide comparable performance to those using SNP data alone (Tables 2 and 3), demonstrating that
these distinct data types provide non-overlapping, complementary insights (Fig. 5a-d). Finally, by employing a
stacking approach, we achieve a statistically significant improvement in AUC (Table 3 and Fig. 4), highlighting
the value of integrating multifactorial data using stacked pipelines to enhance predictive performance.

The addition of LA pipeline to the SNP pipelines notably improves predictive performance. This is aligned
with recent studies calling for the integration of LA in genetic research?*>. This improvement in results may
be associated with the pipelines now adjusted better with genetic context. However, it may also be due to the
possibility that the pipelines can now capture gene-environmental interactions and social factors, such as
socioeconomic status and access to healthcare, associated with LA. Additionally, our approach may have favored
P3gnp more than P34 because genotype SNPs show direct, pathway-level effects on ICS response’®’!. By
contrast, LA is designed for tract-level discovery in admixed cohorts and, after genotype SNPs are included,
LA’s main role is adjustment to control confounding and aid fine-mapping rather than adding large incremental
predictive signal’>’®. Even so, we achieve a significant AUC boost by incorporating LA with SNP data using
ML, underscoring the potential of LA-informed ML framework to refine personalized treatment strategies.
Additionally, the non-overlapping signals identified in the SNP and LA pipelines (Fig. 5a-d) suggest that
different loci may be contributing to the ICS response in ways that are specific to the genotype or ancestral
background. Note that not all signals identified are non-overlapping. The overlapping signals, particularly the
locus on chromosome 11 that is shared across multiple pipelines, may indicate a strong genetic determinant that
is consistent across different genetic backgrounds and modeling approaches. This implies that a multifactorial
approach is necessary to fully understand the genetic architecture of asthma and its treatment; thus, it highlights
the need for integrated pipelines that can capture this complexity.

This study is subject to several limitations that need to be addressed as part of future work. The small dataset
size limits the generalizability of our findings and increases the risk of overfitting; expanding the dataset with
additional patient cohorts would enhance the robustness of the pipelines. Second, the absence of external
validation further limits the applicability of our results; future work should incorporate independent cohorts for
validation to assess the proposed techniques’ generalizability across different populations and diseases. Third,
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Fig. 5. A comparison of the most important loci across chromosomes for each analysis pipeline: (a) Plsnp,
(b) P2snp, (c) Plpa, and (d) P2 4. The height of each bar represents the SHAP importance values
transformed by log,,(SHAP value) x 10 where taller bars indicate loci with higher predictive importance.

the inability to track medication compliance among patients could introduce bias, as non-compliance may have
been misinterpreted as treatment failure. Incorporating medication adherence tracking in future studies would
provide a more accurate assessment of treatment outcomes. Additionally, this study provides a foundation for
future research where genotype, LA and socio-economic variables can be jointly considered to explore how the
use of LA compares with social drivers of health. Lastly, this study does not account for variations in medication
composition, which could influence treatment outcomes; adjusting the experiment for medication brands would
improve the comprehensiveness of the study.
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Conclusion

This study demonstrates the power of ML in integrating SNP and LA data in addressing severe asthma risk. By
improving ICS response predictions, our ML-based stacking approach supports the development of personalized,
effective treatment strategies tailored to each patient’s genetic and ancestral profile. Our limited cohort size may
constrain the generalizability of these findings and introduce potential overfitting; inclusion of additional patient
cohorts in future work would likely strengthen the pipelines’ robustness. Even so, the findings strengthen the
case for incorporating multifactorial data in personalized medicine and point to promising avenues for future
research and clinical practice.

Data availability

Whole exome sequencing was carried out for all subjects in our biorepository project that has been funded
through internal (non-federal) funding sources within our Institution. As a result, we have not deposited the
data in dBGap. However, we have a well developed process that enable investigators to request data. Our consent
form indicates, and our institution requires, that all use of our biorepository data by outside investigators be
carried out in the context of a fully collaborative research project. To request data access, please contact Robert
Davis at rdavis88@uthsc.edu or visit: https://uthsc.edu/cbmi/big/.
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