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Synergistic effects of body fat
percentage and C-reactive protein
triglyceride—glucose index on
cardiovascular disease risk: a
Chinese cohort study

Xiaoyuan Tian'3, Zhenan Qu?3, Xianglin Yang?, Ying Cao* & Bocheng Zhang***

Obesity, insulin resistance (IR), and inflammation are key modifiable cardiovascular disease (CVD)

risk factors. We investigated the synergistic effects of body fat percentage (BFP) and the C-reactive
protein-triglyceride-glucose index (CTI) on CVD risk. This prospective cohort included 6303 CVD-

free Chinese adults (= 45 years) from the CHARLS. BFP was calculated via the CUN-BAE equation;

the CTl integrates CRP, triglycerides, and fasting glucose. Multivariate Cox regression was used to
assess associations with incident CVD over 7 years. Mediation and receiver operating characteristic
(ROC) analyses were used to evaluate pathways and predictive performance. Among 1124 incident
CVD cases, concurrent high BFP (>30.8%) and CTI (> 4.68) showed 1.48-fold higher CVD risk (95% Cl
1.21-1.80) versus low-level groups. The combined BFP-CTI model improved prediction (AUC=0.581;
DelLong’s P<0.05) over individual indices. Mediation revealed bidirectional effects: CTI mediated 8.76%
of BFP’s CVD association, while BFP mediated 12.22% of CTI's effect (P <0.001). Synergy was strongest
in adults <60y (HR=1.76, Cl 1.25-2.48) and diabetics (HR=3.52, Cl 1.69-7.31). The combination

of high BFP and high CTI was associated with a synergistic increase in CVD risk, with bidirectional
mediation between adiposity and metabolic-inflammation pathways. Joint assessment enhances risk
stratification, particularly in younger and diabetic populations.
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TG Triglyceride

FPG Fasting plasma glucose

CRP C-reactive protein

ADP Air displacement plethysmography

DM Diabetes mellitus

TC Total cholesterol

LDL-C Low-density lipoprotein cholesterol
HDL-C High-density lipoprotein cholesterol
SE Standard errors
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HRs Hazard ratios

Cis Confidence intervals
VIF Variance inflation factor
RCS Restricted cubic spline
AUC Area under the curve

Cardiovascular diseases (CVD) are among the leading causes of death globally, imposing significant health and
economic burdens on society. As of 2023, CVD claim over 18 million lives annually, accounting for 32% of
all deaths globally'. However, projections indicate that CVD-related mortality is expected to increase to 35.6
million deaths by 20252, highlighting the urgent need for effective prevention and treatment strategies. China
faces elevated cardiovascular risks and mortality rates, with approximately 330 million individuals affected by
CVD, where CVD-related deaths account for nearly 45% of total mortality’. Current therapeutic approaches,
including pharmacological interventions, surgical procedures, and lifestyle modifications, often encounter
challenges such as limited efficacy, poor patient adherence, and high recurrence rates*. Thus, it is essential to
explore the underlying mechanisms and risk factors associated with CVD to develop more effective prevention
and management strategiess.

Recent studies have identified obesity and insulin resistance (IR) as critical biological markers influencing
the risk of CVD®. Elevated body fat and IR have been shown to correlate significantly with CVD incidence,
potentially exacerbating disease progression through mechanisms involving inflammation and metabolic
dysregulation. Understanding the relationship between these factors and CVD can provide insights into their
pathophysiological roles and inform the development of targeted interventions aimed at reducing CVD risk.
Body fat percentage (BFP), a more precise measure of body composition than body mass index (BMI), has
emerged as a crucial indicator of obesity-related health risks”®. BMI, as a commonly used indicator of obesity,
fails to distinguish between fat mass and muscle mass, potentially masking the true risk associated with visceral
adiposity or metabolic abnormalities®. BFP provides a more accurate representation of individual adiposity status,
while studies demonstrate that BFP exhibits superior predictive sensitivity for CVD risk and mortality compared
to BMI'%-12, This is particularly relevant in clinical assessments where body composition can significantly impact
health outcomes.

Furthermore, IR, a condition wherein cells become less responsive to insulin, is associated with increased
inflammation and oxidative stress, further promoting the development of atherosclerosis and related
cardiovascular events'>. Although the hyperinsulinemic-euglycemic clamp (HEC) technique is regarded as
the gold standard for assessing IR, its technical complexity, invasive nature, and prohibitive costs render it
unsuitable for both clinical practice and epidemiological investigations'*. The triglyceride-glucose (TyG) index,
introduced as a reliable biomarker for IR, has gained traction in clinical settings and has been linked to adverse
CVD outcomes, including stroke and myocardial infarction!. The TyG index was calculated from triglycerides
(TG) and fasting plasma glucose (FPG). In addition to body fat and IR, inflammation plays a vital role in CVD
pathogenesis. C-reactive protein (CRP), a non-specific inflammatory marker, has been identified as a potential
predictor of CVD risk, contributing to atherosclerotic processes and vascular dysfunction!®~'8. The C-reactive
protein triglyceride-glucose index (CTI) has been proposed as a composite marker reflecting both IR and
inflammation, which may improve CVD risk stratification and early identification of at-risk individuals'®. Given
the interconnectedness of these biological markers, it is essential to investigate their combined effects on CVD
risk to enhance preventive and therapeutic strategies.

While the individual roles of obesity, insulin resistance, and inflammation in CVD pathogenesis are
well-established, the optimal method for integrating these pathways into a practical risk stratification tool,
particularly in the Chinese population, remains unclear. To address these knowledge gaps, we utilized data
from the prospective cohort of the China Health and Retirement Longitudinal Study (CHARLS). This study
does not seek to propose new biological mechanisms, but rather to empirically compare and combine easily
accessible clinical metrics BFP and the CTI index to assess their interactive and joint associations with CVD risk
in a prospective national cohort. Our aim is to inform whether such a combined approach offers incremental
utility for risk prediction beyond the consideration of these factors in isolation. By employing robust statistical
methods, this research aims to elucidate the interplay between these critical health indicators and their collective
impact on CVD risk.

Methods

Study population and design

The CHARLS is a nationally representative longitudinal survey targeting middle-aged and older adults (> 45 years)
in China?’. CHARLS employs a multistage probability sampling design to ensure population representativeness
across socioeconomic and geographic strata, selecting participants from 150 counties (districts) and 450
villages (communities) across 28 provinces. The database comprehensively collects socioeconomic status, health
behaviors, chronic disease diagnoses, biochemical measurements, and anthropometric data through face-to-
face interviews, physical examinations, and laboratory tests. The protocol for the CHARLS cohort was approved
by Peking University’s Ethics Review Committee (IRB00001052-11,015), and all participants provided written
informed consent prior to their participation.

Our analysis utilized CHARLS waves from 2011, 2013, 2015, and 2018, which constitute the complete
follow-up cycles with adjudicated CVD outcomes. The 2011 wave served as the baseline for assessing covariates
and calculating cumulative exposure metrics, while subsequent waves provided longitudinal outcome data.
Participants were sequentially excluded based on the following criteria: (1) participants with missing baseline
CVD data or pre-existing CVD at baseline; (2) participants aged below 45 years at baseline; (3) participants
lacking baseline BFP and CT1T data; (4) participants with missing CVD data during follow-up. Finally, a total of

Scientific Reports |

(2025) 15:40266 | https://doi.org/10.1038/s41598-025-24094-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

6303 participants meeting the inclusion criteria were included in this study. Figure 1 shows the screening process
for the study population in the current study.

Diagnosis of CVD

The diagnosis of CVD was based on self-reported heart disease or stroke. Similar to previous studies, the
interviewer will ask the participants a question, such as “Have you been told by a doctor that you have been
diagnosed with a heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems?”
or “Have you been told by a doctor that you have been diagnosed with a stroke?” Participants who reported heart
disease or stroke were defined as having CVD?!. Participants who had diagnosed CVD at 2011 were excluded,
and if the participants were diagnosed with CVD until the follow-up period in 2018, they were included in the
study and were defined as having new-onset CVD. Additionally, if a participant indicated a heart attack or stroke
at a previous round of follow-up, they were required to verify the presence of CVD at a later round of follow-
up?2. If participants denied a previous self-reported diagnosis of heart disease or stroke, these inconsistencies
were corrected retrospectively. Our diagnoses of CVD were consistent with previous studies using CHARLS?2%,

The definition of BFP and CTI

BFP was estimated using the Clinica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE) equation:
BEP = 44.988 + (0.503 age) 10.689 x sex) + (3.72 x BMI) — (0.026 x BMI?) + (0.181 x BMI x sex) — (0.02 x
BMI x age) — (0.005 x BMI? x sex) + (0.00021 x BMI? x age) where female gender is defined as 1 and male
gender is defined as 0, and BMI=weight in kilograms/ (height in metres)??*. Height was measured using the
SecaTM213 stadiometer (Medical Scales and Measuring Systems Seca (Hangzhou) Co., Ltd.), while weight was
measured using the OmronTM HN-286 scale (Krell Precision (Yangzhou) Co., Ltd.)*. The BFP calculated by
this method demonstrates high concordance with actual BFP measured by air displacement plethysmography
(ADP) (Pearson’s r=0.89, P<0.000001)*. Furthermore, the reliability of this methodology has been robustly
validated across multiple independent studies?.

The calculation formula of CTI is as follows?: CTI=0.412 x Ln (CRP [mg/L]) + Ln (TG [mg/dl] x FPG [mg/
dl])/2. All participants provided venous blood samples after fasting for at least 8 h. For each participant, 8 mL of
venous blood was collected and immediately frozen at—20 °C. The samples were transported within two weeks
to the Chinese Center for Disease Control and Prevention in Beijing, where they were stored at—80 °C until
analysis?’. The analytical methods and detection limits for the aforementioned laboratory indicators are detailed
in Supplementary Table 1.

Covariates
Covariates mainly include demographic data, lifestyle and metabolic factors. We included age, sex, marital
status, educational level and residence place to adjust for differences in demographic data. Educational level

CHARLS (wave 2011)
N=17.708

4’G’articipants age <45 years I\_——107;)

Participants with CVD diagnosis or
without self-reported CVD data in
wave 2011 N=2_586;

Missing data of BFP N=3,321;
Missing data of CTI N=3_228;

(eow )

during follow-up N=1_863;

Without self-reported CVD data }

Low BFP & Low CTI Low BFP & High CTI High BFP & Low CTI High BFP & High CTI
N=1.740 N=1.411 N=1.410 N=1.742

Fig. 1. Flow chart of the study. CHARLS, China Health and Retirement Longitudinal Study; CVD,
cardiovascular disease; BFP, Body fat percentage; CT1, C-reactive protein triglyceride-glucose index.
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was categorized as no formal education, primary school, middle school, high school or above. Marital status
was categorized as married and other marital statuses (separated, divorced, widowed and never married). The
residence place was categorized as rural or urban?’.

Lifestyle covariate included the drinking and smoking status. Metabolic risk factors include hypertension,
diabetes mellitus (DM) and BMI. Hypertension was defined as systolic blood pressure > 140 mmHg, diastolic
blood pressure>90 mmHg or being told by a doctor that they had hypertension. DM was defined as
FPG>7.0 mmol/L, glycated hemoglobin > 6.5%, random blood glucose>11.1 mmol/L or being told by a doctor
that they had DM?8. We also classified blood lipids laboratory test results as confounding factors because they
have a strong correlation with CVD. Laboratory test results included total cholesterol (TC), TG, low-density
lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C).

Missing data processing

In our study, participants with incomplete BFP information (3321, 18.75%), CTI index information (3228,
18.23%) and missing CVD follow-up data (1863, 10.52%) were excluded. The final analytical cohort exhibited
minimal missing data, with only 2 cases (0.03%) of missing educational level and 12 cases (0.19%) of missing
LDL-C among all covariate variables. To assess potential selection bias, we compared the baseline characteristics
of the excluded participants with those retained in the study (Supplementary Table 2).

Statistical analysis

All statistical analyses were conducted by R software (version 4.4.3). Means and standard errors (SE) were used
to present continuous variables, while numbers and percentages were used for categorical variables. The median
values of BFP (30.80%) and CTT1 (4.68) were employed as cutoff points to classify respondents into four categories:
low BFP and low CT1, low BFP and high CT1T, high BFP and low CT1, high BFP and high CTI. The normality of
all continuous variables was assessed using the Shapiro-Wilk test and visual inspection of histograms. As most
key variables (e.g., CRP, TG, FPG) deviated significantly from a normal distribution (P-Shapiro-Wilk <0.05),
they are presented as means+standard errors (SE). Categorical variables are presented as numbers and
percentages. Differences in baseline characteristics across groups were compared using the Kruskal-Wallis test
for continuous variables and the chi-square test for categorical variables. Kaplan-Meier curves were illustrated
to estimate the cumulative incidence of CVD, and differences between groups were assessed using the log-
rank test. Correlations between BFP, CTI and CVD risk were assessed using Cox regression analysis. We have
established three multivariable Cox regression model: Crude model, no covariates were adjusted; Model 1: age,
sex, marital status, education level and residence place were adjusted; Model 2: age, sex, marital status, education
level, residence place, smoking status, drinking status, BMI, hypertension, DM and blood lipids laboratory test
results were adjusted. For BFP or CTT indexes, variables already included in the equations were not adjusted for
in the Cox regression models. Results from the Cox regression analysis are reported as Hazard Ratios (HRs) with
95% confidence intervals (Cls). We assessed potential multicollinearity among variables in each model using the
variance inflation factor (VIF). The VIF values for all variables in each model were below 10 and no significant
multicollinearity problems were detected.

A restricted cubic spline (RCS) model with three equally spaced nodes was used to investigate the nonlinear
and dose-response trends association between BFP and CTI with CVD risk. The abilities of these indexes to
predict CVD risk were evaluated using ROC curves. The area under the curve (AUC) was calculated for each
index to predict CVD risk. We also used DeLong’s test to detect differences in the AUCs of different indexes.
Subgroup and interaction analyses were performed by stratifying and clustering by age, sex, drinking status,
smoking status, hypertension status and DM status to examine the variations in the association between BFP and
CTI with CVD risk across different subgroups. “Mediation” package was utilized to perform Mediation analysis
assessing the mediating effects of BFP and CTI with the CVD risk, adjusted by marital status, education level,
residence place, smoking status, drinking status, hypertension, DM and TC, HDL-C and LDL-C*. The presence
of a mediating effect was defined as satisfying all of the following conditions having a significant indirect effect, a
significant total effect, and a positive proportion of the mediator effect. We note that the mediation analysis relies
on strong assumptions, including no unmeasured confounding between the exposure-mediator and mediator-
outcome relationships. Given the observational nature of our study and the fact that BFP and CTT were measured
concurrently at baseline, these results should be interpreted as exploratory evidence of potential mechanistic
pathways rather than definitive causal mediation. P value <0.05 is considered to have statistical difference.

Results

Baseline characteristics

A total of 6303 participants (54.21% female) were included in this study, with an average age of 58.30 + 8.73 years.
Participants were categorized into four subgroups based on BFP and CTI levels: low BFP and low CTI (n=170),
low BFP and high CTI (n=1411), high BFP and low CTI (n=1414), and high BFP and high CTI (n=172).
The baseline characteristics of the participants were summarized in Table 1. Statistically significant differences
were observed in most baseline characteristics among the four subgroups, including age, sex, marital status,
educational level, residence place, smoking status, drinking status, BMI, hypertension, DM, CRP FPG, TC, TG,
HDL-C and LDL-C. During the 7-year follow-up period, a total of 1124 individuals were diagnosed with new-
onset CVD (heart disease, 844 cases; stroke, 365 cases), and the incidence of CVD was 17.83%. The low-BFP and
low-CTI subgroup demonstrated the lowest incidence of CVD (13.22%), whereas the high-BFP and high-CTI
subgroup exhibited the highest CVD incidence (22.45%).
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Total Low BFP and Low CTI | Low BFP and High CTI | High BFP and Low CTI | High BFP and High CTI
variable (n=6303) (n=1740) (n=1411) (n=1410) (n=1742) Pvalue
Age (years) 58.30+8.73 58.31+8.64 58.97+8.55 57.02+8.68 58.78 £8.90 <0.0001
Sex, n (%) <0.0001
Female 3417(54.21) 307(17.64) 102(7.23) 1374(97.45) 1634(93.80)
Male 2886(45.79) 1433(82.36) 1309(92.77) 36(2.55) 108(6.20)
Marital status, n (%) <0.0001
Married 5666(89.89) 1597(91.78) 1300(92.13) 1246(88.37) 1523(87.43)
Other 637(10.11) 143(8.22) 111(7.87) 164(11.63) 219(12.57)
Education level, n (%) <0.0001
No formal education | 2965(47.06) 684(39.33) 474(33.62) 819(58.09) 988(56.72)
Primary school 1444(22.92) 458(26.34) 374(26.52) 251(17.80) 361(20.72)
Middle school 1270(20.16) 386(22.20) 387(27.45) 229(16.24) 268(15.38)
High school or above | 622(9.87) 211(12.13) 175(12.41) 111(7.87) 125(7.18)
Residence, n (%) <0.0001
Rural 4290(68.06) 1296(74.48) 924(65.49) 958(67.94) 1112(63.83)
Urban 2013(31.94) 444(25.52) 487(34.51) 452(32.06) 630(36.17)
Smoking status, n (%) <0.0001
No 4373(69.38) 809(46.49) 620(43.94) 1341(95.11) 1603(92.02)
Yes 1930(30.62) 931(53.51) 791(56.06) 69(4.89) 139(7.98)
Drinking status, n (%) <0.0001
No 4150(65.84) 834(47.93) 653(46.28) 1187(84.18) 1476(84.73)
Yes 2153(34.16) 906(52.07) 758(53.72) 223(15.82) 266(15.27)
Diabetes mellitus, n (%) <0.0001
No 5476(86.88) 1629(93.62) 1148(81.36) 1321(93.69) 1378(79.10)
Yes 827(13.12) 111(6.38) 263(18.64) 89(6.31) 364(20.90)
Hypertension, n (%) <0.0001
No 4021(63.80) 1294(74.37) 861(61.02) 961(68.16) 905(51.95)
Yes 2282(36.20) 446(25.63) 550(38.98) 449(31.84) 837(48.05)
CVD, n (%) <0.0001
No 5179(82.17) 1510(86.78) 1154(81.79) 1164(82.55) 1351(77.55)
Yes 1124(17.83) 230(13.22) 257(18.21) 246(17.45) 391(22.45)
BMI (kg/m2) 23.48+3.82 21.24+2.69 22.89+3.15 24.03+3.53 25.76+4.07 <0.0001
CRP (mg/L) 2.50+6.96 0.68+0.46 4.74+11.13 0.66+0.41 4.00+7.89 <0.0001
FPG (mg/dl) 109.43+£34.78 | 100.75+19.20 118.28 £45.32 100.17£15.30 118.41+43.22 <0.0001
TC (mg/dl) 194.13+38.89 | 185.27+34.79 193.58 £41.87 191.60+35.19 205.46 £40.40 <0.0001
HDL-C (mg/dl) 51.57+15.37 57.42+15.92 46.82+15.27 56.17+13.34 45.87+12.93 <0.0001
LDL-C (mg/dl) 116.73+£34.91 112.30£31.02 112.85+37.65 118.90+31.58 122.55+37.79 <0.0001
TG (mg/dl) 132.82+112.96 | 86.13+37.48 167.58 £151.21 95.16+39.04 181.76 £135.38 <0.0001
BFP (%) 30.27+8.06 22.86+4.22 23.98+4.05 36.12+3.74 38.04+4.21 <0.0001
CTI 4.73+0.58 4.26+0.27 5.17+0.42 4.30+0.26 5.21+0.43 <0.0001

Table 1. Baseline characteristics of participants. BMI, body mass index; CRP, C-reactive protein; FPG, fasting
plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density
lipoprotein cholesterol; TG, triglyceride; BEP, body fat percentage; CTI, C-reactive protein-triglyceride-glucose
index; Data are presented as mean + standard errors or number (%).

Association of BFP and CTI with the risk of CVD

Kaplan—Meier survival curves demonstrated that the cumulative incidence of CVD increased with high BFP,
high CTI, and both high BFP and high CTT (Fig. 2) (all log-rank P<0.0001). Multivariable Cox regression
models were employed to assess the independent associations of BFP and CTI with CVD risk, with results
presented in Table 2. After adjusting for age, sex, marital status, education level, residence place, smoking
status, drinking status, BMI, hypertension, DM and blood lipids laboratory test results, elevated BFP and CTI
demonstrated independent associations with incident CVD (BFP: HR=1.022 per 1% increase, 95% CI 1.012-
1.032; CTL: HR=1.164 per lunit increase, 95% CI 1.026-1.399). When stratified by median values, participants
with high BFP exhibited a 1.205-fold increased risk of CVD compared to those with low BFP (HR=1.205,
95% CI 1.038-1.399). Similarly, individuals with high CTI showed a 1.151-fold higher CVD risk relative to the
low-CTT group (HR=1.151, 95% CI 1.004-1.319), after adjustment for all covariates. RCS analyses confirmed
monotonic dose-response relationships for both biomarkers (nonlinearity P> 0.05) (Fig. 3).
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Fig. 2. Kaplan-Meier survival curves of CVD by BFP and CT1I level. CVD, cardiovascular disease; BFP, Body
fat percentage; CTI, C-reactive protein triglyceride-glucose index.

Crude model Model 1 Model 2
Variable HR (95% CI) Pvalue | HR (95% CI) Pvalue | HR (95% CI) P value
BFP (Per 1% increase) 1.028(1.020,1.035) | <0.0001 | 1.029(1.021,1.036) | <0.0001 | 1.022(1.012,1.032) | <0.0001
Stratifed by BFP median
Low BFP (4.75-30.80%) ref ref ref

High BFP (30.80-58.62%) | 1.337(1.188,1.504) | <0.0001 | 1.342(1.189,1.516) | <0.0001 |1.205(1.038,1.399) | 0.014
CTI (Per lunitincrease) | 1.371(1.245,1.508) | <0.0001 | 1.332(1.209,1.467) | <0.0001 |1.164(1.026,1.321) | 0.018

Stratifed by CTI median
Low CTI (3.17-4.68) ref ref ref
High CTI (4.68-7.53) 1.402(1.246,1.579) | <0.0001 | 1.359(1.206,1.531) | <0.0001 | 1.151(1.004,1.319) | 0.043

Table 2. Association of BFP and CTT and the risk of CVD incidence. Crude model: no covariates were
adjusted; Model 1: marital status, education level and residence place were adjusted; Model 2 for BFP: marital
status, education level, residence place, smoking status, drinking status, hypertension, DM, TC, TG, HDL and
LDL were adjusted; Model 2 for CTI: marital status, education level, residence place, smoking status, drinking
status, hypertension, DM, BMI, TC, HDL and LDL were adjusted; HR, hazard ratios; 95% CI, 95% confidence
intervals; BFP, body fat percentage; CTI, c-reactive protein triglyceride-glucose index; CVD, cardiovascular
diseases;
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Fig. 3. (A) RCS model analysis the dose-response relationships between BFP and CVD risk; (B). RCS model
analysis the dose-response relationships between CTI and CVD risk. We adjusted the model fully for age, sex,
marital status, education level, residence place, smoking status, drinking status, BMI, hypertension, DM and
blood lipids laboratory test results. CVD, cardiovascular disease; BFP, body fat percentage; CTI, C-reactive
protein triglyceride-glucose index.

Low BFP and Low CTI | ref ref ref

Low BFP and High CTI | 1.424(1.192,1.701) | <0.0001 | 1.441(1.205,1.722) | <0.0001 | 1.3(1.077,1.569) 0.006
High BFP and Low CTI | 1.351(1.129,1.617) 0.001 | 1.36(1.134,1.631) <0.001 1.26(1.032,1.539) 0.024
High BFP and High CTT | 1.781(1.513,2.096) | <0.0001 | 1.802(1.527,2.127) | <0.0001 | 1.476(1.210,1.800) | <0.001
P for trend <0.0001 <0.0001 <0.001

Table 3. Synergistic impact of BFP and CTI on the risk of CVD incidence. Crude model: no covariates were
adjusted; Model 1: marital status, education level and residence place were adjusted; Model 2 for BFP: marital
status, education level, residence place, smoking status, drinking status, hypertension, DM, TC, TG, HDL and
LDL were adjusted; Model 2 for CTI: marital status, education level, residence place, smoking status, drinking
status, hypertension, DM, BMI, TC, HDL and LDL were adjusted; HR, hazard ratios; 95% CI, 95% confidence
intervals; BFP, body fat percentage; CTI, c-reactive protein triglyceride-glucose index; CVD, cardiovascular
diseases;

Notably, the joint exposure to high BFP and high CTI exhibited a supra-additive effect. Taking participants
with low BFP and low CTI as the reference group, individuals with solely high CTI, solely high BFP, and both
high BFP and high CTI were significantly associated with elevated risks of CVD by 1.3-fold (95% CI 1.077-
1.569), 1.26-fold (95% CI 1.032-1.539), and 1.476-fold (95% CI 1.21-1.8), respectively (Table 3). The ROC
analyses showed that combine BFP and CTI had a favorable performance to predict CVD risk than BFP or
CTI alone with an AUC of 0.581 (DeLong’s test P<0.05) (Fig. 4). It is noteworthy that while the absolute AUC
value is relatively low, the significant improvement underscores the complementary information provided by
integrating adiposity and metabolic-inflammation pathways, rather than advocating for its use as a standalone
high-performance predictor.

Subgroup analyses

We conducted subgroup analyses to assess the associations of BFP and CTT with CVD risk. The associations
between BFP/CTI and CVD risk were consistent with the primary findings across most subgroups (Table
4). Notably, significant interaction effects were observed for age and DM status with the combined BFP-CTI
exposure on CVD risk (P-interaction <0.05 for both). Specifically, the associations between elevated BFP/CTI
levels and CVD risk were more pronounced in participants aged <60 years (HR=1.759, 95% CI 1.250-2.475)
and those with DM (HR=3.516, 95% CI 1.691-7.313) compared to older adults (HR=1.438, 95% CI 0.958-
2.160) and non-DM individuals (HR =1.360, 95% CI 1.027-1.801). These findings suggest synergistic metabolic
dysregulation in younger populations and DM patients amplifies adiposity-related cardiovascular toxicity.

Mediation analysis

Through formal mediation analyses, we quantified the reciprocal pathways between BFP and CTI in CVD
pathogenesis. CTI mediated 8.76% (P<0.001) of the total association between BFP and CVD risk, while BFP
mediated 12.22% (P<0.001) of the total association between CTI and CVD risk (Fig. 5). This bidirectional
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ROC Curve Comparison
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Fig. 4. The ROC curves of BFP, CTI and CVD risk. ROC, receiver operating characteristic; AUC, area under
the curve; BFP, Body fat percentage; CTI, C-reactive protein triglyceride-glucose index.

Variable | Low BFP and Low CTI | Low BFP and High CTI | High BFP and Low CTI | High BFP and High CTI | P for interaction
HR (95% CI) HR (95% CI) HR (95% CI)

Age 0.034
<60 ref 1.539(1.186,1.997) 1.363(0.968,1.918) 1.759(1.250,2.475)

>60 ref 1.008(0.766,1.326) 1.515(1.002,2.290) 1.438(0.958,2.160)
Sex 0.062
Male ref 1.215(0.985,1.498) 1.403(0.656,3.002) 2.197(1.490,3.239)

Female | ref 1.765(1.037,3.005) 1.351(0.951,1.918) 1.487(1.035,2.136)
Smoking status 0.65
Yes ref 1.250(0.960,1.627) 1.227(0.583,2.582) 1.959(1.162,3.301)

No ref 1.333(1.011,1.759) 1.426(1.056,1.925) 1.530(1.127,2.078)
Drinking status 0.234
Yes ref 1.458(1.106,1.921) 2.261(1.347,3.797) 3.025(1.921,4.764)

No ref 1.172(0.903,1.522) 1.173(0.873,1.577) 1.236(0.915,1.669)
Diabetes mellitus 0.01
Yes ref 1.227(0.654,2.299) 3.279(1.445,7.438) 3.516(1.691,7.313)

No ref 1.352(1.107,1.651) 1.250(0.948,1.648) 1.360(1.027,1.801)

Hypertension 0.703
Yes ref 1.093(0.813,1.468) 1.587(1.056,2.384) 1.822(1.235,2.688)

No ref 1.427(1.116,1.825) 1.241(0.892,1.726) 1.380(0.982,1.939)

Table 4. Subgroup analysis for the association of the BFP and CTI on CVD risk. Crude model: no covariates
were adjusted; Model 1: marital status, education level and residence place were adjusted; Model 2: marital
status, education level, residence place, smoking status, drinking status, hypertension, DM, TC, HDL and LDL
were adjusted. HR, hazard ratios; 95% CI, 95% confidence intervals; BFP, body fat percentage; CTI, c-reactive
protein triglyceride-glucose index; CVD, cardiovascular diseases;
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A Indirect Effect=-0.05. P< 0.001 B Indirect Effect=-1.15. P <0.001
(95% CI=-0.09~ -0.01) (95% CI=-1.97~ -0.53)

Total Effect=-9.60. P <0.001
(95% CI=-18.67~ -2.68)
Proportion Mediated= 12.22%

Total Effect=-0.62. P< 0.001
(95% CI=-1.00~ -0.26)
Proportion Mediated= 8.76%

CVD CTI )

Direct Effect=-0.57. P< 0.001 Direct Effect= -8.45, P <0.001
(95% CI=-0.96~ -0.22) (95% CI=-17.07~ -2.16)

Fig. 5. (A) Mediation analysis of CTI on the association between BFP and the risk of CVD; (B). Mediation
analysis of BFP on the association between CTI and the risk of CVD. We adjusted the model fully for marital
status, education level, residence place, smoking status, drinking status, hypertension, DM and TC, HDL-C
and LDL-C; CVD, cardiovascular disease; BFP, Body fat percentage; CTI, C-reactive protein triglyceride-
glucose index.

mediation pattern suggests adiposity and metabolic dysregulation mutually reinforce CVD risk through distinct
yet interconnected biological mechanisms.

Discussion

This prospective cohort study of 6303 Chinese adults provides novel evidence that BFP and CTT synergistically
amplify CVD risk. Participants with concurrent high BFP (>30.8%) and CTI (>4.68) faced a 1.48-fold increased
CVD risk (95% CI 1.21-1.80) compared to those with low levels of both markers—a risk magnitude exceeding
the sum of their individual effects (high BFP alone: HR=1.205; high CTT alone: HR=1.151). The combined
BFP-CTI model demonstrated incremental predictive value (AUC=0.581) over isolated metrics (DeLong’s test
P <0.05), highlighting the clinical relevance of integrating adiposity and metabolic-inflammation pathways for
risk stratification. Importantly, mediation analyses revealed bidirectional pathways: CTI mediated 8.76% of
BFP’s effect on CVD, while BFP mediated 12.22% of CTT’s effect (P <0.001). The bidirectional mediation pattern
is consistent with the hypothesis of a reciprocal relationship between adiposity and metabolic inflammation.

The limitations of BMI in capturing obesity-related CVD risk are well-documented®. BMI fails to
differentiate between fat mass and lean mass, potentially misclassifying individuals with high muscle mass (e.g.,
athletes) as obese or those with normal BMI but excessive visceral adiposity (e.g., "metabolically obese normal
weight" phenotype) as low-risk®*2. In contrast, BFP provides a direct measure of adiposity, correlating more
strongly with visceral fat accumulation—a key driver of cardiometabolic dysfunction®***. Multiple studies have
demonstrated significant associations between BFP and CVD risk. For instance, a cross-sectional analysis of the
National Health and Nutrition Examination Survey (NHANES) data revealed that individuals in the highest
quartile of BFP had a 3.99-fold increased risk of cardiovascular disease (95% CI 1.58-10.88) compared to those
in the lowest quartile, with similarly elevated risks for hypertension and DM*. These findings are corroborated
in pediatric populations, where elevated BFP in children and adolescents was independently linked to IR,
dyslipidemia, and hypertension®®”. BEP thresholds for CVD risk prediction vary across populations. In Korean
adults, thresholds of >21% for male and>37% for female were associated with significantly higher CVD risks
(OR=4.05 and 3.21, respectively)*®. Notably, Asian populations exhibit higher BFP at equivalent BMI levels
compared to Caucasians, suggesting the need for population-specific adjustments in obesity criteria®®. We
found that elevated BFP (>30.8%) independently predicted CVD risk (HR=1.205, 95% CI 1.038-1.399) even
after adjusting for BMI, suggesting that adiposity-specific metrics like BFP should supplant BMI in clinical risk
assessments.

CTI, developed by Ruan et al.?%, serves as a significant tool for the prognostic evaluation of cancer patients.
This index synthesizes CRP, a recognized biomarker of inflammation, and TyG index, a biomarker of IR. The
TyG index is a validated surrogate marker of IR. The concept of integrating inflammation into metabolic risk
assessment is further bolstered by studies on liver-derived risk scores. For instance, the APRI score, a marker
of liver inflammation and fibrosis, has been independently associated with increased cardiovascular risk,
underscoring the importance of extra-cardiac inflammatory sources in CVD pathogenesis*. Large-scale studies
demonstrate its predictive value for metabolic syndrome, DM, and CVD*!. A multinational prospective cohort
study involving 141,243 participants from 22 countries further confirmed that elevated TyG index independently
correlates with increased risks of cardiovascular mortality, myocardial infarction (MI), stroke, and incident DM,
particularly in low- and middle-income countries*?. In patients with non-ST-segment elevation acute coronary
syndrom, a higher TyG index is independently associated with coronary artery disease severity and major
adverse cardiovascular events (HR = 1.88, 95% CI 1.13-3.12)*%. In addition to IR, inflammation serves as another
critical risk factor for CVD. Among numerous inflammatory biomarkers, CRP has garnered the most attention
due to its established utility in CVD screening and risk reclassification. Elevated CRP levels, a marker of systemic
inflammation, are strongly associated with IR, DM, and CVD*. CRP not only reflects inflammatory activity
but also directly contributes to endothelial dysfunction and plaque formation, serving as a critical predictor of
CVD risk*. Elevated CRP levels (>3 mg/L) are independently associated with a 58% increased risk of incident
coronary heart disease (95% CI 1.37-1.83), even after comprehensive adjustment for traditional risk factors®.
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However, a growing body of evidence demonstrates an inseparable pathophysiological interplay between
IR and inflammation in CVD, characterized by bidirectional crosstalk that amplifies endothelial damage and
atherosclerotic progression. IR and chronic inflammation are closely interconnected through multiple biological
pathways. The inflammatory marker CRP further exacerbates endothelial dysfunction by impairing nitric oxide
synthase activity in progenitor cells, creating a proatherosclerotic environment that links IR to cardiovascular
complications***”. These findings collectively demonstrate that chronic low-grade inflammation acts as both
a cause and consequence of IR, creating a vicious cycle that promotes metabolic syndrome and associated
comorbidities. In our study, we introduced the CTI, a novel and comprehensive metric specifically developed to
evaluate the interplay between insulin resistance and inflammatory pathways in the pathogenesis of CVD. Our
findings robustly demonstrate that the CTI is significantly associated with CVD risk, with each unit increase in
CTI corresponding to a 16.4% elevated risk of incident CVD (HR=1.164, 95% CI 1.026-1.321).

While the intricate interplay among obesity, IR, and inflammation in CVD pathogenesis remains incompletely
understood, our study reveals that concurrent elevations in BFP and CTI synergistically amplify CVD risk.
Although the absolute discriminative ability of the combined model (AUC=0.581) was modest, the statistically
significant improvement over either index alone (DeLong’s P<0.05) suggests that integrating adiposity and
metabolic-inflammation pathways provides complementary information for understanding CVD risk etiology,
rather than advocating for its immediate standalone clinical use as a predictor. Notably, this association was
significantly stronger in participants younger than 60 years (HR=1.759, 95% CI 1.250-2.475) or those with DM
(HR=3.516, 95% CI 1.691-7.313), compared to older (HR=1.438) and non-DM individuals (HR=1.360) (P
for interaction <0.05). Obesity-induced chronic inflammation plays a central role in the pathogenesis of IR, as
pro-inflammatory cytokines such as TNF-a and IL-6 disrupt insulin signaling in adipose tissue, skeletal muscle,
and liver by inhibiting key phosphorylation steps in insulin receptor substrates*®*°. Adipose tissue serves as a
primary site for this interaction, with activated tissue-resident macrophages secreting inflammatory mediators
that induce localized and systemic IR through autocrine/paracrine and endocrine mechanisms®. Crucially,
our mediation analyses revealed significant reciprocal mediation effects between BFP and CTI in driving CVD
events, with BFP mediating 8.76% and CTI mediating 12.22% of each other’s associations with CVD risk. This
bidirectional mediation architecture robustly confirms the tripartite interplay among adiposity, IR, and systemic
inflammation in CVD pathogenesis. Although our mediation analysis suggests potential bidirectional pathways
between adiposity and metabolic-inflammation, several important limitations must be considered. The analysis
relies on strong assumptions, including no unmeasured confounding between the exposure-mediator and
mediator-outcome relationships. While we adjusted for a comprehensive set of covariates, residual confounding
remains possible. Furthermore, as both BFP and CTI were measured at a single baseline time point, our analysis
captures statistical mediation but cannot definitively establish the temporal dynamics or causality of a truly
reciprocal process. Therefore, these results should be interpreted as generating hypotheses about potential
mechanistic interplay rather than providing definitive evidence of causal mediation.

As the first prospective cohort study investigating BFP and CTI in CVD, several limitations of the current
research should be acknowledged. First, due to the observational study design, we cannot confirm causal
relationships between BFP, CTI, and CVD risk. However, BFP and TCI have been extensively validated as
predictors of CVD events. This study aimed to assess the combined exposure effects and reciprocal mediation
relationships between BFP and CT1I regarding cardiovascular risk. Second, we still cannot exclude the possibility
of residual or unmeasured confounding bias that might affect effect size estimations. Despite adjusting for a
wide range of demographic, lifestyle, and metabolic covariates, as well as medication use, we cannot rule out
residual confounding from unmeasured or imperfectly measured factors, such as detailed dietary patterns,
physical activity levels, and medication adherence. Third, the diagnosis of CVD in our study was based on
self-report, which might lead to misclassification bias due to under-reporting of asymptomatic cases or over-
reporting due to misdiagnosis. Although this method is consistent with previous studies using the same database
and has been used in published literature®"-*2, it remains a limitation compared to adjudicated medical records.
Fourth, we used BFP as a surrogate measure of body fat and CTI as a proxy indicator of IR and inflammation.
Both measurement methods might deviate from true biological values, requiring further studies to validate
their measurement accuracy. Furthermore, BFP and CTI were assessed only at baseline, and we could not
account for their potential changes over the follow-up period, which might lead to regression dilution bias
and potentially underestimate the true association. Finally, a substantial proportion of the original CHARLS
cohort was excluded due to missing data on BFP or CTI, which may limit the generalizability of our findings.
Our supplementary analysis (Supplementary Table 2) indicates that the excluded participants had significant
differences from the population included in this study in most baseline data. Therefore, the extrapolation of our
results should be made with caution. Future studies with more complete data are needed to validate our findings
in broader populations.

In summary, our findings suggest that the joint assessment of BFP and CTI provides complementary
information for understanding CVD risk etiology, highlighting a synergistic interplay between adiposity and
metabolic-inflammation. While both indices are derived from routine or low-cost measurements (anthropometry
and basic blood tests), suggesting potential for affordable risk assessment, future studies incorporating formal
cost-effectiveness analyses are necessary to determine their practical utility and value in specific clinical settings.

Conclusions

In summary, through a prospective nationwide cohort study in Chinese adults, we found that IR and inflammation
significantly mediated the association between obesity and CVD risk, and vice versa. The findings highlight the
combined exposure effects of BFP and CTI levels on CVD events and suggest that joint assessment of BFP and
CTI could further stratify CVD risk.
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