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Obesity, insulin resistance (IR), and inflammation are key modifiable cardiovascular disease (CVD) 
risk factors. We investigated the synergistic effects of body fat percentage (BFP) and the C-reactive 
protein-triglyceride-glucose index (CTI) on CVD risk. This prospective cohort included 6303 CVD-
free Chinese adults (≥ 45 years) from the CHARLS. BFP was calculated via the CUN-BAE equation; 
the CTI integrates CRP, triglycerides, and fasting glucose. Multivariate Cox regression was used to 
assess associations with incident CVD over 7 years. Mediation and receiver operating characteristic 
(ROC) analyses were used to evaluate pathways and predictive performance. Among 1124 incident 
CVD cases, concurrent high BFP (> 30.8%) and CTI (> 4.68) showed 1.48-fold higher CVD risk (95% CI 
1.21–1.80) versus low-level groups. The combined BFP-CTI model improved prediction (AUC = 0.581; 
DeLong’s P < 0.05) over individual indices. Mediation revealed bidirectional effects: CTI mediated 8.76% 
of BFP’s CVD association, while BFP mediated 12.22% of CTI’s effect (P < 0.001). Synergy was strongest 
in adults ≤ 60y (HR = 1.76, CI 1.25–2.48) and diabetics (HR = 3.52, CI 1.69–7.31). The combination 
of high BFP and high CTI was associated with a synergistic increase in CVD risk, with bidirectional 
mediation between adiposity and metabolic-inflammation pathways. Joint assessment enhances risk 
stratification, particularly in younger and diabetic populations.

Keywords  Body fat percentage, C-reactive protein Triglyceride-glucose index, CHARLS, Cardiovascular 
disease, Insulin resistance

Abbreviations
CVD	� Cardiovascular diseases
IR	� Insulin resistance
BFP	� Body fat percentage
CTI	� C-reactive protein triglyceride-glucose index
CHARLS	� China Health and Retirement Longitudinal Study
BMI	� Body Mass Index
HEC	� Hyperinsulinemic-euglycemic clamp
TyG	� Triglyceride-glucose
TG	� Triglyceride
FPG	� Fasting plasma glucose
CRP	� C-reactive protein
ADP	� Air displacement plethysmography
DM	� Diabetes mellitus
TC	� Total cholesterol
LDL-C	� Low-density lipoprotein cholesterol
HDL-C	� High-density lipoprotein cholesterol
SE	� Standard errors

1Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China. 2Affiliated Zhongshan Hospital, Dalian 
University, Dalian, Liaoning, China. 3Xiaoyuan Tian and Zhenan Qu have contributed equally to this article. email: 
zbocheng@outlook.com

OPEN

Scientific Reports |        (2025) 15:40266 1| https://doi.org/10.1038/s41598-025-24094-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-24094-5&domain=pdf&date_stamp=2025-10-25


HRs	� Hazard ratios
Cis	� Confidence intervals
VIF	� Variance inflation factor
RCS	� Restricted cubic spline
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Cardiovascular diseases (CVD) are among the leading causes of death globally, imposing significant health and 
economic burdens on society. As of 2023, CVD claim over 18 million lives annually, accounting for 32% of 
all deaths globally1. However, projections indicate that CVD-related mortality is expected to increase to 35.6 
million deaths by 20252, highlighting the urgent need for effective prevention and treatment strategies. China 
faces elevated cardiovascular risks and mortality rates, with approximately 330 million individuals affected by 
CVD, where CVD-related deaths account for nearly 45% of total mortality3. Current therapeutic approaches, 
including pharmacological interventions, surgical procedures, and lifestyle modifications, often encounter 
challenges such as limited efficacy, poor patient adherence, and high recurrence rates4. Thus, it is essential to 
explore the underlying mechanisms and risk factors associated with CVD to develop more effective prevention 
and management strategies5.

Recent studies have identified obesity and insulin resistance (IR) as critical biological markers influencing 
the risk of CVD6. Elevated body fat and IR have been shown to correlate significantly with CVD incidence, 
potentially exacerbating disease progression through mechanisms involving inflammation and metabolic 
dysregulation. Understanding the relationship between these factors and CVD can provide insights into their 
pathophysiological roles and inform the development of targeted interventions aimed at reducing CVD risk. 
Body fat percentage (BFP), a more precise measure of body composition than body mass index (BMI), has 
emerged as a crucial indicator of obesity-related health risks7,8. BMI, as a commonly used indicator of obesity, 
fails to distinguish between fat mass and muscle mass, potentially masking the true risk associated with visceral 
adiposity or metabolic abnormalities9. BFP provides a more accurate representation of individual adiposity status, 
while studies demonstrate that BFP exhibits superior predictive sensitivity for CVD risk and mortality compared 
to BMI10–12. This is particularly relevant in clinical assessments where body composition can significantly impact 
health outcomes.

Furthermore, IR, a condition wherein cells become less responsive to insulin, is associated with increased 
inflammation and oxidative stress, further promoting the development of atherosclerosis and related 
cardiovascular events13. Although the hyperinsulinemic-euglycemic clamp (HEC) technique is regarded as 
the gold standard for assessing IR, its technical complexity, invasive nature, and prohibitive costs render it 
unsuitable for both clinical practice and epidemiological investigations14. The triglyceride-glucose (TyG) index, 
introduced as a reliable biomarker for IR, has gained traction in clinical settings and has been linked to adverse 
CVD outcomes, including stroke and myocardial infarction15. The TyG index was calculated from triglycerides 
(TG) and fasting plasma glucose (FPG). In addition to body fat and IR, inflammation plays a vital role in CVD 
pathogenesis. C-reactive protein (CRP), a non-specific inflammatory marker, has been identified as a potential 
predictor of CVD risk, contributing to atherosclerotic processes and vascular dysfunction16–18. The C-reactive 
protein triglyceride-glucose index (CTI) has been proposed as a composite marker reflecting both IR and 
inflammation, which may improve CVD risk stratification and early identification of at-risk individuals19. Given 
the interconnectedness of these biological markers, it is essential to investigate their combined effects on CVD 
risk to enhance preventive and therapeutic strategies.

While the individual roles of obesity, insulin resistance, and inflammation in CVD pathogenesis are 
well-established, the optimal method for integrating these pathways into a practical risk stratification tool, 
particularly in the Chinese population, remains unclear. To address these knowledge gaps, we utilized data 
from the prospective cohort of the China Health and Retirement Longitudinal Study (CHARLS). This study 
does not seek to propose new biological mechanisms, but rather to empirically compare and combine easily 
accessible clinical metrics BFP and the CTI index to assess their interactive and joint associations with CVD risk 
in a prospective national cohort. Our aim is to inform whether such a combined approach offers incremental 
utility for risk prediction beyond the consideration of these factors in isolation. By employing robust statistical 
methods, this research aims to elucidate the interplay between these critical health indicators and their collective 
impact on CVD risk.

Methods
Study population and design
The CHARLS is a nationally representative longitudinal survey targeting middle-aged and older adults (≥ 45 years) 
in China20. CHARLS employs a multistage probability sampling design to ensure population representativeness 
across socioeconomic and geographic strata, selecting participants from 150 counties (districts) and 450 
villages (communities) across 28 provinces. The database comprehensively collects socioeconomic status, health 
behaviors, chronic disease diagnoses, biochemical measurements, and anthropometric data through face-to-
face interviews, physical examinations, and laboratory tests. The protocol for the CHARLS cohort was approved 
by Peking University’s Ethics Review Committee (IRB00001052–11,015), and all participants provided written 
informed consent prior to their participation.

Our analysis utilized CHARLS waves from 2011, 2013, 2015, and 2018, which constitute the complete 
follow-up cycles with adjudicated CVD outcomes. The 2011 wave served as the baseline for assessing covariates 
and calculating cumulative exposure metrics, while subsequent waves provided longitudinal outcome data. 
Participants were sequentially excluded based on the following criteria: (1) participants with missing baseline 
CVD data or pre-existing CVD at baseline; (2) participants aged below 45 years at baseline; (3) participants 
lacking baseline BFP and CTI data; (4) participants with missing CVD data during follow-up. Finally, a total of 

Scientific Reports |        (2025) 15:40266 2| https://doi.org/10.1038/s41598-025-24094-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


6303 participants meeting the inclusion criteria were included in this study. Figure 1 shows the screening process 
for the study population in the current study.

Diagnosis of CVD
The diagnosis of CVD was based on self-reported heart disease or stroke. Similar to previous studies, the 
interviewer will ask the participants a question, such as “Have you been told by a doctor that you have been 
diagnosed with a heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems?” 
or “Have you been told by a doctor that you have been diagnosed with a stroke?” Participants who reported heart 
disease or stroke were defined as having CVD21. Participants who had diagnosed CVD at 2011 were excluded, 
and if the participants were diagnosed with CVD until the follow-up period in 2018, they were included in the 
study and were defined as having new-onset CVD. Additionally, if a participant indicated a heart attack or stroke 
at a previous round of follow-up, they were required to verify the presence of CVD at a later round of follow-
up22. If participants denied a previous self-reported diagnosis of heart disease or stroke, these inconsistencies 
were corrected retrospectively. Our diagnoses of CVD were consistent with previous studies using CHARLS22,23.

The definition of BFP and CTI
BFP was estimated using the Clínica Universidad de Navarra‐Body Adiposity Estimator (CUN‐BAE) equation: 
BFP = 44.988 + (0.503 age) 10.689 × sex) + (3.72 × BMI) − (0.026 × BMI2) + (0.181 × BMI × sex) − (0.02 × 
BMI × age) − (0.005 × BMI2 × sex) + (0.00021 × BMI2 × age) where female gender is defined as 1 and male 
gender is defined as 0, and BMI = weight in kilograms/ (height in metres)224. Height was measured using the 
SecaTM213 stadiometer (Medical Scales and Measuring Systems Seca (Hangzhou) Co., Ltd.), while weight was 
measured using the OmronTM HN-286 scale (Krell Precision (Yangzhou) Co., Ltd.)25. The BFP calculated by 
this method demonstrates high concordance with actual BFP measured by air displacement plethysmography 
(ADP) (Pearson’s r = 0.89, P < 0.000001)24. Furthermore, the reliability of this methodology has been robustly 
validated across multiple independent studies25.

The calculation formula of CTI is as follows26: CTI = 0.412 × Ln (CRP [mg/L]) + Ln (TG [mg/dl] × FPG [mg/
dl])/2. All participants provided venous blood samples after fasting for at least 8 h. For each participant, 8 mL of 
venous blood was collected and immediately frozen at − 20 °C. The samples were transported within two weeks 
to the Chinese Center for Disease Control and Prevention in Beijing, where they were stored at − 80 °C until 
analysis20. The analytical methods and detection limits for the aforementioned laboratory indicators are detailed 
in Supplementary Table 1.

Covariates
Covariates mainly include demographic data, lifestyle and metabolic factors. We included age, sex, marital 
status, educational level and residence place to adjust for differences in demographic data. Educational level 

Fig. 1.  Flow chart of the study. CHARLS, China Health and Retirement Longitudinal Study; CVD, 
cardiovascular disease; BFP, Body fat percentage; CTI, C-reactive protein triglyceride-glucose index.
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was categorized as no formal education, primary school, middle school, high school or above. Marital status 
was categorized as married and other marital statuses (separated, divorced, widowed and never married). The 
residence place was categorized as rural or urban27.

Lifestyle covariate included the drinking and smoking status. Metabolic risk factors include hypertension, 
diabetes mellitus (DM) and BMI. Hypertension was defined as systolic blood pressure ≥ 140 mmHg, diastolic 
blood pressure ≥ 90  mmHg or being told by a doctor that they had hypertension. DM was defined as 
FPG ≥ 7.0 mmol/L, glycated hemoglobin ≥ 6.5%, random blood glucose ≥ 11.1 mmol/L or being told by a doctor 
that they had DM28. We also classified blood lipids laboratory test results as confounding factors because they 
have a strong correlation with CVD. Laboratory test results included total cholesterol (TC), TG, low-density 
lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C).

Missing data processing
In our study, participants with incomplete BFP information (3321, 18.75%), CTI index information (3228, 
18.23%) and missing CVD follow-up data (1863, 10.52%) were excluded. The final analytical cohort exhibited 
minimal missing data, with only 2 cases (0.03%) of missing educational level and 12 cases (0.19%) of missing 
LDL-C among all covariate variables. To assess potential selection bias, we compared the baseline characteristics 
of the excluded participants with those retained in the study (Supplementary Table 2).

Statistical analysis
All statistical analyses were conducted by R software (version 4.4.3). Means and standard errors (SE) were used 
to present continuous variables, while numbers and percentages were used for categorical variables. The median 
values of BFP (30.80%) and CTI (4.68) were employed as cutoff points to classify respondents into four categories: 
low BFP and low CTI, low BFP and high CTI, high BFP and low CTI, high BFP and high CTI. The normality of 
all continuous variables was assessed using the Shapiro–Wilk test and visual inspection of histograms. As most 
key variables (e.g., CRP, TG, FPG) deviated significantly from a normal distribution (P-Shapiro–Wilk < 0.05), 
they are presented as means ± standard errors (SE). Categorical variables are presented as numbers and 
percentages. Differences in baseline characteristics across groups were compared using the Kruskal–Wallis test 
for continuous variables and the chi-square test for categorical variables. Kaplan–Meier curves were illustrated 
to estimate the cumulative incidence of CVD, and differences between groups were assessed using the log-
rank test. Correlations between BFP, CTI and CVD risk were assessed using Cox regression analysis. We have 
established three multivariable Cox regression model: Crude model, no covariates were adjusted; Model 1: age, 
sex, marital status, education level and residence place were adjusted; Model 2: age, sex, marital status, education 
level, residence place, smoking status, drinking status, BMI, hypertension, DM and blood lipids laboratory test 
results were adjusted. For BFP or CTI indexes, variables already included in the equations were not adjusted for 
in the Cox regression models. Results from the Cox regression analysis are reported as Hazard Ratios (HRs) with 
95% confidence intervals (CIs). We assessed potential multicollinearity among variables in each model using the 
variance inflation factor (VIF). The VIF values for all variables in each model were below 10 and no significant 
multicollinearity problems were detected.

A restricted cubic spline (RCS) model with three equally spaced nodes was used to investigate the nonlinear 
and dose–response trends association between BFP and CTI with CVD risk. The abilities of these indexes to 
predict CVD risk were evaluated using ROC curves. The area under the curve (AUC) was calculated for each 
index to predict CVD risk. We also used DeLong’s test to detect differences in the AUCs of different indexes. 
Subgroup and interaction analyses were performed by stratifying and clustering by age, sex, drinking status, 
smoking status, hypertension status and DM status to examine the variations in the association between BFP and 
CTI with CVD risk across different subgroups. “Mediation” package was utilized to perform Mediation analysis 
assessing the mediating effects of BFP and CTI with the CVD risk, adjusted by marital status, education level, 
residence place, smoking status, drinking status, hypertension, DM and TC, HDL-C and LDL-C29. The presence 
of a mediating effect was defined as satisfying all of the following conditions having a significant indirect effect, a 
significant total effect, and a positive proportion of the mediator effect. We note that the mediation analysis relies 
on strong assumptions, including no unmeasured confounding between the exposure-mediator and mediator-
outcome relationships. Given the observational nature of our study and the fact that BFP and CTI were measured 
concurrently at baseline, these results should be interpreted as exploratory evidence of potential mechanistic 
pathways rather than definitive causal mediation. P value < 0.05 is considered to have statistical difference.

Results
Baseline characteristics
A total of 6303 participants (54.21% female) were included in this study, with an average age of 58.30 ± 8.73 years. 
Participants were categorized into four subgroups based on BFP and CTI levels: low BFP and low CTI (n = 170), 
low BFP and high CTI (n = 1411), high BFP and low CTI (n = 1414), and high BFP and high CTI (n = 172). 
The baseline characteristics of the participants were summarized in Table 1. Statistically significant differences 
were observed in most baseline characteristics among the four subgroups, including age, sex, marital status, 
educational level, residence place, smoking status, drinking status, BMI, hypertension, DM, CRP FPG, TC, TG, 
HDL-C and LDL-C. During the 7-year follow-up period, a total of 1124 individuals were diagnosed with new-
onset CVD (heart disease, 844 cases; stroke, 365 cases), and the incidence of CVD was 17.83%. The low-BFP and 
low-CTI subgroup demonstrated the lowest incidence of CVD (13.22%), whereas the high-BFP and high-CTI 
subgroup exhibited the highest CVD incidence (22.45%).
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Association of BFP and CTI with the risk of CVD
Kaplan–Meier survival curves demonstrated that the cumulative incidence of CVD increased with high BFP, 
high CTI, and both high BFP and high CTI (Fig.  2) (all log-rank P < 0.0001). Multivariable Cox regression 
models were employed to assess the independent associations of BFP and CTI with CVD risk, with results 
presented in Table 2. After adjusting for age, sex, marital status, education level, residence place, smoking 
status, drinking status, BMI, hypertension, DM and blood lipids laboratory test results, elevated BFP and CTI 
demonstrated independent associations with incident CVD (BFP: HR = 1.022 per 1% increase, 95% CI 1.012–
1.032; CTI: HR = 1.164 per 1unit increase, 95% CI 1.026–1.399). When stratified by median values, participants 
with high BFP exhibited a 1.205-fold increased risk of CVD compared to those with low BFP (HR = 1.205, 
95% CI 1.038–1.399). Similarly, individuals with high CTI showed a 1.151-fold higher CVD risk relative to the 
low-CTI group (HR = 1.151, 95% CI 1.004–1.319), after adjustment for all covariates. RCS analyses confirmed 
monotonic dose–response relationships for both biomarkers (nonlinearity P > 0.05) (Fig. 3).

variable
Total
(n = 6303)

Low BFP and Low CTI
(n = 1740)

Low BFP and High CTI
(n = 1411)

High BFP and Low CTI
(n = 1410)

High BFP and High CTI
(n = 1742) P value

Age (years) 58.30 ± 8.73 58.31 ± 8.64 58.97 ± 8.55 57.02 ± 8.68 58.78 ± 8.90  < 0.0001

Sex, n (%)  < 0.0001

 Female 3417(54.21) 307(17.64) 102(7.23) 1374(97.45) 1634(93.80)

 Male 2886(45.79) 1433(82.36) 1309(92.77) 36(2.55) 108(6.20)

Marital status, n (%)  < 0.0001

 Married 5666(89.89) 1597(91.78) 1300(92.13) 1246(88.37) 1523(87.43)

 Other 637(10.11) 143(8.22) 111(7.87) 164(11.63) 219(12.57)

Education level, n (%)  < 0.0001

 No formal education 2965(47.06) 684(39.33) 474(33.62) 819(58.09) 988(56.72)

 Primary school 1444(22.92) 458(26.34) 374(26.52) 251(17.80) 361(20.72)

 Middle school 1270(20.16) 386(22.20) 387(27.45) 229(16.24) 268(15.38)

 High school or above 622(9.87) 211(12.13) 175(12.41) 111(7.87) 125(7.18)

Residence, n (%)  < 0.0001

 Rural 4290(68.06) 1296(74.48) 924(65.49) 958(67.94) 1112(63.83)

 Urban 2013(31.94) 444(25.52) 487(34.51) 452(32.06) 630(36.17)

Smoking status, n (%)  < 0.0001

 No 4373(69.38) 809(46.49) 620(43.94) 1341(95.11) 1603(92.02)

 Yes 1930(30.62) 931(53.51) 791(56.06) 69(4.89) 139(7.98)

Drinking status, n (%)  < 0.0001

 No 4150(65.84) 834(47.93) 653(46.28) 1187(84.18) 1476(84.73)

 Yes 2153(34.16) 906(52.07) 758(53.72) 223(15.82) 266(15.27)

Diabetes mellitus, n (%)  < 0.0001

 No 5476(86.88) 1629(93.62) 1148(81.36) 1321(93.69) 1378(79.10)

 Yes 827(13.12) 111(6.38) 263(18.64) 89(6.31) 364(20.90)

Hypertension, n (%)  < 0.0001

 No 4021(63.80) 1294(74.37) 861(61.02) 961(68.16) 905(51.95)

 Yes 2282(36.20) 446(25.63) 550(38.98) 449(31.84) 837(48.05)

CVD, n (%)  < 0.0001

 No 5179(82.17) 1510(86.78) 1154(81.79) 1164(82.55) 1351(77.55)

 Yes 1124(17.83) 230(13.22) 257(18.21) 246(17.45) 391(22.45)

BMI (kg/m2) 23.48 ± 3.82 21.24 ± 2.69 22.89 ± 3.15 24.03 ± 3.53 25.76 ± 4.07  < 0.0001

CRP (mg/L) 2.50 ± 6.96 0.68 ± 0.46 4.74 ± 11.13 0.66 ± 0.41 4.00 ± 7.89  < 0.0001

FPG (mg/dl) 109.43 ± 34.78 100.75 ± 19.20 118.28 ± 45.32 100.17 ± 15.30 118.41 ± 43.22  < 0.0001

TC (mg/dl) 194.13 ± 38.89 185.27 ± 34.79 193.58 ± 41.87 191.60 ± 35.19 205.46 ± 40.40  < 0.0001

HDL-C (mg/dl) 51.57 ± 15.37 57.42 ± 15.92 46.82 ± 15.27 56.17 ± 13.34 45.87 ± 12.93  < 0.0001

LDL-C (mg/dl) 116.73 ± 34.91 112.30 ± 31.02 112.85 ± 37.65 118.90 ± 31.58 122.55 ± 37.79  < 0.0001

TG (mg/dl) 132.82 ± 112.96 86.13 ± 37.48 167.58 ± 151.21 95.16 ± 39.04 181.76 ± 135.38  < 0.0001

BFP (%) 30.27 ± 8.06 22.86 ± 4.22 23.98 ± 4.05 36.12 ± 3.74 38.04 ± 4.21  < 0.0001

CTI 4.73 ± 0.58 4.26 ± 0.27 5.17 ± 0.42 4.30 ± 0.26 5.21 ± 0.43  < 0.0001

Table 1.  Baseline characteristics of participants. BMI, body mass index; CRP, C-reactive protein; FPG, fasting 
plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 
lipoprotein cholesterol; TG, triglyceride; BFP, body fat percentage; CTI, C-reactive protein-triglyceride-glucose 
index; Data are presented as mean ± standard errors or number (%).
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Variable

Crude model Model 1 Model 2

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

BFP (Per 1% increase) 1.028(1.020,1.035)  < 0.0001 1.029(1.021,1.036)  < 0.0001 1.022(1.012,1.032)  < 0.0001

Stratifed by BFP median

 Low BFP (4.75–30.80%) ref ref ref

 High BFP (30.80–58.62%) 1.337(1.188,1.504)  < 0.0001 1.342(1.189,1.516)  < 0.0001 1.205(1.038,1.399) 0.014

CTI (Per 1unit increase) 1.371(1.245,1.508)  < 0.0001 1.332(1.209,1.467)  < 0.0001 1.164(1.026,1.321) 0.018

Stratifed by CTI median

 Low CTI (3.17–4.68) ref ref ref

 High CTI (4.68–7.53) 1.402(1.246,1.579)  < 0.0001 1.359(1.206,1.531)  < 0.0001 1.151(1.004,1.319) 0.043

Table 2.  Association of BFP and CTI and the risk of CVD incidence. Crude model: no covariates were 
adjusted; Model 1: marital status, education level and residence place were adjusted; Model 2 for BFP: marital 
status, education level, residence place, smoking status, drinking status, hypertension, DM, TC, TG, HDL and 
LDL were adjusted; Model 2 for CTI: marital status, education level, residence place, smoking status, drinking 
status, hypertension, DM, BMI, TC, HDL and LDL were adjusted; HR, hazard ratios; 95% CI, 95% confidence 
intervals; BFP, body fat percentage; CTI, c-reactive protein triglyceride-glucose index; CVD, cardiovascular 
diseases;

 

Fig. 2.  Kaplan–Meier survival curves of CVD by BFP and CTI level. CVD, cardiovascular disease; BFP, Body 
fat percentage; CTI, C-reactive protein triglyceride-glucose index.
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Notably, the joint exposure to high BFP and high CTI exhibited a supra-additive effect. Taking participants 
with low BFP and low CTI as the reference group, individuals with solely high CTI, solely high BFP, and both 
high BFP and high CTI were significantly associated with elevated risks of CVD by 1.3-fold (95% CI 1.077–
1.569), 1.26-fold (95% CI 1.032–1.539), and 1.476-fold (95% CI 1.21–1.8), respectively (Table 3). The ROC 
analyses showed that combine BFP and CTI had a favorable performance to predict CVD risk than BFP or 
CTI alone with an AUC of 0.581 (DeLong’s test P < 0.05) (Fig. 4). It is noteworthy that while the absolute AUC 
value is relatively low, the significant improvement underscores the complementary information provided by 
integrating adiposity and metabolic-inflammation pathways, rather than advocating for its use as a standalone 
high-performance predictor.

Subgroup analyses
We conducted subgroup analyses to assess the associations of BFP and CTI with CVD risk. The associations 
between BFP/CTI and CVD risk were consistent with the primary findings across most subgroups (Table 
4). Notably, significant interaction effects were observed for age and DM status with the combined BFP-CTI 
exposure on CVD risk (P-interaction < 0.05 for both). Specifically, the associations between elevated BFP/CTI 
levels and CVD risk were more pronounced in participants aged ≤ 60 years (HR = 1.759, 95% CI 1.250–2.475) 
and those with DM (HR = 3.516, 95% CI 1.691–7.313) compared to older adults (HR = 1.438, 95% CI 0.958–
2.160) and non-DM individuals (HR = 1.360, 95% CI 1.027–1.801). These findings suggest synergistic metabolic 
dysregulation in younger populations and DM patients amplifies adiposity-related cardiovascular toxicity.

Mediation analysis
Through formal mediation analyses, we quantified the reciprocal pathways between BFP and CTI in CVD 
pathogenesis. CTI mediated 8.76% (P < 0.001) of the total association between BFP and CVD risk, while BFP 
mediated 12.22% (P < 0.001) of the total association between CTI and CVD risk (Fig.  5). This bidirectional 

Variable

crude model Model 1 Model 2

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Low BFP and Low CTI ref ref ref

Low BFP and High CTI 1.424(1.192,1.701)  < 0.0001 1.441(1.205,1.722)  < 0.0001 1.3(1.077,1.569) 0.006

High BFP and Low CTI 1.351(1.129,1.617) 0.001 1.36(1.134,1.631)  < 0.001 1.26(1.032,1.539) 0.024

High BFP and High CTI 1.781(1.513,2.096)  < 0.0001 1.802(1.527,2.127)  < 0.0001 1.476(1.210,1.800)  < 0.001

P for trend  < 0.0001  < 0.0001  < 0.001

Table 3.  Synergistic impact of BFP and CTI on the risk of CVD incidence. Crude model: no covariates were 
adjusted; Model 1: marital status, education level and residence place were adjusted; Model 2 for BFP: marital 
status, education level, residence place, smoking status, drinking status, hypertension, DM, TC, TG, HDL and 
LDL were adjusted; Model 2 for CTI: marital status, education level, residence place, smoking status, drinking 
status, hypertension, DM, BMI, TC, HDL and LDL were adjusted; HR, hazard ratios; 95% CI, 95% confidence 
intervals; BFP, body fat percentage; CTI, c-reactive protein triglyceride-glucose index; CVD, cardiovascular 
diseases;

 

Fig. 3.  (A) RCS model analysis the dose–response relationships between BFP and CVD risk; (B). RCS model 
analysis the dose–response relationships between CTI and CVD risk. We adjusted the model fully for age, sex, 
marital status, education level, residence place, smoking status, drinking status, BMI, hypertension, DM and 
blood lipids laboratory test results. CVD, cardiovascular disease; BFP, body fat percentage; CTI, C-reactive 
protein triglyceride-glucose index.
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Variable Low BFP and Low CTI Low BFP and High CTI High BFP and Low CTI High BFP and High CTI P for interaction

HR (95% CI) HR (95% CI) HR (95% CI)

Age 0.034

  ≤ 60 ref 1.539(1.186,1.997) 1.363(0.968,1.918) 1.759(1.250,2.475)

  > 60 ref 1.008(0.766,1.326) 1.515(1.002,2.290) 1.438(0.958,2.160)

Sex 0.062

 Male ref 1.215(0.985,1.498) 1.403(0.656,3.002) 2.197(1.490,3.239)

 Female ref 1.765(1.037,3.005) 1.351(0.951,1.918) 1.487(1.035,2.136)

Smoking status 0.65

 Yes ref 1.250(0.960,1.627) 1.227(0.583,2.582) 1.959(1.162,3.301)

 No ref 1.333(1.011,1.759) 1.426(1.056,1.925) 1.530(1.127,2.078)

Drinking status 0.234

 Yes ref 1.458(1.106,1.921) 2.261(1.347,3.797) 3.025(1.921,4.764)

 No ref 1.172(0.903,1.522) 1.173(0.873,1.577) 1.236(0.915,1.669)

Diabetes mellitus 0.01

 Yes ref 1.227(0.654,2.299) 3.279(1.445,7.438) 3.516(1.691,7.313)

 No ref 1.352(1.107,1.651) 1.250(0.948,1.648) 1.360(1.027,1.801)

Hypertension 0.703

 Yes ref 1.093(0.813,1.468) 1.587(1.056,2.384) 1.822(1.235,2.688)

 No ref 1.427(1.116,1.825) 1.241(0.892,1.726) 1.380(0.982,1.939)

Table 4.  Subgroup analysis for the association of the BFP and CTI on CVD risk. Crude model: no covariates 
were adjusted; Model 1: marital status, education level and residence place were adjusted; Model 2: marital 
status, education level, residence place, smoking status, drinking status, hypertension, DM, TC, HDL and LDL 
were adjusted. HR, hazard ratios; 95% CI, 95% confidence intervals; BFP, body fat percentage; CTI, c-reactive 
protein triglyceride-glucose index; CVD, cardiovascular diseases;

 

Fig. 4.  The ROC curves of BFP, CTI and CVD risk. ROC, receiver operating characteristic; AUC, area under 
the curve; BFP, Body fat percentage; CTI, C-reactive protein triglyceride-glucose index.
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mediation pattern suggests adiposity and metabolic dysregulation mutually reinforce CVD risk through distinct 
yet interconnected biological mechanisms.

Discussion
This prospective cohort study of 6303 Chinese adults provides novel evidence that BFP and CTI synergistically 
amplify CVD risk. Participants with concurrent high BFP (> 30.8%) and CTI (> 4.68) faced a 1.48-fold increased 
CVD risk (95% CI 1.21–1.80) compared to those with low levels of both markers—a risk magnitude exceeding 
the sum of their individual effects (high BFP alone: HR = 1.205; high CTI alone: HR = 1.151). The combined 
BFP-CTI model demonstrated incremental predictive value (AUC = 0.581) over isolated metrics (DeLong’s test 
P < 0.05), highlighting the clinical relevance of integrating adiposity and metabolic-inflammation pathways for 
risk stratification. Importantly, mediation analyses revealed bidirectional pathways: CTI mediated 8.76% of 
BFP’s effect on CVD, while BFP mediated 12.22% of CTI’s effect (P < 0.001). The bidirectional mediation pattern 
is consistent with the hypothesis of a reciprocal relationship between adiposity and metabolic inflammation.

The limitations of BMI in capturing obesity-related CVD risk are well-documented30. BMI fails to 
differentiate between fat mass and lean mass, potentially misclassifying individuals with high muscle mass (e.g., 
athletes) as obese or those with normal BMI but excessive visceral adiposity (e.g., "metabolically obese normal 
weight" phenotype) as low-risk31,32. In contrast, BFP provides a direct measure of adiposity, correlating more 
strongly with visceral fat accumulation—a key driver of cardiometabolic dysfunction33,34. Multiple studies have 
demonstrated significant associations between BFP and CVD risk. For instance, a cross-sectional analysis of the 
National Health and Nutrition Examination Survey (NHANES) data revealed that individuals in the highest 
quartile of BFP had a 3.99-fold increased risk of cardiovascular disease (95% CI 1.58–10.88) compared to those 
in the lowest quartile, with similarly elevated risks for hypertension and DM35. These findings are corroborated 
in pediatric populations, where elevated BFP in children and adolescents was independently linked to IR, 
dyslipidemia, and hypertension36,37. BFP thresholds for CVD risk prediction vary across populations. In Korean 
adults, thresholds of ≥ 21% for male and ≥ 37% for female were associated with significantly higher CVD risks 
(OR = 4.05 and 3.21, respectively)38. Notably, Asian populations exhibit higher BFP at equivalent BMI levels 
compared to Caucasians, suggesting the need for population-specific adjustments in obesity criteria39. We 
found that elevated BFP (> 30.8%) independently predicted CVD risk (HR = 1.205, 95% CI 1.038–1.399) even 
after adjusting for BMI, suggesting that adiposity-specific metrics like BFP should supplant BMI in clinical risk 
assessments.

CTI, developed by Ruan et al.26, serves as a significant tool for the prognostic evaluation of cancer patients. 
This index synthesizes CRP, a recognized biomarker of inflammation, and TyG index, a biomarker of IR. The 
TyG index is a validated surrogate marker of IR. The concept of integrating inflammation into metabolic risk 
assessment is further bolstered by studies on liver-derived risk scores. For instance, the APRI score, a marker 
of liver inflammation and fibrosis, has been independently associated with increased cardiovascular risk, 
underscoring the importance of extra-cardiac inflammatory sources in CVD pathogenesis40. Large-scale studies 
demonstrate its predictive value for metabolic syndrome, DM, and CVD41. A multinational prospective cohort 
study involving 141,243 participants from 22 countries further confirmed that elevated TyG index independently 
correlates with increased risks of cardiovascular mortality, myocardial infarction (MI), stroke, and incident DM, 
particularly in low- and middle-income countries42. In patients with non-ST-segment elevation acute coronary 
syndrom, a higher TyG index is independently associated with coronary artery disease severity and major 
adverse cardiovascular events (HR = 1.88, 95% CI 1.13–3.12)43. In addition to IR, inflammation serves as another 
critical risk factor for CVD. Among numerous inflammatory biomarkers, CRP has garnered the most attention 
due to its established utility in CVD screening and risk reclassification. Elevated CRP levels, a marker of systemic 
inflammation, are strongly associated with IR, DM, and CVD44. CRP not only reflects inflammatory activity 
but also directly contributes to endothelial dysfunction and plaque formation, serving as a critical predictor of 
CVD risk44. Elevated CRP levels (> 3 mg/L) are independently associated with a 58% increased risk of incident 
coronary heart disease (95% CI 1.37–1.83), even after comprehensive adjustment for traditional risk factors45.

Fig. 5.  (A) Mediation analysis of CTI on the association between BFP and the risk of CVD; (B). Mediation 
analysis of BFP on the association between CTI and the risk of CVD. We adjusted the model fully for marital 
status, education level, residence place, smoking status, drinking status, hypertension, DM and TC, HDL-C 
and LDL-C; CVD, cardiovascular disease; BFP, Body fat percentage; CTI, C-reactive protein triglyceride-
glucose index.
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However, a growing body of evidence demonstrates an inseparable pathophysiological interplay between 
IR and inflammation in CVD, characterized by bidirectional crosstalk that amplifies endothelial damage and 
atherosclerotic progression. IR and chronic inflammation are closely interconnected through multiple biological 
pathways. The inflammatory marker CRP further exacerbates endothelial dysfunction by impairing nitric oxide 
synthase activity in progenitor cells, creating a proatherosclerotic environment that links IR to cardiovascular 
complications46,47. These findings collectively demonstrate that chronic low-grade inflammation acts as both 
a cause and consequence of IR, creating a vicious cycle that promotes metabolic syndrome and associated 
comorbidities. In our study, we introduced the CTI, a novel and comprehensive metric specifically developed to 
evaluate the interplay between insulin resistance and inflammatory pathways in the pathogenesis of CVD. Our 
findings robustly demonstrate that the CTI is significantly associated with CVD risk, with each unit increase in 
CTI corresponding to a 16.4% elevated risk of incident CVD (HR = 1.164, 95% CI 1.026–1.321).

While the intricate interplay among obesity, IR, and inflammation in CVD pathogenesis remains incompletely 
understood, our study reveals that concurrent elevations in BFP and CTI synergistically amplify CVD risk. 
Although the absolute discriminative ability of the combined model (AUC = 0.581) was modest, the statistically 
significant improvement over either index alone (DeLong’s P < 0.05) suggests that integrating adiposity and 
metabolic-inflammation pathways provides complementary information for understanding CVD risk etiology, 
rather than advocating for its immediate standalone clinical use as a predictor. Notably, this association was 
significantly stronger in participants younger than 60 years (HR = 1.759, 95% CI 1.250–2.475) or those with DM 
(HR = 3.516, 95% CI 1.691–7.313), compared to older (HR = 1.438) and non-DM individuals (HR = 1.360) (P 
for interaction < 0.05). Obesity-induced chronic inflammation plays a central role in the pathogenesis of IR, as 
pro-inflammatory cytokines such as TNF-α and IL-6 disrupt insulin signaling in adipose tissue, skeletal muscle, 
and liver by inhibiting key phosphorylation steps in insulin receptor substrates48,49. Adipose tissue serves as a 
primary site for this interaction, with activated tissue-resident macrophages secreting inflammatory mediators 
that induce localized and systemic IR through autocrine/paracrine and endocrine mechanisms50. Crucially, 
our mediation analyses revealed significant reciprocal mediation effects between BFP and CTI in driving CVD 
events, with BFP mediating 8.76% and CTI mediating 12.22% of each other’s associations with CVD risk. This 
bidirectional mediation architecture robustly confirms the tripartite interplay among adiposity, IR, and systemic 
inflammation in CVD pathogenesis. Although our mediation analysis suggests potential bidirectional pathways 
between adiposity and metabolic-inflammation, several important limitations must be considered. The analysis 
relies on strong assumptions, including no unmeasured confounding between the exposure-mediator and 
mediator-outcome relationships. While we adjusted for a comprehensive set of covariates, residual confounding 
remains possible. Furthermore, as both BFP and CTI were measured at a single baseline time point, our analysis 
captures statistical mediation but cannot definitively establish the temporal dynamics or causality of a truly 
reciprocal process. Therefore, these results should be interpreted as generating hypotheses about potential 
mechanistic interplay rather than providing definitive evidence of causal mediation.

As the first prospective cohort study investigating BFP and CTI in CVD, several limitations of the current 
research should be acknowledged. First, due to the observational study design, we cannot confirm causal 
relationships between BFP, CTI, and CVD risk. However, BFP and TCI have been extensively validated as 
predictors of CVD events. This study aimed to assess the combined exposure effects and reciprocal mediation 
relationships between BFP and CTI regarding cardiovascular risk. Second, we still cannot exclude the possibility 
of residual or unmeasured confounding bias that might affect effect size estimations. Despite adjusting for a 
wide range of demographic, lifestyle, and metabolic covariates, as well as medication use, we cannot rule out 
residual confounding from unmeasured or imperfectly measured factors, such as detailed dietary patterns, 
physical activity levels, and medication adherence. Third, the diagnosis of CVD in our study was based on 
self-report, which might lead to misclassification bias due to under-reporting of asymptomatic cases or over-
reporting due to misdiagnosis. Although this method is consistent with previous studies using the same database 
and has been used in published literature51,52, it remains a limitation compared to adjudicated medical records. 
Fourth, we used BFP as a surrogate measure of body fat and CTI as a proxy indicator of IR and inflammation. 
Both measurement methods might deviate from true biological values, requiring further studies to validate 
their measurement accuracy. Furthermore, BFP and CTI were assessed only at baseline, and we could not 
account for their potential changes over the follow-up period, which might lead to regression dilution bias 
and potentially underestimate the true association. Finally, a substantial proportion of the original CHARLS 
cohort was excluded due to missing data on BFP or CTI, which may limit the generalizability of our findings. 
Our supplementary analysis (Supplementary Table 2) indicates that the excluded participants had significant 
differences from the population included in this study in most baseline data. Therefore, the extrapolation of our 
results should be made with caution. Future studies with more complete data are needed to validate our findings 
in broader populations.

In summary, our findings suggest that the joint assessment of BFP and CTI provides complementary 
information for understanding CVD risk etiology, highlighting a synergistic interplay between adiposity and 
metabolic-inflammation. While both indices are derived from routine or low-cost measurements (anthropometry 
and basic blood tests), suggesting potential for affordable risk assessment, future studies incorporating formal 
cost-effectiveness analyses are necessary to determine their practical utility and value in specific clinical settings.

Conclusions
In summary, through a prospective nationwide cohort study in Chinese adults, we found that IR and inflammation 
significantly mediated the association between obesity and CVD risk, and vice versa. The findings highlight the 
combined exposure effects of BFP and CTI levels on CVD events and suggest that joint assessment of BFP and 
CTI could further stratify CVD risk.
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